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Abstract

The complexity of Business Intelligence activities has driven the proposal of several ap-
proaches for the effective modeling of Extract-Transform-Load (ETL) processes, based on
the conceptual abstraction of their operations. Apart from fostering automation and main-
tainability, such modeling also provides the building blocks to identify and represent fre-
quently recurring patterns. Despite some existing work on classifying ETL components and
functionality archetypes, the issue of systematically mining such patterns and their connec-
tion to quality attributes such as performance has not yet been addressed. In this work, we
propose a methodology for the identification of ETL structural patterns. We logically model
the ETL workflows using labeled graphs and employ graph algorithms to identify candidate
patterns and to recognize them on different workflows. We showcase our approach through
a use case that is applied on implemented ETL processes from the TPC-DI specification and
we present mined ETL patterns. Decomposing ETL processes to identified patterns, our
approach provides a stepping stone for the automatic translation of ETL logical models to
their conceptual representation and to generate fine-grained cost models at the granularity
level of patterns.
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1. Introduction

Extract, Transform and Load (ETL) processes are crucial business processes that re-
quire heavy investments for their design, deployment and maintenance. With data being
increasingly recognized as a key asset for the success of any enterprise, interest is growing for
the development of more sophisticated models and tools to aid in data process automation5

and dynamicity. According to a recent Gartner report [1], the data integration tool market
is growing with an impressive rate, with an increase of 10.5% from 2014 to 2015 and an
expected total market revenue of $4 billion in 2020.

In this context, ETL requirements are becoming more advanced and demanding with
expectations such as self-service BI [2] and on-the-fly data processing making ETL projects10

even more complex. Moreover, ETL users and developers with different backgrounds, using
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different models and technologies form a confusing landscape of ETL frameworks and pro-
cesses that is hard to analyze and harness. The reply from academia has been the proposal
of models (e.g., using the business process modeling notation (BPMN) [3] or the unified
modeling language (UML) [4]) that classify ETL functionalities in different levels of abstrac-15

tion, creating common ground for the description of ETL operations and fostering design
automation and analysis. On the direction of translating conceptual and logical operations
to physical implementations, the design and implementation of large ETL flows is detached
from the use of specific technologies and using tested structures and best practices, it can
become more reliable, efficient and simple. On the opposite direction, mapping physical to20

logical and conceptual models allows for the concise representation and reuse of components,
as well as different layers of analysis and comparison of ETL flows.

The proposed ETL modeling as well as the ETL logical view generated by different open-
source and proprietary tools, expose an ETL workflow perspective that opens the door for the
identification and specification of ETL patterns. Although there have been some approaches25

on ETL patterns, considering most used ETL tasks or the morphology of the complete ETL
flow, a bottom up methodology that can identify patterns and apply customized analysis
on a given generic set of ETL processes is still missing, making the practical exploitation of
ETL patterns difficult.

In this work, we introduce our empirical approach for the identification of ETL structural30

patterns that are significant for different types of analysis. Based on the different types of
ETL operations, we logically model the ETL workflows using labeled graphs and employ
graph algorithms to identify candidate patterns and to recognize them on different workflows.
For the identification phase, we use frequent subgraph discovery techniques and for the
recognition phase, we introduce an algorithm that can perform very well for ETL flows and35

can scale for the cases of multiple and large flows.
Our approach can be used for the (pre-)evaluation of alternative ETL workflows at design

time, without the need for their execution or simulation, but solely by decomposing them
to recognized patterns for which quality characteristics are measured during a supervised
learning phase. In addition, it can generate fine-grained cost models at the granularity level40

of patterns. It can also be used to classify reusable and well-defined ETL steps regardless
of the implementation technology in order to i) automatically derive more understandable
conceptual modeling and visualization of ETLs and ii) improve the reusability and reliability
of ETL components in cases of alternative pattern implementations by exposing their char-
acteristics. To showcase our approach, we implement a set of realistic ETL processes defined45

in the TPC-DI benchmark and we show experimental results from applying our methodology
on them.

From the same domain (i.e., the TPC-DI benchmark), we adopt as our running toy ex-
ample an ETL process (see Figure 1) that populates the FactCashBalances table during
the Historical Load phase. In Figure 1, we show the logical view of the ETL process, as it50

is viewed from the implementation that we developed using the Pentaho Data Integration
(PDI) open source tool. The ETL process extracts data from a plain-text file in the Staging
Area (CashTransaction.txt) and processes one of its fields to remove time and keep only
date information. Consequently, data are joined with DimAccount table to obtain the cor-
responding keys for customers and accounts, after irrelevant fields from both sources have55

been projected out and data have been sorted. Similarly, data are joined with the DimDate
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Figure 1: ETL flow example: TPC-DI FactCashBalances population

dimension table to obtain corresponding date information and then they are aggregated on
a daily basis. After null values have been replaced by zeros —only for the rows that contain
null values— distinct rows are kept and constants (e.g., effectiveDate) are added to each
row. Finally, data are aggregated per account and after keeping only relevant fields, they60

are loaded to the FactCashBalances table of the DW.
Contributions. Our main contributions are as follows.

• A pattern-based analysis of ETL workflows, using the main control flow patterns from
the Workflow Patterns Initiative 1 as a guide.

• A novel empirical approach for mining ETL structural patterns, using frequent sub-65

graph discovery algorithms.

• Adaptation of the VF2 graph matching algorithm with optimizations to perform very
well on ETL workflows.

• Presentation of the most frequent ETL patterns, identified in 25 implemented ETL
processes from the TPC-DI framework.70

Outline. The rest of the paper is structured as follows. Section 2 discusses related work
on ETL patterns and Section 3 formalizes the models of ETL frequent patterns and sets
the theoretical background for our approach. Section 4 illustrates our architecture and the
algorithms that we employ for pattern mining and pattern recognition and Section 5 shows

1http://www.workflowpatterns.com/
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results from applying our methodology on implemented ETLs. Finally, Section 6 presents75

two interesting use cases of a provided structured methodology while Section 7 concludes
the paper.

