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Abstract—Software repositories such as source control, 

defect tracking systems and project management tools, are used 

to support the progress of software projects. The exploitation of 

such data with techniques like forecasting is becoming an 

increasing need in several domains to support decision-making 

processes. However, although there exist several statistical tools 

and languages supporting forecasting, there is a lack of friendly 

approaches that enable practitioners to exploit the advantages 

of creating and using such models in their dashboard tools. 

Therefore, we have developed a modular and flexible 

forecasting service allowing the interconnection with different 

kinds of databases/data repositories for creating and exploiting 

forecasting models based on methods like ARIMA or ETS. The 

service is open source software, has been developed in Java and 

R and exposes its functionalities through a REST API. 

Architecture details are provided, along with functionalities’ 

description and an example of its use for software quality 

forecasting. 
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I. INTRODUCTION 

Nowadays, the high availability of data about the software 
development process from tools like SonarQube or Jenkins is 
being exploited to improve the software process and product 
quality through well-known statistical techniques such as 
machine learning (e.g., anomaly detection, clustering or 
classification) leading to a business value increment. Besides, 
to predict and anticipate the future status of the software 
process or product is becoming an important asset for 
supporting strategic planning. Several forecasting methods 
exist in the literature to support this endeavor.  

Currently, there exist two main approaches to create and 
use software quality forecasting models in real world 
applications: 1) the use of programming languages for 
statistics such as R [1], that allow to create or reuse some 
implementations of forecasting methods and 2) the use of 
specialized software tools such as ForecastPro [2], 
AUTOBOX [3], or even MS Excel plugins like Forecast X 
[4], that automate the creation of forecasting models. The first 
approach is flexible as allows the creation of particularized 
forecasting models but requires extensive programming and 
statistical knowledge. The second approach is automatic but 
lacks of flexibility to particularize the models to the users’ 
contexts or technologies and to integrate the models into the 
actual users’ reporting tools. As a result, this gap makes that 
the majority of practitioners are not able to exploit the benefits 
of forecasting in their decision-making processes. In order to 
deal with this gap, we designed a forecasting service called qr-
forecast. Its main characteristics are: 1) To enable the 
automatic creation and ease the use of forecasting models 

without requiring statistics and programming knowledge; 2) 
To provide implementations of diverse forecasting methods in 
order to build the forecasting models; 3) To ease the 
interconnection to the database/repositories containing the 
historical data to serve as input to fit the forecasting models; 
4) To be easily integrable in tools like dashboards or reporting 
software. 

II. QR-FORECAST SERVICE 

In this section, the functionalities and the architecture and 
implementation details of the qr-forecast service are 
presented. 

A. Functionalities 

The main functionalities of the service are: 

• ForecastTechniques: Provides the list of all 
forecasting methods provided by the service, so that 
the user can select the ones to be used. (See Table I 
for the current available methods). 

• ForecastTraining: Fits forecasting model(s) for a 
specific set of variables (modeled as univariate time-
series). It uses: the selected forecasting method to be 
executed, the specific set of variables to build the 
model and the historical data that will be used as a 
basis to build the model(s). For each input variable, 
the functionality returns the resulting status of the 
model’s fitting process. The fitted models are stored 
to be reused later on, hence speeding up the forecast 
requests’ processing time.  

• Forecast: Given a set of variables, a forecasting 
method and a forecasting horizon, it returns the lower 
and upper 80% and 95% prediction intervals along 
with the forecasted means, for every requested 
variable. If there exists a saved forecasting model, 
then it is reused to compute the result, if not, it is 
created and saved to disk for later reuse. 

B. Architecture and Implementation 

We decided to expose the expected functionalities as a service 
in order to reach a high level or integrability with other 
services/software reporting tools. The architecture is modular 
and composed of three components, each one with specific 
goals that allow us to clearly separate concerns. Fig. 1 shows 
an overview of the architecture and the relations among 
components.  



 

The R Scripts1 component manages the data gathering process 
(i.e., the connection with the database/repository) and the 
execution of the model fitting and forecasting processes. Such 
processes are based on specific R packages containing the 
forecasting methods’ implementations. The fact that this 
component directly connects to the database/repository helps 
to minimize the data transfer loads when executing the model 
fitting/forecasting processes. This R Scripts component was 
implemented in R and gathers the historical data from an 
Elasticsearch engine. 

 The Forecast library2 contains the implementation of the 
functionalities presented in Section 2 and is in charge of 
handling exceptions. This component communicates through 
RServe [5] with the R Scripts component and was developed 
in Java as an importable JAR library. 

 The Forecast wrapper3 imports the Forecast library JAR 
component and exposes its public functions as a REST API, 
hence making it reachable to reporting tools or other services. 
This component was implemented as a Spring deployable 
WAR. Its use is optional, as the Forecast library can be used 
as a regular JAR library if the REST API is not needed. 

The separation of concerns gained with these three 
components led us to easily handle the evolution and potential 
changes of the diverse capabilities of the service. For instance, 
changing the Elasticsearch engine from the R Scripts 
component to any other database or adding new forecasting 
methods can be handled with reduced effort.  

