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Abstract OCL is the standard language for defining
constraints in UML class diagrams. Unfortunately, as
we show in this paper, full OCL is so expressive that
it is not possible to check general OCL constraints
efficiently. In particular, we show that checking gen-
eral OCL constraints is not only not polynomial, but
not even semidecidable. To overcome this situation,
we identify OCLFO, a fragment of OCL which is ex-
pressively equivalent to relational algebra (RA). By
equivalent we mean that any OCLFO constraint can be
checked through a RA query (which guarantees that
OCLFO checking is efficient, i.e., polynomial), and any
RA query encoding some constraint can be written
as an OCLFO constraint (which guarantees expressive-
ness of OCLFO). In this paper we define the syntax of
OCLFO, we concisely determine its semantics through
set theory, and we proof its equivalence to RA. Ad-
ditionally, we identify the core of this language, i.e. a
minimal subset of OCLFO equivalent to RA.
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1 Introduction

Since the definition of the Entity-Relationship (ER)
language by Peter Chen in his seminal paper of 1976
[1], several new graphical modeling languages have been
proposed so far by different researchers and institutions.
Some prominent examples might be the Object Role
Modeling language (ORM)[2], and the Unified Model-
ing language (UML) [3].

Using these languages, a software engineer can spec-
ify the conceptual schema of an information system.
That is, the relevant concepts of the domain of inter-
est, and how these concepts are related. Intuitively, the
structural part of a conceptual schema (the one consid-
ered in this paper) consists of a class diagram, together
with a set of textual constraints usually specified in a
formal language such as OCL (Object Constraint Lan-
guage) [4].

For instance, in Figure 1 we show a UML class di-
agram for some messaging application. The domain of
such application consists of users, conversation groups
(which can be divided into pairs, and groups) and mes-
sages. In this domain, users belong to conversation
groups, and messages are sent by users to these groups.

To get a precise conceptual schema, this diagram
has to be complemented with a set of constraints, i.e.,
conditions that the data it specifies should satisfy to
be considered valid. Then, modeling languages provide
themselves some graphical constructs that allow the
definition of some frequent constraints. For instance,
in our running example, we have stated the constraint
that each message is sent to exactly one conversation
group by means of two graphical UML cardinalities.

Moreover, and due to the limited expresiveness of
graphical constraints, a textual language has to be con-
sidered also to express more sophisticated constraints.
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Fig. 1 UML class diagram

Indeed, constraints such as Users only send messages
to groups they belong to, and Messages of a group are
sent after the group creation cannot be graphically ex-
pressed in the previous UML diagram.

Currently, OCL (Object Constraint Language) [4]
is probably the most popular notation to specify tex-
tual constraints and an ISO/IEC standard. Roughly,
OCL permits defining constraints by means of build-
ing navigations from classes/associations, and applying
some OCL operators to such navigations. For instance,
the previously mentioned constraints can be specified
in OCL as:

context Group inv MessagesAreFromGroup:
self.user->includesAll(self.msg.author)

context Group inv MessagesAreSentAfterCreation:
self.msg->forAll(m|m.sentTime > self.crTime)

Fig. 2 OCL constraints

However a natural question arising is to what extent
is OCL expressive for defining constraints. That is, is
OCL expressive enough for defining all the constraint
we might require? or, on the contrary, is it even ex-
cessively expressive? In fact, the expressive power of a
language determines the complexity to check or to ana-
lyze its expressions [5]. Therefore, we may want to avoid
a language which is too expressive because it would pe-
nalize the time for its checking, but it may happen also
that a restrictive language might be efficiently checked
but useless.

This is an important question, which has no answer
yet in the OCL literature. Probably, the closest study
in this area is the one by Mandel and Cengarle in [6]
but it was performed more than 15 years ago, and for
an old version of OCL which did not include new con-
structs and capabilities that have been released since

then. This is why we understand that a new and more
careful analysis must be done. This is particularly im-
portant if we take into account that, in the OCL panel
held in the OCL Workshop 2014, the OCL community
discussed about whether OCL should include more op-
erations (and which ones), or if OCL should just reor-
ganize the current existing ones [7].

In this context, we show in this paper that full
OCL is currently so expressive that it is able to encode
non-decidable constraints (and even non-semidecidable
ones). That is, we can write OCL constraints for which
there is no algorithm able to check its satisfaction in
finite time. It is important to hightlight that previous
results only showed that OCL was undecidable for the
problem of satisfiability (that is, whether it exists some
data instance satisfying the constraint) [8], but we show
that it is even undecidible with the satisfaction prob-
lem.

That means that OCL interpreters might not be
able to assess whether an OCL constraint is satisfied
by some data, even in the case that the data is indeed
satisfying the constraint. Clearly, this result has a deep
impact in the efficiency of OCL implementations like
[9–11]. Indeed, our results not only imply undecidabil-
ity, but also that decidable cases might be exponen-
tial. Thus, despite such implementations give support
to most OCL expressions, many of them would only be
feasible in toy examples rather than in real datasets.
Our article brings light to what set of OCL operations
can scale up for being checked with real big datasets.

In particular, in this article we identify a fragment
of OCL which is expressive enough to write the most
typically used textual constraints, but without loosing
good computational properties for checking them. Our
key idea is to look for the OCL fragment whose expres-
sions can be checked through relational algebra (RA)
queries in the sense that the constraint is violated iff
the RA query returns a non-empty answer.

For instance, assume a translation from the UML
class diagram in Figure 1 into a relational database
such that each class gives rise to a different table with
the same name, the same attributes plus an additional
one corresponding to the OID (i.e. the object identi-
fier, which is set for each tuple to a fresh value, dif-
ferent from the OID of any other tuple in the whole
instance); and such that each association becomes also
a table named as the association and with as many at-
tributes as classes participate in the association (i.e. the
OIDs of the participating classes).

Then, we have that the OCL constraints in Figure
2 can be checked by means of the following RA queries:

1. π(Group1 IsSentTo1Writes) \ π(Group1HasMember)
2. σsentTime≤crTime(Group1 IsSentTo1Message)
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Intuitively, the first query looks for the users which
send messages to groups they do not belong to. In this
way, one can check if the MessagesAreFromGroup con-
straint is satisfied by checking if this query is empty.
Similarly, the second query looks for the messages
whose sent time is previous to its group creation time.
Note that, although not explicitly stated, the joins and
the projections in the previous queries are performed
through the OID attributes of the tables.

We name this fragment of OCL as OCLFO
1. We de-

fine the syntax of OCLFO with a formal grammar and
determine its semantics by means of set theory. In this
way, the language is fully described in an unambiguous
and concise way so that such concise description may
be easily understood and adopted by current practi-
tioners. Note that, those approaches aimed at bringing
formal semantics to the full OCL require much larger
definitions, and even relying on third party languages
[4,12,13].

Regarding its expressiveness, we show that OCLFO
is not only expressible in relational algebra, but equiv-
alent to relational algebra. That is, every OCLFO con-
straint can be checked by means of a relational alge-
bra query, and every constraint that can be checked by
means of a relational algebra query can be written in
OCLFO. This basic property ensures that OCLFO is as
expressive as the main language of relational databases
and guarantees that the complexity of checking the con-
straints is exactly the complexity of executing relational
queries, that is, polynomial in data complexity (and in
particular, AC0). Moreover, it opens the door to reuse
all the accumulated knowledge for efficient query an-
swering in relational databases into efficiently checking
of OCLFO constraints, as proposed by incremental ap-
proaches like the one in [14].

Finally, in order to make OCLFO an easy object of
study, we also identify a core of the language that we
call OCLCORE. Indeed, OCLFO is targeted to include the
fragment of OCL that can be encoded into relational al-
gebra. On the one hand, this makes OCLFO a language
containing most of the operators that an OCL practi-
tioner might use. On the other hand, this makes OCLFO
a difficult object of study since it inherits a lot of the
OCL syntactic sugar. The core of the language is aimed
at overcoming this situation since it is a minimal frag-
ment of OCLFO (consisting only of 6 operations) able
to express any constraint written in the whole OCLFO.

The identification of this core of the language is also
an important issue since it provides two significant con-
tributions. First, it allows to easily state the relation-
ship of any fragment of OCL with OCLFO, by deter-

1 FO stands for First-Order, since relational algebra is, es-
sentially, first-order logics.

mining whether this fragment incorporates or not the
six operations in OCLCORE. Second, it entails that any
implementation handling OCLCORE will also be able to
deal with OCLFO.

This paper improves and extends our previous work
in [15], where the syntax and the semantics of OCLFO
were initially identified, in the following terms:

– We prove that checking general OCL constraints is
not decidable (and not even semidecidable).

– We revisit the syntax and semantics of OCLFO to
include the major part of OCL that can be encoded
into relational algebra.

– We provide the full formal proof of the equivalence
between OCLFO and RA.

– We introduce the concept of OCLCORE, a minimal
subset of OCLFO with the same expressive power.

The paper is organized as follows. First, we define
basic concepts in Section 2. Then, we show in Section
3 that checking general OCL constraints is not decid-
able. Afterwards, we present the language of OCLFO
with its formal grammar and semantics in Section 4. In
Sections 5 and 6 we prove that OCLFO constraints can
be checked by relational algebra query emptiness, and
viceversa. The OCLCORE is presented in Section 7. Fi-
nally, we review related work in Section 8, and discuss
future work and conclusions in Section 9.

2 Basic conceps

UML class diagrams A UML Class diagram consists
of a set of entity and relationship types. Entity types,
also known as classes, have a name and a set of at-
tributes; see for instance class User in our running ex-
ample (Figure 1) with attributes phone, state and last-
Connect. Relationship types, also called associations,
are defined between pairs of entity types (we consider
only binary relationship types); an example is Writes,
defined between classes User and Message. Relationship
types should not be confused with the so-called is-a
relationship, which denote inheritance between classes;
in our example, Pair and Group inherit from Conversa-
tionGroup, that is, they are subclasses of it, and it is
superclass of them.

As we can see in Figure 1, UML class diagrams usu-
ally have graphical integrity constraints in the form of
association cardinalities (e.g. Writes connects 1 author
with 0 or more messages) or disjointness/completeness
of entity type hierarchies (e.g. Group and Pair are dis-
joint, and each ConversationGroup is either a Group or a
Pair). These are complemented with textual OCL con-
straints, which are the main focus of this paper.
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An instance I of a UML class diagram SUML is a
finite set of objects (instances of classes) and links (in-
stances of associations). An object is identified by an
OID and has a value for each of the class’ attributes. A
link is a pair relating the OIDs of the connected objects.
We say that I is consistent if it satisfies all constraints
in SUML.
OCL constraint An OCL constraint is a textual ex-
pression, attached to a UML class diagram, stating
a condition that any UML instance for that schema
should always satisfy. OCL constraints, as shown in Fig-
ure 2, are defined by means of a context, an invariant
name, and a boolean expression.

The boolean expression of the OCL constraint
should be satisfied for any given instance of the con-
text class (referred as ‘self ’). That is, given a UML
instance, the OCL top boolean expression of the con-
straint should evaluate to true when interpreting self
as any UML object of the given context class.

OCL offers several operators for building the OCL
top boolean expression, where the most basic one is
the navigation operation (referred as a ‘.’). Intuitively,
a navigation from an object (set of objects) to some
property, is an operation that, given the initial object
(set of objects) collects the values/objects related to
it according to such property. For instance, the con-
straint MessagesAreFromGroup from Figure 2 has the
navigation self.msg. This navigation obtains the mes-
sages related to the group self. In addition, navigations
can be naturally concatenated. Following with our ex-
ample, self.msg.author obtains the users who are the
authors of the messages related to self.

