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Incremental Consolidation of
Data-Intensive Multi-flows

Petar Jovanovic, Oscar Romero, Alkis Simitsis, and Alberto Abelló

Abstract—Business intelligence (BI) systems depend on efficient integration of disparate and often heterogeneous data. The
integration of data is governed by data-intensive flows and is driven by a set of information requirements. Designing such flows is
in general a complex process, which due to the complexity of business environments is hard to be done manually. In this paper, we
deal with the challenge of efficient design and maintenance of data-intensive flows and propose an incremental approach, namely CoAl,
for semi-automatically consolidating data-intensive flows satisfying a given set of information requirements. CoAl works at the logical
level and consolidates data flows from either high-level information requirements or platform-specific programs. As CoAl integrates a
new data flow, it opts for maximal reuse of existing flows and applies a customizable cost model tuned for minimizing the overall cost
of a unified solution. We demonstrate the efficiency and effectiveness of our approach through an experimental evaluation using our
implemented prototype.
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1 INTRODUCTION

The complexity of business environments constantly
grows, both with regard to the amount of data relevant
for making strategic decisions and the complexity of
included business processes. Today’s dynamic and com-
petitive markets often imply rapid (e.g., near real-time)
and accurate decision making. Relevant data are stored
across a variety of data repositories, possibly using dif-
ferent data models and formats, and potentially crossed
with numerous external sources for various context-
aware analysis. A data integration process combines data
residing on different sources and provides a unified
view of this data for a user [1]. For example, in a data
warehousing (DW) context, data integration is imple-
mented through extract-transform-load (ETL) processes.
Generally, an ETL process represents a data-intensive
flow (or simply, data flow) that extracts, cleans, and
transforms data from multiple, often heterogeneous data
sources and finally, delivers data for further analysis.

There are various challenges related to data flow de-
sign. Here we consider two: design evolution and design
complexity.

A major challenge that BI decision-makers face relates
to the evolution of business requirements. These changes
are more frequent at the early stages of a DW design
project [2] and in part, this is due to a growing use of
agile methodologies in data flow design and BI systems
in general [3]. But changes may happen during the
entire DW lifecycle. Having an up-and-running DW
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system satisfying an initial set of requirements is still a
subject to various changes as the business evolves. The
data flows populating a DW, as other software artifacts,
do not lend themselves nicely to evolution events and
in general, due to their complexity, maintaining them
manually is hard. The situation is even more critical in
today’s BI settings, where on-the-fly decision making
requires faster and more efficient adapting to changes.
Changes in business needs may result in new, changed
or removed information requirements. Thus having an
incremental and agile solution that can automatically
absorb occurred changes and produce a flow satisfying
the complete set of requirements would largely facilitate
the design and maintenance of data-intensive flows.

In an enterprise environment data is usually shared
among users with varying technical skills and needs,
involved in different parts of a business process. Typical
real-world data-intensive workloads have high temporal
locality, having 80% of data reused in a range from min-
utes to hours [4]. However, the cost of accessing these
data, especially in distributed scenarios, is often high [5].
At the same time, intertwined business processes may
also imply overlapping of data processing. For instance,
a sales department may analyze the revenue of the sales
for the past year, while finance may be interested in the
overall net profit. Computing the net profit can largely
benefit from the total revenue already computed for the
sales department and thus, it could benefit from the
sales data flow too. The concept of reusing partial results
is not new. Software and data reuse scenarios in data
integration have been proposed in the past, showing that
such reuse would result in substantial cost savings, espe-
cially for large, complex business environments [6]. Data
flow reuse could result in a significant reduce in design
complexity, but also in intermediate flow executions and
thus, in total execution time too [5].
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In this paper, we address these challenges and present
an approach to efficient, incremental consolidation of
data-intensive flows. Following common practice, our
method iterates over information requirements to create
the final design. In doing that, we show how to effi-
ciently accommodate a new information requirement to
an existing design and also, how to update a design in
lieu of an evolving information requirement. To this end,
we describe a Consolidation Algorithm (CoAl) for data-
intensive flows. Without loss of generality, we assume
that starting with a set of information requirements, we
create a data flow per requirement. The final design
satisfying all requirements comprises a multi-flow. As
‘coal’ is formed after the process and extreme com-
paction of layers of partially decomposed materials1,
CoAl processes individual data flows and incrementally
consolidates them into a unified multi-flow.

CoAl deals with design evolution by providing design-
ers with an agile solution for the design of data flows.
CoAl assists the early stages of the design process when
for only a few requirements we need to build a running
data flow from scratch. But, it also helps during the
entire flow lifecycle when the existing multi-flow must
be efficiently accommodated to satisfy new, removed, or
changed information requirements.