2. Related Work

There has been considerable work in the area of ETL modeling, in an effort to promote
automation through the definition of structural abstractions and systematic methodologies80

for the design and analysis of ETL models. In [5], ETL activities are formally defined
and classified and in [6], such activities are modeled as the interacting steps of workflows
in a multi-layered view that bridges conceptual to logical modeling and exposes quality
characteristics (denoted as QoX ). Similarly to the latter, the authors in [3] adapt the BPMN
representation for the conceptual view of the ETL flow and describe a systematic approach85

of code generation from BPMN models. In the same direction, [4] proposes a UML-based
framework where ETL activities constitute the block units of UML activity diagrams among
which there is control flow.

The modeling of ETL processes using well defined, reusable components interacting as
workflow activities has set the foundations for their pattern-based analysis and design. In90

the Business Process Management (BPM) community, such analysis has already taken place,
with significant work conducted as part of the Workflow Patterns Initiative [7, 8]. This
work examines workflows and various different Workflow Management Systems (WfMSs)
and identifies a set of recurring features (i.e., patterns). It takes under consideration the
modeling languages used for the design and the modeling notation of business process models95

and extracts a number of patterns to describe mostly control-flow and data-flow semantics
commonly offered by WfMSs. In [9], there is a practical illustration of how such patterns
can be introduced and integrated into an existing business process model and in [10], the
application of patterns on a business process is linked to the strategic decision making level,
through its mapping to business goals and non-functional requirements (NFRs).100

When it comes to patterns in ETL activities, in [11] there is a profiling of ETL workflows
with models called Butterflies, based on their form with regards to the distribution of ac-
tivities relatively to the beginning (i.e., data extraction) and the ending (i.e., data loading)
part(s) of the ETL process. Such categorization captures the idea of linking discrete ETL
components to ETL requirements, e.g., by providing some indication about their computa-105

tional or memory needs based on their structural morphology. However, it is not described
in detail how the ETL archetypes presented can co-exist as different parts of the same ETL
process, nor is any methodology proposed for the quantification of the relationships between
Butterflies recognition and implications on the workflow.

More recently, the authors in [12] further extend their line of research [13] on ETL110

patterns and propose the grouping of ETL operations to abstract their functionality and
form known generic ETL activities. To this end, they formulate a pallet of most used data
warehousing tasks in real world and propose the design of ETL processes by using workflows
that comprise of customizations of these patterns. Although their work fosters reusability
and correctness, one important limitation stems from the definition of universal patterns in115

a top down approach. In this respect, the pattern-based analysis of random ETL workflows
that have been designed or implemented with the use of different technologies might not
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easily lead to their decomposition in a-priory classified components that are useful for the
specific analysis. In other words, this approach assumes that the ETL workflow models
comply to some arbitrary-built pattern classification, whereas we advocate that it would120

make more sense for patterns to be dynamically constructed in an ad-hoc fashion, based on
the type of analysis on one hand and the type of examined workflows on the other.

To our knowledge, there is currently no work gathering ETL patterns in an evidence-
based manner. Thus, our work is the first one to introduce the idea of mining frequent ETL
components to identify valid patterns for the purpose of the analysis, instead of relying on125

experience or expertise to define generic, universal motifs.

3. ETL Patterns

Abstracting ETL processes on a logical level allows for the identification of recurring
structures among the produced workflow models, that can indicate patterns. In this respect,
we delve into the well-studied area of workflow patterns (WP) [7] and examine their appli-130

cation on ETL workflows, in order to drive insights for the definition of our pattern model,
which we subsequently present.

3.1. Workflow Patterns for ETL Flows

In this subsection, we present the basic workflow control-flow patterns [7] that describe
control-flow semantics commonly offered by various workflow management systems and we135

position them in the context of ETL flows.
ETL workflows are data-intensive flows where atomic tasks correspond to ETL opera-

tions, for which pipelining plays a crucial role and the smallest unit of data that can flow
between them is a tuple. In this regard, we conceptually relate data-flow to control-flow by
assuming that the control-flow dependencies refer to processing of data (i.e., tuples) by ETL140

operations. Of course, we should not exclude the case of blocking operations, where the unit
of data that is expected by one operation in order to complete its execution, is a dataset,
i.e., a set of tuples that all need to pass from one operation to the other. However, this
simply implies some restrictions on the task completion which again produces some tuple(s)
as an output to the succeeding operation(s), and thus does not change the generality of our145

approach. Hence, for one specific tuple, the task (i.e., ETL operation) activation is when
this tuple enters this specific task for processing and the task completion is when this task
has completed processing this specific tuple or the set of tuples in which it participates, if it
is the case of a blocking operation. Following this concept, we perform the analysis below
that defines the different workflow patterns in the context of ETL processes:150

• Sequence
Description: A task in a process is enabled after the completion of a preceding task in
the same process.
In ETL context : An ETL operation in a flow begins its execution right after the
completion of the execution of a preceding operation in the same flow. The inputs155

of ETL operations are datasets and thus the smallest token that flows through the
ETL is a tuple. In this regard, the Sequence pattern can be regarded in a tuple-by-
tuple fashion, translating to: one tuple will be processed by one ETL operation after
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its processing by a preceding operator has completed. This definition of sequence is
broad enough to cover both the cases i) when one operation does not have to process160

all tuples of a dataset before their processing by succeeding operations, allowing for
pipelining and ii) when the processing semantics of the operation denote a blocking
operator (e.g., sorter or aggregator).

• Parallel Split
Description: The divergence of a branch into two or more parallel branches each of165

which execute concurrently.
In ETL context : Two or more succeeding ETL operations begin their execution right
after the completion of the execution of a preceding operation. The inputs of all these
succeeding operations are identical datasets, coming as copies of the output of the
preceding operation. For example, multiple ETL operations might perform the same170

processing of the same datasets at the same time implementing redundant execution.
This case is useful i) for improving the reliability of the ETL process, so that even if
some component fails, there are others executing identical tasks and the process does
not need to terminate with errors and ii) for improving the correctness of the process by
crosschecking the output results from identical tasks. Another example of parallel split175

in ETL processes is when (parts of) the same datasets need to be loaded to different
output data sources (e.g., for loading surrogate keys correspondence).

