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Abstract. An operation is executable if there is at least one information
base in which its preconditions hold and such that the new information
base obtained from applying its postconditions satisfies all the integrity
constraints. A non-executable operation is useless since it may never be
applied. Therefore, identifying non-executable operations and fixing up
their definition is a relevant task that should be performed as early as
possible in software development. We address this problem in the paper
by proposing an algorithm to automatically compute the missing effects
in postconditions that would ensure the executability of the operation.
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1 Introduction

Pursuing the correctness of a conceptual schema is a key activity in software
development since mistakes made during conceptual modeling are propagated
throughout the whole development life cycle, thus affecting the quality of the
final product. The high expressiveness of conceptual schemas requires adopting
automated reasoning techniques to support the designer in this important task.

The conceptual schema includes both structural and behavioral knowledge.
The structural part of the conceptual schema consists of a taxonomy of classes
with their attributes, associations among classes, and integrity constraints which
define conditions that the instances of the schema must satisfy [1].

The behavioral part of a conceptual schema contains all operations required
by the system. Each operation is defined by means of a contract, which states the
changes that occur on the Information Base (IB) when the operation is executed.
In UML [2], an operation contract is specified by a set of pre/postconditions,
which states conditions that must hold in the IB before/after the execution of
the operation [3]. Such pre/postconditions are usually specified in OCL [4]. An
operation is executable if there is at least one IB in which its preconditions are
satisfied and such that the new IB obtained from applying its postconditions is
consistent, i.e. satisfies all the integrity constraints. A non-executable operation
is useless and the designer should avoid this situation by modifying its contract.
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1.1 Motivation

Consider the class diagram in Fig. 1 stating information about medical teams,
their expertise, physicians being members or managers of a team and their med-
ical specializations. The OCL constraints provide additional semantics. Special-
istOfTeamsExpertise ensures that a physician is not a member of a medical team
if he does not have its expertise. ManagerIsMember states that all managers of a
medical team must also be members of that team. Finally, ExclusiveMembership
states that members of a critical team can not be members of other teams. We
assume that the attributes are primary keys of their owner classes.
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Fig. 1. A UML/OCL schema for the domain of medical teams

Consider now the following UML/OCL operation contracts aimed at inserting
and deleting an instance of a Critical Team, respectively:

Operation: newCriticalTeam(p: Physician, s: MedicalSpeciality, cd: String)
pre: MedicalTeam.allInstances()->forAll(m|m.code<>cd) and p.specialization->includes(s)
and p.managedTeam->isEmpty()
post: CriticalTeam.allInstances()->exists(c|c.oclIsNew() and c.code = cd and c.expertise = s
and c.manager->includes(p))

Operation: deleteCriticalTeam(criticalTeam: CriticalTeam)
post: CriticalTeam.allInstances()->excludes(criticalTeam)
–we assume that deleting an instance of a class also deletes its links to other instances.

Both operations are non-executable. newCriticalTeam would always violate
ManagerIsMember while deleteCriticalTeam would always violate the minimum
cardinality 1 of the team role. This is because ExclusiveMembership forces all em-
ployees of a critical team to be members only of that team. So, those physicians
will have no team when a critical team is deleted through this operation.

Several approaches have been proposed to identify non-executable operations
[5,6,7,8,3,9] and most of them should be able to determine the non-executability
of the previous operations. However, to our knowledge, none of them is able to
provide the designer with additional information on how to modify the operation
contracts to make them executable. Note that it is a very hard task to do it
manually because of the huge expressive power of UML/OCL schemas.



Fixing up Non-executable Operations in UML/OCL Conceptual Schemas 3

1.2 Contribution

We propose a new method that allows identifying non-executable operations
while providing information about how to fix up the problem. This information
is given in terms of the missing effects on the operation postconditions that
allow ensuring that all constraints are satisfied after executing the operation. In
general, several different sets of missing effects for fixing up an operation may
exist and the designer will have to decide which one to apply.

