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Abstract. Note: This is a preprint version that deviates slightly from
the published version of this paper.
Data-services are applications in charge of retrieving certain data when
they are called. They are found in different communities such as the In-
ternet Of Things, Cloud Computing, Big Data, etc. So, there is a real
need to discover how can an application that requires some data au-
tomatically find a data-service which is providing it. To our knowledge,
the problem of automatically discovering these data-services is still open.
To make a step forward in this direction, we propose an ontology-based
framework to address this problem. In our framework, input and output
values of the request are mapped into concepts of the domain ontology.
Then, data-services specify how to obtain the output from the input by
stating the relationship between the mapped concepts of the ontology.
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1 Introduction

Data-services are applications whose main concern is to provide data to their
client applications. Data-services play a key role in areas like the Internet of
Things (IoT), where smart objects obtain data from sensors (or other devices)
and then make it available to others by means of data-services. Additionally,
smart objects can also be interested in consuming data coming from other ex-
ternal data-services, so that they can use it to take their smart decisions. This
idea is being currently exploted in several european projects like, for instance,
the BIG IoT European project [1].

In IoT, smart objects should be as autonomous as possible due to the huge
amount of devices and data that are constantly added. Hence, they should be
able to offer/discover data-services on the fly, without human intervention. E.g.,
an autonomous car looking for parking in its current street should be able to au-
tomatically discover data-services retrieving available parking places of a street.

To make data-services discoverable, the usual strategy is to register data-
services in some kind of service-broker, i.e., a marketplace where data-services
are publicly offered [2]. Then, smart objects query the service-broker, and the
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service-broker is responsible to match the request with its data-services. How to
perform this matching automatically is still an open problem in IoT [3].

In this sense, we propose a framework for specifying data-services so that
they can be automatically discovered. To achieve it, we provide unambiguous
descriptions of the data-services and the request, together with a mechanism
capable of interpreting these descriptions and check whether they match. Our
solution is grounded on ontology-based data integration and can be applied in
the IoT context, altouh it can also be used in any other domain involving the
discovery of applications retrieving data.

An ontology is a common set of terms (a vocabulary) with semantic relation-
hips among them (e.g. subclass/superclass relationships, etc.) that describes the
real world. Figure 1 shows a UML ontology regarding parking concepts.
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Fig. 1. Ontology for the parking domain in UML

Assume now a data-service receiving as input a string and returning a list
of paired numbers. Clearly, with no description, a service-broker cannot deter-
mine what does the data-service compute since it cannot know what does such
string stands for, what are the numbers describing, and which is the relationship
between the string and the numbers. Hence, automatic discovery is not possible.

However, using the previous ontology we can state that the input are Street-
s (described by street names strings) and the output are Parking places (de-
scribed by latitude/longitude geolocalizations paired numbers). These descrip-
tions are somehow related to Semantic Web mark-ups provided by, for instance,
schema.org, but these mark-ups alone are not enough since we need to know
which is the relationship between the input Street and the output Parking places
to know what the service is actually doing.

In our framework, we describe this relationship between the input and the
output by defining a new association in the ontology linking their corresponding
classes. The contents of this association is defined by means of a constraint (aka
ontology axiom), which states what objects from the output are obtained from
those in the input using the properties of the ontology. In this manner, we can
specify that, for instance, given a street name, a data-service provides exactly the
available parking places that are located in front of the street addresses that the
street has. All these descriptions can be specified with ontological meta-concepts



(concepts/properties/axioms), thus, no need of special new meta-concepts is
required (such as operation, or query).

In this way, our framework reduces the capability of storing data-service
descriptions to that of storing ontologies, so, any existing tool for managing
ontologies can be immediately used by the service-broker. Moreover, we also have
that the problem of data-service/request matching is reduced to that of ontology
reasoning. More precisely, to relation subsumption which is a very well-known
and studied problem in the field of automated ontology reasoning [4,5].