Given one or several OCL navigations, the OCL lan-
guage provides several operators to check them such
that it is possible to return a boolean value. For in-
stance, in MessagesAreFromGroup, the OCL operator
includesAll checks whether the contents of the navi-
gation of self.msg.author is contained in the navigation
self.user.
Relational schemas A relational schema is a set of re-
lations {R1, . . . , Rn}, each with a particular signature
R(A1, . . . , Am), where A1, . . . , Am are the attributes,
and R is the relational symbol (with arity m). We usu-
ally identify a relation with its relational symbol.

An instance D of a relational schema SREL is a set
of tuples in the form of R(a1, . . . , an), where R is a
relational symbol from SREL with arity n, and a1, . . . , an
are constants.
Relational views of UML class diagrams In this
paper, we consider a particular class of relational
schemas that are derived from UML class diagrams.
We say that SREL is the relational view of UML class

diagram SUML if it is a relational schema constructed
by applying the following rules, starting from an empty
set of relations:
– For each class C in SUML with attributes

attr1, . . . , attrn, add n-ary relation C to SREL with
signature C(oid, attr1, . . . , attrn).

– For each association A in SUML between any pair
of classes C1 and C2, add binary relation A with
signature A(c1, c2) to SREL.
Note that, assuming a UML class with n attributes,

its relational translation is indeed a n+1-ary relation
due to the addition of the OID. The concept of rela-
tional view is easy to reformulate at the level of in-
stances if the OID of each tuple is set to a fresh value,
different from the OID of any other tuple in the whole
instance. The actual value of the OID is irrelevant, all
that matters is its uniqueness with respect the OIDs of
the other tuples. For the sake of simplicity, we assume
single-valued, primitive-typed attributes.

More formally, let SREL be the relational view of
SUML, and D and I instances of SREL and SUML, re-
spectively. We say that D is the relational view of I
if it is constructed from the empty instance, using the
following rules:
– For each class C ∈ SUML and each object c ∈ I of C,

where v1, . . . , vn are the attribute values of c, add
tuple C(c, v1, . . . , vn) to D.

– For each association A ∈ SUML and each link a =
(c1, c2) ∈ I instance of A, add tuple A(c1, c2) to D.

A relational view D of a UML instance I is consistent
if I is consistent.

Regarding graphical constraints, including general-
ization set constraints such as incomplete or disjoint,
and their translation into the relational view, provid-
ing a specific translation for them would be redundant,
as they can be expressed in OCL and translated into
RA with the algorithms shown later in the paper. The
unique exception are IsA hierarchy constraints, which
can be encoded using relational foreign keys (subclass
relations pointing to superclass relations).

Other UML aspects intended for software design
rather than software specification (such as interfaces
and directed associations) are outside of OCLFO’s
framework, and thus, outside of the scope of this ar-
ticle.

We use Rviews to denote the class of relational views
of UML class diagrams, i.e., Rviews = {SREL | ∃SUML :
SREL is the relational view of SUML}. Henceforth, when-
ever we say “relational schema”, we mean a schema that
belongs to Rviews.
Substitutions A substitution is a function that, when
applied to an OCLFO expression, replaces free variables
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with constants. We use E[s] to denote the application
of a substitution s = {var1 → c1, var2 → c2, . . .} to an
expression E.

A substitution St obtained from some tuple t is a
substitution that replaces variables with the values ap-
pearing in t. By default, St replaces a variable var with
the value for the relational attribute called var appear-
ing in t, i.e., t[var ]. Conversely, we can also define a
mappingM from OCL variables to relational attributes
in t, so that, St replaces a variable var with t[M(var)].

Similarly, we say that a substitution St is obtained
from some query q on some instance I when there exists
some tuple t ∈ q(I) from which St is obtained.

3 Undecidability of OCL Constraint Checking

It is well known that there is a tradeof between the ex-
pressiveness of a language and the computational com-
plexity to reason with it. I.e., the greater its expres-
siveness, the more difficult is to evaluate/analyze its
expressions.

Bearing this in mind, we are interested to know the
computational complexity of checking a general OCL
constraint in terms of data complexity. That is, how
much difficult is to evaluate an OCL constraint regard-
ing the size of a UML instantiation. Surprisingly, to our
knowledge, although there are similar studies on other
problems like OCL maintenance [16] or reasoning [17],
this analysis has not been yet performed for integrity
checking of OCL constraints.

In fact, it turns out that, unfortunately, current full
OCL is so expressive that it is not decidable. That is, it
is impossible to build an algorithm guaranteed to ter-
minate and correctly assessing whether an OCL con-
straint is satisfied or not in an arbitrary UML instanti-
ation. Things get even worse because we can also prove
that OCL is not even semidecidable. Therefore, the al-
gorithm is not ensured to terminate even in the case of
UML instantiations that satisfy the constraint. Clearly,
this entails a huge problem to OCL constraint evalua-
tor techniques. Indeed, this result implies that checking
techniques might hang when evaluating if some valid
UML instantiation is valid, not to say that decidable
cases might take an exponential amount of time.

We prove the previous results by means of reducing
a non-decidable problem into OCL constraints check-
ing. In particular, we reduce the problem of checking
whether some word is accepted by a type-0 grammar
[18] into OCL checking. Roughly speaking, a type-0
grammar is a set of replacing rules that transforms a
finite string into another finite string. Thus, the word-
acceptance problem in such grammar consists in, given

some word, checking whether this word is generated by
the set of production rules and some initial symbol. It is
known that such problem is undecidable since, roughly
speaking, a type-0 grammar can emulate a turing ma-
chine.

The reduction is based on exploiting OCL recursion,
and OCL string operators. The idea is to build an OCL
operation produces that recursively checks if a given
word target is generated from an initial word current
by means of a set of production rules. This is done by
replacing the initial word into another one by using
OCL String concatanation and substring operators. If
the new word coincides with the target, the operation
returns true, otherwise, there is a recursive call to check
if transforming the new word we can generate the target.

The key of the undecidability relies on the finite,
but unbounded, memory consumption required for such
operation. Indeed, our OCL operation rewrites finite
strings into new finite strings, but the size of the new
strings cannot be bounded, which makes the recursion
potentially infinite. This behavior mimics the one of the
type-0 grammars (or turing machines). A Turing Ma-
chine might hang because of never reaching the final
state consuming more and more tape (although it is a
finite amount of tape). Equivalently, the type-0 gram-
mar might derive, at runtime, non-terminal Strings of
greater size each time, without never reaching the ter-
minal word. This runtime derivation of non-terminal
words of (potentially) increasing size is achieved in our
setting through the recursive produces OCL operation,
whose current input String might become longer and
longer.

In the following, we formally state and proof such
result.

Theorem 1 Checking whether an OCL constraint is
satisfied in an arbitrary UML instantiation is not de-
cidable, and not even semidecidable.

Proof First, we prove non-decidability. Then, we prove
non-semidecidability.

To prove non-decidability, we make a reduction from
a non-decidable problem to the problem of OCL in-
tegrity constraints checking. Thus, the undecidability
of the former implies the undecidability of the latter. In
particular, we make the reduction from the problem of
word acceptance in a type-0 grammar. A type-0 gram-
mar is a kind of grammar where all symbols (terminal,
and non-terminal) might be substituted by means of
the grammar rules. A formal definition of type-0 gram-
mar might be found in [18], but, for our purposes, we
only need to know that checking if a word is produced
(aka accepted) by means of a type-0 grammar is unde-
cidable.
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Bearing this in mind, our proof strategy consists
in building an OCL constraint stating that a word is
accepted, if and only if, it is produced by the grammar.
To do so, we define a UML class diagram encoding type-
0 grammars on one side, and accepted/non accepted
words on the other, so, we can define an OCL constraint
imposing our intended constraint between the two.

In particular, our UML class diagram, shown in Fig-
ure 3, is capable of encoding all the production rules
of an arbitrary type-0 grammar. A production rule is
composed of a left and right hand sides, where each
side is a sequence of symbols. These symbols might be
classified into non-terminal, and terminal, where non-
terminal symbols might be further classified into start
symbols. Moreover, the UML class diagram also con-
tains the notion of word, where words might be classi-
fied into accepted/non-accepted words. Note that, any
type-0 grammar and accepted/non-accepted word can
be described through this UML class diagram, i.e., any
type-0 grammar and word can be written as an instance
of this UML class diagram.

Symbol

symbol: String

{disj, compl}

TerminalNonTerminal

StartSymbol

ProductionRule
1..*

1..*

left

right
*

*

Word

word: String

{disj, compl} 

NonAcceptedAccepted

{ordered}

{ordered}

Fig. 3 UML class diagram for a 0 type grammar

Then, we add an OCL constraint assessing that in-
stances of accepted words should be produced by the
instances of production rules. We can build this OCL
constraint by assessing that, given an accepted word,
there should exists some production rule that produces
it from the start symbol (either directly, or by means of
subsequent production rule applications). This can be
defined as follows:
context Accepted inv IsProducedWord:
ProductionRule.allInstances()->exists(p|

StartSymbol.allInstances()->exists(s|
p.produces(s.symbol,self.word))

where produces is an OCL operation that returns true
if the first input string directly produces the second one,

or if it produces some other word from which we can
produce it. This operation can be defined in OCL as
follows:

context ProductionRule def produces
(current: String, target: String): Boolean =
self.replacements(current)->exists(newWord|

newWord = target or
ProductionRule.allInstances()->exists(p|

p.produces(newWord, target))

This definition makes use of the replacements op-
eration, which returns the different words we can obtain
by applying the production rule. Replacements can be
defined recursively in OCL. Intuitively, we need to first
compute the strings representing the left and right part
of the production rule. Then, if the input word is empty,
there is no replacement to apply and thus, we can re-
turn the empty set. Otherwise, we have to compute: 1)
any replacement that can be performed from the first
character, and 2) all the replacements that can per-
formed from the second character and beyond. We can
compute 1) by checking if the word’s beginning matches
the left part of the rule, and if so, add into the result
the word corresponding to replace the beginning of the
current word with the right part of the production rule.
2) can be computed recursively by means of skipping
the first character, and then, iterate the given result to
concatenate this first character at the beginning of each
returned word. Formally:

context ProductionRule def replacements
(current: String): Set(String) =
let leftW: String = self.left

->iterate(s;l: String = "" | l+s.symbol) in
let rightW: String = self.right

->iterate(s;r: String = "" | r+s.symbol) in
if current = "" then Set{}
else if current.substring(1,leftW.size())=leftW

then Set{rightW+
current.substring(leftW.size(),

current.size())}
else Set{} endif

->union( self.replacements(
current.substring(2,current.size())
)->iterate(i; ac: Set{}|
ac->including(current.substring(1,1)+i))

)
endif

Thus, we can check whether some word is accepted
by a type-0 grammar by instantiating the word and
the grammar in the previous UML class diagram and
checking the satisfaction of the given IsProducedWord
OCL constraint. Since checking whether some word is
accepted by a type-0 grammar is not decidable, check-
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ing OCL constraints is not decidable either. This con-
cludes the first part of the proof.

Now, to prove that checking OCL constraints is not
even semidecidable, we reduce the problem of checking
whether some word is rejected by some type-0 grammar,
which is a well known non-semidecidable problem.