CoAl reduces design complexity with aggressive infor-
mation and software reuse. Per requirement, it searches
for the largest data and operation overlap in the existing
data flow design. To boost the reuse of existing de-
sign elements when trying to satisfy a new information
requirement (i.e., when integrating a new data flow),
CoAl aligns the order of data flow operations by apply-
ing generic equivalence rules. Note that in the context of
data integration, the reuse of both data and code (e.g.,
having a single computation shared by multiple flows as
depicted in Figure 4) besides reducing flow complexity,
might also lead to faster execution, better resource usage,
and higher data quality and consistency [6], [7].

In addition, since data-intensive flows comprise criti-
cal processes in today’s BI systems, CoAl accounts for the
cost of produced data flows when searching for oppor-
tunities to integrate new data flows. CoAl uses a tunable
cost model to perform multi-flow, logical optimization to
create a unified flow design that satisfies all information
requirements. Here, we focus on maximizing the reuse of
data and operations, but the algorithm can be configured
to work with different cost models, taking into account
different quality factors of data flows (e.g., [8]).

As a final remark, CoAl works at the logical level and is
therefore applicable to a variety of approaches that gen-
erate logical data flows from information requirements
expressed either as high level business objects (e.g., [9],
[10], [11]) or in engine specific languages (e.g., [12]).

In particular, our main contributions are as follows.
 We present a semi-automatic approach to the incre-

mental design of data-intensive flows.

1. src. Wikipedia

 We introduce a novel consolidation algorithm,
called CoAl, that tackles the data flow integration
problem from the context of data and code reuse,
while at the same time taking into account the cost
of the produced data flow design.

 We present generic methods for reordering and
comparing data flow operations that are applied
while searching for the consolidation solutions that
will increase data and operation reuse.

 We experimentally evaluate our approach by using
an implemented prototype. A set of empirical tests
have been performed to assess the CoAl’s efficiency
and improvements in overall execution time.

A short version of this paper was published in Jovanovic
et al. [13].

Outline. Section 2 describes a running example and
formalizes the problem at hand. Section 3 discusses the
main challenges: operations reordering and comparison.
Section 4 presents the CoAl algorithm. Section 5 reports
on our experimental findings. Sections 6 and 7 discuss
related work and conclude the paper, respectively.

2 OVERVIEW

2.1 Running Example
Figure 1 shows an abstraction of the TPC-H schema [14].
Figure 2 illustrates four example information require-
ments extracted from TPC-H queries. In a sense, our
example here is adapted by reverse engineering the use
case described by the TPC-H schema and queries.

Figure 1. TPC-H Schema

We create a data flow per each requirement in Figure
2 (see Figures 3 and 6). In the literature, there are many
methods dealing with such task, either manually (e.g.,
[9], [10]) or automatically (e.g., [11]). Independent of a
method for creating data flows from single requirements,
CoAl focuses on the problem of integrating these flows
into a unified flow that satisfies all requirements.

Consider the DIF-1 and DIF-2 data flows depicted
in Figure 3 that satisfy the requirements IR1 and IR2,
respectively. We define the referent data flow as the in-
tegrated multi-flow satisfying a number of requirements
already modeled (we start from IR1) and the new data
flow as the flow satisfying the new requirement (IR2).

In terms of graphical notation, the squares represent
source or target data stores, whereas the circles represent
data flow operations. Operations of each data flow are
uniquely named using the following notation: OPNAME =
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IR1: Revenue of the sales for the parts ordered in the past
year, per quarter.
IR2: Net profit of the sales for the parts ordered in the last
year, per quarter.
IR3: Top 10 automobile industry customers based on the
quantity of shipped parts, ordered in the last year.
IR4: Sorted list of quantities of parts shipped to Spanish
customers, ordered in the last year.

Figure 2. Information Requirements

OPTYPE+OPID+”;”+{FLOWIDs}. Note that the flow IDs
at the end define the set of data flows that share the
given operation. They are optional and can be omitted
for single (non integrated) data flows.

Observe that these two data flows have a number
of common operations. CoAl exploits this and creates
an alternative, equivalent data flow satisfying both re-
quirements IR1 and IR2, such that the reuse of the
data stores and operations of DIF-1 is maximal (see
Figure 4). We then continue and integrate the remaining
requirements to create a unified multi-flow that satisfies
all four requirements (i.e., IR1-IR4), see Figure 7.

