
Adapting Integrity Checking Techniques for
Concurrent Operation Executions

Xavier Oriol and Ernest Teniente

Department of Service and Information System Engineering
Universitat Politècnica de Catalunya – BarcelonaTech

{xoriol,teniente}@essi.upc.edu

Abstract. One challenge for achieving executable models is preserving
the integrity of the data. That is, given a structural model describing the
constraints that the data should satisfy, and a behavioral model describ-
ing the operations that might change the data, the integrity checking
problem consists in ensuring that, after executing the modeled opera-
tions, none of the specified constraints is violated.
A multitude of techniques have been presented so far to solve the integrity
checking problem. However, to the best of our knowledge, all of them
assume that operations are not executed concurrently. As we are going to
see, concurrent operation executions might lead to violations not detected
by these techniques.
In this paper, we present a technique for detecting and serializing those
operations that can cause a constraint violation when executed concur-
rently, so that, previous incremental techniques, exploiting our approach,
can be safely applied in systems with concurrent operation executions
guaranteeing the integrity of the data.

Keywords: Integrity Checking, Concurrent Operations, UML/OCL

1 Introduction

One of the main challenges for achieving executable models is ensuring data
integrity[1]. That is, given a structural model describing the data and its integri-
ty constraints, such as an UML diagram with OCL invariants; and a behavioral
model describing the operations that can change this data, like OCL opera-
tion contracts for instance, the integrity checking problem consists in assessing
whether the particular execution of a given operation in the current data state
may induce a constraint violation. The difficulty of this problem is clear since,
in the context of SQL databases, the integrity checking problem was already de-
fined more than 25 years ago (under the form of SQL assertions checking [2]) and,
still, none of the current major database management systems has implemented
a solution for it (Oracle, SQL Server, DB2, PostreSQL, MySQL).

As an example, consider the structural model of Figure 1, written in UML/OCL,
of a system for managing a research group. In this system, we have some re-
searchers who work in some projects. Moreover, some of these researchers lead

2 X. Oriol, E. Teniente

some of these projects, although a project might have a maximum of two leaders.
The OCL invariants states that researchers and projects are identified by their
name (ResercherPK, and ProjectPK invariants), a leader of a project is also
a member of the project (LeaderIsMember invariant), and that the salary of a
leader of a project is higher than the salary of all its members (LeaderEarnsMore
invariant). Note that these constraints might be violated because of the actions
of the operations, as they are specified in the behavioral model.

Project
name: String

Researcher
name: String
salary: Integer 1..2 *

1..* *WorksIn

Leads
leader

member

context Resercher inv ResercherPK:
Researcher.allInstances()->isUnique(name)

context Project inv ProjectPK:
Project.allInstances()->isUnique(name)

context Project inv LeaderIsMember:
self.member->includesAll(self.leader)

context Project inv LeaderEarnsMore:
self.leader->forAll(l|self.member->forAll(m|l.salary > m.salary))

Fig. 1. Structural model of a research group management system

In Figure 2, we show a fragment of the behavioral model for this system. In
this model, we show the operation contracts, written in OCL, of four operations.
The first one is required for adding new researchers (hireResearcher), the second
one for assigning a leader to a project (addLeader), the third one for including
a member in a project (addMember), and the last one for removing a member
from a project (removeMember).

Op hireResearcher(name: String, salary: Integer)
post: Researcher.allInstances()->exists(r|r.oclIsNew() and r.name = name and r.salary = salary)

Op addLeader(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).leader.name->includes(rName)

Op addMember(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).member.name->includes(rName)

Op removeMember(rName: String, pName: String)
pre: Researcher.allInstances().name->includes(rName)
pre: Project.allInstances().name->includes(pName)
post: Project.allInstances()->select(p|p.name = pName).member.name->excludes(rName)

Fig. 2. Behavioral model of a research group management system

Inc. Checking OCL Constraints with Aggregates through SQL Queries 3

Depending on the current state of the information base, executing some of
these operations with certain parameters can lead to a constraint violation. For
instance, if we execute addLeader with parameters Mary and ModelsProject, but
Mary is not currently a member of ModelsProject, the execution of the operation
violates the LeaderIsMember constraint. The difficulty of this problem scales
rapidly when complicating the operations and constraints involved.

