
Algebraic Definition of iStar2.0 Models

Xavier Franch[0000-0001-9733-8830] , Lidia López[0000-0002-6901-9223], Jordi Marco [0000-0002-0078-7929]

Universitat Politècnica Catalunya (UPC-BarcelonaTech), Barcelona, Spain
{franch|llopez}@essi.upc.edu, jmarco@cs.upc.edu

Abstract. iStar2.0 was delivered in 2016 with the intention of becoming a stand-

ard de facto for the i* community. It includes a lightweight definition of the lan-

guage adorned with a metamodel (in the form of a UML class diagram) that is

useful for most purposes. However, in some contexts, a more precise algebraic

definition including a notion of satisfaction is needed. This paper presents such

elements. First, an algebraic definition of iStar2.0. Then, some auxiliary opera-

tions. Last, the notion of satisfaction over i* models using first order logic. Sat-

isfaction is still defined mainly in a syntactic form, relying upon the satisfaction

of the individual intentional elements comprising the model.

Keywords: iStar2.0, i* framework, goal-oriented requirements engineering, for-

mal definition of languages, satisfaction.

1 Introduction

Since its formulation in the mid-nineties [1], the i* language has gone through a long

path of evolution in which different small variants, customizations to different needs

(e.g., dealing with security [2]) or even dialects as GRL [3] or Tropos [4], have

emerged. A thorough comparison until 2006 can be checked at [5], an historical per-

spective until 2011 can be found at [6] while a recent literature review [7] complements

the analysis with newer references.

While this diversity was considered overall positive because it facilitated the i* com-

munity to grow lively, it has the other side of the coin in the lack of a well-established,

common core, acting as lingua franca for researchers, practitioners and tool developers.

With the purpose to solve this problem, the community launched in 2014 a task force

to define an agreed core of constructs to be used as the basis of any specialization of

the language. The most visible result was the formulation of the iStar2.0 language [8],

which includes a syntactical definition of the core constructs of i*. The accurate syn-

tactic definition is based on a metamodel (a UML class diagram). This metamodel is

useful in a lot of contexts, e.g for developing tool support [9], but when defining more

formally other constructs in top of iStar2.0, it may lack of accuracy or may become

cumbersome to deal with e.g. through OCL constraints. Also, the iStar2.0 definition

does not include any notion of satisfaction that could be eventually used to reason about

model correctness.

To cope with this problem, the present document has the goal of defining the struc-

ture of the iStar2.0 language in an algebraic form, and then providing the notion of

mailto:%7bfranch%7Cllopez%7d@essi.upc.edu

2

satisfaction of iStar2.0 models on top of this definition. It can be considered as an aux-

iliary document when a high degree of formalization is needed, e.g. for defining the

meaning of complex language constructs as specialization, as already done in the past

[10] with a previous, simplified definition of this kind of description for the seminal i*

language [11]. Given that ontological definitions of classical i* constructs (e.g. [12])

are not incorporated, this definition is mainly of syntactic nature.

The rest of the paper introduces one section per topic: algebraic definition of the

language, introduction of a collection of auxiliary operations that can be useful for

working with this algebraic definition, and formulation of the satisfaction function us-

ing first order logic.

2 Algebraic Definition of iStar2.0

Algebraic definitions have a long tradition in theoretical computer science, to describe

complex structures as finite automata [13]. In the field of software engineering, alge-

braic definitions became popular in the mid-nineties as a way to precisely describe pro-

gramming languages [14] and other related artifacts as abstract data types [15]. In all

these cases, the definition is used as the basis to formulate constructs, state properties

and theorems and develop formal demonstrations. Even if somehow difficult to read,

they provide a sound and accurate basis that makes them useful for their purpose. This

is the reason why we are adopting this approach in this paper.

The algebraic definition for iStar2.0 language is shown in Table 1. The iStar2.0 con-

structs can be grouped into seven concepts: models (D1), actors (D2), intentional ele-

ments (D3), intentional element links (D4), dependencies (D5) and dependencies ends

(D6), and actor links (D7). For every concept, we show the domains and the most sig-

nificant properties that they need to fulfil.

3 A Collection of Auxiliary Operations

Table 2 shows a collection of auxiliary operations that can be useful when defining new

constructs or properties over a model M = (A, DL, DP, AL). Some of them are used in

Section 4 when defining the notion of satisfaction. We are using others in the ongoing

definition of the specialization construct in iStar2.0 (updating the current definition

given in [10]).