• Synchronization
Description: The convergence of two or more branches into a single subsequent branch
such that the thread of control is passed to the subsequent branch when all input180

branches have completed execution.
In ETL context : Two or more ETL operators are succeeded by the same ETL oper-
ator, which requires input from all of them in order to begin its execution. Datasets
coming from the preceding operators are thus combined in some way by the succeeding
operator. Examples of Synchronization within an ETL flow include different types of185

Joins where the left and right parts of the join operation come from different incoming
flows.

• Exclusive Choice
Description: The divergence of a branch into two or more branches such that when the
incoming branch is enabled, the thread of control is immediately passed to precisely190

one of the outgoing branches based on a mechanism that can select one of the outgoing
branches.
In ETL context : Only one of two or more ETL operations that succeed an ETL oper-
ation begins its execution right after the completion of the execution of the preceding
operation. The output of the preceding operation is directed (routed) to precisely one195

of the candidate succeeding operations, based on defined conditions and/or policies. As
an example, different tuples can be routed to different operations based on condition
evaluations or simply in a round robin fashion.

• Simple Merge
Description: The convergence of two or more branches into a single subsequent branch200
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ETL Operator Related WP
Filter, Single Value Alteration, Project, Sequence
Field Addition, Aggregation, Sort
Router Exclusive Choice
Splitter Parallel Split
Join Synchronization
Union Simple Merge

Table 1: ETL operators

such that each execution completion of an incoming branch results in the thread of
control being passed to the subsequent branch.
In ETL context : Two or more ETL operators are succeeded by the same ETL operator,
which begins its execution every time it receives input from any of the preceding
operators. Datasets coming from different operators do not need to be combined with205

each other, but have to conform to specific constraints for their unified processing by
the same succeeding operation, e.g., common schema. An example of Simple Merge in
ETL flows is the union of datasets coming from multiple different operations.

3.2. ETL Patterns model

Based on the basic WP for ETL, as they were defined above, we can derive a classification210

of ETL operators that depends on their control-flow semantics. If we further enrich this
classification with the processing semantics of each operator, we obtain the classification of
Table 1.

This basic set of operators constitutes the building blocks of a vast number of ETL
processes logical models, making this number even greater if we consider that operators such215

as Single Value Alteration and Field Addition can be based on User Defined Functions (UDF)
written in different programming languages. Taking under consideration the topologies that
are formed by the way that different operators are connected inside an ETL flow, combined
with the type of each operator, we derive structures that are candidate ETL patterns. In
order for a candidate pattern to be considered an ETL pattern, it needs to satisfy the220

following two conditions:

1. It has to occur frequently, i.e., its support with respect to all the (examined) ETL flows
has to exceed a threshold value s.

2. It has to be significant for the conducted analysis, i.e., it has to exhibit some important
or differentiating behavior that can lead to its characterization, e.g., concerning its225

functional contribution to the complete workflow or its performance deviation from
other parts of the workflow. The former characterization can be performed by an ETL
expert and the latter can be assessed by conducting performance analysis.

An ETL operation o is an atomic processing unit responsible for a single transformation
over the input data, having specific processing semantics ps over the input data and a specific230

branch structure defined as the way it connects with neighboring nodes (i.e., operations). We
logically model an ETL flow as a directed acyclic graph (DAG) consisting of a set of nodes,
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which are ETL operations (O), while the graph edges (E) represent the directed control flow
among the nodes of the graph (o1 ≺ o2). Formally:
o = ps235

ETL = (O,E), such that:
∀e ∈ E : ∃(o1, o2), o1 ∈ O ∧ o2 ∈ O ∧ o1 ≺ o2

This abstract definition of the ETL flow and its operations allows for the analysis of ETLs
independent of the technologies that are used for their implementation and thus enables the240

mining of ETL patterns from a large number of ETL flows that can easily map to our
model. Based on the characteristics of each operator o, it can be mapped to one label l from
a predefined set L through the surjective function label. Formally:
label : O 7→ L

A Pattern Model PM would then be a DAG where its nodes PN have a specific label l245

and a specific branch structure. Formally:
pn = l
PM = (PN,E), such that:
∀e ∈ E : ∃(pn1, pn2), pn1 ∈ PN ∧ pn2 ∈ PN ∧ pn1 ≺ pn2

250

We assume that only coherent structures make sense for our analysis and thus pattern
models are connected graphs, i.e., graphs for which, if we ignore directionality there is a path
from any of their nodes to any other node in the graph. We should note here that based on
different analysis requirements there can be different definitions of mappings (i.e, mapping
functions and sets of symbols), mapping one operator to one label. For instance, an operator255

can be mapped to a label, based solely on its input and output cardinality or based on its
operation type. We have found that the latter case can produce useful results and hence
that is the analysis that we use in our work. Thus, the labels that we use for our analysis
are within a set OT, where OT ⊆ L and each element ot ∈ OT refers to the operation type of
the operation and hence can take values from the classification of ETL operators in Table 1.260

In Figure 2, we present the conceptual model of the pattern model and how it relates
to the ETL flow. A more detailed description of Figure 2 is as follows: Using a mapping
function, we can semantically annotate the elements (EFGElements) of an ETL Flow Graph,
i.e., the edges (EFGDirectedEdges) and the nodes (EFGOperationNodes) by assigning them
with corresponding labels and thus producing Annotated EFG Elements. A collection of265

such elements (i.e., a graph containing annotated edges and annotated nodes) can then form
an Annotated EFG Elements Subgraph aees ∈ AEES, which is an occurrence of a pattern
model pm ∈ PM iff each and every element e from the subgraph corresponds to an element
pe from the pattern model, through a bijective function occurrenceOf. Formally:
occurrenceOf : AEES 7→ PM.270