In our example, newCriticalTeam can be made executable by adding to its
postcondition that the new manager is also a member of the team and removing
all his/her previous memberships (to satisfy ExclusiveMembership). Regarding
deleteCriticalTeam, there are several ways to make it executable. We could delete
the physicians that were members of the critical team or, alternatively, we could
add such physicians as members of other teams. Several additional effects might
be considered depending on the IB to prevent a cascade violation of other con-
straints. All of them can be automatically computed in our approach.

Given an operation contract, our method starts generating a consistent IB
that satisfies the precondition. This IB may optionally be manually modified by
the designer. Then, the set of structural events required to satisfy the postcon-
dition is computed. A structural event is a basic change in the IB, i.e. a inser-
tion/deletion of an instance of a class or association. If the application of these
structural events leads to the violation of an integrity constraint, our method
applies a chase-like procedure to determine the additional structural events re-
quired to ensure the satisfaction of all the integrity constraints. This is achieved
keeping the track of all the different minimal solutions that exist. We consider a
solution to be minimal if no subset of the solution is itself a solution. From these
results, the designer may know all the different alternatives (if any) that he/she
can use to fix up the non-executability of the initial operation contract.

The contribution of this paper is threefold: (1) our method identifies non-
executable operations while providing information to fix up this problem in the
form of structural events that ensure operation executability when added in the
postcondition, (2) our method can be used by current UML/OCL animation
tools like USE [5] to find all the different ways to get a new consistent IB when-
ever a change applied to a previously consistent IB violates some integrity con-
straint, (3) we contribute to the conceptual-schema centric development grand
challenge of enforcement of integrity constraints in conceptual schemas [10].

2 Basic Concepts and Notation

Information Base. An information system maintains a representation of the
state of a domain in its Information Base (IB). The IB is the set of instances
of the classes and associations defined in the conceptual schema. The integrity
constraints of the conceptual schema define conditions that the IB must satisfy.
We say that an IB is consistent if no constraint is violated on it.

Logic Formalization of the Schema. As proposed in [11] we formalize
each class C in the schema with attributes {A1, . . . , An} by means of a base
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atom c(Oid,A1, . . . , An), and each association R between classes {C1, . . . , Ck}
by means of a base atom r(C1, . . . , Ck). The set of instances of the IB is rep-
resented by the set of facts about the atoms obtained from such formalization.
An atom v(x) is derived (i.e., a view) if it is defined by a rule of the form:
v(x) ← l1(x1), . . . , lk(xk) where the variables in x are taken from x1, . . . , xk.
Each literal li is an atom, either positive or negative. Every variable occurring
in the head or in a negative atom of the body must also occur in a positive atom
of the body.

Structural Events. A structural event is an elementary change in the pop-
ulation of a class or association [1]. I.e. a change in the IB. We consider four
kinds of structural events: class instance insertion, class instance deletion, as-
sociation instance insertion and association instance deletion. We denote inser-
tions by ι and deletions by δ. Given a base atom P (x), where x stands for the
set of variables x1, . . . , xn, insertion structural events are formally defined by
the formula ∀x(ιP (x) ↔ Pn(x) ∧ ¬P (x)), while deletion structural events by
∀x(δP (x)↔ P (x)∧¬Pn(x)), where Pn stands for predicate P evaluated in the
new IB, i.e. the one obtained after applying the change.

Dependencies. A Tuple-Generating Dependency (TGD) is a formula of the
form ∀x, z

(
ϕ(x, z)→ ∃ yψ(x, y)

)
, where ϕ(x, z) is a conjunction of base literals

(i.e. positive or negative atoms) and built-in literals (i.e. arithmetic comparisons)
and ψ(x, y) is a conjunction of base atoms. A denial constraint is a special type
of TGD of the form ∀x

(
ϕ(x) → ⊥), in which the conclusion only contains the

⊥ atom, which cannot be made true.
A Disjunctive Embedded Dependency (DED) is a TGD where the conclusion,

i.e. ψ(x, y), is a disjunction of base atoms. A Repair-Generating Dependency
(RGD) is a DED where the premise, i.e. ϕ(x, z), contains necessarily at least one
structural event and optionally a derived negative atom, whereas the conclusion
is either a single structural event or a disjunction of several structural events,
i.e. it has the form Ev1 ∨ . . . ∨ Evk, where each Evi is a structural event. An
Event-Dependency Constraint (EDC) is an RGD in which the conclusion only
contains the atom ⊥.

