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Abstract. Full UML/OCL is so expressive that most reasoning tasks are known
to be undecidable in schemas defined with these languages. To tackle this situ-
ation, literature has proposed mainly three decidable fragments of UML/OCL:
UML with no OCL, UML with limited OCL and no maximum cardinality con-
straints (OCL-Lite), and UML with limited OCL with no minimum cardinality
constraints (OCLynjv). Since most conceptual schemas make use of OCL to-
gether with min and max cardinalities, this poses a strong limitation to current
proposals. In this paper, we go beyond these limits by showing that OCLyny with
acyclic min cardinality constraints and path acyclicity constraints also preserves
decidability. In this way, we establish a language that can deal with most of UM-
L/OCL identified constraint patterns. We also empirically test the expressiveness
of this language through different UML/OCL case studies.
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1 Introduction

Reasoning on UML/OCL conceptual schemas is aimed at answering questions regard-
ing what kind of instances does a UML/OCL conceptual schema admit. This is known
to be crucial in the specification stage of software development. Indeed, reasoning about
what kind of instances does a UML/OCL schema admit allows to assess whether the
UML/OCL schema is correct or not. In this way, we can avoid the propagation of con-
ceptual errors to the other stages of software development [1].

For instance, consider the UML/OCL schema in Figure 1 specifying a soccer league
competition. This domain includes Leagues, identified by year, and Teams enrolled in
these leagues. Teams play Matches during a league, for which we store the goals made
and the Stadium in which they took place. The UML schema is complemented with
some OCL constraints that describe the primary key attributes of each class, ensure that
no team has a match with itself, ensure that a league is finished when all teams have
played against all other teams, and ensure that the unique unfinished league is the last
one, whose finishing date is later than any date of its matches.

By taking a closer look at this UML/OCL schema, we may realize that it accepts
an instance of a match among two teams of different leagues. This clearly indicates
that there is an error in the UML/OCL schema and, thus, an OCL constraint preventing
such situation should be incorporated to it. It is worth noting that, incorporating new
constraints in the conceptual schema means propagating such changes into the other
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context League inv LeaguelID: League.alllnstances()->isUnique (year)
context Team inv TeamID: Team.allInstances ()->isUnique (name)
context Stadium inv StadiumID: Stadium.allInstances()->isUnique (name)
context Match inv NoSelfMattch: self.visitor <> self.visitant
context FinishedLeague inv EveryMatchPlayed:
self.teamInLeague->forAll (tl,t2|tl.visitor->includes(t2)))
context FinishedLeague inv OnlyLastOneIsNotFinished:
League.allInstances () —>forAll(l|l=self or l.year < self.year)
context FinishedLeague inv FinishesAfterAllMatches:
self.teamInLeague.match[visitor]->forAll (m|m.date < self.date)

Fig. 1. UML schema and OCL constraints

software artifacts (in particular, operation design-contracts and code), thus, it is crucial
to reason that no constraint is missing/lacking in the conceptual schema in order to
avoid the propagation of this mistake to the rest of artifacts.

Unfortunately, it is well-known that reasoning on UML/OCL schemas is undecid-
able [2]. That is, there is no algorithm that can reason over a UML/OCL schema en-
suring termination and a correct output. The cause of the undecidability relies on the
high expressiveness of UML/OCL schemas. Indeed, UML schemas with general OCL
constraints have an expressive power beyond first-order logics. Thus, since reasoning
about the satisfiability of first-order logic theories is undecidable and a UML schema
with general OCL constraints can encode a first-order theory, the undecidability result
of first-order logic reasoning is inherited by reasoning on UML/OCL schemas.

To mitigate this issue, one option is to reduce the expressiveness of UML/OCL into
some fragment whose reasoning problems are decidable. To the best of our knowledge,
three such fragments have been identified in the literature:

— UML schemas alone: that is full UML features with no OCL constraints [2].

— OCL-Lite: a fragment of UML/OCL which, in essence, forbids the usage of maxi-
mum cardinalities in the UML schema [3].

— OCLynyv: a fragment of UML/OCL which, in essence, forbids the usage of mini-
mum cardinalities in the UML schema [4].

Clearly, all three proposed languages lack critical features making them strongly
limited. Indeed, UML/OCL schemas tend to make use of OCL constraints and minimum
and maximum cardinality constraints together, as required by our running example.
Thus, although all such fragments are decidable, none of them is expressive enough for
actual UML/OCL schemas.