We first define our framework in an abstract way, independently of the par-
ticular language used for specifying the ontology. Secondly, as a proof of concept
that this framework can already be used in practice, we further develop it in
the UML/OCL language with UML/OCL reasoning tools. We argue that us-
ing UML/OCL as our ontology languages are a natural choice since 1) they are
widely used in software engineering, 2) they are expressive enough to specify all
descriptions of our framework, and 3) there exist several reasoning tools that
can be used for the service description/request matching. We finally comment
on some experiments which show that these current reasoning tools have good
response-times when applied in these settings.

In summary, the main contributions of the paper are: 1) An ontology-based
framework to describe discoverable data-services. We define a set of descriptions
to unambigously specify data-services and, thus, enabling its automatical discov-
ey. These descriptions only involve meta-concepts already existing in modeling
languages (e.g., relationships, axioms); 2) UML/OCL suitability for the frame-
work. We show how to use UML/OCL for writing these descriptions, and show
that UML/OCL already has tool support for solving the discoverability matching
problem; and 3) Efficiency evaluation. We evaluate the efficiency for matching
a service description/request using a UML/OCL reasoning tool.

It is worth to mention that this framework is an adoption of Semantic Web
contributions (starting from local-as-view data integration [6]) to the context of
Data-Services in IoT using software engineering languages (UML/OCL).

2 Basic Concepts

Data-service we refer as data-service to any application that receives some
data as input and returns some data as output. During the paper, a data-service
might be thought as a smart object providing information on demand.

Data-request we refer as data-request to the description of some data-service
required by some application. During th paper, a data-request might be thought
as the request from some smart object to find another smart object providing
its interested information.

Data-service/request matching we refer as data-service/request matching
to the problem of identifying whether some data-request coincides with the de-
scription of some existing data-service. For the sake of simplicity, we tackle the
problem only in the semantic level. That is, we are not intended to match tech-
nological aspects of the service (e.g., SOAP/REST calls, XML/JSON formatting



answers, etc.). Thus, we assume that the community using our proposed frame-
work has an initial agreement about the communication technologies involved.

Service-broker we refer as service-broker to an application responsible of s-
toring the data-service descriptions and resolving the data-request invoked by
means of the data-service/request matching.

Ontology an ontology is a set of concepts and properties describing some re-
al world domain. Ontology axioms (aka constraints) state conditions over these
concepts/properties that hold in the real world. A typical axiom is the isA hier-
archy between two concepts which states that instances of the first concept are
also instances of the second. For our purposes, we require the ontology to include
primary key constraints, i.e., to state which properties take unique values.

3 Framework essentials

In the following, we summarize how does the framework specify data-services in
an abstract way (i.e., without bounding to any particular language), and show
how to discover the service (i.e. how to match a data-service with a data-request).

3.1 Describing data-services

The framework assumes the use of one or several ontologies to describe data-
services and application data-requests. These ontologies should be stored and
maintained by the service-broker in which the data-services are registered.

The basic idea is that, if a service receives as input Streets and returns as
output its available Parkings places, this service can be seen as a new relationship
in the ontology between Streets and Parking places, whose contents is computed
by the service. In general, a service that receives concepts I1, ..., IM and returns
concepts O1, ..., ON can be described as a new M+N-ary relationship in the
ontology.

The difficulty to describe data-service as a new ontology-relationship is that
it does not receive/return objects, but values describing the real-world objects.
Indeed, a data-service never returns a Parking, but some values describing it
(e.g. a pair of integers representing its latitude/longitude). Note, in addition,
that different data-services might describe the same object through different
properties (e.g. a strings encoding the street address number of the parking).
Thus, to specify the input and output of a data-service in terms of a relationship,
we first need to map the input and output parameters to the ontology concepts.