3 Determining the Missing Effects of Postconditions

Given a UML/OCL structural schema and an operation Op to be analyzed, our
goal is to determine whether Op is executable and to provide information to
fix up the problem if this is not the case. Our method starts by automatically
generating a consistent IB satisfying the operation precondition to test whether
Op is executable in such IB. The designer could also define his preferred initial
IB from scratch or by modifying the automatically generated one.

Then, our method translates the postcondition of such operation into a set
of structural events EV = (Ev1, . . . , Evk). If the IB resulting from applying EV
to the initial state is consistent, then Op is executable. Otherwise, our method
looks for additional repairing structural events, RE = (Re1 . . . , Rem), such that
we get a consistent IB when applying EV ∪ RE. We want to keep the set RE
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minimal in the sense that there is no RE′ ( RE such that EV ∪RE′ leads also
to a consistent IB. Note that, in particular, Op is executable if RE is an empty
set of structural events.

In general, several repairs REi may exist since there may be different ways
of satisfying an integrity constraint. It may also happen that no RE is obtained.
That means that EV cannot be applied to the IB without necessarily violating
any constraint. I.e., there is no way to fix up the executability of the operation
by just considering additional effects in the postcondition.

Our method computes the different repairing sets REi by means of the fol-
lowing steps: (1) encoding the UML/OCL conceptual schema into logic, (2) ob-
taining a set of rules, the repair-generating dependencies, that allows identifying
when a constraint is violated and computing the structural events for repairing
such violation, and (3) chasing the repair-generating dependencies to obtain the
repairing sets REi.

3.1 Encoding the UML/OCL Conceptual Schema into Logic

We must encode first the UML/OCL conceptual schema into logic as proposed
in [11]. Recall that each class C in the schema with attributes {A1, . . . , An} is
encoded as c(Oid,A1, . . . , An), each association R between classes {C1, . . . , Ck}
is encoded as r(C1, . . . , Ck) and each association class R between {C1, . . . , Ck}
and with the attributes {A1, . . . , An} as r(R,C1, . . . , Ck, A1, . . . , An). Without
loss of generality, we will use the primary key attributes of classes as their oid.

As an example, the schema in Fig. 1 would be encoded as follows:

physician(P),medicalSpeciality(MS), hasSpeciality(P, MS),medicalTeam(T)

isExpertIn(T,MS), isMemberOf(P,T),manages(P,T), criticalTeam(T)

Each UML/OCL integrity constraint is encoded as a denial constraint as
proposed in [11]. For example, the encoding of the first two OCL constraints in
our running example is the following:

manages(P, T ) ∧ ¬isMemberOf (P, T )→ ⊥ (1)

isMemberOf (P, T ) ∧ isExpertIn(T,MS) ∧ ¬hasSpeciality(P,MS)→ ⊥ (2)

Rule 1 states that there may not be a medical team T managed by a physician
P who is not a member of T, while rule 2 prevents a physician being a member
of a medical team if his/her specializations do not include the expertise of the
team.

To ensure that denial constraints are defined only in terms of base predicates,
we assume that each OCL integrity constraint C has the form context C inv:

ExpBool, where ExpBool is defined according to the following syntax rules (where
OpComp is any OCL comparison operator):
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ExpBool ::= ExpBool ∧ ExpBool | ExpBool ∨ ExpBool

| ExpOp
ExpOp ::= Path->excludesAll(Path) | Var.Member->includesAll(Path)

| Path->excludes(Path) | Var.Member->includes(Var)
| Path->isEmpty() | Path->forAll(Var| ExpBool)

| Path OpComp Constant | not Path.oclIsKindOf(Class)

| Path OpComp Path | Path.oclIsKindOf(Class)
Path ::= Var.Navigation | Class.allInstances().Navigation
Navigation ::= Member.Navigation | oclAsType(Class).Navigation

| Member | Attribute
| oclAsType(Class)

We also encode into logic the graphical and structural constraints of the UML
schema, i.e. primary key constraints, referential integrity constraints, identifiers
of association classes, disjointness and completeness integrity constraints and
maximum cardinality constraints (see [11] for the details of this encoding).