Notice that according to this model, edges between ETL operators can also be mapped
to labels. This assumption has been made for completeness and because there can be some
practical cases of ETL models where edges can be differentiated according to the manner
that datasets flow from the source node to the target node (e.g., copy-edges can refer to the
case when all outgoing edges from one source node copy the same datasets to all target nodes275

and distr-edges to the case when datasets are distributed among target nodes). However, for
our analysis we consider all edges to be of the same type, i.e., that there is only one label to
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Figure 2: ETL Pattern Conceptual Model
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Figure 3: Pattern Model and Pattern Occurrence on an ETL workflow

characterize all edges.
As mentioned above, for our analysis we use the semantic annotation (i.e., labeling)

based on operation type (BasedOnOperationTypeAnnotation), but there can be different280

kinds of semantic annotation (i.e., subclasses of the class SemanticAnnotation), based on
the conducted analysis. As is illustrated in Figure 2, the same pattern (AtomicETLPattern)
can have variations, resulting to different corresponding pattern models in Figure 3). For
instance, two different pattern models can correspond to the same ETL functionality, so if
the analysis purpose is the clustering of operations based on their functionality, these two285

models will constitute variations of the same pattern. An example is illustrated in Figure
3), where we show how the ETL pattern Join can have two different pattern models (i.e.,
Pattern Model A and Pattern Model B) and how by finding the occurrence of one of these
models (Pattern Model A) on the excerpt from our example ETL process from Figure 1, we
can recognize it as an instance of the ETL pattern. Furthermore, a combination of two or290

more patterns (ETLPatternsCombination) can itself be a pattern. In this respect, two (or
more) patterns can be combined in the following ways, forming a new pattern:

• Overlap: Patterns can overlap, with their pattern models sharing elements or with
elements of one pattern model located inside the other. This case also includes pattern
nesting, where one pattern is located inside the other.295

• Precedence: One pattern is located (right) after the other.

• Cooccurrence: Both patterns occur in the same ETL flow.

• Exclusivity : Only one of the patterns can occur in the ETL flow and not the other(s).

It should be noticed that the participation of ETL patterns in ETL Pattern Combina-
tions entails a concrete role for each pattern in the combination and this is denoted by the300

characterization of the combines association as ordered. Despite our approach allowing for
the occurrence of overlapping patterns and patterns one after the other (i.e., precedence),
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we do not consider the case of the combinations themselves being patterns (i.e., we only
consider Atomic ETL Patterns).

3.3. Frequent ETL Patterns305

As mentioned above, one of the conditions for a candidate pattern to be considered
a pattern is that its support has to exceed some predefined value. In other words, its
corresponding pattern model(s) have to occur frequently over the entire set of examined
ETL workflows. Since both the ETL workflows and the pattern models are represented
using graphs, the problem of mining such patterns can be examined under the prism of310

frequent subgraph mining, which is a subclass of frequent itemset discovery [14], where the
goal is to discover frequently occuring subgraphs within a set of graphs or a single large
graph, with frequency of occurrence above a specified threshold value.

For the purpose of our analysis, we are not interested in frequent subgraphs that always
appear inside other, bigger frequent subgraphs (i.e., pattern nesting). In this respect, we315

define a maximality condition: A frequent subgraph (SG1) is maximal when there exists
no frequent subgraph (SG2) of bigger size, where (SG1) is a proper subgraph of (SG2).
Formally:
isMaximal(SG1) ⇐⇒ isFrequent(SG1)∧@SG2 such that isFrequent(SG2)∧SG1 ⊂ SG2

On the contrary, we define independent frequent subgraphs as frequent subgraphs that320

occur at least once not nested inside the occurrence of another frequent subgraph. Formally:
isIndependent(SG1) ⇐⇒ isFrequent(SG1) ∧ ∃occurrence(SG1) such that (@SG2 such
that isFrequent(SG2) ∧ occurrence(SG1) ⊂ occurrence(SG2))

Figure 4 shows the distinction of these two concepts through an example. The two
numbers on each frequent subgraph respectively denote the total number of occurrences and325

the number of independent occurrences (i.e., not inside the occurrence of another frequent
subgraph).
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4. Architecture

In this section, we present our approach on mining ETL patterns and subsequently,
recognizing instances of them on arbitrary ETL workflows. For the latter, we present our330

algorithm and we conduct an analysis regarding its complexity.

4.1. Pattern mining

The first step for mining patterns of interest is the identification of reoccurring structures
over a set of ETL workflows. As mentioned above, we can view our problem as an application
of frequent itemset discovery, where the goal is to discover frequently occuring “items” within335

a set of “baskets”. Since we logically model ETL workflows as graphs, it is natural for this
stage to use graph mining techniques, i.e., techniques for extracting statistically significant
and useful knowledge from graph structures. Given a set of graph representations of ETL
workflows, the reoccurring structures of interest are graphs, that occur as subgraphs of the
initial graphs more frequently than a specified threshold percentage. Thus, we can employ340

the use of algorithms from the well studied area of Frequent Subgraph Mining (FSM). In [18],
there is a detailed review of this mature research area, including the main research challenges
and the most interesting proposed solutions.

For our experiments, we decided to use the FSG algorithm [19], because of 1) its com-
putational efficiency and 2) fast and reliable results from testing that we conducted using345

its available implementation. This algorithm generates candidate frequent subgraphs in a
bottom-up approach, starting with initial subgraphs of one edge and adding one edge at
each step while checking for the frequency criterion. It performs significant pruning to the
problem space while searching for patterns, taking advantage of the fact that if a graph is
frequent, then all of its subgraphs are also frequent.350

Two parameters can change the output of the algorithm. Firstly, the support threshold,
i.e., the minimum number of ETL flows that need to contain a subgraph for it to be accounted
as frequent, can vary. In addition, we can select whether we are interested only in maximal
subgraphs (see subsection 3.3).

