
Mining Dependencies in Large-Scale Agile Software
Development Projects: AQuantitative Industry Study
Katarzyna Biesialska

Universitat Politècnica de Catalunya
Barcelona, Spain

katarzyna.biesialska@upc.edu

Xavier Franch
Universitat Politècnica de Catalunya

Barcelona, Spain
franch@essi.upc.edu

Victor Muntés-Mulero
Beawre Digital S.L.
Barcelona, Spain

victor.muntes@beawre.com

ABSTRACT
Context: Coordination in large-scale software development is criti-
cal yet difficult, as it faces the problem of dependency management
and resolution. In this work, we focus on managing requirement
dependencies that in Agile software development (ASD) come in
the form of user stories. Objective: This work studies decisions of
large-scale Agile teams regarding identification of dependencies
between user stories. Our goal is to explain detection of depen-
dencies through users’ behavior in large-scale, distributed projects.
Method: We perform empirical evaluation on a large real-world
dataset from an Agile software organization, provider of a leading
software for Agile project management. We mine the usage data of
the Agile Lifecycle Management (ALM) tool to extract large-scale
development project data for more than 70 teams running over a
five-year period. Results: Our results demonstrate that dependen-
cies among user stories are not frequently observed (the problem
affects around 10% of user stories), however, their implications on
large-scale ASD are considerable. Dependencies have impact on
software releases and increase work coordination complexity for
members of different teams. Conclusion: Requirement dependencies
undermine Agile teams’ autonomy and are difficult to manage at
scale. We conclude that leveraging ALM monitoring data to auto-
matically detect dependencies could help Agile teams address work
coordination needs and manage risks related to dependencies in a
timely manner.

CCS CONCEPTS
• Information systems → Data mining; • Software and its
engineering→ Software development process management;
Risk management.

KEYWORDS
Requirement Dependencies, Agile Software Development, Mining
Software Repositories

ACM Reference Format:
Katarzyna Biesialska, Xavier Franch, and Victor Muntés-Mulero. 2021. Min-
ing Dependencies in Large-Scale Agile Software Development Projects: A
Quantitative Industry Study. In Evaluation and Assessment in Software Engi-
neering (EASE 2021), June 21–23, 2021, Trondheim, Norway. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3463274.3463323

EASE 2021, 21 - 23 June, 2021, Trondheim, Norway
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Evaluation and
Assessment in Software Engineering (EASE 2021), June 21–23, 2021, Trondheim, Norway,
https://doi.org/10.1145/3463274.3463323.

1 INTRODUCTION
Agile software development (ASD) advocates increasing customer
value through short and continuous product release cycles informed
by feedback. This software development paradigm has been widely
adopted in the industry for quite some time now.

User stories are the primary vehicle through which software
requirements are communicated within ASD teams. In principle,
user stories should be independent, negotiable, valuable, estimable,
small and testable – according to the popular INVEST framework
proposed by Wake [40]. Here we focus on the first rule, i.e. re-
quiring user stories to be independent. This constraint prescribes
non-overlapping scope of user stories and the ability to schedule
them in an arbitrary order. Yet, the condition is often not satis-
fied. It is noteworthy that dependencies that remain unmanaged
(either misidentified or ignored) can generate delay due to hindered
progress or be a source of serious software and system failures
[17, 26, 33, 42], which may result in delayed software delivery,
increased costs as well as cause stakeholders’ dissatisfaction [10].

Nevertheless, the evidence found in the literature regarding the
prevalence of interdependent requirements and the importance to
ensure their isolation is inconclusive. On the one hand, practition-
ers tend to emphasize that dependencies between requirements
are critical [18] and try to avoid them as much as they can [26].
On the other hand, software professionals tend to not regard the
problem of interdependency of requirements as important and con-
sider it to be related to the context [28]. Some studies indicate
that as many as 50% to 80% of all project requirements are interde-
pendent [6, 7]. However, contradictory research findings suggest
that the independence of requirements is frequently ensured by
practitioners [28]. What is more, there is a lack of research studies
addressing the topic of dependencies (especially including cross-
team dependencies) specifically in ASD environments [35, 38]. For
this reason, our study aims to fill this gap and provide more insights
on how dependencies are considered and handled in industry in
Agile implementations.

When it comes to work coordination, the size of software orga-
nization matters. Small and medium companies struggle because of
interdependence between projects and teams, but bigger companies
even more so [12]. Consequently, management and communication
of dependencies between teams as well as dependency risk manage-
ment, which aims to mitigate the negative impact of dependencies
on team performance, appear as major challenges in large-scale
ASD [36]. Therefore, this work addresses the scarcity of scientific
evidence on how dependencies are handled in large-scale Agile im-
plementations [20, 38]. In industry, management of large-scale ASD
projects is often coordinated through Agile project management
(ALM) tools [39]. Such software is a relevant source of information

https://doi.org/10.1145/3463274.3463323
https://doi.org/10.1145/3463274.3463323


EASE 2021, 21 - 23 June, 2021, Trondheim, Norway K. Biesialska et al.

on how Agile teams assign tasks or perform during iterations, to
name just a few insights that might be acquired while mining their
usage data.

2 BACKGROUND AND RELATEDWORK
At first, Agile development methods were said to be best suited for
small, co-located teams. However, inspired by success stories of
small Agile organizations, large-scale variants of Agile have been
increasingly adopted by large organizations [12, 15, 21, 29].

2.1 Large-Scale Agile Software Development
Unfortunately, there is no unified definition of what large-scale Ag-
ile actually is; various explanations have been offered throughout
the years. Most of them use the number of people involved, less
often they describe large-scale Agile by means of a project budget
or the size of software – i.e. requirements, user stories, features, or
lines of code [12, 14]. Let us take a closer look at two definitions that
seem most universal and summarize well the large-scale character-
istic from our perspective. The first definition is an interpretation
provided by Dingsøyr et al. [13] which defines size of Agile with
respect to the number of collaborating and coordinating teams:
where large-scale is when there are 2-9 collaborating teams and
as very large-scale above 10 collaborating teams [13]. The second
one, by Dikert et al. [12], defines large-scale as a software develop-
ment organization having at least 50 people or comprising at least
6 teams.