To solve this problem, several proposals have been made in the modeling
community based on incremental techniques [3,4,5,6,7]. Briefly, incremental in-
tegrity checking techniques are based on the idea that, assuming that the current
data state satisfies all the constraints, they check whether the data updated by
an operation execution leads to a violation without inspecting the rest of the
data. For instance, following our previous example, we would only need to check
whether Mary is a member of ModelsProject and, thus, there is no need to check
other project leaders such as John, since John is not affected by the update.

However, to the best of our knowledge, all the presented techniques assume
that operations are executed isolatedly, and thus, are not able to detect integri-
ty violations when two operations executed concurrently collaborate to cause a
constraint violation. For instance, assume that in our current data state Mary is
a member of ModelsProject. In this situation, executing the operation to make
Mary a leader of the project does not violate a constraint. In the same situation,
executing, instead, an operation to remove Mary from the ModelsProject does
not violate a constraint either. However, when executing both operations simul-
taneously, both collaborate to reach a new state in which Mary leads a project
where she is not a member of. Thus, they raise a constraint violation.

This means that, right now, if we use the previous incremental techniques
with systems that admit concurrent operation executions, some violations are go-
ing to be missed (i.e., previous incremental checking techniques are not complete
when considering concurrency). Clearly, the problem can be solved by forcing
all the operations to be executed in a serialized manner, but this might heavily
penalize the runtime efficiency of the system.

Fortunately, not all operations must be executed in a serialized manner to
avoid these violations. Indeed, not all operations can collaborate to cause a
constraint violation. For instance, operations addLeader and removeMember can
collaborate to violate LeaderIsMember and must be serialized, but operations
addLeader and hireResearcher cannot collaborate to violate any constraint, and
thus, can be executed concurrently.

In this paper, we define a method for identifying, and serializing, those oper-
ation executions that can collaborate to cause a constraint violation, permitting
the rest of operations to be executed concurrently. In this way, we allow using the
previous incremental techniques in systems with concurrent operations, without
the penalization of serializing every execution, neither loosing completeness. Our
technique has been implemented in a tool for executing UML/OCL models [8],
thus, showing that it is feasible in practice. In any case, since the core of our
technique is fully based on logics, it can be adapted and implemented in other
model executor tools using UML/OCL[9,10] or other modeling languages.

4 X. Oriol, E. Teniente

It is worth to mention that our work is, somehow, similar to the one in [11].
In particular, [11] detects operations invoked in a wrong order due to CRUD in-
consistencies (e.g. reading some information deleted). We argue that our method
and theirs can be combined, since both deal with different problems due to con-
currency. Note, additionally, that our work is about checking a constraint on
runtime assuming concurrency, and not on verifying/validating the models at
compile time such as [12].

2 Basic Concepts and Notation

We review some key concepts and the basics of the notation used in the paper.

Terms, atoms and literals A term t is either a variable or a constant. An
atom is formed by a n-ary predicate p together with n terms, i,e. p(t1, ..., tn). We
may write p(t) for short. If all the terms t of an atom are constants, we call the
atom to be ground. A literal l is either an atom p(t), a negated atom ¬p(t), or a
built-in literal ti ω tj , where ω is an arithmetic comparison (i,e. <,≤,=,≥,>,6=).

Derived/Base predicates A predicate p is said to be derived if the boolean
evaluation of an atom p(t) depends on some derivation rules, otherwise, it is said
to be base. A derivation rule has the form: ∀t. p(tp)← φ(t) where tp ⊆ t. In the
formula, p(tp) is an atom called the head of the rule and φ(t) is a conjunction
of literals called the body. We suppose all derivation rules to be safe (i.e. all the
variables appearing in the head or in a negated or built-in literal of the body
also appears in a positive literal of the body) and non-recursive. Given several
derivation rules with predicate p in its head, p(t) is evaluated to true if and only
if one of the bodies of such derivation rules is evaluated to true.