After the identification of frequent patterns, the next step is their filtering in order to355

maintain only the patterns of some value. In this respect, a first filtering is performed by
keeping only independent subgraphs (see subsection 3.3). To this end, all the instances of
all the frequent subgraphs are recognized within the initial set of ETL workflows, using the
pattern recognition algorithm defined below (subsection 4.2) and graph-subgraph relation-
ships among these instances are analyzed. Subsequently, frequent subgraphs are classified360

as variations of ETL patterns, based on the conducted analysis. For instance, experts can
classify these subgraphs according to their conceptual functionality, or performance evalua-
tion can be conducted to classify subgraphs based on their isolated performance as compared
to the performance of the complete ETL. The results of such analyses are then stored in a
repository of ETL patterns.365

4.2. Pattern recognition

Once a knowledge base of ETL patterns has been built, occurrences of those patterns can
be recognized in any arbitrary ETL workflow. The workflow first needs to be transformed to
its graph representation and then the task is reduced to finding a correspondence between the
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model (i.e., the ETL pattern model) and part(s) of the ETL workflow graph representation.370

Since both the model and the examined ETL are modeled as graphs, this is a typical use
case for a graph matching algorithm. In [20], there is an interesting comparison between
the implementation in a common codebase of five state-of-the-art subgraph isomorphism
algorithms and in [21], there is a comprehensive review of different techniques that have been
proposed for this NP-complete problem, the most popular being the Ullmann’s algorithm [22]375

and the VF2 algorithm [23]. After studying these algorithms, we decided to adapt the VF2
algorithm with some optimizations (Algorithm 1), maintaining different data structures while
searching for pattern model occurrences. Our algorithm can perform very well for graphs
with the cheracteristics of ETL workflows — i) very small branching factors, ii) number of
different labels comparable to the average graph size.380

Taking under consideration the VF2 heuristic of adding to the search space only adjacent
nodes while generating candidate matches, our algorithm iterates over the nodes of the
pattern model in a breadth-first search (BFS) manner while at the same time matching
them with nodes from the annotated EFG, that satisfy certain conditions (see Figure 5).
The candidate node matches are searched only within adjacent (i.e., neighboring) nodes385

from the already matched nodes, which we call frontier nodes and for a specific candidate
pattern match, if there is no adjacent node that satisfies the conditions, it is dismissed. New
candidate pattern matches commence after every iteration, until the pattern model has been
fully traversed or the set of candidate pattern matches is empty.

One practical heuristic that we use to speed up the execution of the algorithm by keeping390

the number of initial candidate node matches on the annotated EFG as small as possible,
is the execution of preparation steps, through which the root of the BFS, (i.e., the node
of the pattern model from which the iteration will start) is selected to be annotated with
the label from the pattern model that is least frequently found on the annotated EFG. The
EFG is traversed once and the number of occurrences of each label is stored in count —a395

HashMap object that maps labels to integers (i.e., labels’ frequencies). One of the nodes of
the pattern model that have the label with the minimum frequency in count, is selected as
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the subsequent BFS starting point (i.e., the root).

Algorithm 1 Find All Pattern Model Occurrences

Input: ETL, PM, root . root is a node from the PM
Output: PO

1: PO,PO2,m,f ← ∅; candOc ← []; . initializations
2: for each oi ∈ ETL do . iterate nodes of ETL
3: if (sameProperties(oi,root)) then . check for match
4: m ← {[oi,root]}; . add to set of matches for specific occurrence
5: f ← neighbors(oi); . add adjacent nodes to the frontier
6: PO.add([m,f]); . add candidate occurrence to PO
7: end if
8: end for
9: for each pnn ∈ BFS order(PM,root) do . iterate nodes of PM

10: for each col ∈ PO do . iterate candidate occurrences in PO
11: for each om ∈ col.f do . iterate nodes from frontier
12: if (sameProperties(om,pnn)) then . check for match
13: m ← col.m ∪ {[om,pnn]} . add to matches
14: f ← (col.f \ {om}) ∪ um-neighbors(om); . update frontier
15: PO2.add([m,f]); . add updated occurrence to PO2
16: end if
17: end for
18: end for
19: PO ← PO2; PO2 ← ∅; . copy and initialize for next iteration
20: end for
21: return PO;

Given an ETL, a pattern model PM and its root (see for example the node with label
a from the pattern model in Figure 5), Algorithm 1 returns a set PO of pattern occurrences,400

that contains all the occurrences of PM in ETL. Each element of this set consists of two
parts: i) m, which is a set of matches, matching one node from ETL to one node from PM
and ii) f, which is a set of nodes from the ETL, to maintain all the frontier nodes for one
pattern occurrence, i.e., the search space for the subsequent iterations. First, the algorithm
iterates over all the nodes of the ETL (Step 2) and finds all the nodes that have same405

properties as root (Step 3). All these nodes then act as the initial node matches around
which pattern occurrences are searched (see for example the search space of the annotated
EFG in Figure 5, where pattern occurrences are searched only around the two nodes with
label a). The matches are added to the set m (Step 4) and the neighbors of these nodes
(i.e., their adjacent nodes in the ETL) are added to the set f that maintains the frontier for410

the search around each candidate occurrence (Step 5). Candidate pattern occurrences with
these characteristics are added to the set PO. Subsequently, the pattern model is traversed
in a BFS order (Step 9), ignoring the directionality of the graph and excluding the root
since it has already been matched. At this point, we use a second heuristic to speed up the
execution of the algorithm: The order by which the pattern model is traversed depends on415

the frequency of its labels on the ETL, which we have already collected in the count object.
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Thus, when a pattern node has multiple unvisited neighbors (i.e., adjacent nodes that have
not yet been visited by the BFS), the order by which they are visited depends on their
label —from least to most frequent label in the ETL. For each candidate occurrence, each
node from its frontier is checked for having the same properties with the current node from420

the pattern model (Step 12). If it does, then the matches and the frontier of the current
candidate occurrence are updated (Steps 13 and 14). Regarding the frontier update, the
um-neighbors, i.e., the adjacent nodes to the matched node from the ETL that have not
already been matched to a pattern node, are added to the existing nodes in the frontier and
the matched node is removed from the frontier (Step 14). Subsequently, a new candidate425

occurrence with these updated parts is added to a set PO2. In every iteration this set replaces
the old set PO that gets initialized to the empty set (Step 19). We should note that despite
the pattern model graph being traversed ignoring its directionality, when the check for same
properties between a pattern model node and an ETL node takes place, the directionality is
taken under consideration.430

4.2.1. Algorithm complexity

Although subgraph isomorphism is well-known NP-hard problem [24], in practice, our
algorithm can execute very fast because of the particularities of ETLs and the heuristics
that we use. The adjacent nodes for each node are maintained inside two hashmap objects
that map labels to nodes —one hashmap for the incoming adjacent nodes and one for the435

outgoing adjacent nodes [25]. If n is the size of the ETL graph, then each of these two
objects is of maximum size (n− 1) for each ETL node (a node cannot be adjacent to itself
and a node cannot be found in two different buckets of the hashmap because it only has one
label), thus the space complexity of the algorithm is: 2 ∗ (n− 1) ∗ n = O(n2).