Hence, the main goal of this paper is to identify an OCL subset that, combined with
min and max cardinality constraints together, preserves decidability. In particualr, we
prove that OCLyn)y combined with minimum cardinality constraints is still decidable,
provided that these constraints do not form a cycle in the UML class diagram. This
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decidability result is also preserved when extending OCLyyjy with path acyclicity con-
straints (such as no person can be his own ancestor). As a result, we have that this
extended language can deal with the constraint patterns most frequently used (as de-
fined in [5]). We keep the name OCLyyy since the fragment of OCL handled by this
new language is the same as the original OCLyy)y .

We also test the expressiveness of this decidable fragment by means of studying
several UML/OCL case studies, and comparing how many textual constraints could we
encode in the language proposed in this paper and how many in OCL-Lite. With this
experiment, we show that, while OCL-Lite could cover 56% of the constraints of the
case studies, our OCLypnjy could handle the 82%. In addition, our OCLyyy required
only deleting 1 minimum cardinality constraint to ensure decidability (i.e., acyclicity in
the class diagrams associations) while OCL-Lite required removing all the maximum
cardinality constraints in the schemas (a total of 69).

In conclusion, we can state that the language identified in this paper is currently the
most expressive one for specifying UML/OCL schemas while ensuring finite reasoning
on them. Thus, any complete UML/OCL schema reasoner (such as [6]) receiving as
input a schema written in our language never hangs while checking its correctness.

2 Preliminaries

We start from a logic encoding of a UML class diagram into a logic schema based
on [6], and the weak acyclicity result stating that any logic schema with no cycles
involving existential variables can be reasoned in finite time [7, 8]. We summarize all
these notions in the following:

UML class diagram and compatible classes. A UML class diagram is a diagram which
contains a hierarchy of classes, n-ary associations among these classes (where some
of them might be reified, i.e, association classes), and attributes inside the classes. In
addition, a UML class diagram might be annotated with minimum/maximum cardi-
nality constraints over its association-ends/attributes, and hierarchy constraints (that is,
disjoint/complete constraints). In this paper, we say that two classes C; and Cy are
compatible if they have a common superclass SC' in the hierarchy.

Terms, atoms, literals, and positions. A termt is either a variable or a constant. An atom
is formed by a n-ary predicate p together with n terms, i.e., p(t1, ..., t,,). We may write
p(t) for short, and say that the position pl[¢] is occupied by the term ¢;. If all the terms
of an atom are constants, we say that the atom is ground. A literal [ is either an atom
p(t), or a built-in literal ¢; w t;, where w is an arithmetic comparison (i.e., <,<,=,7#).

Logic encoding of the UML class diagram. We formalize each class C in a class di-

agram with attributes {A4;,..., A,} by means of a base atom ¢(Oid) together with
n atoms of the form cA;(Oid, A;), each association R between classes {C1,...,Cy}
by means of a base atom 7(C1, ..., C}), and each association class R between classes

{C1,...,Cy} with attributes {A;,..., A,} by means of a base atom r(C4,...,C})
together with n atoms rA4;(C4, ..., Ck, A;).

Dependencies. A Tuple-Generating Dependency (TGD) is a formula of the form
VI,Z. o(T,z) — Y. ¥(T,7y) where ¢(T,Z) is a conjunction of literals, and (T, )
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a conjunction of atoms. A Disjunctive Embedded Dependency (DED) is a variation of
TGDs where disjunctions are admitted in the conclusion of the rule. In particular, they
follow the form: VZ,Z. ¢(Z,z) — \/ 37. ¥(Z, 7). A ded is a denial if its right hand side
is an empty disjunction: VZ. ¢(Z) — L. From now on, we omit the logic quantifiers
since they can be understood by context.

Dependency graph and weak acyclicity. Given a set of deds, its dependency graph
is a directed graph obtained as follows. There is a vertex for each position of all ded
predicates, and for each ded of the form ¢(Z,y) — \/ ¥(T, Z), there is a universal edge
from a position p[i] of ¢ to a position r[j] of ¢ iff: there is a variable 2 € T occupying
both p[i] and r[i]. Moreover, there is an existential edge from a position p[i] of ¢ to a
position r[j] of 4 iff there is a variable € T occupying pl[i], and there is a variable
z € Z occupying r[i]. A set of deds is said to be weakly acyclic iff its dependency graph
does not contain any cycle involving an existential edge.