Assuming that denial constraints are defined only in terms of base predicates
is not a restrictive assumption since the constraints we can handle are a superset
of those constraints specified according to the patterns defined in [12], which have
been shown to be useful for defining around the 60% of the integrity constraints
found in real schemas. The only exception is the path inclusion constraint pattern
for which we can only specify the situations that are compliant to our grammar.

3.2 Obtaining Repair-Generating Dependencies

The next step is to obtain the repair-generating dependencies (RGDs) that will
allow us to identify the situations where an integrity constraint is violated by
the current set of structural events under consideration and also to compute the
sets of structural events REi which ensure that applying EV ∪REi to the initial
IB leads to a new consistent IB.

We start by describing the transformation required by general UML/OCL
constraints, i.e. those that have been encoded into logic. Then, we show how to
handle minimum cardinality constraints.

Dependencies For General UML/OCL Constraints. The RGDs for a
general UML/OCL constraint ic are obtained in two steps. First, we generate
the Event-Dependency Constraints (EDCs) for ic. Then, for each EDC we obtain
a corresponding RGD whenever possible.

Generating Event-Dependency Constraints. Each denial constraint ob-
tained as a result of the logic encoding of the UML/OCL constraint will be
translated into several dependencies. Each such dependency will prevent a dif-
ferent situation in which the constraint would be violated in the new IB. This
is achieved by replacing each literal in the denial by the expression that allows
us to compute it in the new IB. Positive and negative literals must be handled
differently according to the following formulas:

∀x(Pn(x)↔ (ιP (x) ∧ ¬P (x)) ∨ (¬δP (x) ∧ P (x))) (3)

∀x(¬Pn(x)↔ (¬ιP (x) ∧ ¬P (x)) ∨ (δP (x) ∧ P (x)) (4)
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Rule 3 states that an atom P (x) (e.g. medicalTeam(neurology)) will be true
in the new IB if it was false in the old IB but its insertion structural event has
been applied (e.g. the medical team neurology did not exist in the previous IB
but it has been inserted right now) or if it was already true in the old IB and its
deletion structural event has not been applied (e.g. the medical team neurology
existed in the previous IB and it has not been removed). In an analogous way,
rule 4 states that P (x) will be false in the new IB if it was already false and it
has not been inserted or if it has been deleted.

Algorithm 1 getEventDependencies(premise→ ⊥)
EDC := {∅ → ⊥}
for all Literal P in premise do
EDCPre := EDC
EDC := ∅
for all Dependency premisePre → ⊥ in EDCPre do

if P is Built-in-literal then
EDC := EDC ∪ {premisePre ∧ P → ⊥ }

else
if P is positive then
EDC := EDC ∪ {premisePre ∧ P ∧ ¬δP → ⊥} ∪ {premisePre ∧ ιP ∧ ¬P → ⊥}

else
EDC := EDC ∪ {premisePre ∧ P ∧ δP → ⊥} ∪ {premisePre ∧ ¬ιP ∧ ¬P → ⊥}

end if
end if

end for
end for
EDC.removeFirst()
return EDC

By applying the substitutions above, we get a set of EDCs that state all
possible ways to violate a constraint by means of the structural events of the
schema. EDCs are grounded on the idea of insertion event rules which were
defined in [13] to perform integrity checking in deductive databases. In general,
we will get 2k − 1 EDCs for each denial constraint dc, where k is the number
of literals in dc. The pseudocode of the algorithm getEventDependencies, which
performs this transformation, is shown in Algorithm 1.

Intuitively, the algorithm interprets each literal P as Pn and performs an
unfolding according to the definition given by formulas 3 and 4. The first de-
pendency generated corresponds to a dependency that would be activated just
in case the constraint was violated in the previous IB. Taking advantage of the
guaranteed consistency of the initial IB generated by our method, we can safely
delete such dependency.

