
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A software service supporting software quality

forecasting

Martí Manzano

Universitat Politècnica de Catalunya

Barcelona, Spain

mmanzano@essi.upc.edu

Claudia Ayala

Universitat Politècnica de Catalunya

Barcelona, Spain

cayala@essi.upc.edu

Lidia López Cuesta

Universitat Politècnica de Catalunya

Barcelona, Spain

llopez@essi.upc.edu

Cristina Gómez

Universitat Politècnica de Catalunya

Barcelona, Spain

cristina@essi.upc.edu

Abstract—Software repositories such as source control,

defect tracking systems and project management tools, are used

to support the progress of software projects. The exploitation of

such data with techniques like forecasting is becoming an

increasing need in several domains to support decision-making

processes. However, although there exist several statistical tools

and languages supporting forecasting, there is a lack of friendly

approaches that enable practitioners to exploit the advantages

of creating and using such models in their dashboard tools.

Therefore, we have developed a modular and flexible

forecasting service allowing the interconnection with different

kinds of databases/data repositories for creating and exploiting

forecasting models based on methods like ARIMA or ETS. The

service is open source software, has been developed in Java and

R and exposes its functionalities through a REST API.

Architecture details are provided, along with functionalities’

description and an example of its use for software quality

forecasting.

Keywords— forecasting, software service, software quality,

software metrics, REST API

I. INTRODUCTION

Nowadays, the high availability of data about the software
development process from tools like SonarQube or Jenkins is
being exploited to improve the software process and product
quality through well-known statistical techniques such as
machine learning (e.g., anomaly detection, clustering or
classification) leading to a business value increment. Besides,
to predict and anticipate the future status of the software
process or product is becoming an important asset for
supporting strategic planning. Several forecasting methods
exist in the literature to support this endeavor.

Currently, there exist two main approaches to create and
use software quality forecasting models in real world
applications: 1) the use of programming languages for
statistics such as R [1], that allow to create or reuse some
implementations of forecasting methods and 2) the use of
specialized software tools such as ForecastPro [2],
AUTOBOX [3], or even MS Excel plugins like Forecast X
[4], that automate the creation of forecasting models. The first
approach is flexible as allows the creation of particularized
forecasting models but requires extensive programming and
statistical knowledge. The second approach is automatic but
lacks of flexibility to particularize the models to the users’
contexts or technologies and to integrate the models into the
actual users’ reporting tools. As a result, this gap makes that
the majority of practitioners are not able to exploit the benefits
of forecasting in their decision-making processes. In order to
deal with this gap, we designed a forecasting service called qr-
forecast. Its main characteristics are: 1) To enable the
automatic creation and ease the use of forecasting models

without requiring statistics and programming knowledge; 2)
To provide implementations of diverse forecasting methods in
order to build the forecasting models; 3) To ease the
interconnection to the database/repositories containing the
historical data to serve as input to fit the forecasting models;
4) To be easily integrable in tools like dashboards or reporting
software.

II. QR-FORECAST SERVICE

In this section, the functionalities and the architecture and
implementation details of the qr-forecast service are
presented.

A. Functionalities

The main functionalities of the service are:

• ForecastTechniques: Provides the list of all
forecasting methods provided by the service, so that
the user can select the ones to be used. (See Table I
for the current available methods).

• ForecastTraining: Fits forecasting model(s) for a
specific set of variables (modeled as univariate time-
series). It uses: the selected forecasting method to be
executed, the specific set of variables to build the
model and the historical data that will be used as a
basis to build the model(s). For each input variable,
the functionality returns the resulting status of the
model’s fitting process. The fitted models are stored
to be reused later on, hence speeding up the forecast
requests’ processing time.

• Forecast: Given a set of variables, a forecasting
method and a forecasting horizon, it returns the lower
and upper 80% and 95% prediction intervals along
with the forecasted means, for every requested
variable. If there exists a saved forecasting model,
then it is reused to compute the result, if not, it is
created and saved to disk for later reuse.

B. Architecture and Implementation

We decided to expose the expected functionalities as a service
in order to reach a high level or integrability with other
services/software reporting tools. The architecture is modular
and composed of three components, each one with specific
goals that allow us to clearly separate concerns. Fig. 1 shows
an overview of the architecture and the relations among
components.