3 The OCLyyyv Language

OCLynyy is a fragment of OCL which does not make use of existential variables (i.e.,
it does not have the exists OCL construct and it limits all the other constructs to avoid
emulating it). Under the point of view of first-order logics, it is the fragment of OCL
that can be described by means of the first-order constructs V, A and V; avoiding 3 and
limiting the usage of — accordingly. The OCLyyjy language was firstly described as
a fragment of OCL which can be efficiently checked by means of SQL queries with
no need of subqueries [9], and as a fragment whose constraints can be mantained (i.e.
repaired) in finite time [4].

We reproduce its grammar here for the sake of self-containment of the paper:

ExpBool ::= ExpBool and ExpBool | ExpBool or ExpBool
| ExpOp
ExpOp ::=Path->excludesAll (Path) | Var.Member->includesAll (Path)
| Path->excludes (Path) | Var .Member—->includes (Var)
| Path->isEmpty () | Path—>forAll (Var| ExpBool)
| Path OpComp Constant | not Path.oclIsKindOf (Class)
| Path OpComp Path | Path.oclIsKindOf (Class)
Path ::=Var.Nav |Class.allInstances() .Nav
| var Class.allInstances()
Nav ::=Role.Nav | oclAsType (Class) .Nav
| Role | Attribute

| oc1AsType (Class)

With regard to semantics, the basic property of OCLyyyv is that its logic encoding
provides as a result deds of the form: ¢(Z,7) — \/ ¢(Z) or denials ¢(Z) — L [4]. In
any case, note the absence of existentials variables Z of typical deds.

For instance, the OCLyyjv constraints in Figure 1 would be encoded as follows:

1) LeagueYear(l, y), LeagueYear(l2, y), 1#12 — L
2) TeamName (t, n), TeamName (t2, n), t;ét2 — L

3) StadiumName (s, n), StadiumName (s2, n), 57&32 — L
4)

5)

Match(tl, tl) — L
TeamInLeage (t, 1), TeamInLeage(t2, 1) — Match(t, 1, t2, 1)
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6) FinishedLeage (f),LeagueName (1,n),1#f,LeagueYear (f,y), LeagueYear (l,z),z<y — L
7) FinishedLeage (f), LeagueDate(f, d), MatchDate(tl, 1, tl2, 12, d2), d < d2 — L

Moreover, since the OCLyny language is strongly-typed, all its valid expressions
satisfy the type conformance specified in the OCL standard. This fact implies that,
for each variable = in some ded codifying some OCLypjy constraint, the UML class
of two different positions occupied by x are compatible. Intuitively, this is because
each variable x stands for some UML instance of class C' obtained when evaluating
an OCLypyy expressions, and UML instances of C' can only be obtained in OCLypy
expressions of a type compatible with C'.

For instance, in the ded 4 above, we see that the variable ¢/ holds two different
positions in the Match predicate. This implies that both positions codify two compat-
ible types. Indeed, if we take a look at the diagram, we see that Match is a recursive
association and thus, both positions have the same type.

4 Decidability of OCLyy with min cards and path acyclicity

Reasoning whether a UML/OCL schema satisfies a given property is aimed at checking
whether the schema admits a consistent sample instantiation witnessing the property.
For instance, checking whether the schema in our example satisfies that Match is lively,
requires identifying whether this schema admits an instantiation containing, at least,
one instance of Match without violating any integrity constraint.

The cause for undecidability is always the new objects that must be created to repair
the constraints violated by the sample instantiation being built. Indeed, such new ob-
jects might violate other constraints that require creating new objects, thus, potentially
stacking into an endless process of creating new objects.

For instance, assume that we have a UML class diagram with classes Employee,
Department, and Project such that each employee should be assigned to at least one
department, each department should be assigned to at least one project, and that each
project should have at least two employees. Clearly, if we want to check whether Em-
ployee is lively, we need to instantiate one employee in the schema. Then, to satisfy
the constraints, we will have to instantiate one department for this employee. Similarly,
we will need to instantiate one project for the department and, then, we need a new
employee for the project, thus potentially entering into an infinite loop.

Intuitively, a UML class diagram with acyclic minimum cardinality constraints
avoids this kind of loops. Moreover, OCLyyjy constraints (and path acyclicity con-
straints) guarantee that no new object needs to be created to satisfy the constraints. Thus,
the combination of OCL )y constraints with path acyclicity constraints into UML class
diagrams with no minimum cardinality constraints cycles is decidable.