When it comes to the time complexity, due to the use of the hashmap objects, the check440

for same properties between the nodes of the pattern model and the ETL can take place
in constant time t. Thus, if m is the size of the PM, the time complexity is: t ∗

∑m
i=1Ni,

where Ni is the running number of candidate occurrences (i.e., the size of PO, see Step 10
of Algorithm 1) during each iteration of the BFS. We should note that N1 is the number of
initial candidate occurrences which is determined by the selection of the pattern model root445

element. The growth rate Nk+1

Nk
of the solution space depends on the fanout of the nodes of

the ETL graph on one hand; and on the distribution of the different labels on the ETL nodes,
on the other. In other words, the search space grows by being multiplied by the number of
neighbors of each node in the candidate occurrence frontier, which is being matched (see Step
14 of Algorithm 1), but it also shrinks at the same time by pruning nodes that do not match450

the corresponding node from the PM. In the worst case of the ETL being a clique where all
the labels of the pattern model and all the labels of the ETL graph are the same one label,
there will be no pruning and thus, every time a new node from the pattern model is visited,
the number of candidate occurrences will multiply by (n−p) where p is the number of already
matched nodes, until all m nodes are visited. Thus, in the worst case the total number of455

candidate occurrences during the last iteration will be: Nm =
∏m

i=1(n − i) = O( (n−1)!
(n−1−m)!

).
However, according to our experience with implementing ETL workflows from the TPC-DI
benchmark, this is hardly a realistic case for ETL graphs, where the branching factor is close
to 1. In addition, the existence of a number of different labels in real ETL graphs, guarantees
that a lot of pruning takes place, especially in the common case where no (unmatched) node460
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Figure 6: Number of (non-maximal) frequent patterns identified for different support values and for different
pattern sizes

of specific label is adjacent to a candidate occurrence, which can very easily be checked,
with the bucket corresponding to this label being empty. Furthermore, the size m of the
meaningful pattern models is usually very small (< 10).

5. Results

In this section, we show results obtained from the application of the algorithms to 25465

ETL processes from the TPC-DI benchmark2 that we implemented using the Pentaho Data
Integration open source tool3.

5.1. Mined ETL Patterns

In this subsection, we present our results from mining frequent patterns during the Learn-
ing Phase of our approach. To this end, we used the FSG algorithm [19] on the graph470

representation of the 25 TPC-DI ETLs, using its available implementation4. In Figure 6, we
show the number of frequent patterns of different size (i.e., number of edges) that we obtain,
using different values for support (i.e., the minimum proportion of ETL workflows that need
to contain a subgraph for it to be accounted as a frequent pattern). It should be noticed that
the FSG algorithm executed in less than 2 msec for all these cases. As expected, since we are475

not imposing the maximality constraint, as the support increases, the number of identified

2http://www.tpc.org/tpcdi/
3Full implementation available at: https://github.com/AKartashoff/TPCDI-PDI/
4http://glaros.dtc.umn.edu/gkhome/pafi/overview
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Figure 7: Coverage of ETL workflows for different support values

patterns decreases. In other words, all the patterns that are identified with some support
s will also be identified with any other smaller support, plus additional patterns that do
not satisfy the frequency criterion for s. We can also infer from Figure 6 that in general, as
the size of the patterns decreases, the number of identified patterns increases. However, as480

can be seen, there are some noticeable exceptions to this rule. The curve for pattern size
1 crosses both with the curve for pattern size 2 and with the curve for pattern size 3. The
reason is that the same pattern of size 1 can be a subgraph of two or more patterns of size
2. As an example, let us consider a set of three labels {a, b, c} and the identification of the
following frequent patterns of size 2: i) [a − a − b], ii) [a − b − a], iii) [a − a − c] and iv)485

[a − c − a]. Each subgraph of these four frequent patterns will also be a frequent pattern
for the same support s. However, there are only three distinct subgraphs of size 1 among
these patterns —i) [a− a], ii) [a− b] and iii) [a− c]— and it is not necessary that there exist
more frequent patterns of size 1 with these labels. The same explanation can be given for
the case of the curve for pattern size 2 crossing with the curve for pattern size 3. The reason490

that the rule holds for greater s values, is that this explained behavior is outgrown by the
tendency of larger patterns to be more difficult to find frequently. Finally, we can observe
that beyond some support value, there is no frequent pattern identified.

In Figure 7, we show for different support values, the coverage of all the ETL workflows
from the patterns identified, i.e., the percentage of ETL operations that take part in pattern495

model occurrences. Pattern identification was conducted by our implementation of the al-
gorithm proposed in Subsec. 4.25. As we can observe, the coverage decreases as the support
value increases, which is an expected behavior since the overall number of identified patterns
decreases as well (see Figure 6). This decrease appears to be non-linear and especially be-
yond some value s (≈ 45%) for which coverage is ≈ 80%, it appears to decrease faster and500

faster as support increases. Another interesting observation is that for a small value of s,

5Full implementation available at: https://github.com/theovas/etl-patterns/
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Figure 9: Number of patterns w.r.t. their frequency of independent occurrences

coverage reaches a very high value, above 93%. This validates our claim that it is possible
to map, if not the complete, at least a very large part of an ETL workflow to pattern model
occurrences, facilitating the translation to its conceptual representation, as is explained in
Subsection 6.3.505