The R Scripts1 component manages the data gathering process
(i.e., the connection with the database/repository) and the
execution of the model fitting and forecasting processes. Such
processes are based on specific R packages containing the
forecasting methods’ implementations. The fact that this
component directly connects to the database/repository helps
to minimize the data transfer loads when executing the model
fitting/forecasting processes. This R Scripts component was
implemented in R and gathers the historical data from an
Elasticsearch engine.

 The Forecast library2 contains the implementation of the
functionalities presented in Section 2 and is in charge of
handling exceptions. This component communicates through
RServe [5] with the R Scripts component and was developed
in Java as an importable JAR library.

 The Forecast wrapper3 imports the Forecast library JAR
component and exposes its public functions as a REST API,
hence making it reachable to reporting tools or other services.
This component was implemented as a Spring deployable
WAR. Its use is optional, as the Forecast library can be used
as a regular JAR library if the REST API is not needed.

The separation of concerns gained with these three
components led us to easily handle the evolution and potential
changes of the diverse capabilities of the service. For instance,
changing the Elasticsearch engine from the R Scripts
component to any other database or adding new forecasting
methods can be handled with reduced effort.

Fig. 1 Architecture of the qr-forecast service

The currently available forecasting methods include very
diverse methods such as: statistically sophisticated methods
like ARIMA [6], decomposition methods like Theta [7] or
STL [8]; machine-learning based like Neural Networks [9],
hybrid approaches like “forecastHybrid” [10] and additive-
model based like “Prophet” [11]. The complete set of
available methods along with the R package used in qr-
forecast are shown in Table I. We decided to include these
methods as they are well-known methods in the community,
and cover a wide spectrum of method’s categories (e.g., (not)
seasonal, and with or without trend input data). In terms of
computational cost, ensemble methods like “forecastHybrid”
are expensive but can produce accurate forecast, as they
combine values from several methods. The use of the
ForecastTraining functionality is adequate for these methods
to avoid long waiting times when requesting forecasts through
the Forecast functionality. On the other hand, methods like
“ETS” [12] are very fast, at the cost of being limited for
forecasting data with no clear seasonal pattern or trend.
Furthermore, some of these forecasting methods performed
well in the past M3 forecasting competition [13]. Including
this heterogeneous set of forecasting methods fosters the
suitability of the qr-forecast service for processing different

1R Scripts - https://git.io/fj8Nw

2 Forecast Library - https://git.io/fj8Ni
3 Forecast Wrapper - https://git.io/fj8NM

kinds of data and for being computationally afforded by most
of their potential users.

Table I. Forecasting methods included in the qr-forecast service

Method Name R Package

Arima [6] forecast [14]

Arima (forcing seasonal models) [6]

Theta [7]

ETS (Exponential Smoothing State Space Model) [7]

ETS (forcing damped models) [7]

Bagged ETS [7]

STL (Seasonal Decomposition of Time Series by

Loess) [8]

Neural Network [9]

Theta [7] forecastHybrid [10]

Hybrid [10]

Prophet [11] prophet [11]

III. EXAMPLES

A specific example of the use of the qr-forecast service is
the Q-Rapids Dashboard, developed in the context of the Q-
Rapids European project [15]. This dashboard provides an
easy and attractive informative interface to show textual and
graphical information about the quality aspects of the software
processes and products developed in software companies,
based on software metrics, factors and strategic indicators.
Specifically, the dashboard presents the current and the
historical assessment of the software quality aspects and uses
the qr-forecast service for forecasting such aspects.

Fig. 2 (left) shows the forecasted means for three factors
of a specific software product: “Activities Completion”,
“Known Remaining Defects” and “Product Stability”. The
purpose of these factors is having a higher-level view of its
comprising software quality metrics. For instance, the factor
“Activities Completion” is computed using the metrics
“Development Task Completion” and “Specification Task
Completion”. Using the qr-forecast’s functionality, the
forecasted means of these factors are presented at Fig. 2
(right). Further information of the qr-forecast service
functionality integrated into the Q-Rapids dashboard can be
consulted at this video4 . Deployment instructions are also
available5.

Fig. 2 Forecasted means of software quality aspects using qr-

forecast

4 Video demonstration - https://youtu.be/uVumzekT4-s
5 Deployment instructions - https://git.io/fj8ND

Another example showing forecasted means of some
particular project metrics is shown in Fig. 3 (row 1 and row
2). In this case, the user has selected a forecasting horizon of
almost two months, and Arima (forcing seasonal models) as a
forecasting method. It’s noticeable how the returned values
follow a seasonal pattern, as the method used is forcing the
search and selection of seasonal ARIMA models. The
forecasts shown in Fig. 3 refer to the following software
related metrics:

• The developer’s “ability” or performance fixing
software bugs (“Bug Correction Throughput”, Fig. 3
row 1-left).