As the size of Agile implementation increases, so does the com-
plexity of coordination. Large-scale ASD projects observe unin-
tended changes, unknown interdependencies, cross-team collabo-
rations that challenge current coordination mechanisms, which in
effect evolve with time as project stakeholders need to address
new problems (e.g. new mechanisms for coordination emerge)
[27, 30, 34]. For instance, as reported by Moe et al. [27], the most
popular approach for cross-team coordination in a large-scale set-
ting is to hold regular meetings between representatives of Scrum
teams (the so-called Scrum of Scrums).

To address coordination challenges, a wide range of large-scale
Agile frameworks has emerged throughout the years, such as Disci-
plined Agile Delivery (DAD) [1], Large Scale Scrum (LeSS) [22], or
Scaled Agile Framework (SAFe) [23]. Particularly SAFe has risen
to prominence, becoming effectively the dominating Agile scaling
practice [39]. The SAFe framework, by its nature, empowers au-
tonomous teams making teams responsible for how they conduct
their work. As demonstrated in [26], for many teams self-directed
task allocation is not an easy and straighforward Agile practice
to follow. Notwithstanding, any kind of dependency that has an
influence on work order is a serious obstruction to upholding the
rule. Even more so, if a dependency spans numerous teams and
different team members.

2.2 Dependency Management in Software
Engineering

The body of research on dependencies is mainly focused on general
dependencies in non-ASD environments [38]. Importantly, depen-
dencies in the ASD context are potentially identified at a different
stage than in plan-driven software projects [38]. Strode [38] argues

that unlike in plan-driven software projects, requirements are not
written down in advance in a predefined requirement specifica-
tion, but are rather continuously generated and processed in short
development cycles. Sekitoleko et al. [36] recognizes five main chal-
lenges associated with cross-team dependencies in a large-scale
ASD: the planning challenge, the task prioritization challenge, the
knowledge sharing challenge, the code quality challenge, and the
integration challenge. In a similar vein, numerous studies have
linked dependencies with the coordination needs within software
teams (e.g. [4, 35]). Hence, naturally, the problem of dependency
management can be viewed through the lens of coordination theory.
According to the Coordination Theory framework devised by Mal-
one and Crowston [25], coordination can be defined as "the process
of managing dependencies between activities", where dependencies
break down to three basic types: (i) task-task, (ii) task-resource,
(iii) resource-resource [9]. Where the term task refers in this case
to a work item or activity to be accomplished. Similarly, Strode
[38] devised a dependency taxonomy for ASD projects, which out-
lines how dependencies can be addressed by different coordination
mechanisms.

In SAFe, for programs with many value streams and release
trains, dependencies between stories are inevitable. In order to
manage dependencies between teams large-scale ASD projects it
is often recommended to hold Scrum of Scrums [15], yet some
studies provide evidence that questions efficiency of this method
in large projects [30, 34]. Stakeholders such as product managers,
product owners, or release train engineers need to know about
dependencies between teams (including the level on which they
occur) to coordinate planning and execution of software. In SAFe,
Scrum Masters with the help of their teams are responsible for
managing dependencies.

In general, there are many types of dependencies. Therefore, var-
ious dependency requirement models [11, 43] have been proposed
in the Requirements Engineering domain. In this study, we focus
on the simplest case, which indicates whether there is a depen-
dency or not between user stories and distinguishes the order (i.e.
predecesssor-successor).

2.3 Tool-Aided Software Engineering
With a growing number of technological tools supporting software
development teams in their work and increased interest in data-
informed decision-making, the Mining Software Repositories (MSR)
field has experienced dynamic growth in recent years.

Interaction data collected from tools such as Integrated Devel-
opment Environments (IDE) or issue trackers have received a lot
of attention in the research community [3, 31]. However, logs of
developer actions or issue management data do not reveal the full
spectrum of software development activities. In contrast, ALM tools
capture the activities of different stakeholders involved in the soft-
ware development process across different tasks (e.g. requirements
engineering, testing, defect resolution). Yet, there exists a very lim-
ited set of software engineering studies that have leveraged data
coming from that data source (e.g. [24, 37]).

Furthermore, ALM tools are a source of unobtrusively collected
information on how Agile teams assign tasks or perform during
iterations [24]. Comparing to traditional interview-based research



Mining Dependencies in Large-Scale Agile Software Development Projects EASE 2021, 21 - 23 June, 2021, Trondheim, Norway

or controlled experiments, such empirical evidence gathered from
regular project activities offers researchers access to unprocessed
usage and behavior data, being a “gold-mine of actionable infor-
mation" [19]. Likewise, such a source of information can supply
project teams with up-to-date monitoring data allowing them bet-
ter understand complex business processes and improve decision
making in their organizations [3].

3 CONTEXT AND MOTIVATION
In this section, we describe the industrial context of this study.

3.1 Company Context
We performed this study in cooperation with CA Technologies,
now a Broadcom company (for brevity referred to as CA in the
rest of this paper). CA is a multinational corporation delivering
enterprise software products. The company is a provider of Rally
(formerly known as CA Agile Central), an Agile project manage-
ment software. Rally is one of the leading ALM tools on the market,
according to the VersionOne’s Annual State of Agile Survey [39].
CA runs its teams and projects according to SAFe principles and has
considerable experience with scaling ASD teams inside and outside
the organization. Overall, the company has supported hundreds
of enterprises during their large-scale organizational transforma-
tions. With acquisition of Rally Software (for brevity referred to as
Rally in the rest of this paper) in 2015, CA has adopted Big Room
Planning for well over a decade on its own products, which is now
practised with each line of business, and has helped hundreds of
enterprises launch this method for themselves. The company often
runs large programs with several SAFe value streams and release
trains. Although Rally uses SAFe and its ALM tool in all business
units, we purposefully selected only IT-related teams for our study.
This ensures that the collected information is relevant to software
development activities.