Let us consider a constraint specifying that non-
accepted words are words that cannot be produced by
the grammar. In OCL, this constraint can be stated by
simply negating the previous one:
context NonAccepted inv IsNotProducedWord:
not ProductionRule.allInstances()->exists(p|

StartSymbol.allInstances()->exists(s|
p.produces(s.symbol,word.word))

We can check now whether some word is rejected
by a type-0 grammar by instantiating the word and the
grammar in the previous UML class diagram and check-
ing the satisfaction of the given IsNotProducedWord
OCL constraint. Therefore, checking OCL constraints
is not even semidecidable. 2

4 The OCLFO fragment of OCL

We provide in this section the syntax and the semantics
of OCLFO. Since our goal is to use OCLFO as a language
for specifying constraints, we place special emphasis on
OCLFO boolean statements.

The syntax is defined through a formal grammar
which limits the standard OCL boolean statements to
those that can be computed through RA queries. Since,
intuitively, relational algebra is known to be equivalent
to (domain independent) first-order logic, such gram-
mar leaves out the OCL higher-order operators like
transitive closure, or (most) aggregation functions.

Semantics is defined by means of set theory.
Roughly, OCL navigations are interpreted as sets, or
single objects/values, and OCL boolean operators are
interpreted as checks over them (e.g. the semantics
of includes consists in checking whether some ob-
ject/value belongs to a set, etc.). Therefore, this se-
mantics does not distinguish among different collection
types, as OCL does (e.g. it does not contemplate bags,
nor ordered sets). However, this is not a drawback of
OCLFO but a necessary limitation to ensure equivalence
with RA (since RA only supports sets). Furthermore,
most of the OCLFO considered operators regarding col-
lections brings the same results when interpreting an
OCL collection as a set. In fact, the unique ones that
might differ are: size, one, and isUnique in case that
its collection source included a navigation that might
contain repeated objects.

After defining the syntax and the semantics of
OCLFO, we make a brief discussion about the OCL op-
erations outside OCLFO while distinguishing whether
they could be effectively emulated in OCLFO, or not.
Then, we conclude this section analyzing the coverage
of OCLFO with two UML/OCL case studies.

4.1 OCLFO Syntax

The grammar of OCLFO is stated in Figure 4. Briefly,
an OCLFO constraint is an OCL-Bool statement writ-
ten in some class context as shown in Figure 2. Such
boolean statement might make use of navigations, i.e.,
OCL-Set, OCL-Object, or OCL-Value statements. Intu-
itively, the first kind of statements describe a set of
objects, whereas the last two determine a single ob-
ject/value, respectively. Such navigations are then used
as the input of some OCLFO operator to obtain the
OCL-Bool statement that defines the constraint.

These OCLFO statements are built over a signature
consisting of a set of class names, role/attribute names
(where some might be functional, i.e., with a maximum
cardinality of 1), association class names, and constant
names. Typically, this signature is provided by an as-
sociated UML class diagram.

For the sake of simplifying the language, we limit
OCLFO statements to evaluate to valid results. Thus,
we require the expressions to apply the proper safety
checks to avoid rising the OCL invalid value in run-
time. For instance, if we have some object of type T1,
and we want to cast it to T2, we might need to check
that the object has also the type T2 (unless T1 is a sub-
class of T2). Note that we can analyze in which cases
are these safety checks necessary with a syntactic in-
spection of the OCL expression and the class diagram.

4.2 OCLFO semantics

To define the semantics of OCLFO we interpret
the OCL-Bool statements as true/false values, the
OCL-Set statements as sets of objects/values, and
the OCL-Object/OCL-Value statements as a single ob-
ject/value respectively.

We define first the semantics of OCLFO without con-
sidering null values. That is, assuming that when in-
terpreting an OCL-Object or OCL-Value expression, we
always reach some defined object/value. We will include
the treatment of nulls later on.

4.2.1 OCLFO semantics without nulls

The semantics of an OCLFO statement is defined
through the interpretation of its signature. Such inter-
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OCL-Bool ::= OCL-Bool BoolOp OCL-Bool | not OCL-Bool |
OCL-Set ->includesAll(OCL-Set) | OCL-Set ->excludesAll(OCL-Set) |
OCL-Set ->includes(OCL-Single) | OCL-Set ->excludes(OCL-Single) |
OCL-Set ->forAll(VarList OCL-Bool) |
OCL-Set ->exists(VarList OCL-Bool) |
OCL-Set ->isEmpty() | OCL-Set ->notEmpty() |
OCL-Set ->size() CompOp Integer | ->one(Var OCL-Bool) |
OCL-Set ->isUnique(attr) |
OCL-Object.oclIsKindOf(Class) | OCL-Object.oclIsTypeOf(Class) |
OCL-Object = null | OCL-Object <> null |
OCL-Navigation = OCL-Navigation | OCL-Navigation <> OCL-Navigation |
OCL-Value CompOp OCL-Value |
OCL-Object.bAttr | Var

OCL-Navigation ::= OCL-Set | OCL-Single
OCL-Set ::= OCL-Set ->union(OCL-Set) | OCL-Set ->intersection(OCL-Set) |

OCL-Set ->symmetricDifference(OCL-Set) | OCL-Set - OCL-Set |
OCL-Set ->select(Var OCL-Bool) | OCL-Set ->reject(Var OCL-Bool) |
OCL-Set ->selectByKind(Class) | OCL-Set ->selectByType(Class) |
OCL-Set.role [ [role] ] | OCL-Set.assoClass [ [role] ] |
OCL-Object.nfRole [ [role] ] | OCL-Object.nfAssoClass [ [role] ] |
OCL-Set.attr | OCL-Object.nfAttr |
Class.allInstances() | OCL-Single

OCL-Single ::= OCL-Object | OCL-Value
OCL-Object ::= OCL-Object.oclAsType(Class) |

OCL-Object.fRole | OCL-Object.fAssoClass |
Var | self

OCL-Value ::= Constant | Var
OCL-Object.fAttr |
OCL-Set->min() | OCL-Set->max() |

BoolOp ::= and | or | xor | implies
CompOp ::= < | <= | = | >= | > | <>
VarList ::= Var (,Var)*
Var ::= 〈a variable name〉
Class ::= 〈a class name〉
assoClass ::= 〈an association class name〉
fAssoClass ::= 〈an association class name of a functional role〉
nfAssoClass ::= 〈an association class name of a non functional role〉
role ::= 〈a role name〉
fRole ::= 〈a functional role name〉
nfRole ::= 〈a non functional role name〉
attr ::= 〈an attribute name〉
bAttr ::= 〈a boolean attribute name〉
fAttr ::= 〈a functional attribute name〉
nfAttr ::= 〈a non functional attribute name〉
Integer ::= 〈an integer number〉
Constant ::= 〈a constant name〉

Fig. 4 Syntax of OCLFO

pretation represents a specific database state of the class
diagram where the constraint is attached to. Namely,
it indicates the classes each object is instance of, the
relations between objects via associations, and the val-
ues objects have via their attributes. Since the inter-
pretation of an association name determines the in-
terpretation of its role names, instead of considering
the interpretation of the roles, we assume a function
ass : role 7→ Assoc, for retrieving the association name
of some role name. In this way, the interpretation of
some role r is obtained by taking the interpretation of
its association ass(r).

Formally, an interpretation is a pair I = 〈∆I , ·I〉,
where ∆I is a non-empty set of object identifiers and
values referred as the interpretation domain, and ·I is a
function, referred as interpretation function, that maps
each element in the signature of the OCLFO statements
to∆I tuples. In particular, class names are mapped to a
set of domain elements, attribute names are mapped to
a set of domain element pairs, k-ary association (class)
names are mapped to a set of k-ary (k+1-ary) domain
element tuples, and constant names are interpreted to
domain elements with the same name (i.e., we follow
the standard name assumption).
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OCL-BoolI ∈ {true, false}
(OCL-Bool1 BoolOp OCL-Bool2)I ≡ OCL-Bool1

I BoolOp OCL-Bool2
I

(not OCL-Bool)I ≡ ¬OCL-BoolI

(OCL-Set1->includesAll(OCL-Set2))I ≡ OCL-Set1
I ⊇ OCL-Set2

I

(OCL-Set1->excludesAll(OCL-Set2))I ≡ (OCL-Set1
I ∩ OCL-Set2

I) = ∅
(OCL-Set->includes(OCL-Single))I ≡ OCL-SingleI ∈ OCL-SetI

(OCL-Set->excludes(OCL-Single))I ≡ OCL-SingleI 6∈ OCL-SetI

(OCL-Set->forAll(Var OCL-Bool))I ≡ (not OCL-Bool)I,Var,OCL-Set = ∅
(OCL-Set->forAll(VarList,Var OCL-Bool))I ≡ (OCL-Set->forAll(Var OCL-Set->forAll(VarList OCL-Bool)))I

(OCL-Set->exists(Var OCL-Bool))I ≡ OCL-BoolI,Var,OCL-Set 6= ∅
(OCL-Set->exists(VarList,Var OCL-Bool))I ≡ (OCL-Set->exists(Var OCL-Set->exists(VarList OCL-Bool)))I

(OCL-Set->isEmpty())I ≡ OCL-SetI = ∅
(OCL-Set->notEmpty())I ≡ OCL-SetI 6= ∅
(OCL-Set->size() CompOp n)I ≡ ||OCL-SetI|| CompOp n
(OCL-Set->one(Var OCL-Bool))I ≡ ||OCL-BoolI,Var,OCL-Set|| = 1
(OCL-Set->isUnique(attr))I ≡ (OCL-Set->forAll(v1,v2 v1 <> v2 implies v1.attr <> v2.attr))I

(v.oclIsKindOf(Class))I ≡ v ∈ ClassI

(v.oclIsTypeOf(Class))I ≡ v ∈ ClassI \ Subclasses(Class)I

(OCL-Single = null)I ≡ OCL-SingleI = null
(OCL-Single <> null)I ≡ OCL-SingleI 6= null
(OCL-Set1 = OCL-Set2)I ≡ OCL-Set1

I = OCL-Set2
I

(OCL-Set1 <> OCL-Set2)I ≡ OCL-Set1
I 6= OCL-Set2

I

(OCL-Object1 = OCL-Object2)I ≡ OCL-Object1
I = OCL-Object2

I , or OCL-Objecti = null
(OCL-Object1 <> OCL-Object2)I ≡ OCL-Object1

I 6= OCL-Object2
I , or OCL-Objecti = null

(OCL-Value1 CompOp OCL-Value2)I ≡ OCL-Value1
I CompOp OCL-Value2

I , or OCL-Valuei
I = null

(OCL-Object.bAttr)I ≡ (OCL-Object.bAttr)I = true, or (OCL-Object.bAttr)I = null
(v)I ≡ v

OCL-BoolI,Var,OCL-Set = {v ∈ OCL-SetI | (OCL-Bool[Var/v])I = true}

OCL-SetI ⊆ ∆I

(OCL-Set1->union(OCL-Set2))I = OCL-Set1
I ∪ OCL-Set2

I

(OCL-Set1->intersection(OCL-Set2))I = OCL-Set1
I ∩ OCL-Set2

I

(OCL-Set1->symmetricDifference(OCL-Set2))I = OCL-Set1
I 	 OCL-Set2

I

(OCL-Set1 − OCL-Set2)I = OCL-Set1
I \ OCL-Set2

I

(OCL-Set->select(Var OCL-Bool))I = OCL-BoolI,Var,OCL-Set

(OCL-Set->reject(Var OCL-Bool))I = OCL-SetI \ OCL-BoolI,Var,OCL-Set

(OCL-Set->selectByKind(Class))I = OCL-SetI ∩ ClassI

(OCL-Set->selectByType(Class))I = OCL-SetI ∩ ClassI \ Subclasses(Class)I

(OCL-Set.role)I = πrole(OCL-SetI
1ns ass(role)I)