Describing input/output concepts To identify the concepts handled by a
data-service, we need to group its parameters and specify which concept of the
ontology are they describing. Formally, given the set of parameters PARAMS,
its powerset P(PARAMS), and the set of ontology concepts CONCEPT, this
description corresponds to the input/output mappings:

InputC : P(PARAMS) → CONCEPT OutputC : P(PARAMS) → CONCEPT



For instance, if some output paramaters lat, long describe an object Park-
ingPlace, we map {lat, long} to ParkingPlace.

Moreover, since each parameter represents a specific property of the described
concept, we map each parameter into the particular property it represents. For-
mally, given the parameters PARAMS, and the ontology properties PROPER-
TIES, this description corresponds to the maps:

InputP : PARAMS → PROPERTIES OutputP : PARAMS → PROPERTIES

For instance, the output parameters lat and long would be mapped to the
properties latitude and longitude from ParkingPlace.

The important thing here is that the set of parameters describing an input
object should univocally determine the real-world object. In essence, this means
that the description should include, at least, one primary key of its correspond-
ing concept. For instance, if some data-service returns properties for describing
ParkingPlaces, these properties should include, at least, a latitude/longitude
pair or a street number address. Note that, without the primary key, we cannot
identify which object from the real world do the properties belong to and, there-
fore, the data-service would not be able to identify the input objects for which
computing the data required by the output.

The service-broker should be responsible of checking that the data-service
is unambigously describing their objects. It is worth saying that this condition
is not necessarily required by the output objects since we may be interested in
anonymizing some kind of sensible data which should not appear in the output.

Describing the input/output relationship Once we know the input and
output concepts to which the parameters refer to, we can define the input/output
relationship computed by the service, i.e. the logic of the service. That is, the
computation that the data-service performs in terms of a navigation through the
ontology input concept to the ontology output concept.

This relationship is specified only in terms of the known basic concepts/prop-
erties of the ontology by means of an axiom (also called constraint). Specifically,
this axiom defines the contents of the relationship in terms of contents of the
input/output concepts and its related properties. Equivalently, we can see this
relationship as derived from the rest of the ontology terms.

Formally, assuming that our data-service describes n input objects and m
output objects, we have to define an axiom with the form:

R(I1, ...In, O1, ..., Om) ↔ φ(I1, ...In, O1, ..., Om)

where R is the relation computed by the data-service, and φ is a statement
(usually a first-order formula) that defines the contents of R in terms of the rest
of ontology properties.

As an example, assuming a different predicate for each concept and relation-
ship in our ontology, the input/output relationship of a service computing the
ParkingPlaces that are available and located infrontof some streetAddress that
has the input Street would be specified in logic by means of the following rule:



R(s, p) ↔ Street(s) ∧HasStreetAdress(s, st) ∧ InFrontOf(st, p)
∧ParkingP lace(p) ∧ IsAvailable(p, a) ∧ a =true

A service-broker might check whether an input/output relationship R de-
scription is correct by means of checking whether R is lively. We say that R is
lively if there exists a state of the real-world domain I (that is, a valid instanti-
ation of the whole ontology) in which R has some contents. Clearly, if no such
real-world domain I exists, this means that this data-service is not outcoming
any output from any input, which would mean that such data-service is useless.
Checking relationship liveliness is a well-known ontology reasoning task [4,5].

Summary of a data-service description The description of a data-service
is a tuple of the form: < InputP , InputC ,OutputP ,OutputC , R(x) ↔ φ(x)) >

It is worth noting that our framework is only meant for data-services that
retrieve data. Thus, it is not suited for services modifying this data. Moreover,
our current proposal does not consider preconditions either, although they could
be easily added at the ontological level as new ontological axioms. It is also
important to remark that a data service should adapt to the terms in the ontology
of the service-broker used (instead of being able to use its own ontology to define
them). This limitation is caused because we need data-services and data-service
requests to use the same ontological terms to enable its matching.