3.2 Scaled Agile Implementation at the
Company

Work items are hierarchical. Epics decompose to features. A feature
is typically broken into multiple user stories. User stories are primary
work items and may consist of tasks. User stories and tasks are
considered intra-team level work items.

Figure 1: Hierarchy of work items in Rally, where 1:* de-
notes a one-to-many relationship.

The ALM tool supports creating dependencies between portfolio
items of the same type on the lowest level – this means effectively
user story’s dependencies. Story-to-story dependencies belong to
the predecessor-successor relationship type. This type of relationship
indicates an ordinal relationship in which user stories are depen-
dent upon each other with regard to their completion. Therefore,
a predecessor is a user story which must be completed before a
user story identified as its successor. Predecessors and successors
can belong to various projects, provided they exist within the same

workspace. A user story may have many predecessors as well as
successors. In the ALM tool, every user story has a separate at-
tribute to hold information about possible dependencies, as shown
in Figure 2. A user can only indicate whether the dependency is
preceding or succeeding a given user story.

Within SAFe, product teams may use a combination of practices
such as Scrum, Lean, or Kanban. In the studied Rally tool, Kanban
stages are optional and customized by a team if it decides to follow
Kanban principles.

Iteration is a time-box within which development work is per-
formed. The studied ALM tool facilitates release management tasks
by allowing users to create a release plan and adding user stories to
a scheduled release. The ALM tool raises a warning if user stories
with dependencies are not scheduled. Rally’s teams feature a range
of software engineering practitioner roles: developers, product own-
ers, development managers, release train engineers, testers, scrum
masters, among others.

Figure 2: Screenshot of theALM tool showing dependencies.

4 STUDY DESIGN
This section outlines: methodology that we have followed while
conducting our study, research questions that we have posed as
well as explains the data collection and analysis of our dataset.

4.1 Research Method
This empirical study leverages two orthogonal research approaches.
Firstly, our study falls into a category of an exploratory study;
it is an observational study, where the findings are drawn from
observations. Secondly, considering two complementary (rather
than competitive) methods for conducting empirical studies, i.e.
quantitative and qualitative [8, 41], we conclude that this study is
a quantitative investigation. Namely, we support our exploratory
case study only with quantitative data, which was gathered through
a systematic process, as described later in this section. Noteworthy,
we leverage the opportunity to study large-scale ASD process in real,
industrial setting. In that respect, our study manages to overcome
some of the challenges that Easterbrook et al. [16] consider to
be inevitable in research conducted in industrial settings, e.g. the
Hawthorne effect. Concretely, without interfering with the observed
ASD processes, we were able to gather data that allowed us to find
out what practitioners actually do rather than say they do.



EASE 2021, 21 - 23 June, 2021, Trondheim, Norway K. Biesialska et al.

4.2 Research Goal and Questions
In the empirical strategy, we used the Goal Question Metric (GQM)
[2, 5], according to which we define the goal of our study as follows:
analyze decisions of large-scale Agile teams regarding identification
and handling of dependencies between user stories; for the purpose
of understanding how dependencies are detected and how they
affect projects; with respect to projects’ characteristics and team
members’ activities; from the point of view of software engineer-
ing researchers; in the context of data collected from 71 software
projects run according to SAFe. We designed three research ques-
tions. Based on the above, this study formulates and tries to answer
the following research questions (RQs):

RQ1: How often and when are dependencies identified by members
of ASD projects?
In principle, ASD enforces no dependencies between user stories.
These are independent items by default. Our hypotheses is that in
reality this constraint does not hold inmany cases.We are interested
at what stage of an iteration dependencies are identified by teams.
Is it at the very beginning, or later on? Are dependencies declared
just after the creation of a user story or maybe further down the
road?

RQ2:Do team characteristics influence the identification and num-
ber of dependencies? In this RQ, we aim to understand how teams
in a large-scale Agile organization cope with dependencies. Does
the team size, composition or distribution play a role? What is the
ratio of internal to external team dependencies? Our hypothesis
is that with increasing number of teams and people involved in
the development project, the number of cross-team dependencies
usually increases. Yet, dependencies at the cross-team level have
received little attention from software engineering researchers to
date [35]. In this RQ, we aim to shed some light on that matter.

RQ3: How often are dependencies closed before the iteration ends?
This question provides insights on the timeliness of the dependency
resolution and coordination within teams. When are dependencies
closed? Does it happen that a user story is closed with an open
dependency? We investigate if there is a relationship between the
stage of a user story and the type of dependency that is being closed.

4.3 Data Retrieval and Analysis
Data for this study is protected by a nondisclosure agreement;
therefore, the information presented in this paper is sanitized and
contains only necessary level of detail (e.g. we identify user roles
rather than individual persons) to draw scientific conclusions for
research purposes. At Rally, projects are organized in a hierarchy.
We collected data from 71 projects from Rally. All these projects
were activelymaintained at least for 5 years. All selected projects are
IT-related, some related to the development of software products,
while other devoted to IT support and maintenance activities. The
selected projects involved users in different roles such as architects,
developers, product owners or testers, among others.

With respect to co-location of the teams, Rally uses a hybrid
approach. The data from selected projects is related to the activ-
ity of teams located in 7 distinct locations: 5 in the United States
and 2 in other countries (i.e. India and the EMEA region). Some
team members worked from home office which was indicated as a
separate office location and did not provide detailed whereabouts.