In the following we formalize the proof of this statement. We start by proving
that reasoning on UML class diagrams with no min cardinality cycles and no OCL
constraints is decidable. To facilitate the proofs, we begin with the assumption that
min cardinalities are 1 or 1..*, and that all hierarchies are complete. Then, we show
that incorporating OCLyyjy constraints preserves decidability. Finally, we incorporate
path acyclicity constraints and generalize our results to min cardinality constraints with
boundaries different than 1, and incomplete hierarchies.
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4.1 Reasoning on UML class diagrams with no min card cycles is decidable

We say that there is a min cardinality cycle in a UML class diagram if there is a directed
cycle in the UML class diagram formed by association roles whose min cardinality is
one and/or hierarchy constraints (taken upwards or downwards, i.e., in both directions
of the hierarchy). Then, we say that a UML class diagram is weakly acyclic if it does
not contain any min cardinality cycle. Formally:

Definition 1. A min cardinality cycle on class C' is a sequence of association-role
names 1o, ..., 'n S.1.:

1. Forms a cycle, i.e., the UML class of r, is compatible with C.

2. Each association-role r; has a min cardinality 1 (or is a navigation from an asso-
ciation class to one of its members).

3. It is a valid path, i.e., C' can navigate to o, and the UML class of r;_1 can navi-
gate to a role/association-class r; for every i > 1. We consider that a UML class
can navigate through a role r; if it has a role property called r;, or some of its
compatible classes have it.

Equivalently, there is a min cardinality cycle if we can build an OCL path that starts
from class C, navigates uniquely through roles whose min cardinality is 1 (or from
association classes to its members since an instance of an association class always one
member for each association-end), possibly using oclAsType to cast some (intermediate)
path result to some other compatible classes into which continue navigating, and whose
final result is (a collection) of a type compatible with C'

Definition 2. A UML class diagram is weakly acyclic iff it does not contain any min
cardinality cycle for any of its classes.

In the following, we prove that reasoning on a weakly acyclic UML class diagram
is decidable. We do so by showing that the logic encoding of a weakly acyclic UML
schema results into a weakly acyclic set of deds, which are well-known to be decidable
[7,8].

Theorem 1. Reasoning on a weakly acyclic UML class diagram is decidable.
Proof. The proof starts from the logic encoding of the UML constraints present in the

class diagram. In particular, we see that there are only 6 kinds of rules generated by the
encoding of constraints in this language [1]:

Integrity Reference Rules: Assoc(x, y, ...) — Class(x)

Minimum cardinality rules: Class(x) — Assoc(X, V, ...)

Maximum cardinality rules: Assoc(x, y, ...) A Assoc(x, y2,...) = L
Hierarchy constraints: Subclass(x) — Class(x)

Disjoint constraints: Subclass1(x) A Subclass2(x) — L

Complete constraints: Class(x) — Subclass1(x) V ... V SubclassN(x)
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Now we see that, if the UML class diagram is weakly acyclic, these kinds of rules
form a weakly acyclic set of deds. We do this by contraposition. That is, we show that
if there is a cycle in the deds, we can find a min cardinality cycle in the class diagram.

If there is a cycle in the deds, there is, for sure, an existential edge. The unique rules
that generate an existential edge are the min cardinality rules, so, there must be a min
cardinality constraint in the UML class diagram. We use this class to generate a min
cardinality cycle. Indeed, each edge that appears in the cycle in the deds can be seen
either as a navigation through a min cardinality 1 role, or the navigation to the class of
the association, a superclass or a subclass. We can generate the min cardinality cycle by
simply picking the role names of the min cardinality constraint deds appearing in the
deds cycle. Since the deds form a cycle, for sure, the navigations ends with the original
class C. O

Up to here, we know that reasoning on weakly acyclic UML schemas is decidable.
Now, we generalize this condition in order to ensure good expressiveness. In particular,
it is quite frequent to find a binary association in a UML class diagram with a min car-
dinality 1 in both association-ends. This forms a trivial cycle in the UML class diagram,
and thus, a cycle in its logic encoding.

Assume, for instance, that the (reified) association TeamlInLeague in our example
has a min cardinality 1 in both association-ends: Team and League. In such case, the
logic encoding contains the following cycle:

8) Team(t), — TeamInLeague(t, 1)
9) TeamInLeague (t, 1), — League(l)
10) League(l) — TeamInLeague(t, 1)
11) TeamInLeague(t, 1) — Team(t)

This kind of cycles do not affect the decidability of the schema. Intuitively, this is
because everytime we repair the ded 9 creating a new league ! for some team ¢ we are
actually repairing the ded 10 that says that each league (such as /) should have at least
one team. Thus, ded 10 is not triggered, and the repairing process does not loop forever.