Logic Formalization of the UML Schema. As proposed in [13] we formalize
each class C in the class diagram with attributes {A1, . . . , An} by means of a
base atom c(Oid,A1, ..., An), each association R between classes {C1, . . . , Ck}
by means of a base atom r(C1, . . . , Ck) and, similarly, each association class R
between classes {C1, . . . , Ck} and with attributes {A1, . . . , An} by means of a
base atom r(Oid,C1, . . . , Ck, A1, . . . , An).

Roughly speaking, when an object/relation encoded as P (x) exists in some
data state, the ground literal P (x) evaluates to true in such data state. Con-
versely, when an object/relation encoded as P (x) does not exists in some data
state, the ground literal P (x) evaluates to false in such data state.

3 Our Approach

Our approach is based on the notion of structural events. A structural event is an
elementary change in the population of the data, that is, an insertion or deletion
of a class/association instance. For instance, inserting Leads(Mary, ModelsPro-
ject), or deleting WorksIn(Mary, ModelsProject) are structural events. For our
purposes, we encode insertion structural events with the prefix ins, and dele-
tion structural events with the prefix del, e.g., the previous structural events

Inc. Checking OCL Constraints with Aggregates through SQL Queries 5

are encoded as ins Leads(Mary, ModelsProject), and del WorksIn(Mary, Model-
sProject), respectively. Attribute updates can be seen as an insertion/deletion of
the same object.

Executing an operation leads to structural events in the data, and these struc-
tural events might change the evaluation of a constraint, that is, the structural
events might violate a constraint, or even repair a constraint that was going to be
violated. For instance, executing the operation addLeader causes the structural
event ins Leads that might violate LeaderIsMember ; on the contrary, executing
the operation add Member causes the structural event ins WorksIn that might
repair such violation.

The operations that must be serialized depend on the time where the cho-
sen integrity checking technique takes place. In essence, the integrity checking
techniques can be applied before executing the structural events (such as [3]),
which we refer as precondition-time checking ; or after it (such as [7]), which we
refer as postcondition-time checking. In the first case, we need to serialize two
operations O1, O2 that can collaborate to cause a violation; on the second, we
need to serialize two operations O1 and O2 if the structural events of O1 might
compensate the effects of O2, since a rollback of O1 might affect the consistency
of O2.

For instance, consider the operations addLeader, removeMember, and ad-
dMember from our running example. Using a preconditiom-time checking, the
operations addLeader and removeMember should never be applied concurrently
since they might collaborate to cause a constraint violation, and the checking
technique will not realize of it since it makes the analysis separately. Note, how-
ever, that a postcondition-time checking will find the violation since, at the time
of performing the analysis, both operations have been executed and all their
effects are in the information system (and thus, at the time of checking the con-
sistency of the data, the postcondition-time checking can find a leader not being
a member of its project). However, in the case of a postconditiom-time checking,
the operations that should not be executed (or at least analyzed) together are
addMember and addLeader, since a rollback (or not) of the first might imply
a violation (or not) of the second operation. Indeed, if we execute addMember
and addLeader, and analyze together the consistency of the data, we might find
that addLeader does not violate the LeaderIsMember constraint because the op-
eration addMember adds the new leader as a member for the project, but if
addMember violates any other constraint and must rollback, this rollback makes
addLeader violate the LeaderIsMember. Thus, we should analyze the consisten-
cy of addLeader after the consistency analysis of addMember. Note that this
problem does not occur in precondition-time checking techniques.

Formally, when dealing with integrity checking in systems with concurrent
operations, we identify two kinds of interactions between operations that must
be taken into account:

– Violation collaboration. There is a violation collaboration between two op-
erations O1 and O2 if, for some constraint C, the structural events applied
by O1 and O2 might violate C.

6 X. Oriol, E. Teniente

– Compensation interaction. There is a compensation interaction from O1 to
O2 if, for some constraint C, the structural events applied by O1 might repair
a violation of C caused by the structural events of O2.

In the case of precondition-time checking, we must serialize two operations O1

and O2 if they have a violation collaboration; in the case of postcondition-time
checking, two operations O1 and O2 must be serialized if O1 has a compensation
interaction with O2.

In this paper we focus on detecting this kind of interactions, and we suggest
a serialization to deal with the problems they can carry out. Other approaches
different than serialization, or a more refined versions of serialization, can be
studied, but they are left for further work.