Using the support value 20% (i.e., pattern model occurs at least in 5 of the 25 ETLs), we
obtained 156 pattern models of different sizes, from 1 to 7 edges. Subsequently, we employed
our pattern recognition algorithm to find all the occurrences of each of these pattern models
on the 25 ETLs and the results about the number of occurrences for all the pattern models
are shown in Figure 8. It is clear that some pattern models occur much more frequently than510

the others, but there is also a big difference between all occurrences and only independent
occurrences for each pattern model. This is illustrated in Figure 9, where we show the
number of pattern models for different ranges of % of independent occurrences. We can
see that there are 87 pattern models with 0% independent occurrence i.e., out of all their
occurrences, they never occur independently, not nested inside the occurrence of another515

pattern model. These pattern models are irrelevant for our analysis and thus we only keep
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the remaining 156− 87 = 69 pattern models.
After examining these 69 pattern models playing the role of the ETL expert, we concluded

with a set of ETL patterns that we characterized based on their functionality, the most
interesting of which are illustrated in Figure 10. For each pattern, we show only one pattern520

model —the one occurring most frequently— but as explained above, each pattern can have
two or more variations, as was the case with the patterns that we identified. The variations
that we identified for each pattern, only differ in a very small number of model nodes (usually
only one node is different) and thus it is possible to implement clustering algorithms based on
distance criteria and automatically cluster the different pattern models as pattern variations.525

We also observed that there are frequent pattern models of small size, which can be combined
to synthesize bigger frequent pattern models. As we look from frequent pattern models of
smaller size to frequent pattern models of bigger size, the conceptual functionality of the
pattern model and its contribution to the ETL process becomes more obvious and concrete.

5.2. Performance Evaluation of Graph Matching Algorithm530

In this subsection, we present the performance results from running the implementation
of our graph matching algorithm (Algorithm 1). To this end, we implemented a synthetic
ETL generator6 that generates ETLs of preferred size and uses statistical characteristics
of the 25 TPC-DI ETLs as follows: We parsed the TPC-DI ETLs and stored, for each
operation type, i) the average number of succeeding operations and ii) the percentage of535

succeeding occurrences for each operation type. For example, we found that out of all the
293 succeeding operations of all the operations of operation type Project, only 12 operations
are of type TableOutput and thus the probability of our generator generating an operation

6Implementation available at: https://github.com/theovas/etl-patterns/blob/master/utils/

SyntheticFlowGenerator.java
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Figure 11: Performance of the graph matching algorithm for ETLs of different sizes (Y-axis in log scale)

of type TableOutput after an operation of operation type Project is set to: 12/239 = 5%.
In order to be able to adjust the size of the produced ETL, our generator can modify the540

percentage of new operations that are of joining type being generated, as opposed to merging
parts of the flow with existing operations of joining type. In the same respect, the probability
of output operations (i.e., operations that have zero fanout) can be modified dynamically.
We generated ETLs of different sizes and for each ETL, we executed our graph matching
algorithm for all of the 156 frequent pattern models on a row. The performance results545

from these experiments, carried under an OS X 64-bit machine, Processor 965 Intel Core i5,
1.7 GHz and 4GB of DDR3 RAM, are shown in Figure 11. As can be seen, our algorithm
performs very well (almost linearly) for ETLs sharing characteristics with the TPC-DI ETLs,
even for graphs of size 105.

5.3. Granular ETL Performance Evaluation550

In subsection 6.2, we claimed that with the use of our approach, ETL workflows can be
evaluated with regards to their quality characteristics at the granular level of patterns. In this
subsection, we show how such an evaluation can take place for the ETL performance. Thus,
we implemented a process that isolates pattern model occurrences (pmo) and executes them
multiple times to obtain their average execution time, using as input data that are generated555

from the provided TPC-DI data generator7 with scale factor 1. This process corresponds
to the learning phase that we mentioned in subsection 6.2. To this end, the output of each
incoming operator to the pmo (i.e., all the operators that are not part of the pmo but are
adjacent to at least one node from the pmo with direction towards that node) is stored into

7http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
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a text file and an file input operator is added to the pmo, that reads this text file and passes560

on its data to the pattern nodes. In addition, we added file output operators for each edge
for which the source is a node from the pmo but the target is a node that is not in the pmo,
as can be seen in Figure 12.
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Figure 13: Histogram of number of patterns w.r.t. average values of runtime divided by input size

Executing pattern model occurrences from 6 TPC-DI ETLs, we found that the results
were adequate to expose the fluctuation in the performance of different pattern models.565

Results are shown in Figure 13, where we show a histogram, the y-axis being the number of
patterns and the x-axis being the average value for runtime (in msec) divided by input size
(i.e., the sum of all the tuples coming from the generated file input files). As we can observe,
five pattern models have outstanding values for this measure compared to the others. Three
of these pattern models are variations of the Surrogate Key Pipeline pattern and the other570

two are variations of the Union pattern. Examining the first three, we observed that they all
included a sequence generation operator (i.e., for adding to each tuple an integer to act as a
surrogate key), right before an output operator for loading data to a database. These results
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are a clear indication of an anti-pattern, since with this design data cannot be processed
in a parallel fashion and can possibly be resolved by pushing back the sequence generation575

operator earlier in the flow.

6. ETL Patterns Use Cases

The identification of patterns within ETL processes and their definition and classification
can be used in various ETL projects with contributions spanning from more efficient ETL
quality analysis to more usable and reusable ETL models. In this section, we first present a580

structured methodology according to which our approach can be utilized in context of ETL
design. Subsequently, we present two use cases that expose the value of using ETL flows
patterns that are derived from our data-driven approach.

6.1. Process Architecture

Our process architecture is depicted in Figure 14 and consists of two phases —the learning585

phase and the recognition phase. During the learning phase, a training set of ETL workflows
is used to mine ETL patterns and store them in a patterns repository. The first step is the
modeling of the ETL workflows as the ETL structures defined in Section 3. Subsequently,
graph algorithms can be applied on the ETL structures to identify reoccurring structures
with frequency above a specified support threshold. After the identification of the frequent590

structures, analysis takes place to define relevant structures as patterns and to classify them
according to their functionality. It is during this step that some frequent structures might be
dismissed after being considered irrelevant for the conducted analysis (e.g., non-independent
patterns). Finally, ETL patterns are stored in a repository, after being translated to an
appropriate data model. During the recognition phase, one ETL flow is modeled as an ETL595

structure and graph matching algorithms are executed to find occurrences of patterns, from
the repository to the ETL structure. A pattern matching strategy is selected to disambiguate
the cases where different patterns can be recognized on the same part of the ETL and
subsequently, the ETL operations are mapped to corresponding pattern occurrences.
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Figure 15: Adding extra instances to DimBroker

