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Abstract. iStar2.0 was delivered in 2016 with the intention of becoming a stand-

ard de facto for the i* community. It includes a lightweight definition of the lan-

guage adorned with a metamodel (in the form of a UML class diagram) that is 

useful for most purposes. However, in some contexts, a more precise algebraic 

definition including a notion of satisfaction is needed. This paper presents such 

elements. First, an algebraic definition of iStar2.0. Then, some auxiliary opera-

tions. Last, the notion of satisfaction over i* models using first order logic. Sat-

isfaction is still defined mainly in a syntactic form, relying upon the satisfaction 

of the individual intentional elements comprising the model.  

Keywords: iStar2.0, i* framework, goal-oriented requirements engineering, for-

mal definition of languages, satisfaction. 

1 Introduction 

Since its formulation in the mid-nineties [1], the i* language has gone through a long 

path of evolution in which different small variants, customizations to different needs 

(e.g., dealing with security [2]) or even dialects as GRL [3] or Tropos [4], have 

emerged. A thorough comparison until 2006 can be checked at [5], an historical per-

spective until 2011 can be found at [6] while a recent literature review [7] complements 

the analysis with newer references. 

While this diversity was considered overall positive because it facilitated the i* com-

munity to grow lively, it has the other side of the coin in the lack of a well-established, 

common core, acting as lingua franca for researchers, practitioners and tool developers. 

With the purpose to solve this problem, the community launched in 2014 a task force 

to define an agreed core of constructs to be used as the basis of any specialization of 

the language. The most visible result was the formulation of the iStar2.0 language [8], 

which includes a syntactical definition of the core constructs of i*. The accurate syn-

tactic definition is based on a metamodel (a UML class diagram). This metamodel is 

useful in a lot of contexts, e.g for developing tool support [9], but when defining more 

formally other constructs in top of iStar2.0, it may lack of accuracy or may become 

cumbersome to deal with e.g. through OCL constraints. Also, the iStar2.0 definition 

does not include any notion of satisfaction that could be eventually used to reason about 

model correctness. 

To cope with this problem, the present document has the goal of defining the struc-

ture of the iStar2.0 language in an algebraic form, and then providing the notion of 

mailto:%7bfranch%7Cllopez%7d@essi.upc.edu


2 

satisfaction of iStar2.0 models on top of this definition. It can be considered as an aux-

iliary document when a high degree of formalization is needed, e.g. for defining the 

meaning of complex language constructs as specialization, as already done in the past 

[10] with a previous, simplified definition of this kind of description for the seminal i* 

language [11]. Given that ontological definitions of classical i* constructs (e.g. [12]) 

are not incorporated, this definition is mainly of syntactic nature.  

The rest of the paper introduces one section per topic: algebraic definition of the 

language, introduction of a collection of auxiliary operations that can be useful for 

working with this algebraic definition, and formulation of the satisfaction function us-

ing first order logic. 

2 Algebraic Definition of iStar2.0 

Algebraic definitions have a long tradition in theoretical computer science, to describe 

complex structures as finite automata [13]. In the field of software engineering, alge-

braic definitions became popular in the mid-nineties as a way to precisely describe pro-

gramming languages [14] and other related artifacts as abstract data types [15]. In all 

these cases, the definition is used as the basis to formulate constructs, state properties 

and theorems and develop formal demonstrations. Even if somehow difficult to read, 

they provide a sound and accurate basis that makes them useful for their purpose. This 

is the reason why we are adopting this approach in this paper. 

The algebraic definition for iStar2.0 language is shown in Table 1. The iStar2.0 con-

structs can be grouped into seven concepts: models (D1), actors (D2), intentional ele-

ments (D3), intentional element links (D4), dependencies (D5) and dependencies ends 

(D6), and actor links (D7). For every concept, we show the domains and the most sig-

nificant properties that they need to fulfil. 

3 A Collection of Auxiliary Operations 

Table 2 shows a collection of auxiliary operations that can be useful when defining new 

constructs or properties over a model M = (A, DL, DP, AL). Some of them are used in 

Section 4 when defining the notion of satisfaction. We are using others in the ongoing 

definition of the specialization construct in iStar2.0 (updating the current definition 

given in [10]).  

• O1-O3 return the name of named iStar2.0 constructs, which is needed to establish 

identity of elements in definitions and proofs. 

• O4-O6: return descendants and parents of actors through actor links. We included 

operations for direct descendants of an actor a (O4), actors with an actor link to 

a, and the transitive clousure of descendants (O5), linked directly to a or to any 

of its descendants. 

• O7 returns the actor that acts as dependency end in a dependency. This operation 

is useful given that a dependency end can be the actor itself (in SD views mainly) 

and an intentional element (IE) inside an actor (in SR views mainly). 
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Table 1. Algebraic definition of iStar2.0 model elements with correctness conditions. 