Formally, this kind of cycles satisfy the third decidability theorem identified in [1],
which states that when creating new instances to repair such kind of constraints, those
instances do not get stacked into an infinite loop.

Therefore, cycles involving only one (non-recursive) association with min cardinal-
ities in both association ends do not break decidability.

4.2 Incorporating OCLyny

We assume now that the UML class diagram is complemented with OCLyyjy cons-
traints and show that decidability is still preserved. The basic idea is that these cons-
traints do not create new objects to be repaired, but reclassify them among compatible
classes or add new associations to them. Thus, no new cycles with new existential edges
are added.

It might seem that an OCLyyy constraint can create a new universal edge that is
involved within a cycle with some existential edge (given by some min card constraint).
However, we show that, if this is the case, then, there is a min cardinality cycle in
the UML class diagram alone (and thus, the UML class diagram would not be weakly
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acyclic). The intuition behind this fact is that, given a ded cycle involving an OCLynv
constraint, we can build a UML min card cycle by simply bypassing OCLyny cons-
traints. This is because OCLyyy cannot make an existing object become an instance of
an arbitrary class, but can only reclassify objects into compatible classes (whose propa-
gations are already taken in account when searching for min cardinality cycles through
hierarchies).

We start stating two intermediate Propositions that make the overall proof easier:

Proposition 1. Given a set of deds encoding a UML class diagram, if a position r/[i]
encodes objects compatible with class C, then, there is a universal-path (i.e., a path
formed by universal edges in the dependency graph) from r[i] to C|0].

Proof. There are two different cases: » might encode either a class or an association
(the case of association classes is treated similarly).

Assume 7 is a predicate encoding a class R. If R is compatible with C' we have that,
in the UML class diagram, R is connected to C' through hierarchies. This connection is
represented in the dependency graph through deds encoding hierarchy constraints (in-
tuitively, to go upwards a hierarchy), and complete constraints (intuitively, to go down-
wards a hierarchy). Both kinds of deds only generate universal edges and, so, there is a
universal-path between them.

Assume r is a predicate encoding an association R and r[i] encodes the i-th member
of the association R, whose UML class is RC. If RC' is compatible with C, we have a
universal path between the positions 7¢[0] and ¢[0] (as we have seen previously). Now,
because of the ded encoding the integrity reference constraint, there is also a universal
edge from r[i] to rc[0]. So, there is a universal path between r[i] and c[0]. O

With this result at hand, we can prove that, if there is a cycle in the deds encoding
a UML schema with OCLyyy constraints, then, there is a min cardinality cycle in
the UML schema. The proof is based on showing that, if there is a cycle in the deds,
and such cycle uses some universal edge generated from a ded encoding an OCLyny
constraint, we can build a new cycle without using such ded by means of replacing such
edge for the universal path stated in Proposition 1.

Proposition 2. [f there is a cycle in the deds encoding a UML schema with OCLynyy
constraints, then, there is a min cardinality cycle in the UML schema.

Proof. Take a cycle in the deds. If such cycle does not use any edge resulting from a
ded encoding an OCLyp)y constraint, then, there is a min cardinality cycle in the UML
class diagram (see proof of Theorem 1).

If such cycle uses an edge coming from the ded of a OCLyyy constraint, we are
going to see that we can create a new cycle avoiding such ded. Assume that the edge is
from positions r[i] to position s[j]. First, because OCLynjv does not create existential
variables, such edge is going to be a universal edge. Then, because OCLyyyy is a typed
language, we have that the classes represented in 7[i] and s[j] are compatible. Thus, by
Proposition 1 there is a universal path between r[¢] and s[;] that only goes through deds
encoding UML schema constraints. Thus, we can build a cycle with no ded encoding
OCLynyv by replacing such edges by their corresponding alternative universal-paths.
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So, since there is a cycle using the deds encoding the UML schema, there is a min
cardinality cycle in the UML class diagram (see proof of Theorem 1). O

Now, we can finally state that reasoning with weakly acyclic UML class diagrams
with OCLynjy constraints is decidable.

Theorem 2. Reasoning on a weakly acyclic UML class diagram with OCLyyyy cons-
traints is decidable.

