
Bijoux: Data Generator for Evaluating ETL Process
Quality

Vasileios Theodoroua, Petar Jovanovica, Alberto Abellóa,
Emona Nakuçia

aUniversitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain ({vasileios|petar|aabello}@essi.upc.edu), emona.nakuci@est.fib.upc.edu

Abstract

Obtaining the right set of data for evaluating the fulfillment of different
quality factors in the extract-transform-load (ETL) process design is rather
challenging. First, the real data might be out of reach due to different pri-
vacy constraints, while manually providing a synthetic set of data is known
as a labor-intensive task that needs to take various combinations of process
parameters into account. More importantly, having a single dataset usually
does not represent the evolution of data throughout the complete process
lifespan, hence missing the plethora of possible test cases. To facilitate such
demanding task, in this paper we propose an automatic data generator (i.e.,
Bijoux). Starting from a given ETL process model, Bijoux extracts the se-
mantics of data transformations, analyzes the constraints they imply over
input data, and automatically generates testing datasets. Bijoux is highly
modular and configurable to enable end-users to generate datasets for a va-
riety of interesting test scenarios (e.g., evaluating specific parts of an input
ETL process design, with different input dataset sizes, different distributions
of data, and different operation selectivities). We have developed a running
prototype that implements the functionality of our data generation frame-
work and here we report our experimental findings showing the effectiveness
and scalability of our approach.

Keywords: Data generator, ETL, process quality

1. Introduction1

Data-intensive processes constitute a crucial part of complex business2

intelligence (BI) systems responsible for delivering information to satisfy the3

needs of different end users. Besides delivering the right information to end4

Preprint submitted to Elsevier Wednesday 16th March, 2016

users, data-intensive processes must also satisfy various quality standards5

to ensure that the data delivery is done in the most efficient way, whilst the6

delivered data are of certain quality level. The quality level is usually agreed7

beforehand in the form of service-level agreements (SLAs) or business-level8

objects (BLOs).9

In order to guarantee the fulfillment of the agreed quality standards (e.g.,10

data quality, performance, reliability, recoverability; see [1, 2, 3]), an exten-11

sive set of experiments over the designed process must be performed to test12

the behavior of the process in a plethora of possible execution scenarios.13

Essentially, the properties of input data (e.g., value distribution, cleanness,14

consistency) play a major role in evaluating the resulting quality character-15

istics of a data-intensive process. Furthermore, to obtain the finest level of16

granularity of process metrics, quantitative analysis techniques for business17

processes (e.g., [4]) propose analyzing the quality characteristics at the level18

of individual activities and resources. Moreover, one of the most popular19

techniques for quantitative analysis of process models is process simulation20

[4], which assumes creating large number of hypothetical process instances21

that will simulate the execution of the process flow for different scenarios.22

In the case of data-intensive processes, the simulation should be additionally23

accompanied by a sample of input data (i.e., work item in the language of24

[4]) created for simulating a specific scenario.25

Nonetheless, obtaining input data for performing such experiments is26

rather challenging. Sometimes, easy access to the real source data is hard,27

either due to data confidentiality or high data transfer costs. However, in28

most cases the complexity comes from the fact that a single instance of avail-29

able data, usually does not represent the evolution of data throughout the30

complete process lifespan, and hence it cannot cover the variety of possible31

test scenarios. At the same time, providing synthetic sets of data is known32

as a labor intensive task that needs to take various combinations of process33

parameters into account.34

In the field of software testing, many approaches (e.g., [5]) have tackled35

the problem of synthetic test data generation. However, the main focus was36

on testing the correctness of the developed systems, rather than evaluat-37

ing different data quality characteristics, which are critical when designing38

data-intensive processes. Moreover, since the execution of data-intensive39

processes is typically fully automated and time-critical, ensuring their cor-40

rect, efficient and reliable execution, as well as certain levels of data quality41

of their produced output is pivotal.42

In the data warehousing (DW) context, an example of a complex, data in-43

tensive and often error-prone data-intensive process is the extract-transform-44

2

load (ETL) process, responsible for periodically populating a data warehouse45

from the available data sources. Gartner has reported in [6] that the correct46

ETL implementation may take up to 80% of the entire DW project. More-47

over, the ETL design tools available in the market [7] do not provide any48

automated support for ensuring the fulfillment of different quality parame-49

ters of the process, and still a considerable manual effort is expected from50

the designer. Thus, we identified the real need for facilitating the task of51

testing and evaluating ETL processes in a configurable manner.52

In this paper, we revisit the problem of synthetic data generation for the53

context of ETL processes, for evaluating different quality characteristics of54

the process design. To this end, we propose an automated data generation55

framework for evaluating ETL processes (i.e., Bijoux). Growing amounts56

of data represent hidden treasury assets of an enterprise. However, due57

to dynamic business environments, data quickly and unpredictably evolve,58

possibly making the software that processes them (e.g., ETL) inefficient and59

obsolete. Therefore, we need to generate delicately crafted sets of data (i.e.,60

bijoux) to test different execution scenarios of an ETL process and detect61

its behavior (e.g., performance) over a variety of changing parameters (e.g.,62

dataset size, process complexity, input data quality) .63

For overcoming the complexity and heterogeneity of typical ETL pro-64

cesses, we tackle the problem of formalizing the semantics of ETL operations65

and classifying the operations based on the part of input data they access for66

processing. This largely facilitates Bijoux during data generation processes67

both for identifying the constraints that specific operation semantics imply68

over input data, as well as for deciding at which level the data should be69

generated (e.g., single field, single tuple, complete dataset).70

Furthermore, Bijoux offers data generation capabilities in a modular and71

configurable manner. Instead of relying on the default data generation func-72

tionality provided by the tool, more experienced users may also select specific73

parts of an input ETL process, as well as desired quality characteristics to74

be evaluated using generated datasets.75

To illustrate the functionality of our data generation framework, we76

introduce the running toy example that shows an ETL process (see Fig-77

ure 1), which is a simplified implementation of the process defined in the78

TPC-DI benchmark1 for loading the DimSecurity table during the Histor-79

ical Load phase2. The ETL process extracts data from a file with fixed-80

1http://www.tpc.org/tpcdi/
2Full implementation available at: https://github.com/AKartashoff/TPCDI-PDI/

3

http://www.tpc.org/tpcdi/
https://github.com/AKartashoff/TPCDI-PDI/

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Join_2
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

O5

O6

O7
O1

O8

O9

O10 O11 O12

Figure 1: ETL flow example: TPC-DI DimSecurity population

width fields (flat file in the Staging Area), which is a merged collection81

of financial information about companies and securities coming from a fi-82

nancial newswire (FINWIRE) service. The input set is filtered to keep83

only records about Securities (RecType==‘SEC’) and then rows are split84

to two different routes, based on whether or not their values for the field85

CoNameOrCIK are numbers (isNumber(CoNameOrCIK)) or not. For the86

first case, data are matched with data about companies through an equi-join87

on the company ID number (CoNameOrCIK==CompanyID). On the other88

hand, for the second case, data are matched with data about companies89

through an equi-join on the company name (CoNameOrCIK==Name). In90

both cases, data about companies are extracted from the DimCompany ta-91

ble of the data warehouse. Subsequently, after both routes are merged, data92

are filtered to keep only records for which the posting date and time (PTS)93

correspond to company data that are current ((PTS>=EffectiveDate) AND94

(PTS<=EndDate)). Lastly, after data are matched with an equi-join to the95

data from the StatusType table, to get the corresponding status type for96

each status id (ST_ID==Status), only the fields of interest are maintained97

through a projection and then data are loaded to the DimSecurity table of98

the DW.99

For the sake of simplicity, in what follows we will refer to the operators100

of our example ETL, using the label noted for each operator in Figure 1101

(i.e., O1 for Extract_1, O2 for Filter_RecType, etc.). Given that an ETL102

process model can be seen as a directed acyclic graph (DAG), Bijoux follows103

a topological order of its nodes, i.e., operations (e.g., O1, O2, O3, O4, O5, O6,104

O7, O8, O9, 10, O11,and O12), and extracts the found flow constraints (e.g.,105

RecType==‘SEC’ or CoNameOrCIK==Name). Finally, Bijoux generates106

the data that satisfy the given constraints and can be used to simulate the107

execution of the given ETL process.108

Our framework, Bijoux, is useful during the early phases of the ETL109

4

process design, when the typical time-consuming evaluation tasks are facil-110

itated with automated data generation. Moreover, Bijoux can also assist111

the complete process lifecycle, enabling easier re-evaluation of an ETL pro-112

cess redesigned for new or changed information and quality requirements113

(e.g., adding new data sources, adding mechanisms for improving data con-114

sistency). Finally, the Bijoux’s functionality for automated generation of115

synthetic data is also relevant during the ETL process deployment. It pro-116

vides users with the valuable benchmarking support (i.e., synthetic datasets)117

when selecting the right execution platform for their processes.118

Outline. The rest of the paper is structured as follows. Section 2 for-119

malizes the notation of ETL processes in the context of data generation and120

presents a general overview of our approach using an example ETL pro-121

cess. Section 3 formally presents Bijoux, our framework and its algorithms122

for the automatic data generation. Section 4 introduces modified versions123

of our example ETL process and showcases the benefits of Bijoux for re-124

evaluating flow changes. In Section 5, we introduce the architecture of the125

prototype system that implements the functionality of the Bijoux framework126

and further report our experimental results. Finally, Section 6 discusses the127

related work, while Section 7 concludes the paper and discusses possible128

future directions.129

2. Overview of our approach130

In this section, we present the overview of our data generation frame-131

work. We classify the ETL process operations and formalize the ETL process132

elements in the context of data generation and subsequently, in a nutshell,133

we present the overview of the data generation process of the Bijoux frame-134

work.135

2.1. ETL operation classification136

To ensure applicability of our approach to ETL processes coming from137

major ETL design tools and their typical operations, we performed a com-138

parative study of these tools with the goal of producing a common subset139

of supported ETL operations. To this end, we considered and analyzed four140

major ETL tools in the market; two commercial, i.e., Microsoft SQL Server141

Integration Services (SSIS) and Oracle Warehouse Builder (OWB); and two142

open source tools, i.e., Pentaho Data Integration (PDI) and Talend Open143

Studio for Data Integration.144

We noticed that some of these tools have a very broad palette of specific145

operations (e.g., PDI has a support for invoking external web services for146

5

Ta
bl
e
1:

C
om

pa
ris

on
of

E
T
L
op

er
at
io
ns

th
ro
ug

h
se
le
ct
ed

E
T
L
to
ol
s
-P

ar
t
1

O
p
er
at
io
n
L
ev
el

O
p
er
at
io
n
T
yp

e
P
en
ta
ho

P
D
I

T
al
en
d
D
at
a
In
te
gr
at
io
n

SS
IS

O
ra
cl
e
W
ar
eh
ou

se
B
ui
ld
er

F
ie
ld

F
ie
ld

V
al
ue

A
lt
er
at
io
n

A
dd

co
ns
ta
nt

F
or
m
ul
a

N
um

b
er

ra
ng

es
A
dd

se
qu

en
ce

C
al
cu
la
to
r

A
dd

a
ch
ec
ks
um

tM
ap

tC
on

ve
rt
T
yp

e
tR

ep
la
ce
L
is
t

C
ha

ra
ct
er

M
ap

D
er
iv
ed

C
ol
um

n
C
op

y
C
ol
um

n
D
at
a
C
on

ve
rs
io
n

C
on

st
an

t
O
p
er
at
or

E
xp

re
ss
io
n
O
p
er
at
or

D
at
a
G
en
er
at
or

T
ra
ns
fo
rm

at
io
n

M
ap

pi
ng

Se
qu

en
ce

D
at
as
et

D
up

li
ca
te

R
em

ov
al

U
ni
qu

e
R
ow

s
U
ni
qu

e
R
ow

s
(H

as
hS

et
)

tU
ni
qR

ow
F
uz
zy

G
ro
up

in
g

D
ed
up

li
ca
to
r

So
rt

So
rt

R
ow

s
tS
or
tR

ow
So

rt
So

rt
er

Sa
m
pl
in
g

R
es
er
vo

ir
Sa

m
pl
in
g

Sa
m
pl
e
R
ow

s
tS
am

pl
eR

ow
P
er
ce
nt
ag
e
Sa

m
pl
in
g

R
ow

Sa
m
pl
in
g

A
gg
re
ga
ti
on

G
ro
up

by
M
em

or
y
G
ro
up

by
tA

gg
re
ga
te
R
ow

tA
gg
re
ga
te
So

rt
ed
R
ow

A
gg
re
ga
te

A
gg
re
ga
to
r

D
at
as
et

C
op

y
tR

ep
li
ca
te

M
ul
ti
ca
st

R
ow

D
up

li
ca
te

R
ow

C
lo
ne

R
ow

tR
ow

G
en
er
at
or

F
il
te
r

F
il
te
r
R
ow

s
D
at
a
V
al
id
at
or

tF
il
te
rR

ow
tM

ap
tS
ch
em

aC
om

pl
ia
nc
eC

he
ck

C
on

di
ti
on

al
Sp

li
t

F
il
te
r

Jo
in

M
er
ge

Jo
in

St
re
am

L
oo

ku
p

D
at
ab

as
e
lo
ok

up
M
er
ge

R
ow

s
M
ul
ti
w
ay

M
er
ge

Jo
in

F
uz
zy

M
at
ch

tJ
oi
n

tF
uz
zy
M
at
ch

M
er
ge

Jo
in

F
uz
zy

L
oo

ku
p

Jo
in
er

K
ey

L
oo

ku
p
O
p
er
at
or

R
ou

te
r

Sw
it
ch
/C

as
e

tM
ap

C
on

di
ti
on

al
Sp

li
t

Sp
li
tt
er

Se
t
O
p
er
at
io
n
-
In
te
rs
ec
t

M
er
ge

R
ow

s
(d
iff
)

tM
ap

M
er
ge

Jo
in

Se
t
O
p
er
at
io
n

Se
t
O
p
er
at
io
n
-
D
iff
er
en
ce

M
er
ge

R
ow

s
(d
iff
)

tM
ap

Se
t
O
p
er
at
io
n

Se
t
O
p
er
at
io
n
-
U
ni
on

So
rt
ed

M
er
ge
A
pp

en
d
st
re
am

s
tU

ni
te

M
er
ge

U
ni
on

A
ll

Se
t
O
p
er
at
io
n

6

Ta
bl
e
2:

C
om

pa
ris

on
of

E
T
L
op

er
at
io
ns

th
ro
ug

h
se
le
ct
ed

E
T
L
to
ol
s
-P

ar
t
2

O
p
er
at
io
n
L
ev
el

O
p
er
at
io
n
T
yp

e
P
en
ta
ho

P
D
I

T
al
en
d
D
at
a
In
te
gr
at
io
n

SS
IS

O
ra
cl
e
W
ar
eh
ou

se
B
ui
ld
er

Sc
he
m
a

F
ie
ld

A
dd

it
io
n

Se
t
fi
el
d
va
lu
e

Se
t
fi
el
d
va
lu
e
to

a
co
ns
ta
nt

St
ri
ng

op
er
at
io
ns

St
ri
ng

s
cu
t

R
ep
la
ce

in
st
ri
ng

F
or
m
ul
a

Sp
li
t
F
ie
ld
s

C
on

ca
t
F
ie
ld
s

A
dd

va
lu
e
fi
el
ds

ch
an

gi
ng

se
qu

en
ce

Sa
m
pl
e
ro
w
s

tM
ap

tE
xt
ra
ct
R
eg
ex
F
ie
ld
s

tA
dd

C
R
C
R
ow

D
er
iv
ed

C
ol
um

n
C
ha

ra
ct
er

M
ap

R
ow

C
ou

nt
A
ud

it
T
ra
ns
fo
rm

at
io
n

C
on

st
an

t
O
p
er
at
or

E
xp

re
ss
io
n
O
p
er
at
or

D
at
a
G
en
er
at
or

M
ap

pi
ng

In
pu

t/
O
ut
pu

t
pa

ra
m
et
er

D
at
at
yp

e
C
on

ve
rs
io
n

Se
le
ct

V
al
ue
s

tC
on

ve
rt
T
yp

e
D
at
a
C
on

ve
rs
io
n

A
ny

da
ta

C
as
t
O
p
er
at
or

F
ie
ld

R
en
am

in
g

Se
le
ct

V
al
ue
s

tM
ap

D
er
iv
ed

C
ol
um

n
P
ro
je
ct
io
n

Se
le
ct

V
al
ue
s

tF
il
te
rC

ol
um

ns

T
ab

le
P
iv
ot
in
g

R
ow

D
en
or
m
al
iz
er

tD
en
or
m
al
iz
e

tD
en
or
m
al
iz
eS
or
te
dR

ow
P
iv
ot

U
np

iv
ot

U
np

iv
ot
in
g

R
ow

N
or
m
al
iz
er

Sp
li
t
fi
el
d
to

ro
w
s

tN
or
m
al
iz
e

tS
pl
it
R
ow

U
np

iv
ot

P
iv
ot

V
al
ue

Si
ng

le
V
al
ue

A
lt
er
at
io
n

If
fi
el
d
va
lu
e
is

nu
ll

N
ul
l
if

M
od

ifi
ed

Ja
va

Sc
ri
pt

V
al
ue

SQ
L
E
xe
cu
te

tM
ap

tR
ep
la
ce

D
er
iv
ed

C
ol
um

n

C
on

st
an

t
O
p
er
at
or

E
xp

re
ss
io
n
O
p
er
at
or

M
at
ch
-M

er
ge

O
p
er
at
or

M
ap

pi
ng

In
pu

t/
O
ut
pu

t
pa

ra
m
et
er

So
ur
ce

O
p
er
at
io
n

E
xt
ra
ct
io
n

C
SV

fi
le

in
pu

t
M
ic
ro
so
ft

E
xc
el

In
pu

t
T
ab

le
in
pu

t
T
ex
t
fi
le

in
pu

t
X
M
L
In
pu

t

tF
il
eI
np

ut
D
el
im

it
ed

tD
B
In
pu

t
tF

il
eI
np

ut
E
xc
el

A
D
O

.N
E
T

/
D
at
aR

ea
de
r
So

ur
ce

E
xc
el

So
ur
ce

F
la
t
F
il
e
So

ur
ce

O
L
E

D
B

So
ur
ce

X
M
L
So

ur
ce

T
ab

le
O
p
er
at
or

F
la
t
F
il
e
O
p
er
at
or

D
im

en
si
on

O
p
er
at
or

C
ub

e
O
p
er
at
or

T
ar
ge
t
O
p
er
at
io
n

L
oa
di
ng

T
ex
t
fi
le

ou
tp
ut

M
ic
ro
so
ft

E
xc
el

O
ut
pu

t
T
ab

le
ou

tp
ut

T
ex
t
fi
le

ou
tp
ut

X
M
L
O
ut
pu

t

tF
il
eO

ut
pu

tD
el
im

it
ed

tD
B
O
ut
pu

t
tF

il
eO

ut
pu

tE
xc
el

D
im

en
si
on

P
ro
ce
ss
in
g

E
xc
el

D
es
ti
na

ti
on

F
la
t
F
il
e
D
es
ti
na

ti
on

O
L
E

D
B

D
es
ti
na

ti
on

SQ
L
Se
rv
er

D
es
ti
na

ti
on

T
ab

le
O
p
er
at
or

F
la
t
F
il
e
O
p
er
at
or

D
im

en
si
on

O
p
er
at
or

C
ub

e
O
p
er
at
or

7

Table 3: List of operations considered in the framework

Considered ETL Operations

Aggregation Intersect
Cross Join Join (Outer)
Dataset Copy Pivoting
Datatype Conversion Projection
Difference Router
Duplicate Removal Single Value Alteration
Duplicate Row Sampling
Field Addition Sort
Field Alteration Union
Field Renaming Unpivoting
Filter

performing the computations specified by these services). Moreover, some147

operations can be parametrized to perform different kinds of transformation148

(e.g., tMap in Talend), while others can have overlapping functionalities, or149

different implementations for the same functionality (e.g., FilterRows and150

JavaFilter in PDI). Tables 1 and 2 show the resulting classification of the151

ETL operations from the considered tools.152

To generalize such a heterogeneous set of ETL operations from different153

ETL tools, we considered the common functionalities that are supported by154

all the analyzed tools. As a result, we produced an extensible list of ETL155

operations considered by our approach (see Table 3). Notice that this list156

covers all operations of our running example in Figure 1, except extraction157

and loading ones, which are not assumed to carry any specific semantics158

over input data and thus are not considered operations by our classification.159

A similar study of typical ETL operations inside several ETL tools has160

been performed before in [8]. However, this study classifies ETL opera-161

tions based on the relationship of their input and output (e.g., unary, n-ary162

operations). Such operation classification is useful for processing ETL oper-163

ations (e.g., in the context of ETL process optimization). In this paper, we164

further complement such taxonomy for the data generation context. There-165

fore, we classify ETL operations based on the part of the input table they166

access when processing the data (i.e., table, dataset, row, schema, field, or167

field value; see the first column of Table 1 and Table 2) in order to assist168

Bijoux when deciding at which level data should be generated. In Figure169

2, we conceptually depict the relationships between different parts of input170

8

Table

Value

Row

Dataset

NameDatatype

Field

Schema

comp
liesW

ith

corres
ponds

To

compliesWith

Figure 2: Table-access based classification, UML notation

data, which forms the basis for our ETL operation classification. In our171

approach, we consider the Name of a Field to act as its identifier.172

2.2. Formalizing ETL processes173

The modeling and design of ETL processes is a thoroughly studied area,174

both in the academia [9, 10, 11, 12] and industry, where many tools avail-175

able in the market often provide overlapping functionalities for the design176

and execution of ETL processes [7]. Still, however, no particular standard177

for the modeling and design of ETL processes has been defined, while ETL178

tools usually use proprietary (platform-specific) languages to represent an179

ETL process model. To overcome such heterogeneity, Bijoux uses a logical180

(platform-independent) representation of an ETL process, which in the lit-181

erature is usually represented as a directed acyclic graph (DAG) [12, 13].182

We thus formalize an ETL process as a DAG consisting of a set of nodes183

(V), which are either source or target data stores (DS = DSS ∪DST) or184

operations (O), while the graph edges (E) represent the directed data flow185

among the nodes of the graph (v1 ≺ v2). Formally:186

ETL = (V,E), such that:187

V = DS ∪O and ∀e ∈ E : ∃(v1, v2), v1 ∈ V ∧ v2 ∈ V ∧ v1 ≺ v2188

189

Data store nodes (DS) in an ETL flow graph are defined by a schema190

(i.e., finite list of fields) and a connection to a source (DSS) or a target191

(DST) storage for respectively extracting or loading the data processed by192

the flow.193

9

On the other side, we assume an ETL operation to be an atomic process-194

ing unit responsible for a single transformation over the input data. Notice195

that we model input and output data of an ETL process in terms of one or196

more tables (see Figure 2).197

We formally define an ETL flow operation as a quintuple:198

199

o = (I,O,X, S,A), where:200

201

• I = {I1, . . . , In} is a finite set of input tables.202

• O = {O1, . . . , Om} is a finite set of output tables.203

• X (X ⊆ Attr(I)) is a subset of fields of the input tables I required by204

the operation. Notice that the function Attr for a given set of input205

or output tables, returns a set of fields (i.e., attributes) that builds the206

schema of these tables.207

• S = (P,F) represents ETL operation semantics in terms of:208

– P = {P1(X1), . . . Pp(Xp)}: a set of conjunctive predicates over209

subsets of fields in X (e.g., Age > 25).210

– F = {F1(X1), . . . Ff (Xf)}: a set of functions applied over subsets211

of fields in X (e.g., Substr(Name, 0, 1)). The results of these212

functions are used either to alter the existing fields or to generate213

new fields in the output table.214

• A is the subset of fields from the output tables, added or altered during215

the operation.216

Intuitively, the above ETL notation defines a transformation of the in-217

put tables (I) into the result tables (O) by evaluating the predicate(s) and218

function(s) of semantics S over the functionality schema X and potentially219

generating or altering fields in A.220

An ETL operation processes input tables I, hence based on the clas-221

sification in Figure 2, the semantics of an ETL operation should express222

transformations at (1) the schema (i.e., generated/projected-out schema),223

(2) the row (i.e., passed/modified/generated/removed rows), and (3) the224

dataset level (i.e., output cardinality).225

In Table 4, we formalize the semantics of ETL operations considered226

by the framework (i.e., operations previously listed in Table 3). Notice227

that some operations are missing from Table 4, as they can be derived228

10

Table 4: Table of ETL operations semantics

Op. Level Op. Type Op. Semantics

Value Single Value Alteration ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I) = Attr(O) ∧ |I| = |O|))
∀tin ∈ I(Pi(tin[X])→ ∃tout ∈ O(tout[Attr(O) \A] = tin[Attr(I) \A] ∧ tout(A) = Fj(tin[X])))

Field Field Alteration ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I) = Attr(O) ∧ |I| = |O|))
∀tin ∈ I, ∃tout ∈ O(tout[Attr(O) \A] = tin[Attr(I) \A] ∧ tout(A) = Fj(tin[X])))

Row

Duplicate Row ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I) = Attr(O) ∧ |I| < |O|))
∀tin ∈ I,∃O′ ⊆ O, |O′| = n 3 ∧∀tout ∈ O′, tout = tin