 Id Definition Components 

i* model 

 D1 M = (A, DL, DP, AL) A: set of actors; DL: set of dependencies 

DP: set of dependums; AL: set of actor links 

─ a,bA: name(a)  name(b) (all actors have different names) 

─ x,yDL: name(x)  name(y) (all dependums have different names) 

─ aA: adescendants_trans(a, M) (avoid cycles in actor links) 

Actor 

 D2 a = (n, IE, IEL) n: name; IE: set of IEs; IEL: set of IE links 

─ x,y  IE: name(x)  name(y) (all IEs have different names) 

─ m,n  IEL: source(m) = source(n)  type(m) = type(n) = refinement 

 (refinementValue(m) = refinementValue(n)) , an IE cannot be OR- 

and AND-refined simultaneously 

Intentional Element (IE) 

 D3 ie = (n, t) n: name; t: type of IE, t{goal, quality, task, resource} 

Intentional Element link 

 D4 iel = (p, q, t, rv, cv) p, q: IEs (source and target) 

t: type of IE link, t{refinement, qualification, neededBy, contribution} 

─ t = refinement  type(p)  {goal, task}  type(q)  {goal, task} 

─ t = qualification  type(p) = quality    type(q)  quality 

─ t = neededBy  type(p) = resource  type(q) = task 

─ t = contribution  type(q) = quality 

rv: refinement value, rv  {AND, OR, ⊥} 

─ t = refinement  rv  ⊥ 

cv: contribution value, cv  CT+  CT– {⊥} 

─ CT+ = {make, help}, CT– = {break, hurt} 

─ t = contribution  cv  ⊥ 

Dependency 

 D5 d = (der, dee, dm) der, dee: dependency ends (depender and dependee respectively) 

dm: IE (dependum), dm = (n, t) (see D3) 

─ actor(der) ≠ actor(dee) (an actor cannot depend on itself) 

Dependency end 

 D6 de = (a, ie) a: actor (depender or dependee) 

ie: IE (from depender or dependee), ie  IE(a) ∪ {⊥} 

Actor link 

 D7 al = (a, b, t) a, b: actors (source and target), t  {is-a, participates-in} 
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Table 2. Auxiliary operations used in the definition of satisfaction and other contexts 

Id Definition Components 

O1 Actor name a = (n, IE, IEL)  M: name(a) = n 

O2 IE name x = (n, t)IE: name(x) = n 

O3 Dependum name d = (der, dee, dm)  DL: name(d) = name(dm)  -- dm is an IE; C2 applies 

O4 Descendants descendants(b, M) = {a | (a, b, t)  AL} 

O5 Transitive clousure 

of descendants 
descendants_trans(b, M) =  descendants(b, M)   

(a: a  descendants(b, M): descendants_trans(a, M) 

O6 Parent actor parent(a, M) = (b: (a, b, t)  AL) 

O7 Dependency end d = ((a, ie1), (b, ie2), dm)  DL: actor((a, ie1)) = a  actor((b, ie2)) = b 

O8 Source and target 

IEs of an IE link 
iel = (p, q, t, rv, cv)  IEL: source(iel) = p  target(iel) = q 

O9 Type of an IE link iel = (p, q, t, rv, cv)  IEL: type(iel) = t 

O10 Actor outgoing de-

pendencies 
outgoingDep(a, M) = {d: d = (der, dee, dm)  DL: actor(der) = a} 

O11 Actor incoming de-

pendencies 
incomingDep(a, M) = {d: d = (der, dee, dm)  DL: actor(dee) = a} 

O12 Dependums of a set 

of dependencies 
dependums(DL) = {dm: (der, dee, dm)  DL} 

O13 Main IEs of an actor mainIEs((n, IE, IEL)) = {ie  IE | ancestors(ie, IE, IEL) = },  

where ancestors(IEL, ie) returns the set of IEs for which ie belongs to 

their decomposition, according to IEL (see below) 

O14 Ancestors of an IE Let be parents(ies, IE, IEL) = {iet: iet  IE: (ies, iet, t, rv, cv)  IEL) 

ancestors(ie, IE, IEL) = parents(ie, IE, IEL)  

                      (ie2: ie2 parents(ie, IE, IEL): ancestors(ie2, IE, IEL)  

O15 Substituting an ac-

tor by another in a 

model 

substituteActor(M, a, a’) =  (A\{a}{a’}, substituteActor(DL, a, a’),  

DP, substituteActor(AL, a, a’) 

O16 Substituting an ac-

tor by another in a 

set of dependencies 

substituteActor(DL, a, a’) = 

{d=((x, ie1), (y, ie2), dm): dDL  x  a  y  a: d}  

{d=((x, ie1), (y, ie2), dm): dDL  x = a: ((a’, ie1), (y, ie2), dm)}  

{d=((x, ie1), (y, ie2), dm): dDL  y = a: ((x, ie1), (a’, ie2), dm)} 

O17 Substituting an ac-

tor by another in a 

set of actor links 

substituteActor(AL, a, a’) = 

{(x, y, t): (x, y, t)AL  x  a  y  a: (x, y, t)}  

{(x, y, t): (x, y, t)AL  x = a: (a’, y, t)}  

{(x, y, t): (x, y, t)AL  y = a: (x, a’, t)} 

O18 Substituting an IE by 

another in a model 
substituteIE(M, a, ie, ie’) = (A, substituteIE(DL, ie, ie’), DP\{ie}{ie’), AL) 

O19 Substituting an IE 

by another in a set 

of dependencies 

substituteIE(DL, ie, ie’) = 

{d=(der, dee, dm): dDL  dm  ie: d}  

{d=(der, dee, dm): dDL  dm = ie: (der, dee, ie’)} 
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• O8-O9 gives a set of operations useful to handle with IE links. 