To detect this kind of interactions, we apply the following steps: 1) given all
the operation contractsO, we detect the kind of structural events applied by each
operation O ∈ O, 2) given all constraints C, we detect all the kind of structural
events that can violate/repair each C ∈ C, 3) for each pair of operations O1, O2,
and each constraint C, we use the structural events to analyze if there is any
kind of interaction between them w.r.t. C. Note that all these analysis can be
performed at compile time since they purely rely on the model specification of
the operations and constraints.

3.1 Detecting the kind of structural events applied by some
operation

Given an operation contract, it is possible to identify, at compile time, which are
the kind of structural events applied by the operation [14,15]. For our purposes,
we rely on the approach of [14] to detect them. In essence, the idea behind this
approach is to translate any operation contract to an equivalent logic formula
that, intuitively, states that executing of an operation implies the application of
certain structural events.

In particular, the previous operations from Figure 2 can be encoded by means
of the following logic formulas:

ins_Researcher(R, Name , Salary) :- hireResearcher(Name , Salary)
ins_Leads(R, P) :- addLeader(RN, PN), Researcher(R, RN, S),Project(P, PN)
del_WorksIn(R, P) :- removeMember(RN, PN), Researcher(R, RN, S),Project(P, PN)
ins_WorksIn(R, P) :- addMember(RN, PN), Researcher(R, RN, S),Project(P, PN)

Intuitively, the first formula states that invoking the operation hireResearcher
with parameters Name, Salary causes the structural event of ins Researcher(R,
Name, Salary) to happen, where R is a new object identifier value. The second
one states that, when invoking the operation addLeader with parameters RN
and PN, there is a structural event ins Leads(R, P) provided that R and P are
the researcher and project identified by RN and PN, respectively. Similarly, the
third formula states that, when invoking the operation removeMember, there is
a del WorksIn(R,P) structural event.

Thus, and thanks to this translation which is already implemented [16], the
structural events implied by each operation become explicit in the head of each

Inc. Checking OCL Constraints with Aggregates through SQL Queries 7

rule. Thus, we can build a program that reads this translation, and realizes that
executing hireResearcher implies the structural event ins Reseracher, addLeader
implies ins Leads, and removeMember implies del WorksIn.

Note that, in general, an operation will apply more than one kind of structural
event when executed. For instance, we could specify an operation that creates a
new researcher and adds his membership associations. In this case, and following
[14], an operation is translated into several logic formulas, each one implying a
different structural event. Thus, the structural events implied by such operation
is the union of all the structural events appearing in all the formulas.

3.2 Detecting the structural events that violate/repair a constraint

Given a constraint C, it is possible to determine, at compile time, which are the
kind of structural events that might violate a constraint, and also those that
may repair it [17,7]. For our purposes, we use the approach defined in [17] since
it is based on logics in a similar way as we did in previous section.

In essence, we first translate the UML and OCL constraints into logic denials,
that is, logic formulas stating the condition that rise a constraint violation.
Following, for instance, the automatic translation of UML/OCL constraints to
denials defined in [13], our running example would bring the following logic
formulas:

:- Researcher(R1, N, S1), Researcher(R2, N, S2), R1<>R2
:- Project(P1, N), Project(P2, N), P1<>P2
:- Leads(R,P), not(WorksIn(R,P))
:- WorksIn(R,P), Leads(L,P), Researcher(R,RN,RS), Researcher(L,LN,LS),RS>LS

The first and second formulas, encode that, if there are two different re-
searchers or projects with the same name, there is a constraint violation. The
third one states a constraint violation if R leads a project P where s/he does
not work in. The last formula asserts a violation if for some project P , there is
a leader L that earns less than a worker R.

Given the logic formulas, we can realize which structural events might make
these formulas true (and thus, rise a violation), and which of them might make
them false (and thus, repair the violation).