Output parametersInput parameters

Input properties Output properties

Input objects Output objects

Represents

Describe Described by

Represented by

Relates to

Data-service description

Returns

Input P

Input C Output C

Output P

R(I1… In, O1 … Om) ↔ φ(I1… In, O1 … Om)

Fig. 2. Data-service description

Finally, we would like to stress that the descriptions proposed in our frame-
work are unambiguous and capable of describing services considering several
input/output parameters (even describing several input/output objects). The
descriptions are unambiguous because, fixed a real-world state and some input
values, there is only one valid collection of output values that satisfies them.
Intuitively, this is so because all the semantic descriptions stated in Figure 2 can
be composed into a unique function that converts input parameter values into
input objects, input objects into output objects, and output objects as output



values again. The description can handle services with an arbitrary number of in-
put/output parameters as long as the language we use to state them allows n-ary
associations. This is also a motivation for using UML as specification language
(instead of OWL/RDF) since it directly supports n-ary associations.

3.2 Discovering data-services

To discover a data-service, a data consumer application should make a request
to the service-broker so that it can check which data-services match the request.

The essential idea is that the request should be described in the same way as
a data-service. I.e., with the input/output mappings that state how parameters
describe concepts, and with a new ontology relationship and an axiom defining
which input/output object relation is the requester looking for. Intuitively, a
data request is described exactly as the hypothetical data-service it requires.

Then, the service-broker can match the request with its data-services by
checking which relationships describing the services are subsumed by the re-
lationship in the request. By subsumption, we mean that the contents of the
relationship computed by the service is necessarily included in the contents of
the one desired by the request. If the service relationship is subsumed by the
request, this means that all the objects retrieved by the service are data that the
requester wants to find. Thus, our proposal is semantic-based (i.e., independant
from the particular syntactic way of writing the request/service in OCL).

Note that we only need to check if a data-service relationship is subsumed
by a request relation if they agree on the related input/output concepts. More-
over, such discovery is performed only at the ontology level, without taking the
underlying raw data into account.

Given a data-service and a data-request, the distinction between how the
service describes the objects and how the service relates the input/output objects
allows us to dinstinguish the following cases:

1. Different relationships: the data-service may compute an input/output rela-
tionship different than the one desired by the data-request. Thus, there is no
match between the two. E.g.: a data service relates Streets with Parkings,
but our data-request looks for a relationship between Streets and Streets.

2. Same relationship, different descriptions: it might happen that, at the ontol-
ogy level, the data-service computes the same input/output relationship as
the one requested, but the parameters given to describe these input/output
are not the expected by the data-request. E.g.: a data service relates Streets
with Parkings, and the data-request looks exactly for this relationship but,
however, the service describes parkings by means of latitudes/longitudes and
the requester expects street address numbers as output.

3. Same relationship and same descriptions: the data-service computes the in-
put/output relation desired by the data-request and the parameters used
are those it expects. E.g.: a data service relates Streets with Parkings, the
data-request looks exactly for this relationship, and they both agree on the
properties used to describe both concepts.



Obviously, when looking for some data-service matching a data-request, the
best case is the third one. However, the second case should not be neglected.
In fact, the second case should further dinstinguish whether the descriptions
misagreement is because the service provides too much information (which might
not be a problem at all), or because it does not provide all the desired information
(which might be a problem, or not).

4 Using UML/OCL as ontology language

We show now how to use UML/OCL as the ontology language for the framework.
UML/OCL is a good candidate language because it is well-known in the software
engineering community, it has all necessary elements for encoding the framework
descriptions, and there are already some reasoning tools that can be used to solve
the matching problem.

In the following, we first discuss the usage of UML/OCL for describing the
common ontology to be used by the service-broker. Then, we show how a data-
service provider can use UML/OCL to describe a new service. Finally, we show
how to discover a data-service by means of a UML/OCL reasoning tool.

4.1 Using UML/OCL to define the service-broker ontology

The service-broker should provide, at least, one common ontology so that all their
published data-services are described over it. That is, all the data-services are
described using the terms of the ontology provided by the broker, and assuming
all the axioms defined in this ontology.