Applying Algorithm 1 to the constraint ManagerIsMember, which has been
encoded into the denial constraint manages(P, T ) ∧ ¬isMemberOf (P, T ) → ⊥,
we get the following event-dependency constraints:

manages(P, T ) ∧ ¬δmanages(P, T ) ∧ isMemberOf (P, T ) ∧ δisMemberOf (P, T )→ ⊥ (5)

¬manages(P, T ) ∧ ιmanages(P, T ) ∧ ¬isMemberOf (P, T ) ∧ ¬ιisMemberOf (P, T )→ ⊥ (6)

¬manages(P, T ) ∧ ιmanages(P, T ) ∧ isMemberOf (P, T ) ∧ δisMemberOf (P, T )→ ⊥ (7)
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Rule 5 is an EDC stating that the constraint will be violated for a physician
p and a team t if we delete the fact that p is a member of t but we do not
delete at the same time that p is a manager of t. EDC 6 identifies a violation to
happen when a new manager p of t is inserted without inserting p as a member
of t at the same time. EDC 7 states that ManagerIsMember will be violated if
we delete the membership association among p and t while inserting the manage
association.

Obtaining Repair-Generating Dependencies (RGDs). EDCs let us iden-
tifying the situations where an integrity constraint is violated as a consequence
of the application of a set of structural events. However, they do not directly
provide any information on how this violation could be repaired by considering
additional structural events. We transform EDCs into RGDs for this purpose by
means of the algorithm getRepairDependencies, reported in Algorithm 2.

Intuitively, each negated structural event in the premise of the dependency
constraint represents a different way to repair the constraint. Therefore, the
negated structural events of the constraint are removed from the premise and
placed positively in the conclusion. If there is more than one negated structural
event in the premise, the conclusion of the RGD will be a disjunction of structural
events. Note that we will obtain exactly one RGD for each EDC.

Applying Algorithm 2 to the EDCs defined by the rules 5, 6, 7, we get the
following RGDs:

manages(P, T ) ∧ isMemberOf (P, T ) ∧ δisMemberOf (P, T )→ δmanages(P, T ) (8)

¬manages(P, T ) ∧ ιmanages(P, T ) ∧ ¬isMemberOf (P, T )→ ιisMemberOf (P, T ) (9)

¬manages(P, T ) ∧ ιmanages(P, T ) ∧ isMemberOf (P, T ) ∧ δisMemberOf (P, T )→ ⊥ (10)

Rule 8 is an RGD stating that when the structural event δisMemberOf (p, t)
occurs in an IB where p is a manager of t, then it is also required the structural
event δmanages(p, t) to take place in order ensure that the constraint Man-
agerIsMember will not be violated. In a similar way, RGD 9 establishes that
ιmanages(p, t) requires ιisMemberOf (p, t) to take place as well. Rule 10 is ex-
actly the EDC 7 meaning that no RGD can be obtained from it. That is, there
is no possible way to repair the situation identified by EDC 7. In other words,
structural events ιmanages(p, t) and δisMemberOf (p, t) cannot happen together.

Algorithm 2 getRepairDependencies(premise→ ⊥)
new Conclusion := ⊥
new Premise := >
for all Literal P in premise do

if P is negated structural event then
new Conclusion := new Conclusion ∨ positive(P )

else
new Premise := new Premise ∧ P

end if
end for
return new Premise → new Conclusion
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Dependencies for Minimum Cardinality Constraints. Repair-generating
dependencies for min. cardinality constraints can be directly generated by taking
advantage of the precise semantics of this constraint. The following rules sum-
marize how to obtain such RGDs for a minimum cardinality constraint of 1 in a
binary association R between members C1, C2:

c1 (Oid1, ...) ∧ ¬someRelationAlife(Oid1)→ δc1 (Oid1, ...) ∨ ιr(Oid1, Oid2) (11)

someRelationAlife(Oid1)← r(Oid1, Oid2) ∧ ¬δr(Oid1, Oid2)
¬c1 (Oid1, ...) ∧ ιc1 (Oid1, ...)→ ιr(Oid1, Oid2) (12)