05 Mar 2018

12 Mar 2018

19 Mar 2018

26 Mar 2018

02 Apr 2018

09 Apr 2018

16 Apr 2018

23 Apr 2018

30 Apr 2018

07 May 2018

14 May 2018

21 May 2018

(user story created)
user 1

(release added,
iteration added)

user 1

(name changed,
stage changed)

user 2

(2 dependencies added,
1 dependency removed)

user 2

(iteration changed,
stage changed)

user 1

(stage changed)
user 1

Activity timeline for a user story

Figure 3: Example of user story activity and duration re-
trieved from the ALM tool.

Similarly, for some team members detailed location was not speci-
fied. However, in some cases we were able to find out timezone in
which they worked, hence we made an educated guess and assigned
an appropriate location with a reasonable degree of precision.

For efficient querying of the current state of work items, we
used the Representational State Transfer (REST) API provided by
Rally. Using the API we were able to collect the current objects in
JavaScript Object Notation (JSON) format. To retrieve historical
data, we leveraged another type of REST API provided by the com-
pany. The data collected through this interface included revision
history of user stories as well as snapshots of those work items. An
illustrative example of information retrieved from revision histories
is shown in Figure 3. Snapshots provide information on the state
of the artifact at the time it is changed. Noteworthy, dependencies
between user stories do not have explicit identifiers (similar to work
item artifacts) in the ALM tool. Hence, we needed to process the
revision history of a user story to extract the dependency assigned
to the user story. Based on that we created our own dataset of likely
dependency-related data. We also used the company’s internal data-
base to enrich our dataset with historical information, such as the
project hierarchy or user data.

The summary of collected dependency-related data from the
studied ALM includes:

• project-related data (e.g. project hierarchy, team members,
user stories within a project, iterations, releases);

• user story-related data (e.g. creation date, volume and nature
of activity within the user story, dependencies, iterations
and releases to which the user story belongs);

• user-related data (e.g. user roles, user story owners, person
identifying dependency, contributors of the user story with
a dependency, members of the team to which the user story
belongs).

Based on the retrieved data, we defined our own metrics to
aggregate related data. In Table 1, we characterize our dataset and
provide descriptive statistics for selected metrics.

5 RESULTS
We have structured our empirical evaluation based on research
questions presented in the previous section.



Mining Dependencies in Large-Scale Agile Software Development Projects EASE 2021, 21 - 23 June, 2021, Trondheim, Norway

Table 1: Metrics descriptions and descriptive statistics for the dataset used in the study.

Metric n Unique n Type Skewness Kurtosis Min Q1 Median Q3 Mean Std. Dev. Max
#predecessors-proj 1181 n/a number 5.45 43.45 1.00 1.00 1.00 1.00 1.28 0.84 11.00
#successors-proj 1050 n/a number 5.70 54.44 1.00 1.00 1.00 1.00 1.43 1.16 18.00
#team_members-proj 1032 588 number 5.00 39.00 1.00 3.00 6.00 10.00 8.00 9.00 82.00
#outside_team_contributors-proj 66 32 number 1.00 0.00 1.00 6.00 12.00 24.00 17.00 14.00 55.00
days_from_iter_change-dep 4225 n/a number 1.02 0.16 1.00 14.00 125.00 317.00 190.29 196.92 770.00
days_to_iter_change-dep 2249 n/a number 0.89 -0.65 0.00 6.00 58.00 387.00 206.96 248.80 776.00

#(predecessors,successors)-proj: number of predecessors/successors per project; #team_members-proj: number of team members per project;
#outside_team_contributors-proj: number of contributors from outside the team per project; days_(from,to)_iter_change-dep: number of days that passed

from the last iteration change/remained to the next iteration change for a user story with a dependency;

0 1 2 3 4 5 6 7 8 9 101112131415161718
Number of dependencies

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

De
ns

ity

Predecessors
Successors

(a)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00

Days

Successors
(removed)

Predecessors
(removed)

Successors
(added)

Predecessors
(added)

median = 32 days

median = 8 days

median = 16 days

median = 50 days

(b)

Figure 4: a) Density showing the number of dependencies per user story; b) distribution of dependencies w.r.t. to their duration.

Table 2: Stages for a user story in Rally - adapted from [32]

Stage Description
Idea In this first state, business requirements are gathered for the particular user story. No development effort is required at this stage.
Defined In this stage a user story is in the team’s backlog of work. Its development has not started yet.
In-Progress A first active working state for a user story, when actual development work starts along with the cycle time clock.
Completed This state informs that all development and testing have been finished and the work is waiting for a product owner (or a person in a similar role)

to verify and approve it.
Accepted This stage means the user story has met the acceptance criteria ("definition of done"). The accepted date is set and the cycle time clock stops.
Released At this stage the user story is released.

5.1 RQ1: How often and when are dependencies
identified by members of ASD projects?

We found that in the 71 investigated projects, users declared ex-
plicitly a number of dependencies. In our dataset, around 10% of
user stories have declared at least one dependency (of any type).
In Figure 4a, we depict the number of dependencies per user story
using density as a measure of a frequency of occurrence. Most user
stories with declared dependencies have only one predecessor or
successor. Having over 2 predecessors or successors for a user story
is very rare. The maximum number of predecessors for one user
story is 11, while for successors it is 18.

We found that dependencies are identified between the same day
of a creation of a user story or even up to 1238 days after the creation
of a user story to which they are assigned. Mean equals almost 41
days for successors, and 35 days for predecessors. However, 25% of
dependencies are created in 2 or less days. There are six different

states of a user story scheduled in an iteration or release, known
as schedule states in the Rally software (which we will refer to as
stages). Their definition can be found in Table 2.