In Figure 1 we have shown a UML class diagram describing Parking concepts.
In this ontology, all parkings are places with a latitude and a longitude, they
can be available or not, and some of them have an associated cost per hour.
These parkings may be in front of street addresses, which are also places with
a latitude and a longitude. These street addresses belong to a street, and the
streets can be connected to other streets.

To complete the ontology, the UML class diagram must be complemented
with a set of OCL constraints stating conditions that the real-world satisfies.
In the following, we show some OCL constraints stating that there are no two
places with the same latitude/longitude, nor two streets with the same name,
and that fixed one street, there are no two addresses with the same number:

context Street inv StreetPrimaryKey: Street.allInstances()->isUnique(name)
context StreetAddress inv StreetAddressPrimaryKey: StreetAddress.allInstances()

->forAll(a, b |a = b or a.number <> b.number or a.street <> b.street)

context Place inv PlacePrimaryKey: Place.allInstances()

->forAll(a, b | a = b or a.latitude <> b.latitude or a.longitude <> b.longitude)

4.2 Using UML/OCL to describe the service

Once we have the common ontology specified, we can use it to define a service
along the framework defined in Section 3. That is, by means of describing how



the parameters describe input/output concepts, and how the input and output
concepts are related at the ontology level. These ideas are similar to [7], where
they model queries as UML classes and inputs/outputs as associations to these
classes.

Describing input/output concepts through UML/OCL To describe the
mappings from the parameters to the concepts (i.e., the InputC/OutputC map-
pings), we define a new UML class and association for each described concept.

That is, if our parking service has an input parameter name that is mapped
to the concept Street, we add a new UML class in the class diagram with an
attribute name and associate this class to Street. Figure 3 illustrates this example
in the UML class diagram.

In general, we may need to create several of these classes in case our in-
put/output parameters describe several objects of different classes. To keep track
of the newly added classes because of describing these mappings, we propose to
use two new UML stereotypes: ServiceInput, and ServiceOutput.

Then, for describing the mappings to the properties (i.e., the InputP /OutputP
mappings), we rely on the usage of OCL constraints. In particular, we define a
new OCL invariant for each parameter that, in essence, equates its value to some
attribute from the common ontology. Figure 3 also exemplifies how to do so.

To correctly and unambigously describe the objects through the properties,
two instances of parameters with exactly the same values should describe ex-
actly the same object (e.g., two InputStreetPar with the name Broadway should
describe exactly the same real-world Street : Broadway). Ensuring that two equal
instances of parameters cannot describe (i.e., be associated to) the same object
is a reasoning task that can be solved by many current UML/OCL reasoning
tools [8,9,10,5].

Describing the input/output relation through UML/OCL Next, we add
a new association in the UML class diagram to describe the input/output re-
lationship computed by the service. This new association relates the described
input and output concepts. Similarly as before, we propose distinguishing this
new association using a UML stereotype: Service.

In addition, a new OCL invariant InputOutputRelationship establishing the
contents of this association has to be specified, as shown in Figure 3. In our
example, the invariant states that all the retrieved output parking places are
available parking places from some street address of the given input street.

Intuitively, this invariant specifies the logics of the service in terms of the
common ontology. Note that several equivalent ways of specifying the same log-
ics may exist (i.e., by using different OCL operators, or using different OCL
navigations, etc) and the service designer is free to choose the one he/she likes
the most. The important thing is that all the equivalent ways of defining the same
invariant will match with the same equivalent requests during service discovery.