Applying such patterns to the minimum cardinality constraint on the role
manager in the example of Figure 1, we would get the following RGDs:

medicalTeam(T ) ∧ ¬someManagerAlife(T )→ δmedicalTeam(T ) ∨ ιmanages(P, T ) (13)

someManagerAlife(T )← manages(P, T ) ∧ ¬δmanages(P, T )

¬medicalTeam(T ) ∧ ιmedicalTeam(T )→ ιmanages(P, T ) (14)

RGD 13 states that if the IB contains a medical team for which all its manages
associations have been deleted, then either we delete the medical team or we
insert a new manages association in order to satisfy the minimum cardinality
constraint. We know whether it has at least one manage association which have
not been deleted by means of the derived atom someManagerAlife. RGD 14
asserts that whenever a medical team is created a manage association for this
team must be created as well.

3.3 Chasing Repair-Generating Dependencies

Once we have the RGDs, we need an initial information base IB and the initial
structural events EV in order to compute which are the missing structural event
sets REi such that EV ∪ REi leads the current IB to a new consistent IB. We
first explain how to obtain such initial IB and EV and then, how do we chase
the RGDs using IB and EV to compute the different REi.

Obtaining the initial IB and structural events. We need a consistent IB
compliant with the precondition of the operation to test. There exist several
proposals that allow obtaining such IB automatically from an OCL precondi-
tion. Most of these methods are based on translating the schema in some logic
formalism and check for a witness of the satisfiability of the precondition. We
can use any of them for our purposes. In our example, by applying [8] to the
precondition of newCriticalTeam we would get:

medicalTeam(t1) medicalSpeciality(neurology)
isExpertIn(t1, neurology) manages(mary, t1)
physician(john) physician(mary)
isMemberOf (john, t1) isMemberOf (mary, t1)
hasSpeciality(john, neurology) hasSpeciality(mary, neurology)
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Table 1. Summarized mapping from OCL to structural events

OclExpression Generated Structural Events

Class.allInstances()->exists(x|x.oclIsNew() ...) ιClass(x, ...) and superclasses

Class.allInstances()->excludes(x) δClass(x, ...) and super/subclasses

x.oclIsTypeOf(Class) ιClass(x, ...) and superclasses

not(x.oclIsTypeOf(Class)) δClass(x, ...) and subclasses

x.memberEnd->includes(y) ιAssociation(x, y)

x.memberEnd->excludes(y) δAssociation(x, y)

Now, to obtain the structural events EV we use the mapping from OCL
postcondition expressions to structural events that was initially proposed in [8],
and which is briefly summarized in Table 1.

Where any δClass(x, ...) is followed by several δAssociation(x, y) correspond-
ing to the association links of x as a member of Class.

By applying this mapping to the postcondition of newCriticalTeam in the
previously shown IB, we get the structural events:

EV = {ιcriticalTeam(t2), ιmedicalTeam(t2), ιisExpertIn(t2, neurology), ιmanages(john, t2)}

Chasing RGDs to compute repairing structural events. We must now
chase the RGDs to determine the additional repairing sets of structural events
REi that make the application of EV ∪ REi to the initial IB leading to a con-
sistent IB′. Intuitively, an RGD is chased by querying its premise on the initial
IB and the set of structural events under consideration (i.e. EV and the sub-
set of REi already determined). Then, for each set of constants satisfying this
query, one of the structural events in the conclusion must belong to EV ∪ REi
to ensure that the constraint from which we have obtained the RGD is not vi-
olated. Disjunctions in the conclusion correspond to alternative solutions that
keep the IB consistent. Existential variables in the conclusion are handled either
by considering an existing constant in IB∪EV ∪REi or by inventing a new one
(VIPs approach [14]). They also define different possible ways of repairing the
constraint. This chasing process is formalized in Algorithm 3.