• The communication throughput between developers
and testers (“Developer Tester Communication”, Fig.
3 row 1-right).

• The amount of feedback provided by end users of the
monitored software (“End User Feedback”, Fig. 3 row
2-left).

• The percentage of commits related to core
components (“Core Component Commits”, Fig. 3
row 2-right).

Fig. 3 Forecasted means of project metrics using qr-forecast and

seasonal models

IV. CONCLUSION AND FUTURE WORK

We presented the qr-forecast service that aims to support
practitioners without specific statistical nor programming
knowledge to use and integrate the decision-support benefits
of forecasting models into their existing software reporting
tools. In addition, we have shown a specific application of the
qr-forecast service into an existing dashboard, showing
forecasts for several software quality aspects like Product
Stability or Bug Correction Throughput. The service has been
already deployed in four software related companies and
positive feedback has been gathered. As future work, we plan
to extend the available set of forecasting methods and to
include functionalities for automatic recommendation of the
most suitable forecasting method according to the nature of

the input data from the database/repository and in terms of
well-known forecasting accuracy measures like sMAPE [16]
or MASE [17].

ACKNOWLEDGMENTS

This work is a result of the Q-Rapids project, which has
received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement N°
732253.

REFERENCES

[1] R. Development Core Team, “R: A Language and Environment for
Statistical Computing,” Vienna Austria R Foundation for Statistical
Computing. 2008.

[2] R. L. Goodrich, “The Forecast Pro methodology,” Int. J. Forecast., vol.
16, no. 4, pp. 533–535, Oct. 2000.

[3] D. Reilly, “The AUTOBOX system,” Int. J. Forecast., vol. 16, no. 4,
pp. 531–533, Oct. 2000.

[4] J. H. Wilson and B. Keating, Forecasting and Predictive Analytics with
Forecast X. 2018.

[5] S. Urbanek. Rserve: Binary R server. R package version 1.7-3.1.
https://CRAN.R-project.org/package=Rserve. 2019.

[6] P. Newbold, “ARIMA model building and the time series analysis
approach to forecasting,” J. Forecast., vol. 2, no. 1, pp. 23–35, Jan.
1983.

[7] V. Assimakopoulos and K. Nikolopoulos, “The theta model: a
decomposition approach to forecasting,” Int. J. Forecast., vol. 16, no.
4, pp. 521–530, Oct. 2000.

[8] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
“STL: A Seasonal-Trend Decomposition Procedure Based on Loess
(with Discussion),” J. Off. Stat., vol. 6, pp. 3–73, 1990.

[9] S. Haykin, Neural Networks: A Comprehensive Foundation (3rd
Edition). 1999.

[10] D. Shaub and P. Ellis. forecastHybrid: Convenient Functions for
Ensemble Time Series Forecasts. R package version 4.2.17.
https://CRAN.R-project.org/package=forecastHybrid. 2019.

[11] S. J. Taylor, M. Park, U. States, B. Letham, M. Park, and U. States,
“Forecasting at scale at Facebook,” pp. 1–25, Sep. 2017.

[12] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state
space framework for automatic forecasting using exponential
smoothing methods,” Int. J. Forecast., vol. 18, no. 3, pp. 439–454, Jul.
2002.

[13] S. Makridakis and M. Hibon, “The M3-Competition: results,
conclusions and implications,” Int. J. Forecast., vol. 16, no. 4, pp. 451–
476, Oct. 2000.

[14] R. J. Hyndman and Y. Khandakar, “Automatic Time Series
Forecasting: The forecast Package for R,” J. Stat. Softw., vol. 27, no. 3,
2008.

[15] L. López et al., “Q-Rapids Tool Prototype: Supporting Decision-
Makers in Managing Quality in Rapid Software Development,” CAiSE
Forum. 2018.

[16] S. Makridakis, “Accuracy measures: theoretical and practical
concerns,” Int. J. Forecast., vol. 9, no. 4, pp. 527–529, Dec. 1993.

[17] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” Int. J. Forecast., vol. 22, no. 4, pp. 679–688, Oct.
2006.