Proof. Taking the contraposition of Proposition 2, we have that a UML schema with
OCLynv constraints but no min cardinality cycle generates a weakly acyclic set of
deds, which are known to be decidable [7, 8]. O

4.3 Incorporating acyclicity constraints, min cardinalities greater than 1, and
incomplete hierarchies

Our goal now is to show that weakly acyclic UML schemas with OCLyyy constraints
are still decidable when considering: (1) path acyclicity constraints, (2) minimum car-
dinalities greater than 1, and (3) incomplete hierarchies. In this way, the language we
identify is able to deal with almost all identified frequent UML schema constraints [5].

Intuitively, a path is acyclic on a UML class diagram if and only if, given a class
of the path, we can establish a stratification of the instances of such class. This can be
emulated by means of considering a new fake attribute called strata in such class, and
adding a new OCLyv constraint forcing that the strata of some instance of the class
should be less than the strata that can be obtained through navigation by the cyclic path.

Theorem 3. Reasoning on a weakly acyclic UML class diagram with OCLyyyy cons-
traints and path acyclicity constraints is decidable.

Proof. The proof is based on reducing the problem to reasoning on a UML class dia-
gram with OCLyyy constraints and no path acyclicity constraint.

Indeed, remove the acyclicity constraint and add some fake attribute strata in some
class belonging to the acyclic path. Then, add a OCLyyy constraint stating that each
instance of such class should have a strata less or equal than the strata of the instances
that can be obtained by navigating through the acyclic path. Clearly, the first schema is
satisfiable iff the second one is satisfiable. Moreover, this transformation does not alter
the existance/inexistance of a min cardinality cycle in the diagram (indeed, we are not
altering the diagram), so, if the original UML diagram is weakly acyclic, the second one
(the one with no acyclicity constraint) is weakly acyclic too, and thus, decidable. [

Consider now min cardinality constraints of n (n > 1). We now show that they can
be emulated by considering n new associations of min cardinality one, and adding some
constraints to ensure that each of these associations should retrieve a different object,
and all n should be included in the original association. Note that, indeed, all these
constraints can be written in OCLyyy. Formally:

Theorem 4. Reasoning on a weakly acyclic UML class diagram with OCLyyyy cons-
traints and general min cardinality constraints is decidable.
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Proof. The proof is based on reducing the problem to reasoning in a UML class diagram
with OCLynjv constraints and where all min cardinalities are of the kind ”1” or ”1..%”.

Indeed, remove the min cardinality n and add n new associations with the same
members, and a min cardinality 1 in all of them. Then, add n OCLyy)y constraints
stating that each instance of such associations should be instance of the original asso-
ciation, and that all of them should be disjoint. Clearly, the first schema is satisfiable
iff the second one is satisfiable. Moreover, this transformation does not alter the exis-
tance/inexistance of a min cardinality cycle in the UML class diagram (indeed, we are
only adding min cardinalities between classes which already had min cardinalities), so,
if the original UML class diagram is weakly acyclic, the second one (the one with no
min cards greater than 1) is weakly acyclic too, and thus, decidable. O

Finally, we show that if a UML class diagram with OCLyn}y constraints and incom-
plete hierarchies is weakly acyclic, then, it is also decidable.

Theorem 5. Reasoning on a weakly acyclic UML class diagram with OCLyyyy cons-
traints and incomplete hierarchies is decidable.

Proof. 1f the UML class diagram with OCLyyy constraints is weakly acyclic, then, its
set of deds is weakly acyclic. Hence, the set of deds after removing the deds encoding
complete constraints is still weakly acyclic. Thus, reasoning on a weakly acyclic UML
class diagram with OCLyNjv constraints and incomplete hierarchies is decidable. O

S5 Expressiveness Study

OCLynyv is expressible enough to deal with the typical constraint patterns used in con-
ceptual modeling that were identified in [5]. The unique exception is the path inclu-
sion pattern (i.e., a constraint stating that the instances that can be reached navigating
through some path in the UML diagram should be a subset of the instances that can
be obtained following another path), which in OCLyy)y is limited to paths of only one
navigation step.

Such patterns are able to encode about the 60% of textual constraints in concep-
tual schemas [5]. Nevertheless, OCLyyy is able to encode expressions beyond such
patterns, thus, a better coverage is expected.

To show the expressiveness of our fragment, we have evaluated how many cons-
traints could we encode in our OCLyyy (i.e the original OCLyyjy with the extension
we have proposed in this paper) in several typical UML/OCL case studies. In parti-
cular, we have used as case studies the schemas of osCommerce [10] (24 classes and
33 constraints), a Sudoku application [11] (10 classes, and 8 constraints), the DBLP
schema [12] (17 classes, and 22 constraints), and the EU-rent fictional system [13]
(33 classes, and 33 constraints). It is worth noting that two of them (osCommerce and
DBLP) were obtained by reverse engineering of real systems.