(OCL-Set.assoClass)I = πassoClass(OCL-SetI
1ns (assoClass)I)

(OCL-Object.nfRole)I = πnfRole({OCL-ObjectI} 1ns ass(nfRole)I)
(OCL-Object.nfAssoClass)I = πnfAssoClass({OCL-ObjectI} 1ns (nfAssoClass)I)
(OCL-Set.attr)I = πattr(OCL-SetI

1oid(attr)I)
(OCL-Object.nfAttr)I = πnfAttr({OCL-ObjectI} 1oid(nfAttr)I)
(Class.allInstances())I = ClassI

(OCL-Single)I = {OCL-SingleI} if OCL-SingleI 6= null, ∅ otherwise

OCL-ObjectI ∈ ∆I∪ {null}
(OCL-Object.oclAsType(Class))I = (OCL-Object)I

(OCL-Object.fRole)I = πfRole({OCL-Object}I
1ns ass(fRole)I), or null

(OCL-Object.fAssoClass)I = πfAssoClass({OCL-ObjectI} 1ns ass(fAssoClass)I), or null
(v)I = v

OCL-ValueI ∈ ∆I ∪ {null}
(v)I = v

(OCL-Object.fAttr)I = πfAttr({OCL-ObjectI} 1oid(fAttr)I) , or null
(OCL-Set->min()I = (OCL-Set)I \ (π (σ>(OCL-SetI × OCL-SetI)), or null
(OCL-Set->max()I = (OCL-Set)I \ (π (σ<(OCL-SetI × OCL-SetI)), or null

Fig. 5 Semantics of OCLFO
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For example, an interpretation I0 for the signature
defined by our running UML class diagram example
might be:

∆I0 = {#user1,#user2,#group1,#msg1,
1/1/2016, 12/12/2015, ‘Happy new year!’, . . .}

UserI0 = {#user1,#user2}
GroupI0 = {#group1}
MessageI0 = {#msg1}
crTimeI0 = {< #group1, 12/12/2015 >}
sentTimeI0 = {< #msg1, 1/1/2016 >}
isSentToI0 = {< #msg1,#group1 >}
Given an interpretation I, an OCLFO statement is

interpreted according to the recursive definition speci-
fied in Figure 5. Such definition is mainly provided in
terms of set theory, together with some relational al-
gebra operators (such as join 1, project π, or select
σ), to easily define the interpretation of OCLFO navi-
gations. Moreover, to define these navigations, we as-
sume that ns is the role name of the navigation source
which corresponds to the [role] expression of a nav-
igation, or the opposite of some role in navigations
through binary associations. Lastly, we use the expres-
sion Subclasses(Class)I to refer to those objects be-
longing to a subclass of Class.

Thus, given an OCLFO constraint φ of the form:

context R inv ConstraintName: OCL-Bool

We say that an interpretation I satisfies the con-
straint φ, and write I |= φ if and only if it evaluates
to true for all the objects of its context class R. More
formally:

I |= φ iff ∀v∈RI OCL-BoolI[self/v] = true

For example, I0 satisfies the OCLFO constraint
MessagesAreSentAfterCreation since for its unique
group #group1 it holds that:
{v ∈ πmsg({#group1} 1 isSentToI0) |

πsentT ime({v} 1 sentTimeI0) <
πcrT ime({#group1} 1 crTimeI0)} = ∅

In case I satisfies φ, we say that I is a model of φ,
otherwise, we say that I violates φ. We naturally extend
the notions of model, satisfaction, and violation to sets
of OCLFO constraints Φ. For instance, I satisfies a set
of constraints Φ if and only if I satisfies each φ ∈ Φ.

4.2.2 OCLFO semantics with nulls

Sometimes, the interpretation of some OCL-Object or
OCL-Value results into no value. Indeed, consider that
in our running example, some message #msg1 has no
value defined for the attribute sentTime. In this case,

when navigating from the user #msg1 to its sentTime,
we obtain no value. More formally, we obtain ∅.

In such case, we define the OCL-Object/OCL-Value
to be interpreted as a new value called null not present
in ∆I . In particular, we cast the ∅ to null (and vicev-
ersa) depending on the OCL expression it appears. Note
that such interpretation corresponds to the one given
in the OCL standard in [4].

Thus, when ∅ appears when interpreting some
OCL-Object/OCL-Value, we automatically cast it to the
new value null. Since the null value is not present in
∆I , the null value does not join any value in the sig-
nature interpretation I. That is, it does not join any
value present in the interpretation of any association
or attribute. This implies that, when navigating from
a null value to obtain another object/value, we ob-
tain again ∅, which is cast to null if this navigation
is an OCL-Object/OCL-Value. This behavior perfectly
emulates the standard OCL semantics proposal [4].

Finally, we need to extend the interpretation of the
OCL-Bool to determine if they are evaluted to true
or false when they use some OCL-Object/OCL-Value
that evalutes to null. This differs from standard OCL
since OCL considers that an OCL-Bool expression might
return null or even invalid. However, since we need
OCLFO to be a two-valued logic language (as it is
first-order logics), we restrict OCL-Bool values to either
true or false.

Thus, and following the criteria already used
in [19], we consider that an OCL-Bool is true if
some of its OCL-Object/OCL-Value subexpression are
evaluated to null. The idea behind this interpre-
tation is that an OCLFO constraint is not vio-
lated unless the values that determine its satisfac-
tion/violation are defined. For instance, the constraint
MessagesAreSentAfterCreation would be satisfied in
the previous example if #msg1 had not sentTime de-
fined yet, since then, its sent time would not be previous
to the creation group time.

Note that this interpretation is just a default be-
havior to apply in case of finding a null value. How-
ever, note that it is possible to write a constraint
that it is violated when some of its expressions eval-
uate to null by simply adding the boolean subex-
pression and OCL-Single/OCL-Object <> null to the
OCL constraint.

4.3 OCL Operations not in OCLFO

There are two kinds of OCL operations that are not
inside OCLFO. On one hand, we have operations that
are outside the expressiveness of OCLFO, and on the
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other, operations which we have intentionally left out
for the sake of simplicity.

As we will prove in the next two sections, OCLFO is
expressively equivalent to relational algebra, and there-
fore, equivalent to (domain independent) first-order
logic. Thus, it can be stated straightforwardly that all
OCL operations which are not first-order (or not inside
relational algebra) cannot be included in OCLFO.

Examples of operations that are not first-order are
closure, or aggregation functions such as count. It
is worth noting, however, that the aggregation func-
tion size can be used in OCLFO to compare the size
of some set with some fixed integer, but not with an-
other set size neither with the value obtained from some
attribute. Examples of operations that are outside be-
cause of relational algebra do not support them are ba-
sic type operations such as +, -, *, and /. In this last
case, however, we argue that these operations could be
integrated into relational algebra (e.g. in the selection
operation), and thus, could be integrated into OCLFO.

For the sake of simplicity, we have
left out operations like let ... in,
if ... then ... else ... endif, including
or excluding. This has been done for the sake of
having a compact fragment of the language. We argue
that these operations that we have left out are not
frequently used when defining OCL constraints. In-
deed, none of them appear, for instance, when defining
constraints in the UML class diagrams of the DBLP
case study [20] nor in the osCommerce UML/OCL
case study [21], the case studies we have used to check
the OCLFO coverage.

In any case, we would like to highlight that, since
OCLFO captures relational algebra, it is as expressive
and useful for defining constraints as, in essence, stan-
dard SQL assertions [22].

4.4 OCLFO coverage evaluation through case studies

In this section, we discuss the expressiveness coverage of
the OCLFO fragment for defining constraints. By cov-
erage, we mean the ratio of constraints that can be
written in OCLFO in comparison to full OCL, when
considering conceptual schemas for real systems.

In the following, we first discuss the selected case
studies (DBLP [20], and osCommerce [21]), and then,
show and discuss the OCLFO coverage.

4.4.1 The DBLP and osCommerce case studies

The DBLP and the osCommerce systems are two
UML/OCL conceptual schemas describing real systems

that have been used several times as case studies in con-
ceptual modeling research.

The DBLP case study is a conceptual schema de-
scribing the DBLP system, the service that provides
open bibliographic information on major computer sci-
ence journals and proceedings. This UML/OCL concep-
tual schema consists of 17 classes, including concepts
such as Publication, ConferenceEdition, Journal, etc.

The osCommerce case study is a conceptual schema
describing the osCommerce platform, an open-source
online store management program. This UML/OCL
conceptual schema consists of around 40 classes, includ-
ing concepts such as Product, Order, PaymentMethod,
etc.

4.4.2 Evaluation of OCLFO

In the case of DBLP, 25 out of the 26 OCL constraints
were inside the OCLFO fragment. The unique constraint
that remained outside was one speaking about Se-
quences which is a collection type we do not consider
in OCLFO since relational algebra works with unsorted
collections.

In the case of osCommerce, 30 out of 33 OCL con-
straints were inside the OCLFO fragment. Regarding the
other 3, one was encodable in OCLFO after rewriting (it
was using an OCL Tuple construct that could be easily
removed). The other two were constraints about transi-
tive closure and collection size comparisons, which are
outside first-order logics and thus, outside OCLFO.

Thus, from a total of 59 constraints extracted from
real systems, we see that OCLFO could encode directly
55, and could encode 56 after considering some rewrit-
ing. This represents a coverage of around 95%, which,
in our opinion, makes the OCLFO language useful in ac-
tual cases since its expressiveness allows to cover most
of the constraints that are required in practice.

5 Checking OCLFO Constraints by RA Queries

The main goal of this section is to show that any OCLFO
constraint can be checked by means of a RA query since
given an OCLFO constraint we can build a RA query
that retrieves the objects that violate it. Therefore, the
OCLFO constraint is satisfied if and only if its corre-
sponding query is empty.

This result entails that checking an OCLFO con-
straint is at most as difficult as executing a RA query
and, thus, checking an OCLFO constraint can be solved
in polynomial time with regarding to data complex-
ity (and in particular, it belongs to the AC0 complex-
ity class). Moreover, this also enables reusing current
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techniques developed in the community of relational
databases for the treatment of OCLFO constraints. For
instance, incremental OCLFO constraints checking can
be solved by means of incremental query answering (e.g.
following [14], or [23]), and repairing OCLFO constraints
can be solved by view updating techniques (as studied
for instance in [16]).

The RA query is built from an OCLFO constraint in
two steps. First, we normalize the OCLFO constraint
into an equivalent one that uses a lower number of
OCLFO operators. Then, we translate the normalized
OCLFO constraint into a RA query that returns the ob-
jects that violate the constraint.

5.1 Normalizing OCLFO Constraints

The grammar presented in Figure 4 admits very com-
plex OCL expressions, using lots of different OCL op-
erations. Therefore, defining directly a translation from
pure OCLFO constraints into RA queries becomes very
cumbersome. To make things simpler, we initially trans-
late each OCLFO constraint into a normalized one,
whose expression is defined only by means of a small
number of operations.