Router ∀(I,O,X,S,A)(F (I,O,X,S,A)→ ∀j(Attr(Oj) = Attr(I) ∧ |I| ≥ |Oj |))
∀j,∀tin ∈ I(Pj(tin[xj])→ ∃tout ∈ Oj , (tout = tin)

Filter ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = Attr(I) ∧ |I| ≥ |O|))
∀tin ∈ I(Pj(tin[X])→ ∃tout ∈ O, (tout = tin)

Join ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = Attr(I1) ∪Attr(I2) ∧ |O| ≤ |I1 × I2|))
∀tin1 ∈ I1, tin2 ∈ I2, (P (tin1 [x1], tin2 [x2])→ ∃tout ∈ O(tout = tin1 • tin1)

Union ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I1) = Attr(I2) ∧Attr(O) = Attr(I1) ∧ |O| = |I1|+ |I2|))
∀tin ∈ (I1 ∪ I2)→ ∃tout ∈ O(tout = tin)

Difference ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I1) = Attr(I2) ∧Attr(O) = Attr(I1) ∧ |O| ≤ |I1|))
∀tin(tin ∈ I1 ∧ tin /∈ I2)→ ∃tout ∈ O(tout = tin)

Dataset

Aggregation
∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = X ∪A ∧Attr(O) ≤ Attr(I)))
∀I′ ∈ 2I(∀tin1 ∈ I′(∀tin2 ∈ I′(tin1 [X] = tin2 [X]) ∧ ∀tink

∈ I \ I′, tin1 [X] 6= tink
[X]))→

→ ∃!tout ∈ O(tout[X] = tin1 [X] ∧ tout[A] = Fj(I′))

Sort
∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I) = Attr(O) ∧ |I| = |O|))
∀tin ∈ I,∃tout ∈ O(tout = tin)
∀tout, tout′ ∈ O(tout[X] < tout′[X]→ tout ≺ tout′)

Duplicate Removal ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(I) = Attr(O) ∧ |I| ≥ |O|))
∀tin ∈ I,∃!tout ∈ O(tout = tin)

Dataset Copy ∀(I,O,X,S,A)(F (I,O,X,S,A)→ ∀j(Attr(Oj) = Attr(I) ∧ |I| = |Oj |))
∀j,∀tin ∈ I, ∃tout ∈ Oj , (tout = tin)

Schema

Projection ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = Attr(I) \X ∧ |I| = |O|))
∀tin ∈ I,∃tout ∈ O(tout[Attr(O)] = tin[Attr(I) \X]))

Field Renaming ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = (Attr(I) \X) ∪A) ∧ |I| = |O|))

Field Addition ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = Attr(I) ∪A ∧ |I| = |O|))
∀tin ∈ I,∃tout ∈ O(tout[Attr(O) \A] = tin[Attr(I)] ∧ tout[A] = F (tin[X]))

Table Pivoting ∀(I,O,X,S,A)(F (I,O,X,S,A)→ (Attr(O) = (Attr(I) \X) ∪A ∧ |O| = |I|a ∧ |I| = |O|a))
∀tin ∈ I,∀a ∈ Attr(I),∃tout ∈ O, ∃b ∈ Attr(O)(tout[b] = tin[a]))

from the semantics of other listed operations (e.g., Intersection as a special229

case of Join, Unpivoting as an inverse operation to Pivoting, and Datatype230

Conversion as a special case of Field Alteration using a specific conversion231

function).232

In our approach, we use such formalization of operation semantics to233

automatically extract the constraints that an operation implies over the234

input data, hence to further generate the input data for covering such235

operations. However, notice that some operations in Table 4 may imply236

specific semantics over input data that are not explicitly expressed in the237

given formalizations (e.g., Field Addition/Alteration, Single Value Alter-238

ation). Such semantics may span from simple arithmetic expressions (e.g.,239

yield = divident ÷ DM_CLOSE), to complex user defined functions ex-240

pressed in terms of an ad hoc script or code snippets. While the former case241

can be easily tackled by powerful expression parsers [13], in the later case242

the operation’s semantics must be carefully analyzed to extract the con-243

straints implied over input data (e.g., by means of the static code analysis,244

as suggested in [14]).245

11

2.3. Bijoux overview246

Intuitively, starting from a logical model of an ETL process and the se-247

mantics of ETL operations, Bijoux analyzes how the fields of input data248

stores are restricted by the semantics of the ETL process operations (e.g.,249

filter or join predicates) in order to generate the data that satisfy these250

restrictions. To this end, Bijoux moves iteratively through the topologi-251

cal order of the nodes inside the DAG of an ETL process and extracts the252

semantics of each ETL operation to analyze the constraints that the opera-253

tions imply over the input fields. At the same time, Bijoux also follows the254

constraints’ dependencies among the operations to simultaneously collect255

the necessary parameters for generating data for the correlated fields (i.e.,256

value ranges, datatypes, and the sizes of generated data). Using the collected257

parameters, Bijoux then generates input datasets to satisfy all found con-258

strains, i.e., to simulate the execution of selected parts of the data flow. The259

algorithm can be additionally parametrized to support data generation for260

different execution scenarios.261

Typically, an ETL process should be tested for different sizes of input262

datasets (i.e., different scale factors) to examine its scalability in terms of263

growing data. Importantly, Bijoux is extensible to support data generation264

for different characteristics of input datasets (e.g., size), fields (e.g., value265

distribution) or ETL operations (e.g., operation selectivity). We present266

in more detail the functionality of our data generation algorithm in the267

following section.268

3. Bijoux data generation framework269

The data generation process includes four main stages (i.e., 1 - path270

enumeration, 2 - constraints extraction, 3 - constraints analysis, and 4 - data271

generation).272

3.1. Preliminaries and Challenges273

We first discuss some of the important challenges of generating data for274

evaluating general ETL flows, as well as the main structures maintained275

during the data generation process.276

The workflow-graph structure of the ETL logical model that we adopt277

for our analysis consists of ETL operations as graph nodes, input data stores278

as graph sources and output data stores as graph sinks. In particular, input279

3n is the number of replicas in the Replicate Row operation semantics

12

data stores, as well as routing operations (e.g., Routers) that direct rows280

to different outputs based on specified conditions, introduce alternative di-281

rected paths of the input graph (in the rest of the paper referred to as paths),282

which can be followed by input data. Hence, there are two properties of the283

generated input data that can be defined:284

• Path Coverage: Input data are sufficient to “cover” a specific path,285

i.e., each and every edge (or node) that is on this path is visited by at286

least one row of data.287

• Flow Coverage: Input data are sufficient to “cover” the complete flow288

graph, i.e., each and every edge (or node) of the flow graph is visited289

by at least one row of data.290

The apparently simple case of Path Coverage hides an inherent complex-291

ity, deriving from the fact that some joining operations (i.e., joining nodes;292

e.g., Join, Intersection) require the involvement of multiple paths in order293

to direct data to their output. In addition, new fields are introduced to the294

flow either through input data stores or Field Addition operations (see Table295

4), while the fields from different paths are fused/joined together through296

joining operations. This in turn implies two facts: i) Path Coverage is not297

guaranteed by generating the right input data only for the input data store298

that is involved in a specific path; instead, data generation should be con-299

ducted for a combination of paths (i.e., their included input data stores),300

and ii) during the Path Coverage analysis, referring to a field solely by its301

name is not sufficient; the same field might participate in multiple paths302

from a combination of paths, in each path holding different properties com-303

ing from extracted constraints of different operations. Thus, the name of a304

field should be combined with a pathid to identify one distinct entity with305

specific properties.306

13

O6O5O1

Path_1

Path_2

O4

...

O2

O3

...

Path_3

...

JOIN

UNION

(a) Alternative path combinations for coverage of the same path

O3

O2

O4

O5O1

SO1={a1,a2} {P(a2)}

{NOT(P(a2))}

{e1.a1=e2.a1}

Path_1

Path_2

O6
e2

e1

(b) Multiple rows from same input source required for coverage

Figure 3: Notable cases of graph patterns

In Figure 3, we show some notable cases of graph patterns that require307

special attention during the coverage analysis, as described above.308

In Figure 3a, we can see how the coverage of Path_1 (O1→O5→O6...)309

needs multiple paths to be considered for data generation, because of the310

joining operation O5 that requires multiple inputs (e.g., a Join operation).311

Thus, coverage can be ensured by using alternative combinations, either312

Path_1 in combination with Path_2 (...O2→O4→O5→O6...), or Path_1 in313

combination with Path_3 (...O2→O4→O5→O6...). It should be mentioned314

that operation O4 is of a merging type that does not require both of its315

incoming edges to be crossed in order to pass data to its output (i.e., a316

Union operation) and thus Path_2 and Path_3 can be used interchangeably317

for coverage.318

In Figure 3b, we show how the coverage of one path might require the319

generation of multiple rows for the same input source. For example, for the320

Path Coverage of Path_1 (O1→O2→O3→O5→O6) it is required to addi-321

tionally generate data for Path_2 (O1→O2→O4→O5→O6), because of the322

existence of the joining operation O5. It should be noticed here that fields323

14

a1 and a2 in Path_1 belong to a different instance than in Path_2, since324

the condition of the routing operator O2 imposes different predicates over325

a2 for different paths (i.e., P(a2) and NOT(P(a2)), respectively). Hence,326

at least two different rows from the same input data store are required for327

Path Coverage of Path_1.328

Example. For illustrating the functionality of our algorithm, we will329

use the running example introduced in Section 1 (see Figure 1). For the sake330

of simplicity, we will not use the complete schemata of the input data stores331

as specified in the TPC-DI benchmark, but instead we assume simplified332

versions, where the only fields present are the ones that are used in the333

ETL flow, i.e., taking part in predicates or functions. In this manner, input334

data stores of the example ETL flow are: I = {O1, O4, O9}, with schemata335

SO1 = {PTS, RecType, Status, CoNameOrCIK}, SO4 = {CompanyID,336

Name, EffectiveDate, EndDate} and SO9 = {ST_ID, ST_NAME}; whilst337

a topological order of its nodes is: {O1, O2, O3, O4, O5, O6, O7, O8, O9,338

O10, O11, O12}. Besides this running example, we will also use the auxiliary339

example graph from Figure 4a to support the description of the complete340

functionality of Bijoux 2341

3.2. Data structures342

Before going into the details of algorithms 1 and 2 in Section 3.4, we343

present the main structures maintained by these algorithms.344

While analyzing a given ETL graph, in Algorithm 1, Bijoux builds the345

following structures that partially or completely record the path structures346

of the input ETL graph (i.e., path traces):347

• Path Traces (PT) collection keeps traces of operations and edges that348

have been visited, when following a specific path up to a specific node349

in the ETL graph. Traces of individual paths PT (PT ∈ PT) are built350

incrementally and thus, following a specific path on the graph, if a351

Path Trace PT1 is generated at an earlier point than the generation of352

a Path Trace PT2, then PT1 will include a subset of the trace of PT2353

(i.e., PT1 ⊆ PT2). From an implementation point of view, each PT354

holds a Signature as a property, which can be a string concatenation355

of graph elements that shows which route has been followed in the356

case of alternative paths. This enables very efficient PT analysis and357

comparisons by simply applying string operations.358

Example. Referring to our running example in Section 1 we can have359

the following signature of a Path Trace PT1:360

Sig(PT1) = “I[O1].S[O2, true].S[O3, true].J [O6, e1]”361

15

From this signature we can conclude that PT1 starts from I (i.e., Input362

Source): O1 ; passes through S (i.e., Splitting Operation): O2 coming363

from its outgoing edge that corresponds to the evaluation: true of364

its condition; passes through S (i.e., Splitting Operation): O3 coming365

from its outgoing edge that corresponds to the evaluation: true; passes366

through J (i.e., Joining Operation): O6 coming from its incoming edge:367

e1 ; and so on. For some operations (e.g., Joins) it makes sense to keep368

track of the incoming edge through which they have been reached in369

the specific path and for some others (e.g., Routers), it makes sense370

to keep track of the outgoing edge that was followed for the path.371

Looking at the following signature of Path Trace PT2:372

Sig(PT2) = “I[O1].S[O2, true].S[O3, true]” , we can infer that PT1373

and PT2 are on the same path of the ETL graph, PT2 being generated374

at an “earlier” point, since the signature of PT2 is a substring of the375

signature of PT1. 2376

• Tagged Nodes (TN) structure records, for each node, the set of paths377

(i.e., operations and edges) reaching that node from the input data378

store nodes (i.e., source nodes). Thus, each node is “tagged” with a379

set of Path Traces (PT) which are being built incrementally, as ex-380

plained above.381

Example. Referring to our running example, within TN the O7 op-382

eration node will be “tagged” with four different path traces, PT1,383

PT2, PT3 and PT4 with the following signatures:384

- Sig(PT1) = “I[O1].S[O2, true].S[O3, true].J [O6, e1].J [O7, e1]”385

- Sig(PT2) = “I[O1].S[O2, true].S[O3, false].J [O5, e1].J [O7, e2]”386

- Sig(PT3) = “I[O4].J [O6, e2].J [O7, e1]”387

- Sig(PT4) = “I[O4].J [O5, e2].J [O7, e2]” 2388

• Final path traces (FP) structure records all the complete (i.e., source-389

to-sink) paths from the input ETL graph, by maintaining all source-390

to-sink Path Traces (i.e., the union of all Path Traces that tag sink391

nodes).392

When it comes to formalizing the main structure that is being built by393

Algorithm 2 (i.e., data generation pattern), we define its structure as follows:394