For each case study, we have checked how many minimum cardinality constraints
must be removed (if any) from the schema in order to ensure that the UML class dia-
gram is weakly acyclic, and how many of their constraints may be encoded in OCLyNyy.
To be able to evaluate our results with regards to other decidable fragments of OCL, we
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have decided to compare our proposal with OCL-Lite [3], which is, to our knowledge,
the unique existing decidable and expressive fragment of OCL (appart form OCLynyy).
To establish the comparison, we have counted how many cardinality constraints did we
need to remove to ensure that the UML class diagram fulfilled the OCL-Lite require-
ments, and then, how many constraints could be written in OCL-Lite. Tables 1 and 2
summarize our results.

Table 1. Cardinalities removed to be compliant with OCLyyy and OCL-Lite requirements

OCLyny OCL-Lite

Sudoku 1 17
DBLP 0 14
EU-rent 0 24
osCommerce 0 14
TOTAL 1 69

As shown in Table 1, we only had to remove 1 minimum cardinality constraint from
the Sudoku schema to ensure that the UML class diagrams were weakly acyclic in all
cases, and thus, decidable under our OCLyyy constraints. This is because the unique
cycle found was between the relations Sudoku has Rows, Rows have Cells, Cells are
in Columns, Columns are in Sudokus, which form a cycle with min cardinalities 1 in
each association end. To break this cycle, it is only necessary to remove one of such
min cardinality constraints. However, this does not entail with our approach a decrease
in expressivity since the cardinality between Column and Sudoku could be replaced
with an OCLyyy constraint saying that each column has the sudoku of its cells (which
entails the min cardinality one).

On the other hand, OCL-Lite required removing a total of 69 cardinalities consid-
ering all the schemas. This is because OCL-Lite cannot handle maximum cardinalities
(which are pretty common in UML diagrams) and, hence, all of them must be removed.

Table 2. OCL constraints encodable in our OCLynv vs OCL-Lite for our case studies

OCLuyniv OCL-Lite
OCL Constraints  Encodable Non-Encodable Encodable Non-encodable
Sudoku 8 8 0 7 1
DBLP 22 21 1 13 9
EU-rent 33 27 6 13 20
osCommerce 33 23 10 21 12
TOTAL 96 79 17 54 42

In Table 2 we can see that OCLyyjy can encode more constraints than OCL-Lite
(82.3% against 56.3%). We believe that this is due to the lack of comparison opera-
tors (=, <, <, <>) in OCL-Lite, which made quite a lot of constraints encodable in
OCLynv not encodable in OCL-Lite. Conversely, only very few cases were encod-
able in OCL-Lite but not in OCLyyy. These cases were related to constraints forcing
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the existence of some object satisfying a particular condition (for instance, in the os-
Commerce, a constraint stating that there should exists an enabled PaymentMethod
among the PaymentMethods in the system). Interestingly, neither OCLyyjy nor OCL-
Lite could deal with some constraints involving path inclusions (such as the shopping
cart atttributes should be included in the attributes of the products of the shopping
cart). OCL-Lite could not encode any of them because of the absence of equalities, and
OCLypyv is limited to path inclusion constraints involving paths of only one navigation,
which has been proven to be too limited in some of our case studies.

Given these results, we can state that the language we have identified in this paper
is, up to now, the most expressive language for defining UML/OCL conceptual schemas
while ensuring finite reasoning on them, with a substantial improvement with respect
to the closest competitor found in the literature (OCL-Lite).

As a limitation of this experiment, we should point out that, due to the difficulties to
find UML schemas with OCL constraints, only four schemas were used. In addition, it
might be argued that evaluating expressiveness by means of counting encodable cons-
traints might be insufficient since, subjectively, it could happen that OCL-Lite encoded
constraints were more interesting than OCLyyjy constraints. However, this notion is
subjective and thus, out of the scope of the controlled experiment we have carried out.

6 Related Work

We analyze languages and approaches related to OCLyNy. We distinguish between
UML/ER based, and tgd-based.