Teams identify dependencies usually in the Idea, Defined or In-
Progress stages, as shown in a stacked bar chart in Figure 5. Our
data analysis suggests, that predecessors are added in earlier stages
than successors. 82.9% predecessors are added in the first two stages
(i.e. Idea and Defined), while for successor this percentage is consid-
erably lower and equals 51.5%. Yet, 17.1% predecessors are added
after the Idea and Defined stages.

Summary of RQ1: Dependencies are explicitly declared for
every tenth user story. More than one in six declared predeces-
sors are added in the In-Progress or later stages of user stories.



EASE 2021, 21 - 23 June, 2021, Trondheim, Norway K. Biesialska et al.

Idea
Defin

ed

In-Pr
ogres

s

Com
plete

d

Acce
pted

Rele
ase

d
0

100
200
300
400
500
600
700
800
900

1000
1100
1200

Nu
m

be
r o

f d
ep

en
de

nc
ie

s

Predecessors
(added)
Successors
(added)
Predecessors
(removed)
Successors
(removed)

Figure 5: Number of dependencies added or removed w.r.t.
stage.

5.2 RQ2: Do team characteristics influence the
identification and number of dependencies?

Architect (0.6%)
Developer (8.6%)
Development Manager (1.1%)None (19.7%)

Release Train
Engineer (0.1%)

Product Owner (38.6%)

Tester (0.6%)
Scrum Master (16.9%)

Product Manager (3.0%)
Team Lead (3.5%)
User Experience (0.2%)
Technical Writer (7.2%)

Figure 6: Distribution of user roles among dependency own-
ers.Nonemeans there is no information regarding the user’s
role.

Users who add or remove dependencies for the user story (we re-
fer to them as dependency owners) hold different roles (see Figure 6).
Usually the two most active users within user stories, based on the
whole activity history of the user story are dependency owners.
Further, dependencies are usually created or removed either by an
owner of the user story, or one of the 4 most active users for a given
user story. Figure 7 illustrates this as it shows that dependency
owners cover the whole spectrum of user roles in our projects and
they are mostly ranked between places 1 and 4. Concretely, we
can see that release train engineers who declare dependencies are
usually either the second most or the fourth most active users in the
user stories where they identify dependencies. On the other hand,
dependency owners in the scrum master roles usually come first
or second in terms of their activity among the user story contribu-
tors. The number of dependencies created by the user story creator
(owner) is almost equal to the number of dependencies created by
other users. Concretely, in 1737 cases a dependency is created by
its owner, and in 1898 cases a dependency is created by some other
user.

Figure 7: Distribution of dependency owners’ user roles w.r.t.
their activity ranking spots in user stories. The more users
in a given role are classified in the respective rank, the bigger
the size of the circle per role.

Furthermore, the team composition and size differ much from
team to team, as illustrated in Figure 8. As shown in Figure 9,
59.1% users stories linked with a dependency belonged to the same
projects (indicated as 0 in the figure). 19.3% of such user stories
shared the same parent project. In other words, they belonged to
different projects, but at the same level of hierarchy (indicated as 1 in
the respective figure). 21.6% of user stories linkedwith dependencies
are created within projects at different level of hierarchies, being
up to 5 levels of project hierarchy away. Hence, with regard to the
volume of cross-team dependencies, we identified that the biggest
group is formed by user stories that are 1 or 2 levels of project
hierarchy away, they constituted 37.7% of all user stories linkedwith
dependencies. In ASD, physical location of team members plays
an important role. In principle, co-located teams, where functional
teams work in the same workspace are preferable. However, due
to several reasons (size of an organization, costs etc.) a company
following Agile principles may decide to work in a distributed
setting. Members of the analyzed projects worked from 3 different
countries in 3 different continents.

Summary of RQ2: Over a half of the dependencies belong
to the same project, hence cross-team dependencies are not
prevalent. However, if they are declared, they tend to belong
to related projects (e.g. having the same parent project). Team
compositions may differ from team to team, but dependencies
are usually indicated by product owners, scrum masters or
developers. Users identifying dependencies are one of the most
active contributors to users stories with declared dependencies.

5.3 RQ3: How often dependencies are closed
before the iteration ends?

Dependencies can be closed in two ways: either the user does it
explicitly by removing the dependency, or the user story is closed.
In the latter case, the most frequent scenario assumes that a de-
pendency is closed as a consequence of a user story (to which it
belongs) being completed. To summarize, a stacked bar chart in



Mining Dependencies in Large-Scale Agile Software Development Projects EASE 2021, 21 - 23 June, 2021, Trondheim, Norway

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Number of people per project

Project J
Project I

Project H
Project G
Project F
Project E
Project D
Project C
Project B
Project A

Sa
m

pl
e 

pr
oj

ec
ts

Architect
Developer

Development Manager
None

Product Manager
Product Owner

Release Train Engineer
Scrum Master

Team Lead
Technical Writer

Tester
User Experience

Figure 8: Example of team compositions. None means there is no information regarding the user’s role.

0 1 2 3 4 5
Project level hierarchyDi

st
rib

ut
io

n 
of

 u
se

r s
to

rie
s w

ith
 d

ep
en

de
nc

ie
s

Figure 9: Distribution of user stories with dependencies
across projects w.r.t. the project level hierarchy. The num-
bers on the x-axis should be interpreted as follows: 0 - user
stories belong to the same projects; 1 - user stories belong to
different projects but share parent projects (they are 1 level
of project hierarchy away); 2 - user stories are 2 levels of
project hierarchy away, etc.

Figure 5 shows that the total number of created dependencies is
considerably higher than the number of removed dependencies.
Now, let us focus on the first case, where a user deliberately removes
the dependency. Our data analysis unfolded that dependencies are
removed between the same day of a creation of a user story or even
up to 1535 days after the creation of a user story to which they
are assigned. Mean equals almost 121 days for successors, and 80
days for predecessors. However, 25% of dependencies are removed
between 8 and 15 days, see violin plots in Figure 4b for more de-
tails. As it can be seen in Figure 5, predecessors are predominantly
removed in the Defined and Idea stages, and to lesser extent in the
In-Progress stage. Successors, on the other hand, are removed much
more often in the Released stage than predecessors.