We say that an OCLFO constraint is normalized if
it is defined only by means of the following operations:
and, not, forAll, =, and < for OCL-Bool expressions;
and union, intersection, -, select for OCL-Set ex-
pressions; although their expression can also contain
the usual navigations through roles and attributes, and
the oclAsType cast operation.

To normalize an OCLFO constraint, we recursively
apply the rewrittings defined in Figure 6. It is not dif-
ficult to verify that such rewritting preserve the orig-
inal semantics of the constraint by means of directly
inspecting the operation semantics defined in Figure 5.

In our running example, the normalized version of
the constraint MessagesAreFromGroup is:

self.msg.author->forAll(a|
not self.user->forAll(u|not a = u))

Note that the fragment of OCL obtained after nor-
malization is only of internal use to facilitate the trans-
lation of OCLFO to RA queries. So, we do not expect
the designer to make use of this fragment when spec-
ifying integrity constraints since constraints in OCLFO
can be automatically normalized as stated before.

5.2 Drawing RA Queries from Normalized Constraints

To obtain the RA query of a normalized OCLFO con-
straint, we first translate each OCLFO navigation (i.e.,

OCL-Set, OCL-Object and OCL-Value expressions) into
RA queries retrieving its corresponding set, object, or
value. Then, the resulting RA query is obtained by
translating the OCL-Bool expressions through the com-
position of the translation of its navigations.

More precisely, the crucial point for translating the
navigations are the OCLFO variables (i.e, the self vari-
able and the iteration variables appearing in forAll
and select expressions) since our goal is to build a
RA query with one relational attribute for each OCLFO
variable alive in the OCLFO navigation, together with
one additional attribute containing the result of the
navigation. For instance, when translating the normal-
ized MessagesAreFromGroup constraint, the navigation
self.msg.author is translated as a relational query
with the attributes self and result.

Intuitively, when executing such queries over some
interpretation I, each retrieved tuple t represents a
combination of values that the OCLFO variables may
take when evaluating the OCLFO navigation with I. For
instance, if in the interpretation I we have that a group
#group1 has some message #msg1 written by #John,
then, the row <#group1, #John> appears in the query
result that translates the navigation self.msg.author.

Then, the idea of composing those translations to
obtain the translation of the whole OCL-Bool expres-
sion defining the constraint is to select those tuples that
witness the violation of the boolean condition. That is,
we want to select the row <#group1, #John> from the
previous example in case that #John is not a member
of #group1.

All translations are recursive and use the input
variable qc, the context query, which is the relational
query that retrieves the values for the alive OCLFO
variables defined in the upper expression of the ex-
pression being translated. For instance, to translate
self.msg.author, we need a context query qc retriev-
ing the values that the variable self might take, e.g.
qc = Group.

In the rest of this section, we first present the al-
gorithms for translating each OCLFO navigation, while
discussing their intuition and providing a formal proof
of their correctness. Afterwards, we show and prove how
to use these algorithms to translate the whole OCL-Bool
expression defining the OCLFO constraint.

For the seek of simplicity, we omit some relational
algebra low-level details such as relational algebra at-
tribute renamings and some selection conditions since
they can be easily understood from the context.
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OCL-Bool
OCL-Bool1 or OCL-Bool2 = not (not OCL-Bool1 and not OCL-Bool2)
OCL-Bool1 implies OCL-Bool2 = not OCL-Bool1 or OCL-Bool2
OCL-Bool1 xor OCL-Bool2 = (OCL-Bool1 or OCL-Bool2) and (notOCL-Bool1 or not OCL-Bool2)
OCL-Set1->includesAll(OCL-Set2) ≡ OCL-Set2->forAll(e2 not OCL-Set1->forAll(e1 e1<>e2))
OCL-Set1->excludesAll(OCL-Set2) ≡ OCL-Set2->forAll(e2 OCL-Set1->forAll(e1 e1<>e2))
OCL-Set->includes(OCL-Single) ≡ not OCL-Set->forAll(e e <> OCL-Single))
OCL-Set->excludes(OCL-Single) ≡ OCL-Set->forAll(e e <> OCL-Single))
OCL-Set->exists(Var OCL-Bool) ≡ not OCL-Set->forAll(Var OCL-Bool)
OCL-Set->isEmpty() ≡ OCL-Set->forAll(e 1 6= 1)
OCL-Set->notEmpty() ≡ not OCL-Set->forAll(e 1 6= 1)
OCL-Set->size() < n ≡ OCL-Set->forAll(e1, ..., en e1=e2 or e1=e3 or ... en−1=en)
OCL-Set->size() <= n ≡ OCL-Set->forAll(e1, ..., en+1 e1=e2 or e1=e3 or ... en=en+1)
OCL-Set->size() = n ≡ OCL-Set->size() <= n and not OCL-Set->size() < n-1
OCL-Set->one(Var OCL-Bool) ≡ OCL-Set->select(Var OCL-Bool)->size() = 1
OCL-Set->isUnique(attr) ≡ OCL-Set->forAll(v1,v2 v1 <> v2 implies v1.attr <> v2.attr)
v.oclIsKindOf(Class) ≡ not Class->forAll(e e <> v)
v.oclIsTypeOf(Class) ≡ not Class->forAll(e e <> v) and Subclass->forAll(e e <> v) ...
OCL-Single = null ≡ OCL-Single->forAll(e 1 6= 1)
OCL-Single <> null ≡ not OCL-Single->forAll(e 1 6= 1)
OCL-Set1 = OCL-Set2 ≡ OCL-Set1->includesAll(OCL-Set2) and OCL-Set2->includesAll(OCL-Set1)
OCL-Set1 <> OCL-Set2 ≡ not OCL-Set1 = OCL-Set2

OCL-Set
OCL-Set1->symmetricDifference(OCL-Set2) = (OCL-Set1 − OCL-Set2)->union(OCL-Set2 − OCL-Set1)
OCL-Set->reject(Var OCL-Bool) = OCL-Set->select(Var not OCL-Bool)
OCL-Set->selectByKind(Class) = OCL-Set->select(e e.oclIsKindOf(Class))
(OCL-Set->selectByType(Class)) = OCL-Set->select(e e.oclIsTypeOf(Class))

OCL-Value
OCL-Set->min() = OCL-Set->select(min OCL-Set->forAll(e min <= e))
OCL-Set->max() = OCL-Set->select(max OCL-Set->forAll(e max >= e))

Fig. 6 OCLFO normalization rewrittings

5.2.1 OCL-Set Translation

Algorithm 1 translates an OCL-Set into a relational
query retrieving the same values/objects as the ones in
the OCL-Set. Since the OCL-Set expression might have
OCL free variables (such as self), we need the context
query qc to bring the different possible substitutions to
apply to such variables. Thus, each tuple t in the re-
sult of the query has the form < t1, ..., tn, v >, where
t1, ..., tn represents a substitution for the OCLFO vari-
ables appearing in the OCL-Set (which are taken from
qc), and v a value appearing in the OCL-Set according
to such substitution for the free variables.

The idea behind the algorithm is to use the rela-
tional operation corresponding to each OCLFO set op-
eration. I.e., union is translated into ∪, role navigations
as 1, etc. The major difficult, however, relies on the
translation of the select operation, which is translated
using the translation of OCL-Bool expressions. In this
case, the idea is to first, translate the OCL-Set source
expression, and then, remove all those rows not satis-
fying the inner OCL-Bool expression.

As an example, consider the OCL-Set expression
self.msg.author with a context query qc=Group defin-

ing the values that the OCLFO variable self might take.
Such expressions is translated as:

πgroup,author(Group 1 IsSentTo 1 Writes)

Intuitively, the translation just translates the role
navigations to RA joins, and then, projects the result
to only retrieve the reachable messages for each group.

In the following we formally prove the correctness
of this algorithm.

Theorem 2 Let φ be an OCL-Set over a UML class
diagram SUML, q a relational algebra expression defined
over the relational view of SUML, and qc a context query
such that q = raTranslation(φ, qc) (Algorithm 1). Then,

v ∈ φI[St] iff < t[0], ..., t[n], v > ∈ q(I)

for any value v, any interpretation I, and any substi-
tution St obtained from qc(I).

Proof The proof is based on structural induction over
the OCLFO grammar. In the following we bring the
proof for the base case and one inductive case. The rest
of cases follows analogously. Consider the base case:

φ = R.allInstances()
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Algorithm 1 raTranslation(OCL-Set, qc)
if OCL-Set = OCL-Set1->union(OCL-Set2) then

q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1∪ q2

else if OCL-Set = OCL-Set1->intersection(OCL-Set2) then
q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1 ./ q2

else if OCL-Set = OCL-Set1− OCL-Set2 then
q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1 \ q2

else if OCL-Set = OCL-Set1->select(Var|OCL-Bool) then
qs := raTranslation(OCL-Set1, qc)
qr := raTranslation(OCL-Bool, qs)
return qs\ qr

else if OCL-Set = OCL-Set1.role then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 1 ass(role))

else if OCL-Set = OCL-Set1.assoClass then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 1 assoClass)

else if OCL-Set = OCL-Object1.nfRole then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 1 ass(nfRole))

else if OCL-Set = OCL-Object1.nfAssoClass then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 1 nfAssoClass)

else if OCL-Set = OCL-Set1.attr then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 1 attr)

else if OCL-Set = OCL-Object1.nfAttr then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 1 nfAttr)

else if OCL-Set = R.allInstances() then
return qc × R

else if OCL-Set = OCL-Object1 then
return raTranslation(OCL-Object1, qc)

end if

According to Algorithm 1,

q = raTranslation(φ, qc) = qc ×R

Clearly, according to the semantics of OCLFO, v ∈
R.allInstances()I iff v ∈ RI . Moreover, it is guar-
anteed that St is obtained from qc(I). Hence, v ∈
R.allInstances()I[St] iff < t[0], ..., t[n], v > ∈ qc(I)×
RI .

Consider the inductive case:

φ = OCL-Set.select(s | OCL-Bool)

According to Algorithm 1,

q = raTranslation(φ, qc) = qs \ qr

where

qs = raTranslation(OCL-Set, qc)
qr = raTranslation(OCL-Bool, qs)

According to the semantics, we have that v ∈
OCL-Set.select(s | OCL-Bool)I[St] if and only if
v ∈ OCL-BoolI,s,OCL-Set

[St] . This is the case if and
only if v ∈ OCL-SetI[St] and OCL-BoolI[St∪{s/v}] =
true. Equivalently, this is the case iff v ∈

OCL-SetI[St] and not OCL-BoolI[St∪{s/v}] = false.
Now, by induction hypothesis, we have that v ∈
OCL-SetI[St] iff < t[0], ..., t[n], v > ∈ qs(I), and
OCL-BoolI[St∪{s/v}] = false iff < t[0], ..., t[n], v > ∈
qr(I). Hence, v ∈ OCL-Set.select(s | OCL-Bool)I[St]
iff < t[0], ..., t[n], v > ∈ q(I). 2

5.2.2 OCL-Object and OCL-Value Translation

Algorithm 2 defines the translation of an OCL-Object
or OCL-Value expression into a relational query that,
intuitively, returns the object/value referred by the ex-
pression. Similarly as before, each tuple < t1, ..., tn, v >

returned by the query represents an evaluation that
the OCLFO variables appearing in the expression
might take (values t1, ..., tn taken from a context
query qc), together with the value retrieved by the
OCL-Object/OCL-Value expression according to that
evaluation (v).

Again, the idea behind the translation is to use the
relational algebra operator that corresponds to those
defined in the OCLFO semantics. E.g, role navigations
are translated by means of the same join we have de-
fined in the OCLFO semantics.