Finally, it is worth noting that this way of specifying services scales for any
number of input/output described objects (and not only one object for the input,
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context Input inv DescribesStreet:
self.street.name = self.name
context Output inv DescribesParkingPlace:
self.parkingplace.latitude = self.lat and self.parkingplace.longitude=self.long and
self.parkingplace.available = self.b
context Street inv InputOutputRelationship:
self.output = self.streetAddress.parkingPlace->select(p|p.available)

Fig. 3. Description of a data-service in the UML/OCL ontology

and one object class for the output). Indeed, if the service relates N objects from
the input (e.g. Street and Place) to M output objects (e.g. StreetAddress and
ParkingPlace), we only need to define an (N +M)-ary relation.

There is a special case when N = 0 and M = 1 because UML has no unary
associations. However, this case can be handled by using a subclass. Indeed,
consider that our parking service returns all parking places that are available
(thus, no input is required, and the output is composed of only 1 object). In this
case, our service is not relating any input to any output, but is considering a
new class of parkings (i.e., the class of those parkings that it is retrieving -e.g.,
the available ones-). So, the service is specified by means of a subclass rather
than an association. Similarly as before, this new subclass should be paired with
the OCL constraint specifying its contents in terms of the common ontology.

4.3 Discovering the services

Now, the idea is that, when a service-broker receives a data-request, it must
look for those data-services that match the request. More specifically, taking in
account that services/requests logics are, at the end, defined through an associ-
ation in the UML class diagram, it should look for those Services associations
that are subsumed by the Request association.



There is a match between the data-service and the data-request when the as-
sociation encoding the data-service RS is subsumed by the association encoding
the request RR. Recall that, an association RS is subsumed by RR if the contents
of RS are, for any valid instance of the ontology, a subset of the contents of RR.

Checking if RS is subsumed by RR can be done by analyzing whether the
UML schema admits a finite valid instantiation I such that: 1) it satisfies all the
integrity constraints of the UML class diagram, and 2) it contains some instance
i of RS not appearing in RR. If such instantiation does not exist, this means
that all instances of RS are contained for sure in RR and, thus, RS is subsumed
by RR. On the contrary, if such instantiation I actually exists, I represents a
state of the real world in which the data-service would provide some output i
not desired according to the request.

As an example, consider two data-requests described with an association from
Streets to ParkingPlace by means of the following invariants:

context Street inv Request1: self.output = self.streetAddress.parkingPlace->select(a|
not a.oclIsTypeOf(PayParkingPlace))

context Street inv Request2: self.output = self.streetAddress.parkingPlace

->union(self.connected.streetAddress.parkingPlace)

Intuitively, the first request is asking for parking places that are free (in the
sense that you do not have to pay for their use), while the second one is asking
for parking places in the given street and its connected streets. The first request
does not subsume our data-service running example, but the second does.

The first data-request does not subsume our data-service because there might
be a real-world state of the domain I in which the data-service computes some
output undesired by the data-request. E.g., consider a real-world state I with a
Street Abbey Road which contains a parking place in the geocoordinates 51.532,
0.177 such that is of kind PayParkingPlace. In this state of the domain I, our
data-service would retrieve the previous parking, when the data-request is asking
to avoid PayParkingPlaces. Thus, there is no match between the two.

On the contrary, the second data-request subsumes our service. Indeed, in
any real-world state of the domain I, all the contents retrieved by the service
are contents desired by the request, although our data-service is limited to only
retrieve a subset of it (those that are available and in the given street, thus,
ignoring the non-available parkings and the parkings from the connected streets).

In case we were only interested in data-services retrieving exactly all our
requested contents, we could additionally check if the data-service also subsumes
the data-request. Indeed, if they both mutually subsume each other, then, they
are exactly requesting/computing the same relationship.

Reasoning association subsumption is a known problem in the conceptual
schema reasoning field and it can be performed by several of their UML/OCL
reasoners. E.g., we could use Alloy [8], USE[9], UMLtoCSP[10], or AuRUS [5].
Moreover, these tools are capable of computing the counterexample I that proves
when a data-service would compute an undesired output for the data-request.