Summary of RQ3: Predecessors are mostly removed in the
first two stages of a user story to which they are assigned, while
successors are removed mainly in the last stage.

6 DISCUSSION AND IMPLICATIONS
In this section, we offer our explanation of the results and suggest
implications drawn from our analysis.

We found that a larger number of successors is identified in late
stages (such as Completed, Accepted, Released) than predecessors.
This difference can be interpreted in two ways: (i) before the actual
development work starts predecessors may be easier to identify
than successors, because the latter may not exist yet; (ii) a user story
may be created as a byproduct of another user story (e.g. breaking
down and isolating scope of user stories), hence one knows the
newly created user story is linked to the latter from the start. In
the same vein, in the In-Progress stage 27.0% successors are added.
This can be perhaps explained by the fact that while a user story
progresses through development phases, new user stories emerge
which happen to be dependent and naturally they become suc-
cessors of the user story at hand. Importantly, in the In-Progress
stage 12.9% predecessors are declared. It is worth mentioning that
in general, an implementation of a predecessor user story must
be completed before work on a successor user story can begin.
Hence, predecessors added in user stories for which development
has already started, can be considered a violation of this rule. We
could interpret a predecessor declaration for a user story in the
In-Progress or later stages as delayed. The nature of such late dec-
larations remains to be clarified and could be a stepping stone to
uncovering hidden (implicit) dependencies.

Moreover, our results suggest that users – who are frequent
contributors and possibly have the best understanding of the nature
of a work item at hand – are most likely candidates to identify the
dependencies and have knowledge of their impact on other user
stories.

The ratio between dependencies created and removed by users
suggests that teams focus more on the creation of a dependency in
a user story than the removal. Nevertheless, as predecessors are
usually removed in the Defined and Idea stages, we conclude that



EASE 2021, 21 - 23 June, 2021, Trondheim, Norway K. Biesialska et al.

this is a desired behavior. Furthermore, our data analysis shows
that there are several predecessors removed at later stages, which
suggests that either user story contributors forgot to remove prede-
cessors in a timely manner or started working on the successor user
story while the implementation of the predecessor user story is still
not completed. Noteworthy, the predecessor-successor relationship
type is the only type of dependency that can be applied in the in-
vestigated ALM tool. This dependency type imposes a relatively
strict rule on the order and timeline of the user story completion.
For instance, other tools [31] consider more types of dependencies
(with varying levels of completion time strictness).

Implication #1: The large majority of user stories do not have
declared dependencies. Yet, the volume of unidentified dependen-
cies is not known. It remains as an important and open problem,
calling for further investigation by researchers as at the moment it
is not a well-researched topic.

Implication #2: The declaration of dependencies is frequently
made by people familiar with user stories and within the same
project. It remains to be clarified if the knowledge sharing practices
within SAFe teams ensure that the scope of work in other projects
is not dependent.

Implication #3: ALM monitoring data turns out to be a promis-
ing data source, yet it has received very limited attention in research
so far. Researchers should strive to exploit more diverse set of data
sources [3], including ALM data.

7 THREATS TO VALIDITY
In this section, we discuss possible threats that may have a negative
impact on the results of this study.

Threats to internal validity: ALM systems track more infor-
mation that we could process including complex relations between
defects, features and tests. The analysis of the latter data are neither
the subject of this study nor we found a good reason to include
them. Nevertheless, as we could not analyze all possible sources
of information that could carry a dependency threat, we add this
caveat that the dataset of dependency-related data identified by us
may not be exhaustive. Also, data for several artifacts is incomplete
or there is noise introduced through data quality issues.

Threats to external validity:We however acknowledge that
our dataset may not be representative of all kinds of software
projects, including commercial settings (along with open source
projects, which are similar to commercial projects in many aspects).
However, to minimize this threat, we selected a large pool of long-
running projects – over 70 projects maintained for at least 5 years.
Both the ALM tool and the company which data we used may not
be representative of how other companies use that specific tool
or, in general, cope with dependencies. Further investigation to
verify our findings using other industrial as well as open source
projects would be desirable. Also, in this work we focus on an
organization that follows the SAFe methodology in its projects.
Carrying out a study on projects that use other forms of large-scale
ASD than SAFe would be beneficial. Further, we study the usage of
the Rally software, which – although popular among large-scale
practitioners [39] – may not represent the whole spectrum of ALM
tools and their usage. This may be especially evident in the case of
dependency indication. Numerous factors may impact the usage of

the dependency detection feature in the software (e.g. knowledge
of the tool, or the usability of user interface and user experience).
Hence, our results, which are based on the usage of a concrete tool,
may be skewed. However, the usage data covered in this study is
collected from teams working in the company that developed the
said software, hence their understanding of the tool should be suf-
ficient to use its features (e.g. dependency declaration) proficiently.
Lastly, due to limited access to Rally’s software development teams,
this study does not use qualitative input to interpret the results
from the practical perspective. Yet, two authors of this paper used
to work at CA, and they were closely working with Rally’s software
development teams, which helped in understanding company’s
datasets and tools.