• A data generation pattern (Pattern) consists of a set of path con-395

straints (i.e., pathConstr), where each path constraint is a set of396

constraints over the input fields introduced by the operations of an397

individual path. Formally:398

16

Pattern = {pathConstri|i = 1, · · · , pathNum}399

400

Example. In our running example (Figure 1), so as to cover the401

path Path1=(O1→O2→O3→O6→O7→O8→O10→O11→O12), addi-402

tionally, the path Path2=(O4→O6→O7→O8→O10→O11→O12) and403

the path Path3=(O9→O10→O11→O12) need to be covered as well,404

because of the equi-join operators O6 and O10. The Pattern would405

then consist of three constraints sets (pathConstr1, pathConstr2 and406

pathConstr3), one for each (source-to-sink) path of the flow that has407

to be covered. 2408

• A path constraint (i.e., pathConstri) consists of a set of constraints409

over individual fields of the given path (i.e., fieldConstr). Formally:410

pathConstri = {fieldConstrj |j = 1, · · · , pathF ieldNum}411

Example. Each constraints set in our example will contain a set of412

constraints for any of the fields that are involved in imposed predi-413

cates of operations on the related path. For example, pathConstr1414

will contain constraints over the fields: Path1.PTS, Path1.RecType,415

Path1.Status, Path1.CoNameOrCIK, Path1.CompanyID, Path1.Name,416

Path1.EffectiveDate, Path1.EndDate, Path1.ST_ID, Path1.ST_name.417

Notice that each field is also defined by the related path. Respec-418

tively, pathConstr2 and pathConstr3 will contain constraints over419

the same fields as pathConstr1, but with the corresponding path as420

identifier (e.g., Path2.PTS, Path2.RecType and so on for pathConstr2421

and Path3.PTS, Path3.RecType and so on for pathConstr3). In our422

example, it does not make any difference maintaining constraints com-423

ing from fields of O4 for Path1 (for e.g., CompanyId for Path1), since424

the flow is not split after it merges, but in the general case they are425

necessary for cases of indirect implications over fields from one path426

and for determining the number of rows that need to be generated.2427

• A field constraint (i.e., fieldConstrj) is defined as a pair of an input428

field and an ordered list of constraint predicates over this field. For-429

mally:430

fieldConstrj = [fieldj , Sj]431

Example. An example field constraint that can be found in our run-432

ning scenario within pathConstr1, is:433

fieldConstr1 = [Path1.RecType, {(RecType == ‘SEC ′)}] 2434

435

• Finally, a constraint predicates list defines the logical predicates over436

17

the given field in the topological order they are applied over the field437

in the given path. Formally:438

Sj =< P1(fieldj), · · · , PconstrNum(fieldj) >439

The list needs to be ordered to respect the order of operations, since440

in the general case:441

f1(f2(fieldx)) 6= f2(f1(fieldx))442

443

After processing the input ETL graph in Algorithm 1, Algorithm 2 uses444

the previously generated collection of final path traces (i.e., FP) for travers-445

ing a selected complete path (i.e., PT ∈ FP) and constructing a data genera-446

tion pattern used finally for generating data that will guarantee its coverage.447

Thus, Algorithm 2 implements the construction of a data generation pattern448

for path coverage of one specific path. For flow coverage we can repeat Al-449

gorithm 2, starting every time with a different PT from the set of final path450

traces FP, until each node of the ETL graph has been visited at least once.451

We should notice here that an alternative to presenting two algorithms —452

one for path enumeration and one for pattern construction — would be to453

present a merged algorithm, which traverses the ETL graph and at the same454

time extracts constraints and constructs the data generation pattern. How-455

ever, we decided to keep Algorithm 1 seperate for two reasons: i) this way456

the space complexity is reduced while computational complexity remains457

the same and ii) we believe that the path enumeration algorithm extends458

beyond the scope of ETL flows and can be reused in a general case for imple-459

menting a directed path enumeration in polynomial time, while constructing460

efficient structures for comparison and analysis (i.e., Path Traces). A similar461

approach of using a compact and efficient way to represent ETL workflows462

using string signatures has been previously introduced in [15].463

3.3. Path Enumeration Stage464

In what follows, we present the path enumeration stage, carried out by465

Algorithm 1.466

In the initial stage of our data generation process, Bijoux processes the467

input ETL process graph in a topological order (Step 2) and for each source468

node starts a new path trace (Step 5), initialized with the operation rep-469

resented by a given source node. At the same time, the source node is470

tagged by the created path trace (Step 6). For other (non-source) nodes,471

Bijoux gathers the path traces from all the previously tagged predecessor472

nodes (Step 8), extends these path traces with the current operation oi (Step473

9), while oi is tagged with these updated path traces (PT). Finally, if the474

18

Algorithm 1 Enumerate Paths and Generate Path Traces
Input: ETL
Output: FP
1: TN ← new Tagged Nodes; FP ← ∅;
2: for each operation oi ∈ TopOrder(ETL) do
3: if (oi is source) then
4: PT ← ∅;
5: PT.addElement(new Path Trace(oi));
6: TN.addTag(PT, oi);
7: else
8: PT ← TN.UnionOfAll_PTs_forAllPredecessorNodesOf(oi);
9: PT.updateBasedOnOperation(oi);
10: if (oi is sink) then
11: FP.addAllElementsFrom(PT);
12: else
13: TN.addTag(PT, oi);
14: end if
15: end if
16: end for
17: return FP;

19

visited operation is a sink node, the traces of the paths that reach this node475

are added to the list of final path traces (i.e., FP). Processing the input476

ETL process graph in this manner, Algorithm 1 gathers the complete set477

of final path traces, that potentially can be covered by the generated input478

data. An example of the execution of Algorithm 1 applied on our running479

example and the 5 resulting final path traces are shown in Figure 4.480

O7O3e2
e3

e4

{T}

{F}

O1 e1

O6

O5

O8 O12O4

O9

O10O2 O11

e5

e6

e7

e8

e9 e10

e11

e12 e13

(a) DAG representation of our running example

O3

{O1} {O1.O2}

e1 e2

e3

e4

e7
e9 e11O1

{O1.O2.O3} {O4}

e12 e13

{O1.O2.O3.O5.07.08.O10.O11.O12},
{O4.O5.07.08.O10.O11.O12},

{O1.O2.O3.O6.07.08.O10.O11.O12},
{O4.O6.07.08.O10.O11.O12},

{O9.O10.O11.O12}

O12

Path Traces (PT)

Final Path Traces (FP)

O2 O4 O5 O6

e5

e8

O7e6
O8 O9 O10

e10

O11

{O1.O2.O3.O5},
{O4.O5}

{O1.O2.O3.O6},
{O4.O6}

{O1.O2.O3.O5.07},
{O4.O5.07},

{O1.O2.O3.O6.07},
{O4.O6.07}

{O1.O2.O3.O5.07.08},
{O4.O5.07.08},

{O1.O2.O3.O6.07.08},
{O4.O6.07.08}

{O9}

{O1.O2.O3.O5.07.08.O10},
{O4.O5.07.08.O10},

{O1.O2.O3.O6.07.08.O10},
{O4.O6.07.08.O10},

{O9.O10}

{O1.O2.O3.O5.07.08.O10.O11},
{O4.O5.07.08.O10.O11},

{O1.O2.O3.O6.07.08.O10.O11},
{O4.O6.07.08.O10.O11},

{O9.O10.O11}

(b) Execution of Algorithm 1 for the topological order of the DAG representation
of our running example

Figure 4: Example of execution of Algorithm 1

3.4. Constraints Extraction and Analysis Stage481

In what follows, we discuss in detail the constraints extraction and anal-482

ysis stages of our data generation process, carried out by Algorithm 2.483

After all possible final paths of input ETL graph are processed and484

their traces recorded in FP, an end-user may select an individual path she485

wants to cover. To this end, Bijoux runs Algorithm 2, with a selected path486

PT ∈ FP, and builds a data generation Pattern to cover (at least) the487

given path. Algorithm 2 iterates over all the operation nodes of the selected488

path (Step 2), and for each joining node (i.e., node with multiple incoming489

edges), it searches in FP for all paths that reach the same joining node,490

from now on, incident paths (Steps 5 - 11). As discussed in Section 3.2,491

routing operations (e.g., Router) introduce such paths, and they need to be492

considered separately when generating data for their coverage (see Figure493

3). In general, there may be several joining nodes on the selected path,494

hence Algorithm 2 must take into account all possible combinations of the495

20

Algorithm 2 Construct Data Generation Pattern for one Path
Input: ETL, PT, FP
Output: Pattern
1: AP ← ∅;
2: for each operation oi crossedBy PT do
3: if (oi is of type joining_node) then
4: APi ← ∅
5: for each Path Trace PTj ∈ TN.getAllPathTracesFor(oi) do
6: if (PTj .PredecessorOf (oi) 6= PT.PredecessorOf (oi)) then
7: APi.add(PTj);
8: end if
9: end for
10: AP.add(APi);
11: end if
12: end for
13: C ← allCombinations(PT, AP);
14: for each Combination C ∈ C do
15: Pattern ← ∅;
16: for each Path Trace PTi ∈ C do
17: for each operation oj crossedBy PTi do
18: Pattern.addConstraints(oj);
19: if (¬Pattern.isFeasible) then
20: abortPatternSearchForC ();
21: end if
22: end for
23: end for
24: return Pattern;
25: end for
26: return ∅;

21

alternative incident paths that reach these nodes (Step 13).496

Example. Referring to the DAG of Figure 4a, if the path to be covered is497

(O9→O10→O11→O12), it would require the coverage of additional path(s)498

because of the equi-join operator O10. In other words, data would also need499

to be coming from edge e10 in order to be matched with data from edge e11.500

However, because of the existence of a Union operator (O7), there are differ-501

ent alternative combinations of paths that can meet this requirement. The502

reason is that data coming from either of the incoming edges of a Union oper-503

ator reach its outgoing edge. Hence, data reaching O10 from edge e10 could504

pass through path (O1→O2→O3→O6→O7→O8...) combined with path505

(O4→O6→O7→O8...) or through path (O1→O2→O3→O5→O7→O8...)506

combined with (O4→O6→O7→O8...). Thus, we see how two alternative507

combinations of paths, each containing three different paths, can be used508

for the coverage of one single path. 2509

For each combination, Algorithm 2 attempts to build a data generation510

pattern, as explained above. However, some combination of paths may raise511

a contradiction between the constraints over an input field, which in fact512

results in disjoint value ranges for this field and thus makes it unfeasible to513

cover the combination of these paths using a single instance of the input514

field (Step 20). In such cases, Algorithm 2 aborts pattern creation for a515

given combination and tries with the next one.516

Example. Referring to the DAG of Figure 4a, we can imagine field f1,517

being present in the schema of operation O6 and field f2 being present in518

the schema of operation O9. We can also imagine that the datatype of f1519

is integer and the datatype of f2 is positive integer. Then, if the joining520

condition of operation O10 is (f1 = f2) and at the same time, there is521

a constraint (e.g., in operation O6) that (f1 < 0), the algorithm will fail522

to create a feasible data generation pattern for the combination of paths523

(O1→O2→O3→O5...→O12) and (O9→O10→O11→O12). 2524

Otherwise, the algorithm updates currently built Pattern with the con-525

straints of the next operation (oj) found on the path trace.526

As soon as it finds a combination that does not raise any contradiction527

and builds a complete feasible Pattern, Algorithm 2 finishes and returns the528

created data generation pattern (Step 24). Notice that by covering at least529

one combination (i.e., for each joining node, each and every incoming edge530

is crossed by one selected path), Algorithm 2 can guarantee the coverage of531

the selected input path PT .532

Importantly, if Algorithm 2 does not find a feasible data generation pat-533

tern for any of the alternative combinations, it returns an empty pattern534

(Step 26). This further indicates that the input ETL process model is not535

22

-

-

setToMaxInt 1%
addNullValues 1%

deform 2%

Modification

Long
String

Uniform Discrete

Uniform
Complex

String

Uniform

Triangular

Integer

Integer
Datatype Distribution Type

PTS
RecType

CoNameOrCIK
CompanyID

EffectiveDate

Field Parameters (FP)