To do so, we rely on the event rule equivalences [18]. The event rule equiva-
lences define when a structural event makes a literal true/false in the new state
of the data after applying the events. In particular, consider PN to be the literal
P evaluated in the new data state. Then, the event rule equivalences tells us
that:

PN (x) ≡ ins P (x) ∨ (P (x) ∧ ¬del P (x))

¬PN (x) ≡ del P (x) ∨ (¬P (x) ∧ ¬ins P (x))

Intuitively, the literal P (x) is true in the new state after applying the struc-
tural events if we have inserted P (x) through some insertion structural event,
or P (x) was already true in the data state and we have not deleted it. Similarly,

8 X. Oriol, E. Teniente

¬P (x) is true in the new state after applyng the structural events if we have
delted P (x) through some deletion structural event, or P (x) was already false
in the data state and we have not inserted it.

Applying the previous equivalences to our logic denials, we obtain what we
call event-dependency constraints (EDCs), that is, denials that tells which struc-
tural events rise a constraint violation. For instance, for the first denial we obtain:

:- ins_Researcher(R1, N, S1), ins_Researcher(R2, N, S2), R1<>R2
:- ins_Researcher(R1,N,S1), Researcher(R2,N,S2), not del_Researcher(R2,N,S2),

R1<>R2
:- Researcher(R1,N,S1), not del_Researcher(R1,N,S1), ins_Researcher(R2,N,S2),

R1<>R2
:- Researcher(R1,N,S1), not del_Researcher(R1,N,S1), Researcher(R2,N,S2),

not del_Researcher(R2,N,S2), R1<>R2

The first EDCs states that there is a constraint violation if we apply two
different structural events for inserting a researcher with the same name. The
second and third one specify that if we insert a new researcher with a name N ,
and this name N belongs to some researcher in the current data, but we do not
remove this researcher, there is a constraint violation. Finally, the last rule tells
us that if we have two researchers with the same name and we do not remove
any of them, there is a cosntraint violation.

Intuitively, the structural events that appear positively in an EDC are the
structural events that might cause a violation, while those that appear negatively
in an EDC are the structural events that might repair the violation (since they
make the body of the EDC, which detects the violation, to evaluate to false).
For instance, ins Researcher is a structural event that can cause a violation of
the ResearcherPK constraint, while del Researcher is a structural event that can
repair it.

It is worth to hightlight that the number of EDCs obtained from one denial
grows exponentially with the lenght of the denial encoding. However, some opti-
mizations can be applied to reduce the number and size of the denials [3]. Indeed,
considering the classical optimization that the initial data state does not violate
any constraint, and that there is homomorphism between denials two and three,
the unique EDCs required are:

:- ins_Researcher(R1, N, S1), ins_Researcher(R2, N, S2), R1<>R2
:- ins_Researcher(R1,N,S1), Researcher(R2,N,S2), not del_Researcher(R2,N,S2),

R1<>R2

3.3 Detecting operations and constraints interactions through the
structural events

At this point, we want to analyze, using the structural events previously deter-
mined, which kind of interactions might have two operations w.r.t. some con-
straint. To do so, and benefiting from the fact that all our approach is based
on logics, we are going to use an unfolding technique. In essence, our idea is
to unfold the body of the EDCs obtained in Section 3.2, which tells us which
structural events cause a violation/repair, with the rules from Section 3.1, which

Inc. Checking OCL Constraints with Aggregates through SQL Queries 9

specifies which structural events are implied by the operations. As a result, we
obtain some new rules that directly define which operations can violate/repair
some constraint.

For instance, if we unfold the previous EDCs with the logic rules that tells
that hiring a researcher makes an insertion structural event of a researcher, we
obtain:

:- hireResearcher(N, S1), hireResearcher(N, S2)
:- hireResearcher(N, S1), Researcher(R2,N,S2), not (del_Researcher(R2,N,S2)),

R1<>R2

Intuitively, the first rule states that two executions of hireResearcher can
collaborate to rise a constraint violation (i.e., a violation of ResearcherPk con-
straint). The second rule tells us that, hireResearcher might be compensated
with an operation that deletes researchers. However, since there is no operation
to delete researchers, there is no interaction according to this rule.