6.2. Quality-based Analysis of ETL flows600

One interesting application of our bottom-up approach is the more granular evaluation
of quality characteristics of ETL processes. In [16], we have gathered quality measures
and metrics from literature and we have illustrated how they can be used to evaluate ETL
processes with respect to different quality dimensions. Using our approach, such evaluation
can take place in a more granular level than the complete ETL workflow—at the level of605

patterns. What is more, such evaluation can take place without the need for execution of
the ETL workflow under test, but simply by statically examining its logical model and by
recognizing pattern occurrences, similarly to Figure 17. During a learning phase, the average
quality performance of different pattern models can be obtained from the isolated evaluation
of their occurrences on a training set of ETLs. Subsequently, after pattern models have been610

characterized based on their performance, their occurrence on ETL models can signify the
existence of parts of the ETL with corresponding performance implications. For instance,
different parts of the ETL can be predicted as more, or less costly in terms of consumption
of resources, creating a heatmap of the different parts of the ETL. This kind of analysis can
also be used for the identification and avoidance of antipatterns [17] during the ETL design615

phase.
In order to showcase potential benefits from the use of our described methodology, we

applied it to two of the ETL processes from the TPC-DI benchmark that we implemented
using the Pentaho Data Integration (PDI) tool—DimBroker and Prospect. Transformations
created with PDI are multi-threaded and transformation steps run in parallel, leveraging620

multiple CPU cores. Thus, by increasing the number of threads assigned to steps, the
execution time of the ETL workflow can decrease. The purpose of this evaluation has been
to illustrate that on one hand, the distribution of additional threads on different parts of the
ETL workflow based on different criteria, can influence its execution time (i.e., performance)
and on the other, that making this decision based on the recognition of patterns on the625
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Figure 16: Adding extra instances to Prospect

workflow model can have a positive impact.
Hence, we employ four different criteria for the introduction of 10 additional instances

(i.e., threads) for the execution of operations on the ETL workflow: i) allocation of ad-
ditional instances to random operations (random), ii) allocation of additional instances to
operators with the highest average execution time (op exec time), iii) allocation of addi-630

tional instances to operators with the highest average execution time divided by size of
input data (op exec time/inp size) and iv) allocation of additional instances to operators
inside pattern instances with the highest average execution time divided by size of input
data (pattern exec time/inp size). For ii) and iii), we followed the same methodology as
described in Subsec. 5.3 where instead of pattern instances, each (logical) ETL operation635

was isolated and its average execution time from 10 executions was measured. For iv), we
used the results from Sec. 5, where ETL patterns were mined from the implemented TPC-DI
flows and their average execution time was measured, taking under consideration the size of
their input datasets. Using our algorithm from Subsec. 4.2, we recognized all ETL pattern
instances on the two ETL processes and we selected the instances of the most costly patterns,640

on operations of which to add additional instances. The execution results on each ETL are
shown in Fig. 15 and Fig. 16. As shown, there is performance improvement when adding
extra instances for all criteria, with better results than random using any of the criteria
ii), iii) and iv). However, it should be noted that for criterion iv), the decision was based
solely on performance analysis conducted during a learning phase as opposed to criteria ii)645

and iii), which were based on performance measures coming from execution of operations of
the specific ETL workflows under test. It is therefore illustrated, how our proposed pattern
analysis makes performance improvement possible by simply examining the static model of
ETL workflows.
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6.3. Conceptual Representation of ETL Flows650

The value of using conceptual representations of ETL processes has been recognized in
several works [6, 3, 15], where the proposed modeling notation is BPMN, mainly because of
its expressiveness and the support of modeling data artifacts and the data flow of the ETL
process. These works have mostly focused on the advantages of a conceptual model during
the design phase, for modeling abstractions of process functionalities and automating their655

translation to concrete implementations. Using our bottom-up approach, it is possible to
work the other way round, identifying ad-hoc patterns on arbitrary ETL processes and thus
populating libraries of such abstractions in the context of any specific business environment
and used ETL technologies. It is then straightforward to conceptually model any ETL
process in the same context, by decomposing its different parts to the identified patterns.660

In Figure 17 we show an example of such a decomposition, translating the logical model
of our running example (see Figure 1) from its logical model to a conceptual representation
in BPMN. The patterns used are mined from ETL processes within the same domain and
context, i.e., TPC-DI ETLs implemented using the Pentaho Data Integration tool. The
conceptual representation is much more concise and understandable than the logical view665

and the translation is completely automated.

7. Summary and Outlook

In the Big Data era, expectations from data-intensive processes are becoming more and
more demanding, pushing for solutions that foster agility. In this direction, several ap-
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proaches have been proposed for the effective modeling of ETL processes, raising the con-670

ceptual level of ETL activities and focusing on the reuse of commonly occurring components
during ETL design. However, the frameworks introduced so far heavily rely on expertise to
define some universal abstractions that attempt to be applicable for the analysis of arbitrary
ETL workflows. In this paper, we introduced a novel empirical approach for pattern-based
analysis of ETL workflows in a bottom-up manner. We formally defined an ETL pattern675

model and we illustrated how it can be instantiated using a training set of ETL workflows
to extract frequently reoccurring structural motifs. The graph representation that we adopt
enables the use of graph algorithms, such as frequent subgraph discovery algorithms for the
mining phase and graph matching algorithms for the recognition phase. For the latter, we
adapted the VF2 algorithm with some optimizations and we showed through experiments680

how it performs very well for ETL workflows. In addition, we presented the most frequent
ETL patterns that we identified in implemented processes from the TPC-DI framework, as
well as the results from different configurations of the used algorithms. Results show high
efficiency and effectiveness of our approach and future work can delve deeper into the eval-
uation and pattern-based benchmarking of a larger number of realistic ETL workflows to685

build a solid Knowledge Base of ETL patterns and their characteristics.
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[2] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón, F. Naumann, T. B.
Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fusion cubes: Towards self-695

service business intelligence, IJDWM 9 (2) (2013) 66–88.
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