2.2 Preliminaries and Notation

We build upon past work on ETL workflow formal-
ization [15] and model generic data flows as follows.
A data-intensive flow (DIF ) is formally defined as a
directed acyclic graph consisting of a set of nodes (V),
which are either data stores (DS) or operations (O), while
the graph edges (E) represent a directed data flow among
the nodes of the graph pv1   v2q. We write:

DIF � pV,Eq, such that: V � DSYO,
@ePE : Dpv1, v2q, v1PV^ v2P V^ v1   v2

In the rest of the paper we use the terms ’flow’ and
’graph’ interchangeably, while the same formalization of
a data flow holds for an individual data flow, as well as
for an integrated multi-flow.

Data store nodes (DS) can represent either a source
data store (DSS , e.g., input DB table, file, etc.) or a result
data store which in general is not necessarily materi-
alized (DSR, e.g., output DB table, file, report, virtual
cube, etc.), i.e., DS � DSS YDSR. Data store nodes are
defined by a schema (i.e., finite list of attributes) and a
connection to a source or a target storage for respectively
extracting or loading the data. Furthermore, we formally
define a data flow operation as a quintuple:

o � pI,O,S,Pre,Postq

 I represents a set of input schemata, where each
schema (Ii) characterizes an input from a single
predecessor operation and is defined with a finite
set of attributes coming from that operation (i.e.,
I � ta1, .., anI

u). This definition is generic in that it
allows the arbitrary input arity of flow operations.
Example. Notice in Figure 3 that some operations
like UDF3 are unary and thus have only one input
schema, while operations like Join2 are binary and
expect two input schemata. l

Figure 3. Example data-intensive flows for IR1 and IR2

Figure 4. Integrated data-intensive multi-flow (IR1-IR2)

 O represents a set of output schemata, where each
schema (Oi) characterizes an output to a single
succeeding operation and is defined with a finite
set of attributes (i.e., O � ta1, .., anOu).
Example. The operations in DIF-12 of Figure 4 can
have either a single output schema (e.g., UDF3,
Filter1 and Aggr4), or as it is the case of Join2
two equivalent output schemata sending the same
data to two different subflows. l

 S represents the formalization of operator’s seman-
tics, i.e., a finite set of expressions that interprets
the processing semantics of an operator. Due to
their inherent complexity and diversity, in order
to automate the processing of data flow operations
(e.g., comparison, discovery of different operation
properties), we express the semantics of a generic
data flow operation as a finite set of normalized
expression trees. That is, a binary search tree, al-
phanumerically ordered on the expression elements
(i.e., operators, function calls, variables, and con-
stants), whilst respecting the valid order of opera-
tors when evaluating the expression. CoAl assumes
that the semantics’ formalization is generic, and
similar formalization techniques (e.g., [16]) can be
used seamlessly in our approach.
Example. To express the semantics of data flow op-
erations in DIF-1 (Figure 3) we build the normalized
expression trees showed in Figure 5. l

To further determine how the operations’ semantics
affect their interdependence in a data flow, we use a set
of data flow operation properties. Relying solely on a
set of algebraic properties of data flow operations (e.g.,
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Figure 5. Normalized expression trees (DIF-1 operations)

Figure 6. Example data-intensive flows for IR3 and IR4

[17], [15]) is not enough to take full advantage of the
potential for the data flow analysis. Different ‘physio-
logical’ properties that can be extracted from a data flow,
additionally boost the automation of the flow analysis
and equivalent operation reordering. For example, such
idea has been introduced for the context of optimizing
generalized MapReduce data flows by extracting proper-
ties like attribute values [18]. Additionally motivated by
this work, we extend and generalize the idea of having a
customizable set of properties characterizing data flow
operations. In this paper, we considered the following
set of operation properties:

 Schema (S). Attributes being used, emitted or re-
moved by an operation.

 Values (V ). Attributes whose values are used or
produced by an operation.

 Order (O). Indicator if the order of the tuples (i.e.,
rows or records) in the processed dataset affects or
is being produced by an operation.

We have analyzed the applicability of these properties
over the types of operations in the example ETL tools;
both a commercial, i.e., Oracle Warehouse Builder (OWB
11.2), and an open source data integration (ETL) tool,
i.e., Pentaho Data Integration (PDI 5.0). This analysis
has showed us that these three properties cover the fre-
quently used operations, while our approach is generic
and allows the extension to other categories of data
processing operations as needed.

Furthermore, in terms of these three properties, for
each instance of a data flow operation, we define pre-
(Pre) and post-conditions (Post) of a data flow operation.