• O1-O3 return the name of named iStar2.0 constructs, which is needed to establish

identity of elements in definitions and proofs.

• O4-O6: return descendants and parents of actors through actor links. We included

operations for direct descendants of an actor a (O4), actors with an actor link to

a, and the transitive clousure of descendants (O5), linked directly to a or to any

of its descendants.

• O7 returns the actor that acts as dependency end in a dependency. This operation

is useful given that a dependency end can be the actor itself (in SD views mainly)

and an intentional element (IE) inside an actor (in SR views mainly).

3

Table 1. Algebraic definition of iStar2.0 model elements with correctness conditions.

 Id Definition Components

i* model

 D1 M = (A, DL, DP, AL) A: set of actors; DL: set of dependencies

DP: set of dependums; AL: set of actor links

─ a,bA: name(a)  name(b) (all actors have different names)

─ x,yDL: name(x)  name(y) (all dependums have different names)

─ aA: adescendants_trans(a, M) (avoid cycles in actor links)

Actor

 D2 a = (n, IE, IEL) n: name; IE: set of IEs; IEL: set of IE links

─ x,y  IE: name(x)  name(y) (all IEs have different names)

─ m,n  IEL: source(m) = source(n)  type(m) = type(n) = refinement

 (refinementValue(m) = refinementValue(n)) , an IE cannot be OR-

and AND-refined simultaneously

Intentional Element (IE)

 D3 ie = (n, t) n: name; t: type of IE, t{goal, quality, task, resource}

Intentional Element link

 D4 iel = (p, q, t, rv, cv) p, q: IEs (source and target)

t: type of IE link, t{refinement, qualification, neededBy, contribution}

─ t = refinement  type(p)  {goal, task}  type(q)  {goal, task}

─ t = qualification  type(p) = quality  type(q)  quality

─ t = neededBy  type(p) = resource  type(q) = task

─ t = contribution  type(q) = quality

rv: refinement value, rv  {AND, OR, ⊥}

─ t = refinement  rv  ⊥

cv: contribution value, cv  CT+  CT– {⊥}

─ CT+ = {make, help}, CT– = {break, hurt}

─ t = contribution  cv  ⊥

Dependency

 D5 d = (der, dee, dm) der, dee: dependency ends (depender and dependee respectively)

dm: IE (dependum), dm = (n, t) (see D3)

─ actor(der) ≠ actor(dee) (an actor cannot depend on itself)

Dependency end

 D6 de = (a, ie) a: actor (depender or dependee)

ie: IE (from depender or dependee), ie  IE(a) ∪ {⊥}

Actor link

 D7 al = (a, b, t) a, b: actors (source and target), t  {is-a, participates-in}

4

Table 2. Auxiliary operations used in the definition of satisfaction and other contexts

Id Definition Components

O1 Actor name a = (n, IE, IEL)  M: name(a) = n

O2 IE name x = (n, t)IE: name(x) = n

O3 Dependum name d = (der, dee, dm)  DL: name(d) = name(dm) -- dm is an IE; C2 applies

O4 Descendants descendants(b, M) = {a | (a, b, t)  AL}

O5 Transitive clousure

of descendants
descendants_trans(b, M) = descendants(b, M) 

(a: a  descendants(b, M): descendants_trans(a, M)

O6 Parent actor parent(a, M) = (b: (a, b, t)  AL)

O7 Dependency end d = ((a, ie1), (b, ie2), dm)  DL: actor((a, ie1)) = a  actor((b, ie2)) = b

O8 Source and target

IEs of an IE link
iel = (p, q, t, rv, cv)  IEL: source(iel) = p  target(iel) = q

O9 Type of an IE link iel = (p, q, t, rv, cv)  IEL: type(iel) = t

O10 Actor outgoing de-

pendencies
outgoingDep(a, M) = {d: d = (der, dee, dm)  DL: actor(der) = a}

O11 Actor incoming de-

pendencies
incomingDep(a, M) = {d: d = (der, dee, dm)  DL: actor(dee) = a}

O12 Dependums of a set

of dependencies
dependums(DL) = {dm: (der, dee, dm)  DL}

O13 Main IEs of an actor mainIEs((n, IE, IEL)) = {ie  IE | ancestors(ie, IE, IEL) = },

where ancestors(IEL, ie) returns the set of IEs for which ie belongs to

their decomposition, according to IEL (see below)

O14 Ancestors of an IE Let be parents(ies, IE, IEL) = {iet: iet  IE: (ies, iet, t, rv, cv)  IEL)

ancestors(ie, IE, IEL) = parents(ie, IE, IEL) 