 

Fig. 1 Architecture of the qr-forecast service 

The currently available forecasting methods include very 
diverse methods such as: statistically sophisticated methods 
like ARIMA [6], decomposition methods like Theta [7] or 
STL [8]; machine-learning based like Neural Networks [9], 
hybrid approaches like “forecastHybrid” [10] and additive-
model based like “Prophet” [11]. The complete set of 
available methods along with the R package used in qr-
forecast are shown in Table I. We decided to include these 
methods as they are well-known methods in the community, 
and cover a wide spectrum of method’s categories (e.g., (not) 
seasonal, and with or without trend input data). In terms of 
computational cost, ensemble methods like “forecastHybrid” 
are expensive but can produce accurate forecast, as they 
combine values from several methods. The use of the 
ForecastTraining functionality is adequate for these methods 
to avoid long waiting times when requesting forecasts through 
the Forecast functionality. On the other hand, methods like 
“ETS” [12] are very fast, at the cost of being limited for 
forecasting data with no clear seasonal pattern or trend. 
Furthermore, some of these forecasting methods performed 
well in the past M3 forecasting competition [13]. Including 
this heterogeneous set of forecasting methods fosters the 
suitability of the qr-forecast service for processing different 

                                                           
1R Scripts - https://git.io/fj8Nw 

2 Forecast Library - https://git.io/fj8Ni 
3 Forecast Wrapper - https://git.io/fj8NM 

kinds of data and for being computationally afforded by most 
of their potential users.  

Table I. Forecasting methods included in the qr-forecast service 

Method Name R Package 

Arima [6] forecast [14] 

Arima (forcing seasonal models) [6] 

Theta [7] 

ETS (Exponential Smoothing State Space Model) [7] 

ETS (forcing damped models) [7] 

Bagged ETS [7] 

STL (Seasonal Decomposition of Time Series by 

Loess) [8] 

Neural Network [9] 

Theta [7] forecastHybrid [10] 

Hybrid [10] 

Prophet [11] prophet [11] 

III. EXAMPLES 

A specific example of the use of the qr-forecast service is 
the Q-Rapids Dashboard, developed in the context of the Q-
Rapids European project [15]. This dashboard provides an 
easy and attractive informative interface to show textual and 
graphical information about the quality aspects of the software 
processes and products developed in software companies, 
based on software metrics, factors and strategic indicators. 
Specifically, the dashboard presents the current and the 
historical assessment of the software quality aspects and uses 
the qr-forecast service for forecasting such aspects.  

Fig. 2 (left) shows the forecasted means for three factors 
of a specific software product: “Activities Completion”, 
“Known Remaining Defects” and “Product Stability”. The 
purpose of these factors is having a higher-level view of its 
comprising software quality metrics. For instance, the factor 
“Activities Completion” is computed using the metrics 
“Development Task Completion” and “Specification Task 
Completion”. Using the qr-forecast’s functionality, the 
forecasted means of these factors are presented at Fig. 2 
(right). Further information of the qr-forecast service 
functionality integrated into the Q-Rapids dashboard can be 
consulted at this video4 . Deployment instructions are also 
available5. 

 

Fig. 2 Forecasted means of software quality aspects using qr-

forecast 

4 Video demonstration - https://youtu.be/uVumzekT4-s 
5 Deployment instructions - https://git.io/fj8ND 



 

Another example showing forecasted means of some 
particular project metrics is shown in Fig. 3 (row 1 and row 
2). In this case, the user has selected a forecasting horizon of 
almost two months, and Arima (forcing seasonal models) as a 
forecasting method. It’s noticeable how the returned values 
follow a seasonal pattern, as the method used is forcing the 
search and selection of seasonal ARIMA models. The 
forecasts shown in Fig. 3 refer to the following software 
related metrics: 

• The developer’s “ability” or performance fixing 
software bugs (“Bug Correction Throughput”, Fig. 3 
row 1-left). 

• The communication throughput between developers 
and testers (“Developer Tester Communication”, Fig. 
3 row 1-right). 

• The amount of feedback provided by end users of the 
monitored software (“End User Feedback”, Fig. 3 row 
2-left). 

• The percentage of commits related to core 
components (“Core Component Commits”, Fig. 3 
row 2-right). 

 

 
Fig. 3 Forecasted means of project metrics using qr-forecast and 

seasonal models 

IV. CONCLUSION AND FUTURE WORK 

We presented the qr-forecast service that aims to support 
practitioners without specific statistical nor programming 
knowledge to use and integrate the decision-support benefits 
of forecasting models into their existing software reporting 
tools. In addition, we have shown a specific application of the 
qr-forecast service into an existing dashboard, showing 
forecasts for several software quality aspects like Product 
Stability or Bug Correction Throughput. The service has been 
already deployed in four software related companies and 
positive feedback has been gathered. As future work, we plan 
to extend the available set of forecasting methods and to 
include functionalities for automatic recommendation of the 
most suitable forecasting method according to the nature of 

the input data from the database/repository and in terms of 
well-known forecasting accuracy measures like sMAPE [16] 
or MASE [17]. 
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