Depending on the properties that an operation “con-
sumes” (i.e., the results of an operation are affected by
the specific value of that input property), we define the
pre-conditions of an operation as:
Pre � pSpre, Vpre, Opreq, such that:

 Spre (consumed schema) is a subset of attributes of
input schemata (I) that are used by an operation.

 Vpre (consumed values) is a subset of attributes of the
consumed schema (Vpre � Spre) whose values are
used by an operation.

 Opre (consumed order) is a boolean indicator that
specifies whether the results of the operation pro-
cessing are affected by the order of input dataset.

Example. The UDF3 operation of DIF-1 in Figure 3
uses the attributes l_exprice, l_disc, and l_tax
from the input (i.e., Spre � tl exprice, l disc, l taxu),
and moreover it uses their values for computing the
value of the output attribute revenue (i.e., Vpre �
tl exprice, l disc, l taxu). On the other hand, notice that
the Rename operations in DIF-2, require the attribute
qrt at the input (i.e., Spre � tqrtu), while the concrete
value of that attribute is not used by these operations
(i.e., Vpre � H). Likewise, the value of the revenue
attribute resulting from the UDF operation, is not affected
by the order of the input dataset (i.e., Opre � false). l

In a similar way, but now depending on the properties
an operation “produces” (i.e., generates the specific value
of that property at the output), we define the post-
conditions of a data flow operation as:
Post � pSpost gen, Spost rem, Vpost, Opostq, such that:

 Spost gen (generated schema) is a finite set of new
attributes that the operation generates at the output.

 Spost rem (removed schema) is a subset of input at-
tributes that the operation removes from the output.

 Vpost (produced values) is a finite set of attributes
whose values are either produced or modified by
an operation.

 Opost (produced order) is a boolean indicator that
specifies whether the operation processing generates
the specific order of the output dataset.

Note that we need to distinguish two sets (i.e., Spost gen

and Spost rem) to specify the schema property of a post-
condition in order to determine the dependency of op-
erations in a data flow. We clarify this when discussing
the generic equivalence rules in Section 3.1.

Example. The operation Aggr4 of DIF-1 in Figure 3
modifies the schema provided at the input and produces
the new schema at the output, removing all the input
attributes (i.e., Spost rem � t#allu) and generating the
grouping attribute qrt and the aggregated attribute
total_revenue (i.e., Spost gen � tqrt, total revenueu).
Aggr4 also produces the new value for the aggregated
revenue attribute and the value of the grouping at-
tribute qrt (i.e., Vpost � tqrt, total revenueu), and affects
the order of the output dataset (i.e., Opost � true). l

For extending the set of considered “physio-logical”
properties, an instantiation of each property must be
defined both at the input (Pre) and the output (Post) of
each data flow operation. If an operation type does not
consume/produce a property, the corresponding instanti-
ation is empty (or false, see the order property).

Finally, notice that the Pre and Post conditions of a
data flow operation provide the needed knowledge to
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determine the dependencies among data flow opera-
tions when performing equivalence transformations for
reordering operations in a generic data flow. We discuss
this in more detail in Section 3.1.

2.3 Problem Statement

We formalize the problem of the incremental data flow
consolidation, by introducing the three main design
operations to integrate, remove, and change a data flow.

Integrate a data flow (�int): When a new information re-
quirement comes, we need to integrate the data flow that
satisfies it, into the existing data flow. Considering that
a data flow at the logical level is modeled as a directed
acyclic graph (DAG), in the context of integrating new
data flow, at each step we assume two graphs:

 Referent graph. An existing multi-flow satisfying the
n current information requirements.
DIFref � pVref , Eref q : DIFref ( tIR1, .., IRnu

 New graph. A data flow satisfying the upcoming
requirement.
DIFnew � pVnew, Enewq : DIFnew ( IRnew

In addition, for each information requirement (IRi)
and a data flow (DIFref ), we define a requirement sub-
graph function (i.e., DIFi � pVi, Eiq � GpDIFref , IRiq),
such that G returns a subgraph DIFi of DIFref , if the
requirement IRi can be satisfied by DIFref using DIFi.
Otherwise, it returns NULL.

Example. Notice that the shaded subgraph within the
multi-flow DIF-12 in Figure 4, ending in the sales revenue
data store, is a requirement subgraph satisfying IR1. l

Intuitively, to integrate two data flow graphs
(DIFref �int DIFnew), we look for the maximal overlap-
ping of their nodes (i.e., data sources and operations).
As a result, the integrated multi-flow (i.e., DIFint) must
logically subsume the requirement subgraphs of all the
requirements satisfied by DIFref and DIFnew and con-
sequently satisfy the entailed information requirements.