We now bring an example of a detection of a compensation interaction. Con-
sider the EDCs obtained from the LeaderIsMember constraint:

:- ins_Leads(R,P), del_WorksIn(R,P)
:- ins_Leads(R,P), not (WorksIn(R,P)), not (ins_WorksIn(R,P))
:- Leads(R,P), not (del_Leads(R,P)), del_WorksIn(R,P)

Intuitively, the first EDC states that there is a violation if we insert that R
is going to lead a project P s/he is leaving. The second asserts a violation if we
insert that R is going to lead a project P s/he is not working in and that he is
not going to work in. Finally, the third EDC detects a violation if we delete R
from working in P , when R is leading P and we do not delete R as a leader of
P .

Then, when unfolding the EDCs according to the rules from Section 3.1,
which encodes the operations behavior, we have:

:- addLeader(RN,PN), Researcher(R, RN, S), Project(P, PN), removeMember(RN,PN)
:- addLeader(RN,PN), Researcher(R, RN, S), Project(P, PN), not(WorksIn(R,P)),

not (addMember(RN,PN))

Thus, we see that the operations addLeader and removeMember has a collab-
oration interaction to violate LeaderIsMember, since they both appear positively
in the body of a constraint, while addLeader and addMember has a compensation
interaction, since addMember appears negatively and addLeader positively in
the same constraint. Hence, addLeader and removeMember should be serialized
for precondition-time checking techniques, whereas addMember and addLeader
should be serialized (preferribly in this order) for postcontition-time techniques.

4 Implementation

We have implemented our approach in OpExec [8], an artifact-centrict business
process model executor. Briefly, this tool is capable of loading the structural
and behavioral models of the system at compile time, encoded in logics, and, at
runtime, execute the operations invoked by the user into a relational database.

10 X. Oriol, E. Teniente

In OpExec, we integrated an implementation of a precondition-time check-
ing technique [19]. This technique assumed that all operations were executed
isolatedly, i.e., not concurrently, and thus, required an automatic serialization
technique as the one we have discussed in this paper.

The implementation of our technique is summarized in Figure 3. In OpEx-
ec, a user loads, in compile time, the structural and behavioral models into a
Controller. Then, when the user wants to execute the models, the user uses the
Controller to create a ProcessExecutor. The ProcessExecutor contains an artifac-
tID, which is an id number to identify all the information related to such process.
At runtime, the user invokes an operation from the behavioral model through the
ProcessExecutor. This processExecutor, then, creates an OperationExecThread,
which is a new Thread that will execute the operation invoked by the user into
the database.

User

Controller

models

ProcessExecutor

artifactID

OperationExecThreadOperationExecThreadManager

operationExecThreadQueue

1. Loads models
(compilation time)

2. Creates
ProcessExecutor

2.1 creates

1.1 creates

3. Calls operation/s on ProcessExecutor

3.1 creates
3.2 enqueues

3.3. executes

Database

3.4 executes

Operation
Executor
Library

derivationRules

Fig. 3. Architecture of a Model Executor with an Integrity Checking Technique

The integrity checking part is implemented in the OperationExecThread which,
intuitively, checks whether its structural events are going to violate any con-
straint according to the current contents of the data. In case that there is any
constraint violation, the OperationExecThread does not commit any change into
the database, otherwise, the database is updated accordingly.

In order to enable multiple users invoke OpExec concurrently, and to guar-
antee that the integrity checking part detects all possible violations, we imple-
mented the OperationExecThreadManager. When a new OperationExecThread
is created, this Thread is enqueued in the OperationExecThreadManager, which
is responsible of executing it as soon as it is safe to execute it, i.e., when it is

Inc. Checking OCL Constraints with Aggregates through SQL Queries 11

guaranteed that it will not interact, with any other currently running Opera-
tionExecThread, to cause a violation.

The technique discussed in our paper is fully implemented in the Opera-
tionExecThreadManager class. That is, at compile time, it receives the models
and performs our interaction analysis to detect which operations can collabo-
rate to raise a constraint violation. Then, at runtime, if we try to execute an
operation which might interact with another operation which is currently being
executed, the OperationExecThreadManager delays the execution of the first
untill the second has finished.

Although our implementation is though for a precondition-time integrity
checking, we understand that it might not be difficult to adapt it to work with
a postcondition-time integrity checking such as those presented in [4,5,6,7].

5 Conclusions

We have presented an approach for adapting integrity checking techniques to sys-
tems with concurrent operations. Indeed, current integrity checking techniques
do not take into account concurrent operation executions and, as we have seen,
this concurrency might cause violations which cannot be detetected by these
techniques.