• O10-O12 gives a set of predicates useful to handle dependencies and dependums. 

For the definition of the operation related to specialization (O12), we assumed 

that the subactor inherits all the superactor elements. 

• O13 provides an operation for getting the main IEs in an actor, i.e. IEs without 

ancestors. 

• O14 provides an operation for getting the ancestors of IEs in an actor through IE 

links. 

• O15-O19 provide a set of useful functions that substitute one element by another 

in a given context. We are using them in the definition of specialization, where 

refined elements need to be substituted by their redefinition. 

4 The Notion of Satisfaction in iStar2.0 

Finally, this section presents the most restricted notion of satisfaction (e.g. full satis-

fied/full denied satisfaction values in [16]) of the iStar2.0 model elements using the 

provided algebraic definition.  

a) Satisfaction of actors 

• SD1. An actor a that contains IEs, is satisfied if all its main IEs are satisfied. 

• SD2. An actor a that does not contain IEs, is satisfied if all its outgoing depend-

encies are satisfied. 

b) Satisfaction of dependencies 

• SD3. A dependency d is satisfied if its dependum is satisfied. 

• SD4. The satisfaction of the dependum is not independent from the dependency 

ends. 

c) Satisfaction of IEs 

• SD5-SD10. The satisfaction of an IE depends on the IE type: goal satisfactibility: 

the goal attains the desired state; task satisfactibility: the task follows the defined 

procedure; resource satisfactibility: the resource is produced or delivered; quality 

satisfactibility: the modeled condition fulfills some agreed fit criterion. But note 

the IE satisfaction itself is not defined. IE satisfaction is defined by the modeler, 

when the IE is a leaf. When it is not a leaf, the only thing that can be done is to 

identify several properties depending on the type of links involved. 

Fig 1. includes the elements used in the satisfaction definition predicates (see Table 3). 

 

Fig. 1 Intentional elements used in the satisfaction definition 
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Table 3. Auxiliary predicates used in the definition of satisfaction 

Id Definition 

SD1 Actor satisfaction with rationale (intentionalElements(a) ≠ ) 

sat(a, M) ⇔ ie  mainIEs(a): sat(ie, M) 

SD2 Actor satisfaction without rationale (intentionalElements(a) = ) 

sat(a, M) ⇔ d  outgoingDep(a, M): sat(d) 

SD3 Dependency satisfaction  

sat(d, M) ⇔ sat(dependum(d), M) 

SD4 Relationship among all dependency components 

sat(actor(dependerEnd(d)), M) ⇒ sat(dependum(d), M) 

sat(actor(dependeeEnd(d)), M) ⇒ sat(dependum(d), M) 

SD5 OR-ed task or goal refinement satisfaction 

ieor: (ieor, ie, refinement, OR, ⊥)  IEL: sat(ieor, M)  sat(ie, M) 

SD6 AND-ed task or goal refinement satisfaction  

ieand: (ieand, ie, refinement, AND, ⊥)  IEL: sat(ie, M)  sat(ieand, M) 

SD7 Task specialized by neededBy with a resource 

ier: (ier, ie, neededBy, ⊥, ⊥)  IEL: sat(ie, M)  sat(ier, M) 

SD8 IE specialized with new qualification  

iesrc: (iesrc, ie, qualification, ⊥, ⊥)  IEL: sat(ie, M)  sat(iesrc, M) 

SD9 Quality contributed from another IE with make 

iesrc: (iesrc, ie, contribution, ⊥, make)  IEL: sat(ie, M)  sat(iesrc, M) 

SD10 Quality contributed from another IE with break 

iesrc: (iesrc, ie, contribution, ⊥, break)  IEL: sat(ie, M)  sat(iesrc, M) 

 

 This section includes the individual cases for the refinement, i.e. only one type of 

link arriving to the IE. In the case of combining different types of links, for example a 

goal refined using an OR-refinement with a qualification link (Fig.1, left), the satisfac-

tion would be the result applying a logical AND of each link type result. In the example 

in Fig. 1 (left), it would be the result of applying a logical AND between the sat(ieq) 

and the result of the sat(ie) applying SD5. 

5 Conclusions 

This paper has provided an algebraic definition of the iStar2.0 language. We argue that 

this work can help researchers when defining new constructs in a formal way, or even 

making precise concepts already defined as inheritance or other related constructs as 

metrics [17][18]. This formal definition of iStar2.0 and the notion of satisfaction have 

been used for the formal definition of the specialization construct (is-a actor link) [19]. 

 The main limitation is that this work is still at the syntactic level. Future work should 

go on this direction by considering ontologies in the notion of satisfaction.  
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