For instance, consider the OCL-Single expression
m.sentTime with a context query qc = πmsg(Group 1

IsSentTo) defining the values for the OCLFO variable
m. Such expression is translated as:

(πmsg(Group 1 IsSentTo)) 1 SentTime

Intuitively, the translation converts the attribute
navigation as a new join to retrieve the sentTime at-
tribute for each value that m might take.

In the following, we formally proof the correctness
of Algorithm 2.

Algorithm 2 raTranslation(OCL-Single, qc)
if OCL-Single = Constant then

return qc × {Constant}
else if OCL-Single = Variable then

return qc

else if OCL-Single = OCL-Object1.fAttr then
q1 := raTranslation(OCL-Object1, qc)
return π (q1 1 fAttr)

else if OCL-Single = OCL-Object1.oclAsType(Class) then
return raTranslation(OCL-Object1, qc)

else if OCL-Single = OCL-Object1.fRole then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 1 ass(fRole))

else if OCL-Set = OCL-Object1.fAssoClass then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 1 fAssoClass)

end if

Theorem 3 Let φ be an OCL-Single over a UML class
diagram SUML, q a relational algebra expression defined
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over the relational view of SUML, and qc a context query
such that q = raTranslation(φ, qc) (Algorithm 2). Then,
for any interpretation I, and any substitution St ob-
tained from qc(I), we have:

null = φI[St] iff ¬∃v. < t[0], ..., t[n], v > ∈ q(I)

and, for any value v different from null:

v = φI[St] iff < t[0], ..., t[n], v > ∈ q(I)

Proof The proof is based on structural induction over
the OCLFO grammar. In the following we bring the
proof for one base case and one inductive case. The rest
of cases follows analogously. Consider the base case:

φ = self

According to Algorithm 2,

q = raTranslation(φ, qc) = qc (1)

According to the semantics, we have that v = selfI[St]
iff self[St] = v. This is the case if and only if we have
< t[0], ..., v, ..., t[n] > ∈ qc.

Consider the inductive case:

φ = OCL-Object.fAttr

According to Algorithm 2,

q = π(q1 1 fAttr)

where

q1 = raTranslation(OCL-Object, qc)

According to the semantics, we have that v =
(OCL-Object.fAttr)I[St] iff v = π (OCL-ObjectI[St] 1

fAttrI). This is the case if and only if there ex-
ists some value v′ in OCL-ObjectI[St] whose join with
fAttrI retrieves v. By induction hypothesis we know
that < t[0], ..., t[n], v′ > ∈ q1(I) iff v′ =
OCL-ObjectI[St]. Thus, v = (OCL-Object.fAttr)I[St] iff
< t[0], ..., t[n], v > ∈ q(I). 2

5.2.3 OCL-Bool Translation Algorithm

In Algorithm 3 we show how to make use of the pre-
vious translations to obtain the values that cause the
violation of the OCL-Bool condition. The output of this
algorithm is a query that returns the evaluation of the
OCLFO variables alive in OCL-Bool that make the ex-
pression evaluate to false.

The intuition behind the translation is to use the
relational algebra selection σ to select those values that
contradict the OCL-Bool expression.

For instance, consider the OCL-Bool expression
self.user->forAll(u|not a = u) with the context
query qc = πgroup,author(Group 1 IsSentTo 1 Writes)
defining the values for the OCLFO variable a depending
on the value given to self. Such expression would be
translated as:

σauthor=user(qc 1 (qc 1 HasMember))

Intuitively, qc retrieves the values that a might
take for every value of self (that is, all the authors
of messages sent to some group self), then, (qc 1

IsMemberOf) retrieves the values that u might take for
every value of self (that is, all the users of some group
self). Then, the join of both expressions retrieves the
values that a and u might take for the same value of
self (that is, all the authors and members of some
group self). Finally, the selection picks those tuples in
which the value for a is equal to the value for u.

Note that, to translate the other normalized OCLFO
boolean operations such as and and not we just need to
compose the previous translation pattern. That is, and
is translated by unifying the set of rows that causes
the violation of the first condition, with those causing
the violation of the second one; and not is translated by
computing those rows violating the inner expression (in
other words, those rows satisfying its negation), and re-
moving them from the context query (so we have those
rows violating the negated statement).

In the following, we formally proof the correctness
of Algorithm 3.

Algorithm 3 raTranslation(OCL-Bool, qc)
if OCL-Bool = OCL-Bool1 and OCL-Bool2 then

q1 = raTranslation(OCL-Bool1, qc)
q2 = raTranslation(OCL-Bool2, qc)
return q1 ∪ q2

else if OCL-Bool = not OCL-Bool1 then
return qc \ raTranslation(OCL-Bool1, qc)

else if OCL-Bool = OCL-Set->forAll(Var|OCL-Bool1) then
qs := raTranslation(OCL-Set, qc)
qb := raTranslation(OCL-Bool1, qs)
return π qb

else if OCL-Bool = OCL-Single1 CompOp OCL-Single2 then
q1 = raTranslation(OCL-Single1, qc)
q2 = raTranslation(OCL-Single2, qc)
return πσ q1 1 q2

else if OCL-Bool = OCL-Value1 then
q1 := raTranslation(OCL-Value1, qc)
return πσ q1

end if

Theorem 4 Let φ be an OCL-Bool over a UML class
diagram SUML, q a relational algebra expression defined
over the relational view of SUML, and qc a context query
such that q = raTranslation(φ, qc) (Algorithm 3). Then,
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for any interpretation I, and any substitution St ob-
tained from qc(I), we have:

φI[St] = false iff t ∈ q(I)

Proof The proof is based on structural induction over
the OCLFO grammar. In the following we bring the
proof for the base case and one inductive case. The
rest of cases follows analogously. For the base case, we
consider the expression:

φ = OCL-Single1 CompOp OCL-Single2

According to Algorithm 3,

q = πσ(q1 1 q2)

where

q1 = raTranslation(OCL-Single1, qc)
q2 = raTranslation(OCL-Single2, qc)

According to the semantics, φI[St] = false iff the
values v1 = OCL-Single1

I
[St], and v2 = OCL-SingleI[St]

do not satisfy the comparison operator CompOp. By in-
duction hypothesis we have that < t[0], ..., t[n], v1 > ∈
q1(I), and < t[0], ..., t[n], v2 > ∈ q2(I). Thus, we can
obtain the values v1 and v2 by joining q1 and q2, and
select the row < t[0], ..., t[n] > iff v1 and v2 do not sat-
isfy the corresponding CompOp. Thus, φI[St] = false iff
t ∈ q(I).

For the inductive case, we consider:

φ = OCL-Set->forAll(Var|OCL-Bool)

According to Algorithm 3,

q = πqb

where

qb = raTranslation(OCL-Bool, qs)
qs = raTranslation(OCL-Set, qc)

According to the semantics, we have that
OCL-Set->forAll(Var|OCL-Bool)I[St] = false iff
(not OCL-Bool)I,Var,OCL-Set

[St] 6= ∅. This is the case
iff ∃v.v ∈ OCL-SetI[St] and OCL-BoolI[St∪{Var/v}] =
false. By induction hypothesis, we have that,
for any value v, v ∈ OCL-SetI[St] if and only
if < t[0], ..., t[n], v > ∈ qs(I). More-
over, by induction again we know that v ∈
OCL-SetI[St] and OCL-BoolI[St∪{Var/v}] = false if and
only if < t[0], ..., t[n], v > ∈ qb(I). Thus,
OCL-Set->forAll(Var|OCL-Bool)I[St] = false if and
only if t ∈ q(I). 2

5.2.4 Translating an OCLFO Constraint

To translate an OCLFO constraint, it is enough to in-
voke Algorithm 3 with the body of the constraint as the
OCL-Bool parameter and the context class in which the
constraint is defined as the context query qc, so that,
the variable self is going to be evaluated to all the
objects of the given context class.

For instance, consider the constraint of our run-
ning example MessagesAreFromGroup. This constraint
would be translated into:

π(Group 1 IsSentTo 1 Writes)\
πσ((Group 1 IsSentTo 1 Writes) 1
(Group 1 IsSentTo 1 Writes 1 HasMember))

Intuitively, the query picks up all users who have
written in some group (first line of the translation), and
it takes out all those users who are indeed members of
such group (second and third line of the translation).
Thus, note that the constraint is satisfied if and only if
the previous query is empty.

In the following we formally proof the correctness of
the translation.

Theorem 5 Let φ be an OCLFO constraint over a
UML class diagram SUML, defined on the context
class R, and q a relational algebra expression, de-
fined over the relational view of SUML, such that q =
raTranslation(φ, R) (Algorithm 3). Then, for any inter-
pretation I, we have:

I |= φ iff q(I) = ∅

Proof Directly from Theorem 4 we have that q(I) re-
trieves those values for the OCLFO variable self from
RI s.t. that makes the OCL-Bool in φ evaluate to false.
Thus, I |= φ iff q(I) = ∅. 2

It is worth noting that the translation algorithm is
linear w.r.t. the number of OCL operators and OCL
variables of the constraint. Indeed, every OCL opera-
tor is translated for a fixed number of RA operations
(1 in most cases, 3 in the worst case), and every OCL
variable reference is translated as a RA query whose
size is limited by the size of the OCL source it ranges
from. Thus, the final size of the translation of an OCL
constraint defined by o operations and v variables can
be upper-bounded by 3o+ 3ov. Since every OCL oper-
ator is traversed only once in the algorithm, this result
is computed in the same upper-bound amount of time.
In any case, this computation is absolutely independent
from the data, which means that data-complexity, the
time that takes to analyze an OCLFO constraint w.r.t.
the amount of the data stored in the information sys-
tem, is not affected by it. Intuitively, this is because this
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translation can be seen as a compilation step to apply
only once at the beginning, and reuse forever.

6 RA queries to OCLFO Constraints

Now, we show that any constraint that can be checked
by means of a relational algebra query can be encoded
as an OCLFO constraint. That is, for any relational
query q, we can build an OCLFO constraint φ such
that, for any interpretation I, we have that q(I) = ∅ iff
I |= φ.

This result implies that the language of OCLFO is as
expressive for defining constraints as relational algebra.
Taking into account that in Theorem 5 we showed that
any OCLFO constraint can be checked by means of a re-
lational query, we may conclude that OCLFO is exactly
as expressive for defining constraints as relational al-
gebra. Thus, checking OCLFO constraints is as difficult
as executing a relational query, that is polynomial with
regarding to data complexity (and AC0 in particular).

We define the oclTranslation from a RA query to
an OCLFO constraint in Algorithm 4. This algorithm
receives three input parameters: a context query qc,
an OCLFO boolean statement OCL-Bool, and a map-
ping M that makes explicit which attributes from qc
are mapped to which OCLFO variables from OCL-Bool.
Then, the idea is that the algorithm returns a new
OCLFO boolean statement φ such that, for any given
interpretation I, I |= φ iff OCL-BoolI[St] = true for
any given substitution St obtained from qc(I).

Then, we can then obtain the OCLFO constraint
corresponding to a relational query q by invoking
oclTranslation(q, false,∅). Indeed, the unique way that
for all substitutions St obtained from q we can have
falseI[St] = true is that q(I) = ∅.