To solve this situation, we have defined an approach for identifying which op-
erations can bring problems to the integrity checking techniques when executed
concurrently. As we have seen, the kind of operations that might bring problems
depend on the kind of integrity checking technique applied. On the one hand,
integrity checking techniques performed at precondition time should avoid con-
current executions of operations that might collaborate to cause a violation. On
the other, integrity checking techniques performed at postcondition time should
avoid analysing concurrently two operations if one compensates a violation from
the other. Our approach can detect both kinds of interactions and thus, can be
applied for both kinds of integrity checking techniques. To show the feasibility
of our approach, we have implemented it in the OpExec model executor.

References

1. Olivé, A., Cabot, J.: A research agenda for conceptual schema-centric development.
In: Conceptual Modelling in Information Systems Engineering. Springer (2007)
319–334

2. ANSI Standard: The SQL 92 Standard. (1992)
3. Oriol, X., Teniente, E.: Incremental checking of OCL constraints with aggregates

through SQL. In: Conceptual Modeling - 34th International Conference, ER 2015,
Stockholm, Sweden, October 19-22, 2015, Proceedings. (2015) 199–213

4. Bergmann, G.: Translating ocl to graph patterns. In: Model-Driven Engineering
Languages and Systems - 17th International Conference, MODELS 2014, Valencia,
Spain, September 28 - October 3, 2014. Proceedings. (2014) 670–686

5. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact analysis algorithm
for view-based textual modelling. ECEASST 44 (2011)

12 X. Oriol, E. Teniente

6. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic
constraints. In: Fundamental Approaches to Software Engineering. Springer (2010)
203–217

7. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. Journal of Systems and Software 82(9) (2009) 1459–1478

8. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In: Advanced Information Systems Engi-
neering - 29th International Conference, CAiSE 2017, Essen, Germany, June 12-16,
2017, Proceedings. (2017) 612–628

9. Object Management Group (OMG): Unified Modeling Language (UML) Super-
structure Specification, version 2.4.1. (2011) http://www.omg.org/spec/UML/.

10. Object Management Group (OMG): Object Constraint Language (UML), version
2.4. (2014) http://www.omg.org/spec/OCL/.

11. Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of inter-
dependencies between processes and data. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. SAC ’18, New York, NY, USA, ACM
(2018) 110–119

12. Przigoda, N., Hilken, C., Wille, R., Peleska, J., Drechsler, R.: Checking concurrent
behavior in UML/OCL models. In: 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, September 30 - October 2, 2015. (2015) 176–185

13. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM TOSEM 21(2) (2012) 13

14. Queralt, A., Teniente, E.: Reasoning on uml conceptual schemas with operations.
In van Eck, P., Gordijn, J., Wieringa, R., eds.: Advanced Information Systems
Engineering, Berlin, Heidelberg, Springer Berlin Heidelberg (2009) 47–62

15. Cabot, J.: From declarative to imperative uml/ocl operation specifications. In
Parent, C., Schewe, K.D., Storey, V.C., Thalheim, B., eds.: Conceptual Modeling
- ER 2007, Berlin, Heidelberg, Springer Berlin Heidelberg (2007) 198–213

16. Oriol, X.: Verificació i validació d’esquemes conceptuals uml/ocl amb operacions.
(2012)

17. Oriol, X., Teniente, E., Tort, A.: Computing repairs for constraint violations in
uml/ocl conceptual schemas. Data & Knowledge Engineering 99 (2015) 39 – 58
Selected Papers from the 33rd International Conference on Conceptual Modeling
(ER 2014).

18. Olivé, A.: Integrity constraints checking in deductive databases. In: Proceedings
of the 17th Int. Conference on Very Large Data Bases (VLDB). (1991) 513–523

19. Oriol, X., Teniente, E., Rull, G.: TINTIN: a tool for incremental integrity checking
of assertions in SQL server. In: Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, March 15-16, 2016. (2016) 632–635

http://www.omg.org/spec/UML/
http://www.omg.org/spec/OCL/

	Adapting Integrity Checking Techniques for Concurrent Operation Executions