UML/ER based Reasoning the satisfiability of an ER diagram considering only asso-
ciation cardinalities is polynomial [14]. When, considering UML schemas with all fea-
tures in exception of OCL constraints, the problem becomes EXPTIME-complete [2].
Adding OCL-Lite constraints in UML class diagrams maintains the EXPTIME-
complete complexity (and thus, decidability), although it requires removing the maxi-
mum cardinality constraints [3]. This requirement is, in our opinion, too strong since
most realistic UML class diagrams always have some kind of maximum cardinality.
In addition, we have seen during our expressiveness study that this inability to en-
code constraints involving equalities/inequalities represents also a drawback in compar-
ison to OCLyyjy. However, OCL-Lite is not subsumed by OCLyyy since, for instance,
OCL-Lite is capable of encoding the exists operator, which is forbidden in OCLyyy.
Another option consists in using general UML/OCL constraints, and then, analyze
whether that particular UML/OCL schema is decidable or not [1, 6]. This approach
subsumes OCLyyy. Indeed, OCLyy v decidability relies in weak acyclicity, which is a
condition subsumed by the previous decidability analysis [1]. However, we argue that it
is quite difficult from the point of view of a conceptual modeller to write a UML/OCL
schema that satisfies such decidability conditions. This is because such conditions are
checked in the logic encoding of the UML/OCL schema, rather than the UML/OCL it-
self. In contrast, it is easy to check whether a UML/OCL schema satifies the decidabiilty
requirements of our OCLynyy (i.e., weak acyclicity and the syntax of OCLyny).
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Another interesting work is the one presented in [15]. In this work, UML/OCL
constraints are written under the form of several constraint patterns, and such cons-
traint patterns are analyzed to be consistent/inconsistent polynomially (through syntac-
tic checks), which means that they not only guarantee decidability of reasoning, but
also efficiency. However, this approach might bring false positives (i.e., it might say
that some set of consistent constraints are inconsistent).

Finally, we have the approaches based in Armstrong tables [16]. An Armstrong table
is, roughly speaking, an instantiation of the schema which exemplifies the satisfaction of
the constraints entailed by the schema (and is a counterexample for anyone else). [16]
shows how to build Armstrong tables for schemas considering min/max and not-null
constraints. However, it does not target general constraints as we do.

TGD based Our approach is based on a logic encoding in deds of the UML/OCL
schema, and the decidability of reasoning over such logic encoding. In particular, we
have used the ded weak acyclicity property to ensure the termination of the chase algo-
rithm to reason with such deds [7].

The weak acyclicity property of deds is subsumed by the stratification property
stated in [8]. This means that we could potentially enlarge the subset of UML/OCL we
can deal with if we based on stratification rather than weak acyclicity. However, we
argue that this change is unfeasible. Indeed, checking whether a set of deds satisfy the
weak acyclicity consists in a simple graph analysis, thus, we only needed to charac-
terize which kind of UML/OCL expressions would bring an acyclic graph. In contrast,
checking the stratification property requires solving a NP problem for each edge in the
dependency graph. In our opinion, it is quite difficult to find some condition over the
UML/OCL level that ensures that such NP condition is satisfied at the logic level.

Another family of decidable languages based on tgds is Datalogt/~ [17]. The basic
notion in Datalog™/~ is guardedness. A ded is said to be guarded if there is some atom
containing all its universal variables in a single atom in the left-hand side (called guard).
Under this situation, reasoning over such set of deds is decidable. It is easy to see that
OCLypyv is not subsumed by this language since ded 5 of our example is not guarded.
It is also worth noting that OCLyyjy does not subsume Datalog+/ ~ since it does not
offer existential variables (appart from the special min cardinality 1 case). So, both are
languages with different expressiveness. However, we argue that it is quite difficult to
realize an expressive OCL subset that ensures that its logic encoding is guarded.

7 Conclusions

We have seen that reasoning with UML schemas with no minimum cardinality cycles,
path acycliclity constraints and OCL )y constraints is decidable. This decidability re-
sult is guaranteed because, by construction, the logic encoding into deds of such schema
is weakly acyclic, which guarantees that the chase algorithm terminates on such schema.
Current UML/OCL reasoners such as [6] can benefit from this termination result.

We have compared the expressiveness of the decidable language we have identified
with that of OCL-Lite [3], another decidable language based on OCL, and we have seen
that OCLyy)v is more expressive in all different UML/OCL case studies we have taken
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into account (while OCLyyjy could handle about the 82% of constraints appearing in
these schemas, OCL-Lite could only deal with around 56%).

As future work, we would like to extend our proposal to be able to admit more

constraints involving existential variables. We understand that special attention should
be put to inclusion path constraints. In addition, OCLyyjy is designed only for ensuring
decidability, so, a more sophisticated analysis should be done to bound its complexity.
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