Intuitively, the algorithm works by recursively re-
moving relational operators from the input query q and
placing them in the OCL-boolean expression given as a
parameter. For instance, if we invoke:

oclTranslation(R \ S, false, ∅)

We first recursively translate:

oclTranslation(S, r <> s, {s → S})

to obtain an OCLFO boolean expression that character-
izes those values of some variable r that are different
to any element in S. In particular, we obtain the new
OCL-boolean φ:

S.allInstances()->forAll(s|r <> s)

Then, we recursively translate:

oclTranslation(R, φ implies false, {r → R})

Algorithm 4 oclTranslation(qc, OCL-Bool,M)
if qc = q1∪ q2 then

OCL-Bool1 = oclTranslation(q1, OCL-Bool, M)
OCL-Bool2 = oclTranslation(q2, OCL-Bool, M)
return OCL-Bool1 and OCL-Bool2

else if qc = πaq1 then
return oclTranslation(q1, OCL-Bool, M)

else if qc = σaωb q1 then
M′ := getCompleteMap(M, q1)
OCL-Bool’ :=M′.getVar(q.a) ωM′.getVar(q.b) implies OCL-Bool
return oclTranslation(q1, OCL-Bool’, M’)

else if qc = q1× q2 then
OCL-Bool2 := oclTranslation(q2, OCL-Bool, M)
return oclTranslation(q1, OCL-Bool2, M)

else if qc = q1\ q2 then
M1 := getCompleteMap(M, q1)
M2 := getCompleteMap(M, q2)
ocl-eq := getInequalities(M1, M2, q1, q2)
OCL-Bool’ := oclTranslation(q2, ocl-eq, M2) implies OCL-Bool
return oclTranslation(q1, OCL-Bool’, M1)

else if qc = R then
M2 := getCompleteMap(M, R)
return R.allInstances()->forAll(M.getVar(R.id)| OCL-Bool)

end if

obtaining:

R.allInstances()->forAll(r |
S.allInstances()->forAll(s | r <> s)

implies false)

This boolean expression iterates through all ele-
ments r of R, it checks whether r is different from every
s in S, and, if so, it returns false. Clearly, such OCL-
boolean statement only evaluates to true iff the rela-
tional query R \ S evaluates to the empty set.

Algorithm 4 makes use of some auxiliary functions.
Function getCompleteMap(M, q) returns a copy of the
mapM but adding some new correspondences between
relational attributes in q and new fresh OCLFO vari-
ables. For instance, this function allowed us to create
the new OCL free variables r and s, and map them
to the relational tables R and S respectively. Func-
tion getInequalities(M1,M2, q1, q2) returns a conjunc-
tion of OCLFO variable inequalities. In particular, one
inequality for each pair of OCLFO variables that are
mapped to the same i-th relational attribute in q1, and
q2, respectively. This function allowed us to build the
inequality r <> s in our previous example.

Theorem 6 Let OCL-Bool be an OCLFO boolean state-
ment defined over a UML class diagram SUML, qc a re-
lational algebra expression defined over the relational
view of SUML, and M a mapping from qc attributes to
OCLFO variables in φ1. Let φ be the OCLFO statement
such that φ = oclTranslation(qc, OCL-Bool,M) (Algo-
rithm 4). Then, for any interpretation I, and any sub-
stitution S, we have:

I |= φ[S] iff ∀St
OCL-BoolI[St][S] = true

where the substitutions St are obtained from the context
query qc and the mappingM.
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Proof The proof is inductive on the number of rela-
tional algebra operators present in the input context
query q, thus, following the recursive nature of the Al-
gorithm.

For the base case, consider a context query with the
following form, where R is the name of some relation:

qc = R

Applying Algorithm 4 we get:

φ = R.allInstances()->forAll(r | OCL-Bool)

Then, according to the semantics, for
any substitution S, we have that I |=
R.allInstances()->forAll(r | OCL-Bool)[S] if
and only if it does not exists a value v ∈ RI s.t.
OCL-BoolI[r/v][S] = false. This is the case iff for all
the values v ∈ RI we have OCL-BoolrI[r/v][S] = true.
Equivalently, this is the case iff for all the possible
substitutions St we can obtain from R, we have that
OCL-BoolI[St][S] = true.

We deal now with the inductive cases. Consider first:

qc = q1 ∪ q2

Applying Algorithm 4 we get:

φ = OCL-Bool1 and OCL-Bool2

where

OCL-Booli = oclTranslation(qi, OCL-Bool,M)

According to the semantics, I |= φ[S] if and only
if OCL-Bool1

I
[S] = true and OCL-Bool2

I
[S] = true. By

induction we know that OCL-BooliI[S] = true iff for
every substitution St that can be obtained from qi we
have OCL-BoolI[St][S] = true. Thus, I |= φ[S] if and
only if OCL-BoolI[St][S] = true for every substitution
that can be obtained from q1 ∪ q2.

Consider now the case:

qc = πq1

Applying Algorithm 4 we get:

φ = OCL-Bool1 = oclTranslation(q1, OCL-Bool,M)

And we have that I |= φ[S] iff OCL-Bool1
I
[S] = true.

By induction we know that OCL-Bool1
I
[S] = true iff for

every substitution St that can be obtained from q1 we
have OCL-BoolI[St][S] = true. Thus, I |= φ[S] if and
only if OCL-BoolI[St][S] = true for every substitution
that can be obtained from πq1.

Consider the case:

qc = σaωbq1

Applying Algorithm 4 we get:

φ = oclTranslation(q1, OCL-Bool’,M′)

where

OCL-Bool’ = ‘va ω vb implies’ + OCL-Bool

va =M′.getV ar(q1.a)
vb =M′.getV ar(q1.b)
M′ = getCompleteMap(M, q1)

By induction we know that I |= φ[S] iff for ev-
ery substitution St obtained from q1 it hdolds that
OCL-Bool’I[St][S] = true. Unfolding OCL-Bool’ we get:
I |= φ[S] iff for every substitution St obtained from
q1 it holds that va ω vb implies OCL-BoolI[St][S] =
true. According to the OCLFO semantics, we know
that for every substitution St obtained from σaωbq1,
it holds that va ω vbI[St][S] = true. Thus, I |= φ[S] iff
for every substitution St obtained from σaωbq1 we have
OCL-BoolI[St][S] = true.

Consider the case:

qc = q1 × q2

Applying Algorithm 4 we get:

φ = oclTranslation(q1, OCL-Bool2,M)

where

OCL-Bool2 = oclTranslation(q2, OCL-Bool,M)

By induction we know that I |= φ[S] iff for every
substitution St1 from q1 we have OCL-Bool2

I
[St1][S] =

true. By induction again, we see that I |= φ[S] iff for
every substitution St1 from q1, and every substituition
St2 from q2, we have OCL-BoolI[St2][St1][S] = true. Tak-
ing into account that any substitution St from qc is ob-
tained from any pair of substitutions St1 and St2 from
q1, and q2 (respectively), we finally get I |= φ[S] iff for
every substitution St from qc we have OCL-BoolI[St][S]
= true.

Consider the case:

qc = q1 \ q2

Applying Algorithm 4 we get:

φ = oclTranslation(q1, OCL-Bool’,M1)

where

OCL-Bool’ = oclTranslation(q2, ocl-ineq + ‘implies’+
OCL-Bool,M2)

ocl-ineq = getInequalities(M1,M2, q1, q2)
M1 = getCompleteMap(M, q1)
M2 = getCompleteMap(M, q2)
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By induction we know that I |= φ[S] iff for
any substitution St obtained from q1 it holds that
OCL-Bool’I[St][S] = true. Unfolding OCL-Bool’ using
the induction hypothesis we have that I |= φ[S] iff
for any substitution St from q1, and any substitu-
tion St2 from q2, it holds that (ocl-ineq implies
OCL-Bool)I[St2][St][S] = true. Equivalently, I |= φ[S] iff
for any substitution St from q1, and any substitution
St2 from q2, it holds that ocl-ineqI[St2][St][S] = false
or OCL-Bool)I[St][S] = true. Since we know that, for any
substitution St obtained from q1\q2 there is no substitu-
tion St2 obtained from q2 for which ocl-ineqI[St2][St][S]
= false, we see that , I |= φ[S] iff for any substitu-
tion St obtained from q1 \ q2 we have OCL-Bool)I[St][S]
= true. 2

With this algorithm at hand, we now proof that any
constraint that can be checked by means of relational
algebra can be written in OCLFO.

Theorem 7 Let SUML be a UML class diagram, and
q a relational algebra expression defined over the rela-
tional view of SUML. Then, consider the OCLFO con-
straint φ s.t. φ = oclTranslation(q, false, ∅) (Algo-
rithm 4). Then, for any interpretation I, we have:

I |= φI iff q(I) = ∅

Proof From Theorem 6 we know that I |= φI iff for
every substitution St obtained from q, falseISt

= true.
This is the case if and only if there is no substitution
St obtained from q. That is I |= φI iffq(I) = ∅. 2

It is worth noting that the translation from RA to
OCLFO is quadratic with the number of RA operations.
Indeed, most RA operators are translated into a fixed
number of OCL operations (1 in most cases, 2 in the
worst one), but the set-difference operator gives raise to
k OCL equality operations, where k is the given num-
ber of columns of the relation where the difference is
applied. Thus, the length of the translation of an RA
query into OCL can be bounded by 2o + sKo, where
o is the number of RA operators, s the number of set-
difference operators, and K the maximum number of
columns for the biggest table. It is easy to see also that
the algorithm obtains this result in quadratic time since
it visits every RA operator only once, and each RA op-
erator is translated in constant time (if no subroutine
is applied), or linear time (otherwise).

7 OCLCORE

To conclude our analysis, we identify a minimal subset
of OCLFO that we call OCLCORE. OCLCORE is minimal

in the sense that any of its proper subsets is not suffi-
cient to encode the whole OCLFO. Several minimal core
fragments might exist.

The main practical relevance of OCLCORE is that
of allowing to compare the expressive power of other
fragments of OCL that can be proposed in the future
with that of OCLFO. Note that it is guaranteed that if a
fragment contains the six operations in OCLCORE then
its expressive power will be at least that of OCLFO.
For instance, using the OCLCORE it is easy to realize
that the work presented in [24] implements the whole
expressiveness of OCLFO since it implements the six
basic operations. This is much easier to be determined
than having to check whether the fragment contains all
the operations in OCLFO.

Moreover, OCLCORE could be used to define a
UML base model [25]. That is, a minimal subset of
UML/OCL features that do not loose expressiveness.
In any case, we would like to stress that OCLCORE is
not intended to be used by the designers when specify-
ing their models, since this would result in very complex
and difficult to understand expressions for defining the
integrity constraints, but for OCL researchers and de-
velopers.

In Figure 7 we define OCLCORE. which only con-
tains the operations: allInstances, forAll, implies,
<, and =, together with the operation to navigate from
a variable to a role/attribute.

OCL-Bool ::= OCL-Bool implies OCL-Bool |
OCL-Set->forAll(Var OCL-Bool) |
OCL-Object = OCL-Object |
OCL-Value < OCL-Value

OCL-Set ::= Class.allInstances()
OCL-Object ::= Var |

Var.role
OCL-Value ::= Var.fAttr |

〈a constant name〉

Fig. 7 Syntax of OCLCORE

Next theorem proves that this fragment is able to
encode all constraints in OCLFO.