8 CONCLUSION AND FUTUREWORK
Work coordination in large-scale ASD is a non-trivial task and
its complexity considerably increases with dependencies. Yet, the
scientific evidence on large-scale Agile implementations is very
limited. For instance, SAFe (used by the studied company), while
maintaining the top position in Agile scaling practices for some
years now [39], still lacks empirical evaluation and academic re-
search describing it [12, 20]. In this work, we provide scientific
evidence on how the framework is adopted in the industry, focus-
ing on the particular case of dependency management. For that
purpose, we studied over 70 industrial, large-scale Agile projects
using quantitative methods. Our paper also contributes to the MSR
field, as it studies software development patterns through data-
informed analysis of software repositories. Importantly, we utilize a
relatively rarely used source of data, i.e. an ALM tool. Furthermore,
in this work, we show that the problem of dependency manage-
ment should be viewed through the lens of coordination theory.
Self-management of software teams is an inherent characteristic of
ASD, but is also a major challenge at scale. We are of the opinion
that automatic detection of dependencies can help teams to largely
preserve their authority as to how they organize their own work,
and hence eliminate the need for incorporating more strict and
traditional mechanisms of coordination at the organization level.
Furthermore, understanding implicit dependencies and being able
to uncover them could considerably help project teams in managing
dependencies. Although in our work we only focus on the explicitly
indicated dependencies through the dependency attribute, descrip-
tions of user stories and comments provided in natural language
leave room for future research.

ACKNOWLEDGEMENT
This work is supported in part by the Catalan Agencia de Gestión de
Ayudas Universitarias y de Investigación (AGAUR) through the FI
PhD grant and the project 2017 SGR 01694. The research is also par-
tially supported by the Spanish Ministerio de Economía, Industria
y Competitividad through the GENESIS project (grant TIN2016-
79269-R). We would like to thank the anonymous reviewers and
Broadcom employees for their insightful comments on the earlier
version of this paper.



Mining Dependencies in Large-Scale Agile Software Development Projects EASE 2021, 21 - 23 June, 2021, Trondheim, Norway

REFERENCES
[1] Scott W Ambler and Mark Lines. 2012. Disciplined agile delivery: A practitioner’s

guide to agile software delivery in the enterprise. IBM press.
[2] Victor R Basili and H Dieter Rombach. 1988. The TAME project: Towards

improvement-oriented software environments. IEEE Transactions on software
engineering 14, 6 (1988), 758–773.

[3] Katarzyna Biesialska, Xavier Franch, and Victor Muntés-Mulero. 2020. Big Data
analytics in Agile software development: A systematic mapping study. Informa-
tion and Software Technology 132 (2020), 106448.

[4] Kelly Blincoe, Giuseppe Valetto, and Daniela Damian. 2013. Do all task depen-
dencies require coordination? the role of task properties in identifying critical
coordination needs in software projects. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. 213–223.

[5] Gianluigi Caldiera, Victor R Basili, andHDieter Rombach. 1994. The goal question
metric approach. Encyclopedia of software engineering (1994), 528–532.

[6] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and J Natt och
Dag. 2001. An industrial survey of requirements interdependencies in software
product release planning. In Proceedings Fifth IEEE International Symposium on
Requirements Engineering. IEEE, 84–91.

[7] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2015.
Predicting delays in software projects using networked classification. In Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 353–364.

[8] John W Creswell. 2009. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications.

[9] Kevin Crowston. 1997. A Coordination Theory Approach to Organizational
Process Design. Organization Science 8 (1997), 157–175.

[10] Karina Curcio, Tiago Navarro, Andreia Malucelli, and Sheila Reinehr. 2018. Re-
quirements engineering: A systematic mapping study in agile software develop-
ment. Journal of Systems and Software 139 (2018), 32–50.

[11] Åsa G Dahlstedt and Anne Persson. 2005. Requirements interdependencies: state
of the art and future challenges. Engineering and managing software requirements
(2005), 95–116.

[12] Kim-Karol Dikert, Maria Paasivaara, and C. Lassenius. 2016. Challenges and
success factors for large-scale agile transformations: A systematic literature
review. Journal of Systems and Software 119 (2016), 87–108.

[13] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. 2014. What is large in
large-scale? A taxonomy of scale for agile software development. In International
Conference on Product-Focused Software Process Improvement. Springer, 273–276.

[14] Torgeir Dingsøyr and Nils Brede Moe. 2014. Towards principles of large-scale
agile development. In International Conference on Agile Software Development.
Springer, 1–8.

[15] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Amdahl Seim. 2018.
Exploring software development at the very large-scale: a revelatory case study
and research agenda for agile method adaptation. Empirical Software Engineering
23, 1 (01 Feb 2018), 490–520.

[16] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. In Guide to
advanced empirical software engineering. Springer, 285–311.

[17] Martin S Feather, Steven L Cornford, andMark Gibbel. 2000. Scalable mechanisms
for requirements interaction management. In Proceedings Fourth International
Conference on Requirements Engineering. ICRE 2000.(Cat. No. 98TB100219). IEEE,
119–129.

[18] Xavier Franch, Daniel Mendez, Andreas Vogelsang, Rogardt Heldal, Eric Knauss,
Marc Oriol, Guilherme Travassos, Jeffrey Clark Carver, and Thomas Zimmermann.
2020. How do Practitioners Perceive the Relevance of Requirements Engineering
Research? IEEE Transactions on Software Engineering (2020), 1–1.

[19] Jin Guo, Mona Rahimi, Jane Cleland-Huang, Alexander Rasin, Jane Huffman
Hayes, andMichael Vierhauser. 2016. Cold-start software analytics. In Proceedings
of the 13th International Conference on Mining Software Repositories. 142–153.

[20] Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel, and Francisco
Gomesde Oliveira Neto. 2021. Requirements engineering challenges and practices
in large-scale agile system development. Journal of Systems and Software 172
(2021), 110851.

[21] Lina Lagerberg, Tor Skude, Pär Emanuelsson, Kristian Sandahl, and Daniel Ståhl.
2013. The Impact of Agile Principles and Practices on Large-Scale Software
Development Projects: A Multiple-Case Study of Two Projects at Ericsson. In
2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. 348–356.

[22] Craig Larman and Bas Vodde. 2016. Large-scale scrum: More with LeSS. Addison-
Wesley Professional.