It is important to note that we are only checking whether the service request
and the data-service offered coincide in terms of their intended logics (that is,



their semantics). This checking does not take into account the different descrip-
tions/representations that this services might have for their concepts. That is,
it only checks whether the service/request matches the intended Parking, but it
does not check if the way parkings are described also matches (which might be
checked with a simple comparison between the actual/expected descriptions).
This behavior is the one we already discussed while presenting the framework
essentials in Section 3.2.

5 Experiments

To show the feasibility of our framework, together with the suitability of current
UML/OCL reasoners to solve the matching problem, we have conducted some
experiments with real data-services developed in the BIG IoT Project [1], where
we participate and that has motivated the ideas proposed in this paper.

In particular, we have used our framework to describe 3 different traffic data-
services from BIG IoT: a data-service for finding parking places of a given current
location, a data-service for retrieving the current traffic status of a given street,
and a third data-service for obtaining the average car speed of some predefined
streets. These data-services cover several relevant aspects of our framework: the
first one receives and retreives different concepts (i.e, it receives Street and re-
turns ParkingPlaces), the second receives and retrieves the same concept (i.e.,
Streets), and the third has no input and only retrieves one concept (i.e., Streets).

To define the common ontology for these services we have departed from its
current semantic anotation present in the BIG IoT project. In essence, BIG IoT
tags the parameters of the services with the ontology property they represent
(i.e., it defines the InputP /OutputP maps) using an extension of the schema.org
ontology. Thus, we have built in UML/OCL the fragment of schema.org involved,
and added the necessary extensions to define those concepts and properties which
are not present in schema.org. Then, we have described all mentioned data-
services in terms of it1, using the constructions specified in Section 4.

Then, we have used the AuRUS[5] UML/OCL reasoner for evaluating the
execution times for: 1) checking the correctness of the descriptions, 2) matching
data-services with data-requests. We have run all experiments over a Windows
8 in an Intel i7-4710HQ up to 3.5GHz machine with 8GB of RAM.

Table 1 shows the results when checking the correctness of a data-service
description. The first two checks are aimed at determining whether the input
and output parameters, respectively, univoquely identify one ontology object.
Moreover, we have checked the liveliness of the data-service relationship that
allows computing the output from the input. That is, we have analyzed whether
there is at least one possible real wold domain instantiation I where the described
data-service would return, at least, one instance.

Table 2 shows the results for matching the services with some requests. In
particular, we have evaluated the matching execution time against three kinds
of data-requests: one that was equal to the intended service, another that was

1 Descriptions available at http://www.essi.upc.edu/~xoriol/obf-files/

http://www.essi.upc.edu/~xoriol/obf-files/


Table 1. Checking data-service correct descriptions execution times

Checking input Checking output Checking service liveliness

ParkingService 531 ms 485 ms 546 ms
TrafficStatusService 515 ms 505 ms 531 ms
CarAverageSpeedService - 516 ms 531 ms

subsumed by the service, and a third one that was subsuming the request. It is
important to note that for the CarAverageSpeedService we could not define a
request for exactly matching the data-service. This is because this service only
returns data for those streets for which it has a sensor (which is not a selection
criteria that can be described through the ontology).

Table 2. Matching data-services with data-requests

Same request Subsumed request Subsumed service

ParkingService 203 ms 203 ms 156 ms
TrafficStatusService 125 ms 203 ms 125 ms
CarAverageSpeedService - 218 ms 125 ms

As it can be seen, all the performed tests behaved satisfactorily and were
executed in ms. It is also worth to remark that those tests aimed at performing
data-service matching (i.e. the ones in Table 2) took always below 0.3 seconds.
For these reasons, we believe that our proposed framework works properly for
the automated discovery of data-services and it is also feasible in practice since
it offers an efficient way to implement the data-service matching problem.