Algorithm 3 chaseRGDs(RGDs, IB, EV , RE, Result)
D := getViolatedDependency(RGDs, IB, EV , RE)
if D = null then
Result.add(RE)

else
for all Literal R in (D.conclusion) do
σrs := getRepairingSubstitutions(R, IB, EV , RE)
for all σr in σrs do

chaseRGDs(RGDs, IB, EV , RE ∪ {Rσr}, Result)
end for

end for
end if

Initially, the algorithm is called with RE = ∅ and Result = ∅. The getVi-
olatedDependency function looks for a dependency being violated and returns
it substituting its variables for the constants that provoke the violation. If no
dependency is violated, then EV ∪RE is already executable.
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To repair the dependency we try all the possible literals in its conclusion.
Moreover, for each of these literals, we try all the suitable variable-to-constant
substitutions for the existential variables of the literal. This is achieved by means
of the getRepairingSubstitutions function which implements the VIPs approach,
thus, returning as many different substitutions as different constants may take
each variable according to the currently used constants in IB ∪ EV ∪RE.

Once the dependency is repaired, we continue looking for other/new violated
dependencies by means of a recursive call to the same algorithm.

We illustrate this execution by applying the operation newCriticalTeam,
using the previously obtained IB and EV . The relevant RGDs to facilitate un-
derstanding of the example are the following:
¬medicalTeam(T ) ∧ ιmedicalTeam(T )→ ιmanages(P, T ) (15)

¬manages(P, T ) ∧ ιmanages(P, T ) ∧ ¬isMemberOf (P, T )→ ιisMemberOf (P, T ) (16)

¬criticalTeam(C) ∧ ιcriticalTeam(C) ∧ ¬isMemberOf (P,C) ∧ ιisMemberOf (P,C)∧
isMemberOf (P, T ) ∧ T <> C → δisMemberOf (P, T ) (17)

The algorithm starts looking for a violated RGD. Although the premise
of 15 holds, this RGD is not violated because its conclusion is already in-
cluded in EV . Thus, the algorithm picks 16. Indeed, the premise of 16 eval-
uates to true because of the literal ιmanages(john, t2). Therefore, its conclusion
ιisMemberOf (john, t2) must be included in RE. In this way, the method repairs
a violation of the ManagerIsMember constraint.

Now, because of this new literal in RE, the premise of 17 holds. Indeed, the
literals ιCriticalTeam(t2), ιisMemberOf (john, t2), isMemberOf (john, t1) pro-
duce a violation. For repairing it, we add the conclusion δisMemberOf(john, t1)
to RE. In this case, we have repaired a violation of the ExclusiveMembership
constraint that was produced when repairing ManagerIsMember.

Finally, no more RGDs are violated, so, the result consists of just one RE:

RE = {ιisMemberOf (john, t2), δisMemberOf(john, t1)}

From this result, the designer may realize that the postcondition of newCrit-
icalTeam is underspecified since it does not state that the new manager of the
team must also be added as a member of the team and that the old membership
of this manager must be deleted. These additional effects are required to satisfy
the ManagerIsMember and the ExclusiveMembership constraints.

It is worth noting that this kind of feedback is very relevant for the designer
to ensure that all the operations of the schema are executable since in general it is
very hard to manually identify how to fix the non-executability of an operation.

4 Experiments

We have implemented a prototype tool of our approach to show the scalabil-
ity of our method in real conceptual schemas. The analysis of an operation in
our tool is performed as follows: (1) loading a conceptual schema from an XMI
file, (2) selecting the operation to analyze, (3) optionally modifying the auto-
matically generated initial IB in which to apply the operation, (4) determining
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the sets of minimal structural events REi that, when applied together with the
postcondition, bring the current IB to a new consistent IB.

We have applied this tool to help us define correct operations in the DBLP
case study [15], whose structural conceptual schema has 17 classes, 9 specializa-
tion hierarchies, 18 associations and 25 OCL integrity constraints. When trans-
lated to our logical formalization this schema amounts to 128 denial constraints.

We have defined 11 different operations aimed at adding or removing publica-
tions from the schema (like new journal paper, or new edited book) and we have
checked whether they were executable. These experiments have been performed
with a C# implementation of the reasoning method on an Intel Core i7-4700HQ
2.4GHz processor, 8GB of RAM with Windows 8.1 and the average execution
time has been about 50-55 seconds.

We have repeated the experiments by removing randomly some statement in
the postcondition of each operation and checked the time required to compute
the missing structural events. We have found that our tool has been able to
recompute exactly the events corresponding to the missing statements with a
similar amount of time as before.