1
0.95
0.6

0.7
0.3

Selectivity
O2 (Filter_RecType)
O3 (Router_1)
O6 (Join_1)
O5 (Join_2)
O8 (Filter_Date)

Operation Parameters
(OP)

Figure 5: Data generation parameters (FP and OP)

correct, i.e., that some of the path branches are not reachable for any com-536

bination of input data.537

The above description has covered the general case of data generation538

without considering other generation parameters. However, given that our539

data generator aims at generating data to satisfy other configurable param-540

eters, we illustrate here as an example the adaptability of our algorithm to541

the problem of generating data to additionally satisfy operation selectivity.542

To this end, the algorithm now also analyzes the parameters at the oper-543

ation level (OP) (see Figure 5:right). Notice that such parameters can be544

either obtained by analyzing the input ETL process for a set of previous545

real executions, or simply provided by the user, for example, for analyzing546

the flow for a specific set of operation selectivities.547

Selectivity of an operation o expresses the ratio of the size of the dataset548

at the output (i.e., card(o)), to the size at the input of an operation (i.e.,549

input(o)). Intuitively, for filtering operations, we express selectivity as the550

percentage of data satisfying the filtering predicate (i.e., sel(o) = card(o)
input(o)),551

while for n-ary (join) operations, for each input ei, we express it as the552

percentage of the data coming from this input that will match with other553

inputs of an operation (i.e., sel(o, ei) = card(o)
input(o,ei)).554

From the OP (see Figure 5:right), Bijoux finds that operation O2 (Fil-555

ter_RecType) has a selectivity of 0.3. While processing a selected path556

starting from the operation O1, Bijoux extracts operation semantics for O2557

and finds that it uses the field RecType (RecType==‘SEC’). With the selec-558

tivity factor of 0.3 from OP , Bijoux infers that out of all incoming rows for559

the Filter, 30% should satisfy the constraint that RecType should be equal560

to SEC, while 70% should not. We analyze the selectivity as follows:561

• To determine the total number of incoming rows for operation O8562

(Filter_Date), we consider predecessor operations, which in our case563

come from multiple paths.564

23

• As mentioned above, operation O2 will allow only 30% of incoming565

rows to pass. Assuming that the input load size from FINWIRE is566

1000, this means that in total 0.3 ∗ 1000 = 300 rows pass the filter567

condition.568

• From these 300 rows only 70%, based on the O3 (Router_1) selec-569

tivity, (i.e., 210 rows) will successfully pass both the filtering (Rec-570

Type==‘SEC’) and the router condition (isNumber(CoNameOrCIK))571

and hence will be routed to the route that evaluates to true. The rest572

((i.e., 300− 210 = 90 rows)) will be routed to the route that evaluates573

to false.574

• The 210 rows that pass both previous conditions, will be matched575

with rows coming from operation O4 through the join operation O6576

(Join_1). Since the selectivity of operation O6 is 1, all 210 tuples will577

be matched with tuples coming from O4 and meeting the condition578

CoNameOrCIK==CompanyID and hence will pass the join condition.579

On the other hand, the selectivity of operation O5 (Join_2), for the580

input coming from O3 (Router_1), is 0.95, which means that from the581

90 rows that evaluated to false for the routing condition, only 85 will582

be matched with tuples coming from O4 and meeting the condition583

CoNameOrCIK==Name. Thus, 210 + 85 = 295 tuples will reach the584

union operation O6 and pass it.585

• Finally, from the 295 rows that will reach operation O8 (Filter_Date)586

coming from the preceding union operation, only 0.6 ∗ 295 = 177 will587

successfully pass the condition (PTS>=EffectiveDate) AND (PTS<=588

EndDate), as the selectivity of OP8 is 0.6.589

In order to generate the data that do not pass a specific operation of the590

flow, a data generate pattern inverse to the initially generated Pattern591

in Algorithm 2 needs to be created to guarantee the percentage of data592

that will fail the given predicate.593

Similarly, other parameters can be set for the generated input data to594

evaluate different quality characteristics of the flow, (see Figure 5:left). As595

an example, the percentage of null values or incorrect values (e.g., wrong596

size of telephone numbers or negative age) can be set for the input data,597

to evaluate the measured data quality of the flow output, regarding data598

completeness and data accuracy, respectively. Other quality characteristics599

like reliability and recoverability can be examined as well, by adjusting the600

distribution of input data that result to exceptions and the selectivity of601

24

exception handling operations. Examples of the above will be presented in602

Section 4.603

3.5. Data Generation Stage604

Lastly, after the previous stage builds data generation patterns for cov-605

ering either a single path, combination of paths, or a complete flow, the last606

(data generation) stage proceeds with generating data for each input field607

f . Data are generated within the ranges (i.e., R) defined by the constraints608

of the provided pattern, using either random numerical values within the609

interval or dictionaries for selecting correct values for other (textual) fields.610

For each field f , data generation starts from the complete domain of the611

field’s datatype dt(f).612

Each constraint P , when applied over the an input field f , generates a
set of disjoint ranges of values Rf,init

i in which the data should be gener-
ated, and each range being inside the domain of the field’s datatype dt(f).
Formally:

P (f) = Rf,init =
{

rf,init|rf,init ⊆ dt(f)
}

(1)

For example, depending on the field’s datatype, a value range for numeric613

datatypes is an interval of values (i.e., [x, y]), while for other (textual) fields614

it is a set of possible values a field can take (e.g., personal names, geographical615

names).616

After applying the first constraint P1, Bijoux generates a set of disjoint,617

non-empty value ranges Rf
1 , each range being an intersection with the do-618

main of the field’s datatype.619

Rf
1 =

{
rf

1 |∀r
f,init
1 ∈ Rf,init

1 ,∃rf
1 ,s.t. : (2)

(rf
1 = rf,init

1 ∩ dt(f) ∧ rf
1 6= ∅)

}
Iteratively, the data generation stage proceeds through all the constraints620

of the generation pattern. For each constraint Pi it updates the resulting621

value ranges as an intersection with the ranges produced in the previous622

step, and produces a new set of ranges Rf
i .623

25

ST_NAME "Active"
ST_ID "ACTV"

99991231000000EndDate
EffectiveDate 19681102185012

Name "TUD INC"

"SEC"

"5609324496"
"ACTV"

Paths Combination 1

CoNameOrCIK

19880121171542

"5609324496"

Status

PTS
RecType

CompanyID

ST_NAME "Complete"
ST_ID "CMPT"

99991231000000EndDate
EffectiveDate 20011025102033

Name "UPC CORP"

"SEC"

"UPC CORP"
"CMPT"

Paths Combination 2

CoNameOrCIK

20160215210536

"1392258420"

Status

PTS
RecType

CompanyID

{RecType=='SEC'}

{isNumber(CoNameOrCIK)}

{CoNameOrCIK==CompanyID}

{(PTS>=EffectiveDate)
AND (PTS<=EndDate)}

{ST_ID==Status}

Constraints for data generation
pattern for Paths Combination 1

{RecType=='SEC'}

{NOT(isNumber(CoNameOrCIK))}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND (PTS<=EndDate)}

{ST_ID==Status}

Constraints for data generation
pattern for Paths Combination 2

Figure 6: Data generated after analyzing all ETL operations

Rf
i =

{
rf

i |∀r
f,init
i ∈ Rf,init

i ,∀rf
i−1 ∈ Rf

i−1,∃rf
i , s.t. : (3)

(rf
i = rf,init

i ∩ rf
i−1 ∧ rf

i 6= ∅)
}

Finally, following the above formalization, for each input field f Bi-624

joux produces a final set of disjoint, non-empty value ranges (Rf,final) and625

for each range it generates an instance of f inside that interval.626

See for example, in Figure 6 and Figure 7, the generated data sets for627

covering the ETL process flow of our running example. We should mention628

at this point, that non conflicting constraints for the same field that is629

present in different paths and/or path combinations, can be merged and630

determine a single range (i.e., the intersection of all the ranges resulting631

26

20160215210536 "CMPT" "UPC CORP""SEC"
19880121171542 "SEC" "ACTV" "5609324496"

CoNameOrCIKStatusRecTypePTS

"1392258420" 20011025102033 99991231000000"UPC CORP"
"5609324496" "TUD INC" 19681102185012 99991231000000

EndDateEffectiveDateNameCompanyID

"Active"
"Complete"

ST_ID ST_NAME

"CMPT"
"ACTV"

FINWIRE

DimCompany

StatusType

Figure 7: Generated datasets corresponding to the generated data

from the different paths). This way, under some conditions, the same value632

within that interval can be used for the coverage of different paths. As633

an example, in Figure 6, the fields Status and ST_ID that exist in both634

path combinations, all hold a constraint (ST_ID==Status). These can be635

merged into one single constraint, allowing for the generation of only one636

row for the table StatusType that can be used for the coverage of both path637

combinations, as long as both generated values for the field Status equal the638

generated value for the field ST_ID (e.g., “ACTV”).639

Following this idea, it can easily be shown that under specific conditions,640

the resulting constraints for the different path combinations from the appli-641

cation of our algorithm, can be further reduced, until they can produce a642

minimal set of datasets for the coverage of the ETL flow.643

Data generation patterns must be further combined with other user-644

defined data generation parameters (e.g., selectivities, value distribution,645

etc.). We provide more details regarding this within our test case in Section646

4.647

3.6. Theoretical validation648

We further provide a theoretical validation of our data generation pro-649

cess in terms of: the correctness of generated data sets (i.e., path and flow650

coverage).651

A theoretical proof of the correctness of the Bijoux data generation pro-652

cess is divided into the three following components.653

1. Completeness of path traces. Following from Algorithm 1, for each
ETL graph node (i.e., datastores and operations, see Section 2.2) Bi-
joux builds path traces of all the paths reaching that node (e.g., see

27

Figure 4b). Formally, given that an ETL graph node can represent ei-
ther an operation (O), a source (DSS), or a target data store (DST),
we recursively formalize the existence of path traces as follows:

∀vi ∈ O ∪DST ,PTvi =
|{vj |vj≺vi}|⋃

j=1

{
PT 1

vj
· vi, .., PT

|PTj |
vj · vi

}
. (4)

∀vi ∈ DSS ,PTvi = {PTvi}, PTvi = vi. (5)

Considering that ETL graph nodes are visited in a topological order654

(see Step 2 in Algorithm 1), the path traces of each ETL graph node655

are built after visiting all its predeceasing sub-paths. This guarantees656

that path traces of each node vi are complete with regard to all its657

predecessors (i.e., {vj |vj ≺ vi}), hence the final path traces FP (i.e.,658

path traces of target data store nodes) are also complete.659

2. Path coverage. Having the complete path traces recorded in Algorithm660

1, Algorithm 2 traverses a selected path (i.e., PT), with all its alter-661

native incidence paths, and builds a data generation Patern including662

a list of constraints over the input fields. Following from 1, this list663

of constraints is complete. Moreover, as explained in Section 3.5, Bi-664

joux iteratively applies given constraints, and for each input field f665

produces a set of value ranges (Rf,final), within which the field values666

should be generated.667

Given the statements 1 - 3 in Section 3.5, Bijoux guarantees that the668

data generation stage applies all the constraints over the input fields669

when generating Rf,final, thus guaranteeing that the complete selected670

path will be covered.671

On the other side, if at any step of the data generation stage a result of672

applying a new constraint Pi leads to an empty set of value ranges, the673

collected list of constraints must be contradictory. Formally (following674

from statement 3 in Section 3.5):675

(∃Rf,init
i , Rf

i−1|R
f
i = ∅)→ ⊥.676

This further implies that the input ETL graph has contradictory path677

constraints that would lead to an unreachable sub-path, which could678

never be executed. As an additional functionality, Bijoux detects such679

behavior and accordingly warns the user that the input ETL flow is680

not correct.681

28

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

Join_2
<<Join>>

O5

O6

O7
O1

O8

O9

O10 O11 O12

Alt_DS

Extract_ALT_DS
<<Input
DataStore>>

Join_4
<<Join>>

Join_5
<<Join>>

Replace_1
<<Field

Alteration>>
Project_2

<<Project>>

Replace_2
<<Field

Alteration>>

Project_3
<<Project>>

{CoNameOrCIK==NameDirty}
{CoNameOrCIK NameStandard}

{Name==NameDirty}

{Name NameStandard}

O13

O14 O15
O16

O19

O17

O18

SAlt_DS=
{NameDirty,NameStandard}

Data Cleaning Option 1

Figure 8: ETL flow for data cleaning, using a dictionary

3. Flow coverage. Following from 2, Algorithm 2 generates data that682

guarantee the coverage of a single path from FP. In addition, if Algo-683

rithm 2 is executed for each final path PTi ∈ FP, it is straightforward684

that Bijoux will produce data that guarantee the coverage of the com-685

plete ETL flow (i.e., ETL graph), unless a constraints contradiction686

for an individual path has been detected.687

4. Test case688

The running example of the ETL flow that we have used so far is expres-689

sive enough to illustrate the functionality of our framework, but it appears690

too simple to showcase the benefits of our approach regarding the evalua-691

tion of the quality of the flow. In this respect, we present in this section692

representative examples of how our framework can generate data, not only693

to enact specific parts of the ETL flow, but also to evaluate the performance694

and the data quality of these flow parts.695

Going back to our running example (Figure 1), from now on referred696

to as Flow_A, we can identify a part of the flow that can be the source697

of data quality issues. That is, rows whose values for the field CoName-698

OrCIK are not numbers are matched with data about companies from the699

29

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

Join_2
<<Join>>

O5

O6

O7
O1

O8

O9

O10 O11 O12

Alter_String_1
<<Value
Alteration>>

O14

Alter_String_2
<<Value
Alteration>>

O15

Copy_Split
<<Dataset
Copy>>

O13

Union_1
<<Union>>

O16

{CoNameOrCIK removeLastToken(CoNameOrCIK)}

{CoNameOrCIK addEnding(CoNameOrCIK, ".inc")}

Data Cleaning Option 2

Figure 9: ETL flow for data cleaning, trying different string variations for the join key