6 Related Work
Our work is based on the local-as-view approach to data integration as defined
by [6]. In this approach, data-services and requests are defined as queries over
a common ontology which describes the real-world. In this manner, the prob-
lem of data-service/request matching reduces to database query containment.
However, and differently from [6], we distinguish among the concepts that the
data-service deals with, from the properties used to describe these concepts.
Thus, a data-request or data-service computing exactly the same conceptual re-
lation will match in our framework, whereas they will not match in [6] if they
use different properties to refer to the same concepts.

This distinction between concepts and their descriptions also appears in
OWL-S [11]. OWL-S is, in essence, an ontology for describing data-services.
The main idea is that any data-service can be described through instantiating
the OWL-S concepts and properties. Other approaches working similarly are
SAWSDL [12] and WSMO/WSML [13] according to a recent survey [14]. How-
ever, in the context of IoT, the difficulty to learn these languages has already
been claimed to be a barrier to provide semantic descriptions for sensors [15].



We argue that these frameworks are difficult to use because they require
instantiating very particular concepts/properties defined over them. In contrast,
our framework is purely based on the observation that services can be seen as
relationships. Thus, we can model services as any other relationship (without
learning new vocabularies). In MOF terms, whereas approaches such as OWL-
S or WSMO/WSML look at particular services as instances of the M0 level,
M1 as the schema used to describe the service, and M2 as the language that
enables so; in our framework, the data retrieved by the service belongs to M0,
M1 corresponds to the particular service that relates the data, and M2 is the
usual modelling language to specify the relationship (in our case, UML).

It can be argued that we could have chosen OWL instead of UML as our mod-
elling language for defining the services. However, regarding the syntax, UML
brings as natural support for specifying n-ary associations (which are mandato-
ry to define services associating more than 2 objects through its input/output),
while OWL does not. Under the point of view of semantics, UML/OCL is inter-
preted under the close-world assumption, thus considering only finite real-world
states. In contrast, OWL is interpreted under the open-world assumption, thus
considering infinite real-world states. As a consequence, it might happen that t-
wo services that compute exactly the same input/output relation are determined
to be equal under a UML specification, but to be different in OWL. However,
we think it is not realistic to consider infinite real-world states (states with an
infinite number of Parkings, Streets, etc.). It is not clear how approaches based
on pure OWL (such as SSWAP [16]) handle these cases.

Regarding the context of IoT, the current proposals that we know for seman-
tically describing IoT sensors to enable their discovery are not fully automatic
[17,1,18]. The approach presented in [17] is meant for helping human users to
find their desired semantically-described sensors through a GUI and, thus, it
implements manual discovery. In the case of [1], and despite pursuing automatic
discovery, for the moment its unique way to describe the input/output relation
is by means of a single tag annotation, so, its discovery process is reduced to
checking the coincidence of such tag, which is a syntactic check rather than a
semantic one. On the other side, the proposal in [18], although it can be fully
automated, is in essence based on selecting sensors according to non-functional
criteria (e.g. time-response, availability, cost) rather than semantics.

7 Conclusions and Future Work

We have presented a framework to specify IoT data-services so that they can
be automatically discovered. Our framework specifies a data-service in terms of
how it describes its input and output objects (that is, which properties of the
objects does it speak about), and how it relates the input to the output objects.

We have seen that these descriptions can be written in UML/OCL. That is,
both input and output can be modelled as UML classes related to the concepts
they refer to, and the data-service logics can be seen as a new UML association
between such classes whose contents are specified by means of a constraint. In
this way, the service matching problem is reduced to relation subsumption.



In the experiments, we have demonstrated that our framework could be used
to describe and discover three real IoT data-services that are currently being
implemented in the BIG IoT European Project. Moreover, we have also shown
that current UML/OCL reasoners can be used to solve the matching problem,
and obtaining execution times below 0.3s. As future work, we plan to study
how to deal with different data formats and how to chain/orchestrate several
data-services to accomplish a data-request.
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Ministerio de Economı́a, Industŕıa y Competitividad, under project TIN2017-87610-R.

References
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