 (ie2: ie2 parents(ie, IE, IEL): ancestors(ie2, IE, IEL)

O15 Substituting an ac-

tor by another in a

model

substituteActor(M, a, a’) = (A\{a}{a’}, substituteActor(DL, a, a’),

DP, substituteActor(AL, a, a’)

O16 Substituting an ac-

tor by another in a

set of dependencies

substituteActor(DL, a, a’) =

{d=((x, ie1), (y, ie2), dm): dDL  x  a  y  a: d} 

{d=((x, ie1), (y, ie2), dm): dDL  x = a: ((a’, ie1), (y, ie2), dm)} 

{d=((x, ie1), (y, ie2), dm): dDL  y = a: ((x, ie1), (a’, ie2), dm)}

O17 Substituting an ac-

tor by another in a

set of actor links

substituteActor(AL, a, a’) =

{(x, y, t): (x, y, t)AL  x  a  y  a: (x, y, t)} 

{(x, y, t): (x, y, t)AL  x = a: (a’, y, t)} 

{(x, y, t): (x, y, t)AL  y = a: (x, a’, t)}

O18 Substituting an IE by

another in a model
substituteIE(M, a, ie, ie’) = (A, substituteIE(DL, ie, ie’), DP\{ie}{ie’), AL)

O19 Substituting an IE

by another in a set

of dependencies

substituteIE(DL, ie, ie’) =

{d=(der, dee, dm): dDL  dm  ie: d} 

{d=(der, dee, dm): dDL  dm = ie: (der, dee, ie’)}

5

• O8-O9 gives a set of operations useful to handle with IE links.

• O10-O12 gives a set of predicates useful to handle dependencies and dependums.

For the definition of the operation related to specialization (O12), we assumed

that the subactor inherits all the superactor elements.

• O13 provides an operation for getting the main IEs in an actor, i.e. IEs without

ancestors.

• O14 provides an operation for getting the ancestors of IEs in an actor through IE

links.

• O15-O19 provide a set of useful functions that substitute one element by another

in a given context. We are using them in the definition of specialization, where

refined elements need to be substituted by their redefinition.

4 The Notion of Satisfaction in iStar2.0

Finally, this section presents the most restricted notion of satisfaction (e.g. full satis-

fied/full denied satisfaction values in [16]) of the iStar2.0 model elements using the

provided algebraic definition.

a) Satisfaction of actors

• SD1. An actor a that contains IEs, is satisfied if all its main IEs are satisfied.

• SD2. An actor a that does not contain IEs, is satisfied if all its outgoing depend-

encies are satisfied.

b) Satisfaction of dependencies

• SD3. A dependency d is satisfied if its dependum is satisfied.

• SD4. The satisfaction of the dependum is not independent from the dependency

ends.

c) Satisfaction of IEs

• SD5-SD10. The satisfaction of an IE depends on the IE type: goal satisfactibility:

the goal attains the desired state; task satisfactibility: the task follows the defined

procedure; resource satisfactibility: the resource is produced or delivered; quality

satisfactibility: the modeled condition fulfills some agreed fit criterion. But note

the IE satisfaction itself is not defined. IE satisfaction is defined by the modeler,

when the IE is a leaf. When it is not a leaf, the only thing that can be done is to

identify several properties depending on the type of links involved.

Fig 1. includes the elements used in the satisfaction definition predicates (see Table 3).

Fig. 1 Intentional elements used in the satisfaction definition

6

Table 3. Auxiliary predicates used in the definition of satisfaction

Id Definition

SD1 Actor satisfaction with rationale (intentionalElements(a) ≠ )

sat(a, M) ⇔ ie  mainIEs(a): sat(ie, M)

SD2 Actor satisfaction without rationale (intentionalElements(a) = )

sat(a, M) ⇔ d  outgoingDep(a, M): sat(d)

SD3 Dependency satisfaction

sat(d, M) ⇔ sat(dependum(d), M)

SD4 Relationship among all dependency components

sat(actor(dependerEnd(d)), M) ⇒ sat(dependum(d), M)

sat(actor(dependeeEnd(d)), M) ⇒ sat(dependum(d), M)

SD5 OR-ed task or goal refinement satisfaction

ieor: (ieor, ie, refinement, OR, ⊥)  IEL: sat(ieor, M)  sat(ie, M)

SD6 AND-ed task or goal refinement satisfaction

ieand: (ieand, ie, refinement, AND, ⊥)  IEL: sat(ie, M)  sat(ieand, M)