[23] Dean Leffingwell, D Jemilo, M Zamora, C ONeill, and A Yakuma. 2014. Scaled
agile framework (SAFe). Haettu 27 (2014), 2014.

[24] Jun Lin, Han Yu, Zhiqi Shen, and Chunyan Miao. 2014. Studying Task Allocation
Decisions of Novice Agile Teams with Data from Agile Project Management
Tools. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14). ACM, New York, NY, USA, 689–694.

[25] Thomas W Malone and Kevin Crowston. 1994. The interdisciplinary study of
coordination. ACM Computing Surveys (CSUR) 26, 1 (1994), 87–119.

[26] Zainab Masood, Rashina Hoda, and Kelly Blincoe. 2020. How agile teams make
self-assignment work: a grounded theory study. Empirical Software Engineering
25, 6 (2020), 4962–5005.

[27] Nils Brede Moe, Torgeir Dingsøyr, and Knut Rolland. 2018. To schedule or not to
schedule? An investigation of meetings as an inter-team coordination mechanism
in large-scale agile software development. (2018).

[28] Mirosław Ochodek and Sylwia Kopczyńska. 2018. Perceived importance of agile
requirements engineering practices–a survey. Journal of Systems and Software
143 (2018), 29–43.

[29] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen.
2018. Large-scale agile transformation at Ericsson: a case study. Empirical
Software Engineering (11 Jan 2018).

[30] Maria Paasivaara, Casper Lassenius, and Ville T Heikkilä. 2012. Inter-team
coordination in large-scale globally distributed scrum: Do scrum-of-scrums really
work?. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement. 235–238.

[31] Mikko Raatikainen, Quim Motger, Clara Marie Lüders, Xavier Franch, Lalli
Myllyaho, Elina Kettunen, Jordi Marco, Juha Tiihonen, Mikko Halonen, and
Tomi Männistö. 2021. Improved dependency management for issue trackers in
large collaborative projects. arXiv:2102.08485 [cs.SE]

[32] Rally Software. 2018. What does each Schedule State mean for a story
in Rally? https://community.broadcom.com/communities/community-
home/digestviewer/viewthread?MID=764423#bm9055b0b6-994a-4324-aeb7-
acc04fb7489e Online; accessed 15 February 2021.

[33] William N Robinson, Suzanne D Pawlowski, and Vecheslav Volkov. 2003. Require-
ments interaction management. ACM Computing Surveys (CSUR) 35, 2 (2003),
132–190.

[34] Knut HRolland, VidarMikkelsen, andAlexander Næss. 2016. Tailoring agile in the
large: Experience and reflections from a large-scale agile software development
project. In International Conference on Agile Software Development. Springer,
Cham, 244–251.

[35] Alexander Scheerer, Saskia Bick, Tobias Hildenbrand, and Armin Heinzl. 2015.
The Effects of Team Backlog Dependencies on Agile Multiteam Systems: A Graph
Theoretical Approach.. In HICSS, Tung X. Bui and Ralph H. Sprague Jr. (Eds.).
IEEE Computer Society, 5124–5132.

[36] Nelson Sekitoleko, Felix Evbota, Eric Knauss, Anna Sandberg, Michel Chaudron,
and Helena Holmström Olsson. 2014. Technical dependency challenges in large-
scale agile software development. In International conference on agile software
development. Springer, 46–61.

[37] Junji Shimagaki, Yasutaka Kamei, Naoyasu Ubayashi, and Abram Hindle. 2018.
Automatic topic classification of test cases using text mining at an Android
smartphone vendor. In Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 1–10.

[38] Diane E Strode. 2016. A dependency taxonomy for agile software development
projects. Information Systems Frontiers 18, 1 (2016), 23–46.

[39] VersionOne. 2018. The 12th annual state of agile report. https://explore.
versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
Online; accessed 25 March 2020.

[40] Bill Wake. 2003. INVEST in Good Stories, and SMART Tasks. 2003. URL: xp123.
com/articles/invest-in-good-stories-and-smart-tasks (August 2003).

[41] Claes Wohlin, Martin Höst, and Kennet Henningsson. 2003. Empirical research
methods in software engineering. In Empirical methods and studies in software
engineering. Springer, 7–23.

[42] Denise M Woit. 2005. Requirements interaction management in an extreme
programming environment: a case study. In Proceedings of the 27th international
conference on Software engineering. 489–494.

[43] Wei Zhang, Hong Mei, and Haiyan Zhao. 2005. A feature-oriented approach to
modeling requirements dependencies. (2005), 273–282.

https://arxiv.org/abs/2102.08485
https://community.broadcom.com/communities/community-home/digestviewer/viewthread?MID=764423#bm9055b0b6-994a-4324-aeb7-acc04fb7489e
https://community.broadcom.com/communities/community-home/digestviewer/viewthread?MID=764423#bm9055b0b6-994a-4324-aeb7-acc04fb7489e
https://community.broadcom.com/communities/community-home/digestviewer/viewthread?MID=764423#bm9055b0b6-994a-4324-aeb7-acc04fb7489e
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Large-Scale Agile Software Development
	2.2 Dependency Management in Software Engineering
	2.3 Tool-Aided Software Engineering

	3 Context and Motivation
	3.1 Company Context
	3.2 Scaled Agile Implementation at the Company

	4 Study Design
	4.1 Research Method
	4.2 Research Goal and Questions
	4.3 Data Retrieval and Analysis

	5 Results
	5.1 RQ1: How often and when are dependencies identified by members of ASD projects?
	5.2 RQ2: Do team characteristics influence the identification and number of dependencies?
	5.3 RQ3: How often dependencies are closed before the iteration ends?

	6 Discussion and Implications
	7 Threats to Validity
	8 Conclusion and Future Work
	References