We summarize our results in Table 2 by showing the results for those opera-
tions having a larger number of structural events in the postcondition. The first
column states the name of the operation. The second column gives the number
of instances in the initial IB satisfying the precondition of each operation and
used by the test. The third column shows the number of structural events in the
postcondition. The last three columns show, respectively, the time (in seconds)
required to check executability of the operation and to compute the missing
structural events when 1 or 2 statements were removed from the postcondition.

Table 2. Execution time for some of the operations in DBLP

Operation Initial IB Struct. events Time 1 Miss 2 Miss

newAuthoredBook 6 5 50.72s 50.86s 52.21s

newEditedBook 5 6 50.91s 85.21s 52,80s

newBookSeriesIssue 6 9 51.74s 59.87s 52.64s

newJournalPaper 14 5 51.23s 51.68s 52.61s

delAuthoredBook 11 5 52.31s 50.64s 51.39s

delBookchapter 10 4 52.96s 50.58s 50.97s

delBookSeriesIssue 16 8 52.23s 50.92s 51.11s

delEditedBook 11 6 50.92s 50.86s 51.11s

delJournalPaper 17 5 51.23s 51.47s 51.34s

Average 51.58s 55.79s 51.80s

5 Related Work

Previous proposals can be classified according to the following approaches: (1)
checking desirable properties of operations, (2) animating the operations to ex-
plore their behavior, and (3) automatically generating operations contracts.

Checking desirable properties of operations. Several techniques have been
proposed to check desirable properties of an OCL operation, such as executabil-
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ity [6,8,3,9]. These techniques are fully automatic and aimed at obtaining a
consistent IB that proves the property being checked, i.e. an IB where the op-
eration can be executed when checking for executability. However, if no such IB
is obtained, no feedback is provided to the designer to help him/her fix up the
operation definition. This is, in fact, its main drawback as compared to ours.

Operation animation. Some proposals analyze the operation execution by
means of animation [5,7,16]. Animation is achieved by simulating the execution
of an operation in a specific IB and checking whether this execution violates some
integrity constraint [5,7] or by reducing the satisfaction of the postcondition and
class invariants to SAT [16]. Similarly to the previous approach, no feedback
is provided to the designer to allow him/her to find the additional structural
events required not to violate any constraint. As we have seen, having to do this
manually is time consuming and error prone due to the difficulty of having to
analyze by hand all the interactions among possible violations of the constraints.

Automatic generation of operation contracts. [17] addresses the auto-
matic generation of basic operation contracts from the structural part of the
conceptual schema which are ensured to be executable regarding the constraints
of the class diagram and some simple provided stereotypes. However, this pro-
posal is not able to deal with general OCL constraints nor with user-defined
domain events as we do in this paper.

Summarizing, we may conclude that the approach we present in this paper
is the first one that, given an operation contract and an IB, is able to auto-
matically compute all missing structural events that should be covered by the
postcondition to make the operation executable.

6 Conclusions

Ensuring the quality of a conceptual schema is a critical challenge in software
development, particularly in the context of Model-Driven Development where
the software being developed is the result of an evolution of models. For this
reason, several techniques have been proposed to check the correctness of the
behavioral conceptual schema. Most of these techniques are just concerned with
identifying non-executable operations from the schema.

In contrast, we have proposed an approach both for identifying non-executable
operations and also for providing the designer with information for fixing up the
problem. This information is given in terms of missing structural events not ini-
tially stated in the operation postcondition, that ensure operation executability
when taken into account. Thus, we extend previous approaches by providing the
designer with relevant feedback when a non-executable operation is detected.

We have also implemented a prototype tool of our approach to analyze the
scalability of our method in practice. We have shown that our tool is able to
perform several complex tests in the conceptual schema of the DBLP case study
in an average time of about 50 to 55 seconds.

This work can be extended in several directions. First, we would like to adapt
our method to other modeling languages by taking advantage of the fact that our
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underlying reasoning process is based on a logic formalization. Second, we would
like to analyze the applicability of the dependencies proposed in this paper to
other constraint-related problems such as integrity-constraint checking.
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