SD7 Task specialized by neededBy with a resource

ier: (ier, ie, neededBy, ⊥, ⊥)  IEL: sat(ie, M)  sat(ier, M)

SD8 IE specialized with new qualification

iesrc: (iesrc, ie, qualification, ⊥, ⊥)  IEL: sat(ie, M)  sat(iesrc, M)

SD9 Quality contributed from another IE with make

iesrc: (iesrc, ie, contribution, ⊥, make)  IEL: sat(ie, M)  sat(iesrc, M)

SD10 Quality contributed from another IE with break

iesrc: (iesrc, ie, contribution, ⊥, break)  IEL: sat(ie, M)  sat(iesrc, M)

 This section includes the individual cases for the refinement, i.e. only one type of

link arriving to the IE. In the case of combining different types of links, for example a

goal refined using an OR-refinement with a qualification link (Fig.1, left), the satisfac-

tion would be the result applying a logical AND of each link type result. In the example

in Fig. 1 (left), it would be the result of applying a logical AND between the sat(ieq)

and the result of the sat(ie) applying SD5.

5 Conclusions

This paper has provided an algebraic definition of the iStar2.0 language. We argue that

this work can help researchers when defining new constructs in a formal way, or even

making precise concepts already defined as inheritance or other related constructs as

metrics [17][18]. This formal definition of iStar2.0 and the notion of satisfaction have

been used for the formal definition of the specialization construct (is-a actor link) [19].

 The main limitation is that this work is still at the syntactic level. Future work should

go on this direction by considering ontologies in the notion of satisfaction.

7

References

1. Yu E.: Modelling Strategic Relationships for Process Reengineering. PhD. Computer Sci-

ence, University of Toronto, Toronto, 1995.

2. Mouratidis H., Giorgini P., Manson G.: Integrating Security and Systems Engineering: To-

wards the Modelling of Secure Information Systems. CAiSE 2003, pp. 63-78.

3. Mussbacher G., Amyot D., Heymans P.: Eight Deadly Sins of GRL. iStar 2011, pp. 2-7.

4. Bresciani P., Perini A., Giorgini P., Giunchiglia F., Mylopoulos J.: Tropos: An Agent-Ori-

ented Software Development Methodology. Autonomous Agents and Multi-Agent Systems,

8(3), 2004, pp. 203-236.

5. Grau G., Cares C., Franch X., Navarrete F.: A Comparative Analysis of i* Agent-Oriented

Modelling Techniques. SEKE 2006, p 57-663.

6. Cares C., Franch X.: A Metamodelling Approach for i* Model Translations. CAiSE 2011,

pp. 337-351.

7. Horkoff J. et al.: Goal-Oriented Requirements Engineering: An Extended Systematic Map-

ping Study. Requirements Engineering Journal 24, 2019, pp. 103-160.

8. Dalpiaz F., Franch X., Horkoff J.: iStar2.0 Language Guide. CoRR abs/1605.07767, 2016.

9. Pimentel J., Castro J.: piStar Tool - A Pluggable Online Tool for Goal Modeling. RE 2018,

pp. 498-499.

10. López L., Franch X., Marco, J.: Specialization in i* Strategic Rationale Models. ER 2012,

pp. 267-281.

11. López L., Franch X., Marco J.: Making Explicit Some Implicit i* Language Decisions. ER

2011, pp. 62-77.

12. Guizzardi R., Franch X., Guizzardi G., Wieringa, R.: Ontological Distinctions between

Means-End and Contribution Links in the i* Framework. ER 2013, pp. 463-470.

13. Ullman J., Hopcroft J.: Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.

14. Broy M., Wirsing M.: Algebraic Definition of a Functional Programming Language and its

Semantic Models. RAIRO Informatique Théorique, 17(2), 1983, pp. 137-161.

15. Ehrig H., Mahr B.: Fundamentals of Algebraic Specification 1. Equations and Initial Se-

mantics. Springer, 1985.

16. Giorgini P., Mylopoulos J., Nicchiarelli E., Sebastiani R.: Reasoning with Goal Models. ER

2002, pp. 167-181.

17. Franch X., Grau G., Quer C.: A Framework for the Definition of Metrics for Actor-Depend-

ency Models. RE 2004, pp. 348-349.

18. Franch X.: A Method for the Definition of Metrics over i* Models. CAiSE 2009, pp. 201-

215.

19. López, L., Franch, X., Marco, J.: Specialization in the iStar2.0 language. IEEE Access.

doi: 10.1109/ACCESS.2019.2940094