DimCompany table, through an equi-join on the company name (CoName-700

OrCIK==Name). However, company names are typical cases of attributes701

that can take multiple values in different systems or even within the same702

system. For example, for a company Abcd Efgh, its name might be stored703

as “Abcd Efgh”, or followed by a word indicating its type of business en-704

tity (e.g., “Abcd Efgh Incorporated”) or its abbreviation with or without705

a comma (e.g., “Abcd Efgh Inc.” or “Abcd Efgh, Inc.”). It is also pos-706

sible that it might be stored using its acronym (e.g., “ABEF”) or with a707

different reordering of the words in its name, especially when the two first708

words are name and surname of a person (e.g., “Efgh Abcd”). Moreover,709

there can be different uppercase and lowercase variations of the same string,710

combinations of the above-mentioned variations or even misspelled values.711

Hence, there are many cases that the equi-join (CoNameOrCIK==Name)712

will fail to match the incoming data from the FINWIRE source with the713

rows from the DimCompany table, because they might simply be using a714

different variation of the company name value. This will have an impact715

on data completeness, since it will result in fewer rows being output to the716

DimSecurity than there should be.717

To this end, we introduce here two more complex ETL flows (Figure 8718

and Figure 9), which perform the same task as the running example, but719

include additional operations in order to improve the data quality of the out-720

30

put data. The ETL flow in Figure 8, from now on referred to as Flow_B,721

uses a dictionary (Alt_DS) as an alternative data source. This dictionary is722

assumed to have a very simple schema of two fields — NameDirty and Name-723

Standard, to maintain a correspondence between different dirty variations724

of a company name and its standard name. For simplicity, we assume that725

for each company name, there is also one row in the dictionary containing726

the standard name, both as value for the NameDirty and the NameStandard727

fields. Operations O14 and O17 are used to match both the company names728

from the FINWIRE and the table, to the corresponding dictionary entries729

and subsequently, rows are matched with the standard name value being the730

join key, since the values for the join keys are replaced by the standard name731

values ((Name←NameStandard) and (CoNameOrCIK←NameStandard)).732

Another alternative option for data cleaning is to try different variations733

of the company name value, by adding to the flow various string operations734

that alter the value of CoNameOrCIK. The ETL flow in Figure 9, from735

now on referred to as Flow_C, generates different variations of the value736

for CoNameOrCIK with operations O14 and O15, who concatenate the737

abbreviation “inc.” at the end of the word and remove the last token of738

the string, respectively. After the rows from these operations are merged739

through a Union operation (O16), together with the original CoNameOrCIK740

value, all these different variations are tried out to match with rows coming741

from DimCompany.742

4.1. Evaluating the performance overhead of alternative ETL flows743

In the first set of experiments, we implemented the three different ETL744

flows (Flow_A, Flow_B and Flow_C) using Pentaho Data Integration4 and745

we measured their time performance by executing them on Kettle Engine,746

running on Mac OS X, 1.7 GHz Intel Core i5, 4GB DDR3 and keeping747

average values from 10 executions.748

For each flow, we used Bijoux to generate data to cover only the part of749

the flow that was of interest, i.e., to cover the paths from Operations O1 to750

O12 who are covered by the rows that are evaluated as False by operation751

O3. Hence, one important advantage of our tool is that it can generate data752

to evaluate specific part of the flow, as opposed to random data generators753

(e.g., the TPC-DI data generator provided on the official website) who can754

only generate data agnostically of which part of the flow is being covered.755

This gives Bijoux not only a quality advantage, being able to evaluate the756

4http://www.pentaho.com/product/data-integration

31

http://www.pentaho.com/product/data-integration

Figure 10: Performance evaluation of the flows using different scale factors

flow in greater granularity, but also a practical advantage, since the size of757

data that need to be generated can be significantly smaller. For instance, the758

TPC-DI data generator generates data for the FINWIRE file, only around759
1/3 of which are evaluated as true by the filter RecType==’SEC’ and from760

them only around 1/3 contains a company name instead of a number.761

In order to generate realistic values for the company name fields, we used762

a catalog of company names that we found online 5 and we used Bijoux to763

generate data not only for the attributes that have been mentioned above,764

but for all of the attributes of the schemata of the involved data sources as765

defined in the TPC-DI documentation, so as to measure more accurate time766

results.767

For each flow, we generated data of different size in order to evaluate768

how their performance can scale with respect to input data size, as shown in769

the below table, where we can see the number of rows for each data source770

for the three different scale factors (SF).771

5https://www.sec.gov/rules/other/4-460list.htm

32

https://www.sec.gov/rules/other/4-460list.htm

Data source → FINWIRE DimCompany Alt_DS (for Flow_B)
SF_A 4000 4000 60000
SF_B 8000 8000 60000
SF_C 16000 16000 60000

For these experiments, for each flow we assumed selectivities that would772

guarantee the matching of all the rows in FINWIRE with rows in DimCom-773

pany and the results can be seen in Figure 10 For Flow_C.774

As we expected, the results show an overhead in performance imposed by775

the data cleaning operations. It was also intuitive to expect that the lookup776

in the dictionary (Flow_B) would impose greater overhead than the string777

alterations (Flow_C). Nevertheless, some interesting finding that was not778

obvious is that as input data scale in size, the overhed of Flow_B appears779

to come closer and closer to the overhed of (Flow_C), which appears to780

become greater as input data size grows. We should notice at this point781

that our results regard the performance and scalability of a specific part of782

the flow – not the complete flow in general – which is a unique advantage783

of our approach, especially in cases of dealing with bottlenecks.784

Consequently, we conducted experiments assuming different levels of in-785

put data dirtiness, by setting the selectivity of the different join operations786

for the different flows. The scenario we intended to simulate was a pre-787

defined percentage of different types of data dirtiness. In this respect, we788

considered four different types of dirtiness:789

1. Missing the abbreviation “inc.” at the end of the company name790

(Type_I)791

2. A word (e.g., company type abbreviation) exists at the end of the792

name when it should not (Type_II)793

3. The ending of the company name is mistakenly in an extended format794

(e.g., “incorporated’ ’ instead of “inc.”) (Type_III)795

4. Miscellaneous that cannot be predicted (e.g., “corp.” instead of “inc.”796

or misspelled names) (Type_IV)797

We assumed that Flow_A cannot handle any of these cases (i.e., dirty798

names as an input for the FINWIRE source will fail to be matched to data799

coming from DimCompany); that Flow_B can solve all the cases for Type_I800

33

Figure 11: Performance evaluation of Flow_B using different levels of input data quality

and Type_III (i.e., there will be entries in the dictionary covering both of801

these types of dirtiness); and Flow_C can cover all the cases for Type_I802

and Type_II, because of the operation that it performs.803

Thus, we generated data that were using real company names from the804

online catalog; we considered those names as the standard company names805

versions to generate data for the DimCompany source; and we indirectly806

introduced specified percentages of the different types of dirtiness, by set-807

ting a) the selectivities of the join operators and b) by manually generating808

entries in our dictionary (Alt_DS) that included all the names from the809

catalog together with their corresponding names manually transformed to810

Type_I and Type_II. The percentages of input data quality (IDQ) that811

were used for our experiments can be seen in the following table.812

In Figure 11, we show how the performance of Flow_B scales with re-813

spect to different scale factors and data quality of input data. What is814

interesting about those results, is that the flow appears to be performing815

better when the levels of dirtiness of the input data are higher. This might816

appear counter-intuitive, but a possible explanation could be that less data817

34

Dirtiness Type → Type_I Type_II Type_III Type_IV
IDQ1 0% 0% 0% 0%
IDQ2 1% 1% 3% 1%
IDQ3 2% 2% 6% 2%

(i.e., fewer rows) actually reach the extraction operation, keeping in mind818

that read/write operations are very costly for ETL flows.819

4.2. Evaluating the data quality of alternative ETL flows820

In the above-mentioned experiments, we evaluated the time performance821

of different flows, assuming that both data quality levels and data dirtiness822

characterization were a given. However, in order to evaluate an ETL flow823

with respect to the quality of the data cleaning that it can provide, it is not824

sufficient to only evaluate the time performance of different data cleaning825

options. To this end, in the second set of experiments, our goal was to826

evaluate which data cleaning option would produce the lowest levels of data827

incompleteness in the output data of the flow (DimSecurity table), using828

realistic datasets. In this respect, we used the company names from our829

catalog and for each of them we prepared a query to scrap the Freebase online830

database6 and retrieve data about the company name and the known aliases831

of those names. Consequently, starting from 940 unique company names of832

our catalog, we were able to construct a dictionary that contained 2520833

entries, each containing an alias of a company name and its corresponding834

standard name. We then used this dictionary as our Alt_DS dictionary; the835

standard names to populate the DimCompany table; and the names as they836

were on the catalog to populate the FINWIRE file.837

Using Bijoux , we generated data that used Flow_A semantics in order to838

pass through the part of the flow that was of our interest and the dictionaries839

as mentioned above to generate realistic data. Despite the fact that it might840

appear as if the use of dictionaries devalues the use of our algorithm, in fact841

this is one strength of our approach — that it can be configured to generate842

data with different degrees of freedom, based on the constraints defined both843

by the flow semantics and the user. Therefore, it is possible to conduct such844

analysis, using a hybrid approach and evaluating the flows based on realistic845

6https://www.freebase.com/

35

https://www.freebase.com/

data. The contribution of our algorithm in this case is to generate, on one846

hand all the data for the different fields of the schemata that are required for847

the flow execution and to make sure, on the other hand that the generated848

rows will cover specific parts of the flow.849

After executing Flow_B and Flow_C with these input data, we used850

the following measure for data completeness:851

DI = %_of_missing_entities_from_their_appropriate_storage [16]852

The results for the two flows were the following:853

DIF low_B = 56
940 ∗ 100 ≈ 6%854

855

DIF low_B = 726
940 ∗ 100 ≈ 77%856

857

According to these results, we can see a clear advantage of Flow_B858

regarding the data quality that it provides, suggesting that the performance859

overhead that it introduces, combined with potential cost of obtaining and860

maintaining a dictionary, might be worth undertaking, if data completeness861

is a goal of high priority.862

We have explained above how the parametrization of our input data863

generation enables the evaluation of an ETL process and various design al-864

terations over it, with respect to data quality and performance. Essentially,865

alternative implementations for the same ETL can be simulated using dif-866

ferent variations of the data generation properties and the measured quality867

characteristics will indicate the best models, as well as how they can scale868

with respect not only to data size but also to data quality of the input data.869

Similarly, other quality characteristics can be considered, like reliability and870

recoverability, by adjusting the percentage of input data that result to excep-871

tions and the selectivity of exception handling operations. In addition, we872

have shown through our examples how data properties in the input sources873

can guide the selection between alternative ETL flows during design time.874

5. Bijoux performance evaluation875

In this section, we report the experimental findings, after scrutinizing876

different performance parameters of Bijoux, by using the prototype that877

implements its functionalities.878

We first introduce the architecture of a prototype system that imple-879

ments the functionality of the Bijoux algorithm.880

Input. The main input of the Bijoux framework is an ETL process.881

As we previously discussed, we consider that ETL processes are provided882

36

in the logical (platform-independent) form, following previously defined for-883

malization (see Section 2.2). Users can also provide various parameters (see884

Figure 5) that can lead the process of data generation, which can refer to885

specific fields (e.g., field distribution), operations (e.g., operation selectivity)886

or general data generation parameters (e.g., scale factors).887

Output. The output of our framework is the collection of datasets888

generated for each input data store of the ETL process. These datasets889

are generated to satisfy the constraints extracted from the flow, as well890

as the parameters provided by the users for the process description (i.e.,891

distribution, operation selectivity, load size).892

Model
Parsing

Validator Parser

Graph
Analysis Path

Enumerator
Path

Combinator

Semantics
Extraction Constraints

Semantics
Extractor

Path
Constraints

Analyser

Model
Analysis Data Gen.