Theorem 8 For any OCLFO constraint φ, there is an
OCLCORE constraint φc such that, for any interpreta-
tion I:

I |= φ iff I |= φc

Proof Given any φ constraint written in OCLFO, we
can obtain its corresponding constraint φc written in
OCLCORE by first translating φ to a RA query q, and
then, translating q to OCLCORE. Any OCLFO constraint
can be translated into a relational algebra query q fol-
lowing the process described in Section 5. Then, we
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can translate q back into OCL using the process de-
scribed in Section 6, thus, obtaining an OCLFO con-
straint φ′. By construction, this φ′ already accommo-
dates the OCLCORE syntax described in 7, except for
operations and and not that might appear in φ′ but are
not included in OCLCORE. However, we can easily get
rid of these operations using common boolean equiva-
lences with implies (e.g. not OCL-Bool is equivalent
to OCL-Bool implies 1=2). 2

Now, it only lacks to show that OCLCORE is min-
imal since we cannot remove any operation from
it without loosing expressiveness. We cannot remove
allInstances since it is the only operation that allows
obtaining a set of instances from a UML class. We can-
not take out forAll because it is the only operation
that can be applied after allInstances. The implies
operation is mandatory to encode, for instance, the
OCL not. Finally, without <, or =, we would not be
able to encode <= (among others).

It is worth noting that OCLCORE is a proper subset
of normalized OCLFO which, in turn, is a proper subset
of OCLFO. However, from these three fragments, only
OCLFO is intended for the use of the designers when
specifying UML class diagrams with OCL constraints.
It is worth mentioning also that the three variants have
the same expressive power since both the normalized
expression and the OCLCORE expression of a constraint
can be automatically drawn from its OCLFO expression.

8 Related Work

We first discuss related work that studied the relation-
ship between OCL and RA. Then we compare our OCL
fragment with those fragments identified for the prob-
lem of OCL satisfiability. Finally, we compare our work
with other suggested OCL translations.

8.1 OCL and Relational Algebra Studies

The expressiveness of OCL and its relationship with
Relational Algebra has been previously discussed by
Mandel and Cengarle in [6]. However, whereas Mandel
and Cengarle addressed the expressive power of OCL as
a query language, we look at OCL as a constraint lan-
guage. The main difference is that a constraint language
deals only with boolean expressions, so when looking at
the equivalence of OCL w.r.t. RA, we focus on whether
we can check some OCL constraint through checking
the emptiness of a RA query q, and viceversa. In con-
trast, Mandel and Cengarle investigate whether for ev-
ery RA query q we can build an OCL expression that

returns the same tuples as q. In particular, the authors
argue that this is impossible since (1) OCL has no tuple
constructor, and (2) OCL has no way to dynamically
create new types. However, in our equivalence notion
of OCL with RA, tuples do not play a role. Indeed,
we only need to check whether a true/false OCL ex-
pression can be mapped to an empty/non-empty RA
query, whereas they tried to map any RA query into an
equivalent OCL expression. In addition, Mandel and
Cengarle hinted (although not formally proved) that
OCL version 1 was not Turing-Complete. This claim
has been proved to be no longer valid for OCL version
2.4 in our article.

Since OCL 2.0 introduced tuple facilities, Balsters
argued that OCL is able to encode any RA query com-
posed of the basic RA operations [26], that is: union,
difference, product, renaming, selection and projection
operations. However, Balsters stressed in his work that,
still, OCL is not equivalent to RA in a maximal sense
since it is impossible in OCL to define a new operation
that receives as input two arbitrary sets of tuples, and
outputs the natural join of them. Note that this sup-
posed impediment does not affect us since our goal is to
show that any given RA query can be rewritten into an
equivalent OCLFO (not necessarily in a generic way).

From a more practical point of view, Queralt and
Teniente proposed in [27] a translation from OCL to
domain-independent first-order logics, which is equiva-
lent to relational algebra. The fragment covered in their
translation is expressively equivalent to OCLFO since
they cover OCLCORE. Interestingly, their translation is
also based on first normalizing an OCL constraint into
another one composed of less expressions. Probably, a
further study of such normalization might bring another
OCLCORE for OCLFO. However, since their intention
was to apply first-order reasoners on OCL rather than
dicussing OCL expressiveness, they did not prove that
domain-independent first-order logic statements were
expressible in OCL, neither that such normalization
could bring a core, as we have done.

Another translation of a fragment of OCL into first-
order logic is proposed by Clavel et al. in [28]. By nat-
urally extending their translation of inequalities to in-
equalities with objects, we can see that their OCL frag-
ment covered is expressively equivalent to OCLFO. In
constrast, the translation given by Beckert et al. in [29]
seems to deal with a broader subset of OCL. However,
their translation is not pure first-order logics since, for
instance, it uses some built-in functions to count the
number of times an object appears in a collection un-
restrictedly, which is not a first-order capability.

It is important to note that none of these propos-
als departs from an OCL formal semantics. Thus, none
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of the previous translations has a proof of soundness.
It can be argued that no soundness proof is required
since, in the absence of formal OCL semantics, the se-
mantics of OCL turns to be the translation itself. How-
ever, using such translations as the semantics for OCL
is cumbersome and error prone. Indeed, they are defined
by means of multiple algorithms and functions. Thus,
it is extraoordinarily difficult to assess, for instance,
whether the semantics given by Queralt and Teniente
[27] is equivalent to the one given by Clavel et al. [28].
In contrast, the OCLFO semantics we provide in this pa-
per is concise and based on basic set theory (i.e., set in-
clusion, exclusion, etc). Then, it could be used to prove
that some translation is sound w.r.t. OCLFO semantics,
and thus, two OCL translations would be equivalent if
they are both sound with respect to OCLFO semantics.

Finally, there are some tools that implement trans-
lations from OCL into SQL. Egea et al. introduced
MySQL4OCL[30], which generates MySQL code for a
subset of OCL expressions. However, the translation de-
fined clearly falls out of RA since it uses MySQL spe-
cific procedures. Another tool, part of the well-known
Dresden OCL Toolkit [10], is OCL2SQL. It produces a
translation in standard SQL, but lacks theoretical basis
for sophisticated cases. Indeed, the translation is based
on some straightforward patterns without any formal
proof [31], thus, it is not clear the correctness of the
translation when dealing with, for instance, null val-
ues. Indeed, OCL2SQL makes use of SQL not exists
expressions which is known to have spurious behavior
when dealing with null values, but no discussion on
this aspect is given.

8.2 OCL subsets for satisfiability

OCLFO is a fragment of OCL defined for ensuring ef-
ficient integrity checking. However, other fragments of
OCL have been defined pursuing different objectives.
One of the most prominent is finding OCL subsets for
which the problem of OCL constraint satisfiability is
decidable.

The problem of constraint satisfiability is the prob-
lem of ensuring whether there exists at least one in-
stance of the UML class diagram such that satisfies the
constraint. Since it is known that checking OCL con-
straints satisfiability is undecidable in general [8], sev-
eral decidable OCL subsets have been identified. How-
ever, since the problem of constraint satisfiability is
harder than the problem of constraint checking, those
OCL subsets tend to be less expressive.

In our particular case, we have that OCLFO is ex-
pressively equivalent to first-order logics. Thus, since it
is known that checking the satisfiability of a first-order

constraint is not decidable, OCL based languages for
reasoning satisfiability cannot deal with full first-order
logic expressiveness. Two examples of such languages
are: OCL-Lite [17], and OCLUNIV [32].

OCL-Lite is a proper subset of OCLFO expressively
equivalent to the ALCI Description Logics. Essentially,
it is the part of OCLFO that excludes any kind of OCL
operator that could be used to emulate maximum car-
dinalities (e.g. ->size() < k). Indeed, to ensure that
OCL-Lite constraint satisfiability is decidable, OCL-
Lite must be applied to UML class diagrams without
maximum cardinalities.

OCLUNIV is also a proper subset of OCLFO. In this
case, it is based on the language of weakly acyclic
TGDs [33]. The rational behind OCLUNIV is that it
excludes any kind of OCL operator that could be used
to emulate minimum cardinalities (e.g. ->notEmpty(),
->size() > k). This is because OCLUNIV decidability
is only ensured over UML class diagrams with no min-
imum cardinality cycles.

Thus, it seems that, to ensure decidability for the
satisfiability problem, one has to give up either maxi-
mum cardinalities, or minimum cardinalities. However,
both can be easily taken into account for the problem of
checking constraints (indeed, OCLFO can encode both).

Figure 8 summarizes the relationship between
OCLFO, OCL-Lite, and OCLUNIV.

OCL
OCLFO

OCL-LiteOCLUNIV

Fig. 8 Relation of different OCL fragments

8.3 Other OCL translations

There are some tools in the literature that translates
OCL into other languages. These tools are mainly
aimed to the problem of OCL constraint satisfiability,
and ensure its decidability by means of a bounding the
search space (e.g. limiting the size of the UML instance
to search for).

For instance, the approaches presented in [34–
36] proposes a translation from OCL into the Al-
loy/Kodkod languages so that, satisfiability can be
checked through the Alloy/Kodkod reasoner. It is worth
to mention that these tools can deal with the OCL
->closure operation, which is outside first-order log-
ics, and thus, outside OCLFO. Furthermore, more ex-
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pressive translations based on Constraint-Satisfaction
Problem [37], and Satisfiability Modulo Theories [38]
have also been proposed. An easy way to see that these
translations are more expressive is that, on one hand,
they implment all the operations from OCLCORE, and
they provide some operations not inside OCLFO (such
as the comparison of the size of two sets, which is not
a first-order expression).

However, these approaches are only focused on rea-
soning constraint satisfiability, and are not though for
bringing formal semantics into OCL, neither showing
efficient satisfaction checking, as we do.

Indeed, we bring formal semantics based on set-
theory. These semantics describe the evaluation of
OCL expressions in a brief and unambiguous man-
ner as can be seen in Figure 5. Thus, these seman-
tics can be used to check/proof the correctness of OCL
translations (as we do with the translation between
OCL and RA). However, the previous translations are
not checked/proved on any particular OCL semantics.
Thus, it is impossible to know how does such trans-
lations interpret OCL expressions (neither if they are
pairwise equivalent) without studying the semantics of
the particular language they use, which are not even
standard in the case of Alloy/Kodkod.

9 Conclusions

OCL is a formal language for defining constraints that
serves as a complement for graphical modelling lan-
guages such as UML. However, full OCL is so expressive
that checking OCL constraints is not even semidecidi-
ble, as we have shown in this paper.

To tackle this issue, we have identified OCLFO, the
fragment of OCL equivalent to RA. That is, any OCLFO
constraint can be evaluated by checking if some RA
query is empty (which guarantees efficiency), and any
RA query can be translated into OCLFO (which guar-
antees expressiveness).

The syntax and semantics of OCLFO are defined in a
concise way and thus, we argue that they can be easily
adopted by OCL practitioners. Moreover, we identify
the minimal subset of OCLFO with its same expressive
power, OCLCORE, which makes OCLFO an easy object
of study.

As future work, we plan to exploit the equivalence
between OCLFO and RA to adapt the techniques from
the database field to the OCL and conceptual model-
ing community. In the first place, we would like to study
an automatic efficient translation from OCLFO to SQL
including optimizations such as indexes, or better en-
codings of the associations into relational tables. This

translation could also benefit from incremental query
techniques (thus, obtaining incremental integrity check-
ing), and view updating proposals (thus, obtaining
OCLFO incremental maintenance). Indeed, some pro-
posals treating OCL problems through database tech-
niques have recently been published with exciting re-
sults [23,14,16]. Furthermore, we would like to study if
we can include OCL Bags, OrderedSets, and Sequences
into OCLFO, for instance, by means of adapting the
techniques described in [39].
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