Pattern
Constructor Constraints

System
Solver

Coverage
Controller

Data
Ganeration

Data Gen.
Tasks

Distributor
Data

Supplier

Data Gen.
Utilities

< >

Data Gen
Parameters

Parameters
Validator &

Binder

ETL logical
model

Component

intra-layer communication

inter-layer communication

I/O

Artifact

Figure 12: Bijoux prototype architecture

Bijoux’s architecture. The Bijoux’s prototype is modular and based893

on a layered architecture, as shown in Figure 12. The four main layers894

implement the core functionality of the Bijoux algorithm (i.e., graph anal-895

ysis, semantics extraction, model analysis, and data generation), while the896

additional bottom layer is responsible for importing ETL flows from corre-897

sponding files and can be externally provided and plugged to our framework898

(e.g., flow import plugin [13]). We further discuss all the layers in more899

37

detail.900

• The bottom layer (Model Parsing) of the framework is responsible for901

parsing the model of the ETL process (Parser component) from the902

given logical representation of the flow (e.g., XML), and importing a903

DAG representation for the process inside the framework. In general,904

the Model Parsing layer can be extended with external parser plugins905

for handling different logical representations of an ETL process (e.g.,906

[12, 13]). This layer also includes a Validator component to ensure907

syntactic, schematic and logical (e.g., cycle detection) correctness of908

the imported models.909

• The Graph Analysis layer analyses the DAG representation of the ETL910

flow model. Thus, it is responsible for identifying and modeling all the911

ETL flow paths (Path Enumerator component; see Algorithm 1), as912

well as constructing all their possible combinations (Path Combinator913

component).914

• The Semantics Extraction layer extracts relevant information needed915

to process the ETL flow. The information extracted in this layer (from916

the Constraints Semantics Extractor component) includes informa-917

tion about input datasets, operation semantics, order of operations,918

schema changes, and other parameters for data generation. This layer919

is also responsible for modeling constraints grouped by path (Path920

Constraints Analyzer; see Algorithm 2) to provide the required con-921

structs for feasibility analysis and the construction of a data generation922

pattern to the layer above (Model Analysis).923

• Model Analysis layer realizes the construction of a data generation924

pattern (Data Gen. Pattern Constructor component) that computes925

for each field (i.e., attribute), in each table, the ranges of values ac-926

cording to the extracted semantics of operations and their positioning927

within paths and path combinations. To this end, this layer includes928

the Coverage Controller component for implementing such analysis929

according to the set coverage goal (i.e., path coverage, flow cover-930

age). In addition, it includes the Constraints System Solver compo-931

nent, which solves the systems of gathered constraints (e.g., system of932

logical predicates and equations over specified attributes) and returns933

the computed restrictions over the ranges.934

• Data Generation layer controls the data generation stage according to935

the constraints (i.e., data generation patterns) extracted and analyzed936

38

in the previous layer, as well as the Data Gen. Parameters provided937

externally (e.g., distribution, selectivity). The Parameters Validator938

& Binder component binds the externally provided parameters to the939

ETL model and ensures their compliance with the data generation pat-940

terns, if it is possible. The Data Gen. Tasks Distributor component941

is responsible for managing the generation of data in a distributed942

fashion, where different threads can handle the data generation for943

different (pairs of) attributes, taking as input the computed ranges944

and properties (e.g., generate 1000 values of normally distributed in-945

tegers where 80% of them are lower than “10”). For that purpose, it946

utilizes the Data Gen. Utilities component, that exploits dictionaries947

and random number generation methods. Finally, the Data Supplier948

component outputs generated data in the form of files (e.g., CSV files).949

5.1. Experimental setup950

Here, we focused on testing both the functionality and correctness of951

the Bijoux algorithm discussed in Section 3, and different quality aspects,952

i.e., data generation overhead (performance) wrt. the growing complexity of953

the ETL model. The reason that we do not additionally test those quality954

aspects wrt. input load sizes is that such analysis is irrelevant according to955

the Bijoux algorithm. The output of the analysis phase is a set of ranges956

and data generation parameters for each attribute. Hence, the actual data957

generation phase does not depend on the efficiency of the proposed algo-958

rithm, but instead can be realized in an obvious and distributed fashion.959

Thus, we present our results from experiments that span across the phases960

of the algorithm up until the generation of ranges for each attribute. We961

performed the performance testing considering several ETL test cases, which962

we describe in what follows.963

Our experiments were carried under an OS X 64-bit machine, Processor964

Intel Core i5, 1.7 GHz and 4GB of DDR3 RAM. The test cases consider a965

subset of ETL operations, i.e., Input DataStore, Join, Filter, Router, UDF,966

Aggregation and Output DataStore. Based on the TPC-H benchmark7, our967

basic scenario is an ETL process, which extracts data from a source re-968

lational database (TPC-H DB) and after processing, loads data to a data969

warehouse (DW) and can be described by the following query: Load in the970

DW all the suppliers in Europe together with their information (phones, ad-971

dresses etc.), sorted on their revenue and separated by their account balance972

7http://www.tpc.org/tpch/

39

(either low or high), as can be seen in Fig. 13.973

TPC_H
DB

Supplier
<<Input
DataStore>>

NATION
<<Input
DataStore>>

DW

Join_n_s
<<Join>>

Filter_region_Europe
<<Filter>>

load_high_sup
<<Output

DataStore>>

{r_name=EUROPE}

n_nationkey}
{s_nationkey

=

REGION
<<Input
DataStore>>

Join_r_n
<<Join>>

r_regionkey}
{n_regionkey

=

LINEITEM
<<Input
DataStore>>

Join_s_l
<<Join>>

l_suppkey}
{s_suppkey

=

UDF_revenue
<<UDF>>

l_extendedprice
{item_revenue

=

(1-l_discount)}*

Router_s_acctbal_5000
<<Router>>

SUM_revenue_high
<<Aggregation>>

{s_acctbal>5000}

SUM_revenue_low
<<Aggregation>>{s_acctbal<=5000}

load_low_sup
<<Output

DataStore>>

Figure 13: Basic scenario ETL process for experiments

The tables that are used from the source database are Supplier, Nation,974

Region and Lineitem. After Supplier entries have been filtered to keep975

only suppliers in Europe, the revenue for each supplier is calculated based976

on the supplied lineitems and subsequently, they are sorted on revenue,977

separated by their account balance and loaded to different tables in the978

DW. Starting from the basic scenario, we use POIESIS [17], a tool for ETL979

Process redesign that allows for the automatic addition of flow patterns on980

an ETL model. Thus, we create other, more complex, synthetic ETL flows.981

The motivation for using tools for automatic ETL flow generation stems from982

the fact that obtaining real world ETL flows covering different scenarios with983

different complexity and load sizes is hard and often impossible.984

Scenarios creation. Starting from this basic scenario, we create more985

complex ETL flows by adding additional operations, i.e., Join, Filter, Input986

DataStore, Project in various (random) positions on the original flow. We987

add two different Flow Component Patterns (FCP) [17] on the initial ETL988

flow in different cardinalities and combinations. The first pattern — Join —989

adds 3 operations every time it is applied on a flow: one Input DataStore, one990

Join and one Project operation in order to guarantee matching schemata;991

the second pattern — Filter — adds one Filter operation with a random992

(inequality) condition on a random numerical field (i.e., attribute).993

We iteratively create 5 cases of different ETL flow complexities and ob-994

serve the Bijoux’s execution time for these cases, starting from the basic995

ETL flow:996

• Case 1. Basic ETL scenario, consisting of twenty-two (22) operations,997

as described above (before each join operation there exists also one998

joining key sorting operation which is not shown in Fig. 13, so that999

the flow is executable by most popular ETL engines).1000

• Case 2. ETL scenario consisting of 27 operations, starting from the1001

40

Case	 1	

Case	 2	

Case	 3	
Case	 4	

Case	 5	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	 70	 90	 110	 130	 150	

N
um

be
r	 o

f	 F
lo
w
	 O
pe

ra
0o

ns
	

Execu0on	 Time	 (ms)	

Figure 14: Linear trend of constraints extraction time wrt. the increasing number of
operations (ETL flow complexity)

basic one and adding an additional Join FCP and 2 Filter FCP to the1002

flow.1003

• Case 3. ETL scenario consisting of 32 operations, starting from the1004

basic one and adding 2 additional Join FCP and 4 Filter FCP to the1005

flow.1006

• Case 4. ETL scenario consisting of 37 operations, starting from the1007

basic one and adding 3 additional Join FCP and 6 Filter FCP to the1008

flow.1009

• Case 5. ETL scenario consisting of 42 operations, starting from the1010

basic one and adding 4 additional Join FCP and 8 Filter FCP to the1011

flow.1012

5.2. Experimental results1013

We measure the average execution time of the path enumeration, ex-1014

traction and analysis phase for the above 5 scenarios covering different ETL1015

flow complexities.1016

Figure 14 illustrates the increase of execution time when moving from the1017

simplest ETL scenario to a more complex one. As can be observed, execution1018

41

time appears to follow a linear trend wrt. the number of operations of the1019

ETL flow (i.e., flow complexity). This can be justified by the efficiency of our1020

graph analysis algorithms and by the extensive use of indexing techniques1021

(e.g., hash tables) to store computed properties for each operation and field,1022

perhaps with a small overhead on memory usage. This result might appear1023

contradictory, regarding the combinatorial part of our algorithm, computing1024

and dealing with all possible path combinations. Despite the fact that it1025

imposes factorial complexity, it is apparent that it does not constitute a1026

performance issue for ETL flows of such complexity. To this end, the solution1027

space is significantly reduced by i) our proposed greedy evaluation of the1028

feasibility of a pattern every time it is updated and ii) by disregarding path1029

combinations that do not comply to specific rules, e.g., when considering1030

path coverage, every input of a joining operation involved in any path of a1031

path combination must be flowed (crossed by) at least one other path of that1032

combination.1033

6. Related Work1034

Software development and testing. In the software engineering field, test-1035

driven development has studied the problem of software development by1036

creating tests cases in advance for each newly added feature in the cur-1037

rent software configuration [18]. However, in our work, we do not focus on1038

the design (i.e., development) of ETL processes per se, but on automat-1039

ing the evaluation of quality features of the existing designs. We analyze1040

how the semantics of ETL processes entail the constraints over the input1041

data, and then consequently create the testing data. Similarly, the problem1042

of constraint-guided generation of synthetic data has been also previously1043

studied in the field of software testing [5]. The context of this work is the mu-1044

tation analysis of software programs, where for a program, there are several1045

“mutants” (i.e., program instances created with small, incorrect modifica-1046

tions from the initial system). The approach analyzes the constraints that1047

“mutants” impose to the program execution and generates data to ensure1048

the incorrectness of modified programs (i.e., “to kill the mutants”). This1049

problem resembles our work in a way that it analyzes both the constraints1050

when the program executes and when it fails to generate data to cover both1051

scenarios. However, this work mostly considered generating data to test1052

the correctness of the program executions and not its quality criteria (e.g.,1053

performance, recoverability, reliability, etc.).1054

Data generation for relational databases. Moving toward the database1055

world, [19] presents a fault-based approach to the generation of database in-1056

42

stances for application programs, specifically aiming to the data generation1057

problem in support of white-box testing of embedded SQL programs. Given1058

an SQL statement, the database schema definition and tester requirements,1059

the approach generates a set of constraints, which can be given to existing1060

constraints solvers. If the constraints are satisfiable, a desired database in-1061

stances are obtained. Similarly, for testing the correctness of relational DB1062

systems, a study in [20] proposes a semi-automatic approach for populating1063

the database with meaningful data that satisfy database constraints. Work1064

in [21] focuses on a specific set of constraints (i.e., cardinality constraints)1065

and introduces efficient algorithms for generating synthetic databases that1066

satisfy them. Unlike the previous attempts, in [21], the authors generate1067

synthetic database instance from scratch, rather than by modifying the ex-1068

isting one. Furthermore, [22] proposes a query-aware test database genera-1069

tor called QAGen. The generated database satisfies not only constraints of1070

database schemata, table semantics, but also the query along with the set of1071

user-defined constraints on each query operator. Other work [23] presents a1072

generic graph-based data generation approach, arguing that the graph rep-1073

resentation supports the customizable data generation for databases with1074

more complex attribute dependencies. The approach most similar to ours1075

[24] proposes a multi-objective test set creation. They tackle the problem of1076

generating "branch-adequate" test sets, which aims at creating test sets to1077

guarantee the execution of each of the reachable branches of the program.1078

Moreover, they model the data generation problem as a multi-objective1079

search problem, focusing not only on covering the branch execution, but also1080

on additional goals the tester might require, e.g., memory consumption cri-1081

terion. However, the above works focus solely on relational data generation1082

by resolving the constraints of the existing database systems. Our approach1083

follows this line, but in a broader way, given that Bijoux is not restricted1084

to relational schema and is able to tackle more complex constraint types,1085

not supported by the SQL semantics (e.g., complex user defined functions,1086

pivot/unpivot). In addition, we do not generate a single database instance,1087

but rather the heterogeneous datasets based on different information (e.g.,1088

input schema, data types, distribution, etc.) extracted from the ETL flow.1089

Benchmarking data integration processes. In a more general context,1090

both research and industry are particularly interested in benchmarking ETL1091

and data integration processes in order to evaluate process designs and com-1092

pare different integration tools (e.g., [25, 26]). Both these works note the lack1093

of a widely accepted standard for evaluating data integration processes. The1094

former work focuses on defining a benchmark at the logical level of data inte-1095

gration processes, meanwhile assessing optimization criteria as configuration1096

43

parameters. Whereas, the later works at the physical level by providing a1097

multi-layered benchmarking platform called DIPBench used for evaluating1098

the performance of data integration systems. These works also note that1099

an important factor in benchmarking data integration systems is defining1100

similar workloads while testing different scenarios to evaluate the process1101

design and measure satisfaction of different quality objectives. These ap-1102

proaches do not provide any automatable means for generating benchmark1103

data loads, while their conclusions do motivate our work in this direction.1104

General data generators. Other approaches have been working on pro-1105

viding data generators that are able to simulate real-world data sets for1106

the purpose of benchmarking and evaluation. [27] presents one of the first1107

attempts of how to generate synthetic data used as input for workloads1108

when testing the performance of database systems. They mainly focus on1109

the challenges of how to scale up and speed up the data generation process1110

using parallel computer architectures. In [28], the authors present a tool1111

called Big Data Generator Suite (BDGS) for generating Big Data mean-1112

while preserving the 4V characteristics of Big Data 8. BDGS is part of the1113

BigDataBench benchmark [29] and it is used to generate textual, graph and1114

table structured datasets. BDGS uses samples of real world data, analyzes1115

and extracts the characteristics of the existing data to generate loads of “self-1116

similar” datasets. In [30], the parallel data generation framework (PDGF) is1117

presented. PDGF generator uses XML configuration files for data descrip-1118

tion and distribution and generates large-scale data loads. Thus its data1119

generation funcionalities can be used for benchmarking standard DBMSs as1120

well as the large scale platforms (e.g., MapReduce platforms). Other pro-1121

totypes (e.g., [31]) offer similar data generation functionalities. In general,1122

this prototype allows inter-rows, intra-rows, and inter-table dependencies1123

which are important when generating data for ETL processes as they must1124

ensure the multidimensional integrity constraints of the target data stores.1125

The above mentioned data generators provide powerful capabilities to ad-1126

dress the issue of generating data for testing and benchmarking purposes1127

for database systems. However, the data generation is not led by the con-1128

straints that the operations entail over the input data, hence they cannot be1129

customized for evaluating different quality features of ETL-like processes.1130

Process simulation. Lastly, given that the simulation is a technique that1131

imitates the behavior of real-life processes, and hence represents an impor-1132

tant means for evaluating processes for different execution scenarios [32], we1133

8volume, variety, velocity and veracity

44

discuss several works in the field of simulating business processes. Simula-1134

tion models are usually expected to provide a qualitative and quantitative1135

analysis that are useful during the re-engineering phase and generally for un-1136

derstanding the process behavior and reaction due to changes in the process1137

[33]. [34] further discusses several quality criteria that should be considered1138

for the successful design of business processes (i.e., correctness, relevance,1139

economic efficiency, clarity, comparability, systematic design). However, as1140

shown in [35] most of the business process modeling tools do not provide1141

full support for simulating business process execution and the analysis of the1142

relevant quality objectives. We take the lessons learned from the simulation1143

approaches in the general field of business processes and go a step further fo-1144

cusing our work to data-centric (i.e., ETL) processes and the quality criteria1145

for the design of this kind of processes [36, 3].1146

7. Conclusions and Future Work1147

In this paper, we study the problem of synthetic data generation in1148

the context of multi-objective evaluation of ETL processes. We propose an1149

ETL data generation framework (Bijoux), which aims at automating the1150

parametrized data generation for evaluating different quality factors of ETL1151

process models (e.g., data completeness, reliability, freshness, etc.), ensuring1152

both accurate and efficient data delivery. Thus, beside the semantics of ETL1153

operations and the constraints they imply over input data, Bijoux takes1154

into account different quality-related parameters, extracted or configured by1155

an end-user, and guarantees that generated datasets fulfill the restrictions1156

implied by these parameters (e.g., operation selectivity).1157

We have evaluated the feasibility and scalability of our approach by pro-1158

totyping our data generation framework. The experimental results have1159

shown a linear (but increasing) behavior of Bijoux’s overhead, which sug-1160

gests that the algorithm is potentially scalable to accommodate more in-1161

tensive tasks. At the same time, we have observed different optimization1162

opportunities to scale up the performance of Bijoux, especially considering1163

larger volumes of generated data.1164

As an immediate future step, we plan on additionally validating and1165

exploiting the functionality of this approach in the context of quality-driven1166

ETL process design and tuning, as explained in our test case scenario.1167

45

8. Acknowledgements1168

This research has been funded by the European Commission through the1169

Erasmus Mundus Joint Doctorate “Information Technologies for Business1170

Intelligence - Doctoral College” (IT4BI-DC).1171

46

References1172

1. Barbacci, M., Klein, M.H., Longstaff, T.A., Weinstock, C.B.. Quality1173

attributes. Tech. Rep.; CMU SEI; 1995.1174

2. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.. Qox-driven etl1175

design: reducing the cost of etl consulting engagements. In: SIGMOD Con-1176

ference. 2009, p. 953–960.1177

3. Theodorou, V., Abelló, A., Lehner, W., Thiele, M.. Quality measures for1178

ETL processes: from goals to implementation. Concurrency and Computation1179

Practice and Experience: Version of record online 2016;.1180

4. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.. Fundamentals of1181

Business Process Management. Springer; 2013. ISBN 978-3-642-33142-8.1182

5. DeMillo, R.A., Offutt, A.J.. Constraint-based automatic test data generation.1183

IEEE Trans Software Eng 1991;17(9):900–910.1184

6. Strange, K.H.. ETL Was the Key to This Data Warehouse’s Success. March1185

2002. Gartner Research, CS-15-3143.1186

7. Pall, A.S., Khaira, J.S.. A comparative review of extraction, transformation1187

and loading tools. Database Systems Journal 2013;4(2):42–51.1188

8. Vassiliadis, P., Simitsis, A., Baikousi, E.. A taxonomy of etl activities. In:1189

DOLAP. 2009, p. 25–32.1190

9. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.. Conceptual modeling for ETL1191

processes. In: DOLAP. 2002, p. 14–21.1192

10. Muñoz, L., Mazón, J.N., Pardillo, J., Trujillo, J.. Modelling etl processes1193

of data warehouses with uml activity diagrams. In: OTM Workshops. 2008, p.1194

44–53.1195

11. Akkaoui, Z.E., Zimányi, E., Mazón, J.N., Trujillo, J.. A bpmn-based design1196

and maintenance framework for etl processes. IJDWM 2013;9(3):46–72.1197

12. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.. Leveraging business1198

process models for etl design. In: ER. 2010, p. 15–30.1199

13. Jovanovic, P., Simitsis, A., Wilkinson, K.. Engine independence for logical1200

analytic flows. In: ICDE. 2014, p. 1060–1071.1201

14. Hueske, F., Peters, M., Sax, M., Rheinländer, A., Bergmann, R., Krettek,1202

A., et al. Opening the black boxes in data flow optimization. PVLDB 2012;1203

5(11):1256–1267.1204

47

15. Tziovara, V., Vassiliadis, P., Simitsis, A.. Deciding the physical imple-1205

mentation of etl workflows. In: Proceedings of the ACM Tenth International1206

Workshop on Data Warehousing and OLAP; DOLAP ’07. 2007, p. 49–56.1207

16. Simitsis, A., Vassiliadis, P., Dayal, U., Karagiannis, A., Tziovara, V..1208

Benchmarking etl workflows. In: Performance Evaluation and Benchmarking:1209

First TPC Technology Conference, TPCTC 2009, Lyon, France, August 24-28,1210

2009, Revised Selected Papers. 2009, p. 199–220.1211

17. Theodorou, V., Abelló, A., Thiele, M., Lehner, W.. POIESIS: a tool1212

for quality-aware ETL process redesign. In: Proceedings of the 18th Interna-1213

tional Conference on Extending Database Technology, EDBT 2015, Brussels,1214

Belgium, March 23-27, 2015. 2015, p. 545–548.1215

18. Beck, K.. Test-driven development: by example. Addison-Wesley Professional;1216

2003.1217

19. Zhang, J., Xu, C., Cheung, S.C.. Automatic generation of database instances1218

for white-box testing. In: COMPSAC. 2001, p. 161–165.1219

20. Chays, D., Dan, S., Frankl, P.G., Vokolos, F.I., Weber, E.J.. A framework1220

for testing database applications. In: ISSTA. 2000, p. 147–157.1221

21. Arasu, A., Kaushik, R., Li, J.. Data generation using declarative constraints.1222

In: SIGMOD Conference. 2011, p. 685–696.1223

22. Binnig, C., Kossmann, D., Lo, E., Özsu, M.T.. Qagen: generating query-1224

aware test databases. In: SIGMOD Conference. 2007, p. 341–352.1225

23. Houkjær, K., Torp, K., Wind, R.. Simple and realistic data generation. In:1226

VLDB. 2006, p. 1243–1246.1227

24. Lakhotia, K., Harman, M., McMinn, P.. A multi-objective approach to1228

search-based test data generation. In: GECCO. 2007, p. 1098–1105.1229

25. Simitsis, A., Vassiliadis, P., Dayal, U., Karagiannis, A., Tziovara, V..1230

Benchmarking etl workflows. In: TPCTC. 2009, p. 199–220.1231

26. Böhm, M., Habich, D., Lehner, W., Wloka, U.. Dipbench toolsuite: A1232

framework for benchmarking integration systems. In: ICDE. 2008, p. 1596–1233

1599.1234

27. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J..1235

Quickly Generating Billion-Record Synthetic Databases. In: SIGMOD Con-1236

ference. 1994, p. 243–252.1237

28. Ming, Z., Luo, C., Gao, W., et al. Bdgs: A scalable big data generator suite1238

in big data benchmarking. CoRR 2014;abs/1401.5465.1239

48

29. Luo, C., Gao, W., Jia, Z., Han, R., Li, J., Lin, X., et al. Hand-1240

book of BigDataBench (Version 3.1) - A Big Data Benchmark Suite. 2014.1241

Last accessed: 13/05/2015; URL http://prof.ict.ac.cn/BigDataBench/1242

wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf.1243

30. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.. A data generator for1244

cloud-scale benchmarking. In: TPCTC. 2010, p. 41–56.1245

31. Hoag, J.E., Thompson, C.W.. A parallel general-purpose synthetic data1246

generator. SIGMOD Record 2007;36(1):19–24.1247

32. Paul, R.J., Hlupic, V., Giaglis, G.M.. Simulation modelling of business1248

processes. In: Proceedings of the 3 rd U.K. Academy of Information Systems1249

Conference, McGraw-Hill. McGraw-Hill; 1998, p. 311–320.1250

33. Law, A.M., Kelton, W.D., Kelton, W.D.. Simulation modeling and analysis;1251

vol. 2. McGraw-Hill; 1991.1252

34. Becker, J., Kugeler, M., Rosemann, M.. Process Management: a guide for1253

the design of business processes: with 83 figures and 34 tables. Springer; 2003.1254

35. Jansen-Vullers, M., Netjes, M.. Business process simulation–a tool survey.1255

In: Workshop and Tutorial on Practical Use of Coloured Petri Nets and the1256

CPN Tools; vol. 38. 2006, p. –.1257

36. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.. QoX-driven ETL1258

design: reducing the cost of ETL consulting engagements. In: SIGMOD. 2009,1259

p. 953–960.1260

1261

49

http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf

	Introduction
	Overview of our approach
	ETL operation classification
	Formalizing ETL processes
	Bijoux overview

	Bijoux data generation framework
	Preliminaries and Challenges
	Data structures
	Path Enumeration Stage
	Constraints Extraction and Analysis Stage
	Data Generation Stage
	Theoretical validation

	Test case
	Evaluating the performance overhead of alternative ETL flows
	Evaluating the data quality of alternative ETL flows

	Bijoux performance evaluation
	Experimental setup
	Experimental results

	Related Work
	Conclusions and Future Work
	Acknowledgements