We define a consolidated multi-flow as:
DIFint � DIFref �int DIFnew � pVint, Eintq, s.t.:

@IRi, i � 1, .., n : GpDIFint, IRiq  ¡ NULL,

GpDIFint, IRnewq  ¡ NULL.

Thus, we say that: DIFint ( tIR1, .., IRn, IRnewu

Example. The multi-flow integrated from IR1-IR4 is
shown in Figure 7, where the overlapping operations are
shown inside the shaded areas. l

Figure 7. Integrated data-intensive multi-flow (IR1-IR4)

Remove a data flow (�rem): In the case a user wants to re-
move an information requirement (IRrem) from her anal-
ysis (i.e., DIFref ( tIR1, .., IRnu), we need to remove
its requirement subgraph (i.e., DIFrem � pVrem, Eremq �
GpDIFref , IRremq), without affecting the satisfiability of
other requirements. Formally:
DIFint � DIFref �rem DIFrem, s.t.:

@IRi, i � t1, .., nuztremu : GpDIFint, IRiq  ¡ NULL,

ppVremz
�
@iPt1,..,nuztremu Viq X Vintq � H,

ppEremz
�
@iPt1,..,nuztremu Eiq X Eintq � H.

To this end, while integrating data flows, CoAl main-
tains metadata, consisting of two maps that for each
node (datastore or operation) and edge of the integrated
multi-flow, keeps a share counter for the total number of
input data flows that use that node (i.e., @v P Vint : Dc ¡
0) or edge (i.e., @e P Eint : Dc ¡ 0). For target data store
nodes that satisfy requirements at hand, CoAl also keeps
the requirement identifier.

Thus, when a user decides to remove an informa-
tion requirement, the system will search through its
requirement subgraph, starting from a target node, and
decrements the share counter of the visited nodes and
edges. If the counter drops to zero, the system removes
the node or the edge from the graph, as it is not used
by any of the remaining input data flows anymore.

Change a data flow (�chg): Similarly, changing an infor-
mation requirement (IRchg ; IRchg1 ), results in modi-
fying the subgraph of a referent data flow that satisfies
this requirement (DIFchg ; DIFchg1 ), while preserving
the satisfiability of other requirements in the analysis.
Intuitively, the operation for changing a data flow can be
reduced to the sequence of the previous two operations,
i.e., remove and integrate. Formally:
DIFint � DIFref �chg pDIFchg ; DIFchg1 q �

� pDIFref �rem DIFchgq �int DIFchg1 .

Next, we discuss the challenges in data flow consoli-
dation and present the CoAl algorithm.

3 DATA FLOW CONSOLIDATION CHALLENGES

To search for the overlapping between DIF-12 and DIF-
3 (i.e., Figures 4 and 6, respectively), we first find
orders and lineitem as the shared source data
stores. Then, starting from these nodes we proceed
with comparing operations going further in the en-
compassing subgraphs towards the result data source
nodes, respectively, Top-10 shipped quantity and
sales_revenue. Taking into account the previous ex-
ample, we notice several challenges that arise when
searching the overlapping operations in the referent and
the new data flows.

1) Going from the orders nodes in DIF-12 and DIF-
3, notice that after the common Filter operations we
identify Join operations in both data flows, Join2
and Join3, respectively. However, even though one
input of these Join operations coincides in both
flows, the second input differs, and thus we do not
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proceed with comparing these operations.
Incremental advancement. To guarantee the seman-
tical overlapping of two data flows, we must pro-
ceed incrementally starting from the common source
nodes. That is, for comparing any two operations of
two data flows, we must ensure that the predeces-
sors of both operations coincide.

2) Although we do not compare the two Join opera-
tions, we continue our search. Note that in DIF-3
there is another Join operation (i.e., Join4) and that
it is possible to exchange the order of this operation
with the previously discussed Join3 without affect-
ing the semantics of the DIF-3 flow. As a result, we
find a larger set of overlapping operations between
DIF-3 and DIF-12.
Operation reordering. Operation reordering under
a set of equivalence rules is a widely used optimiza-
tion technique, e.g., for pushing selective operators
early in a flow. When comparing data flows we can
benefit from such technique to boost finding the
maximal overlapping of operations whilst keeping
the equivalent semantics of input data flows.

3) In each step, like after reordering the Join operations
in DIF-3, when we find that the predecessors of
two operations coincide, we proceed with compar-
ing these two operations. Thus the comparison of
data flow operations arises a third challenge in
consolidating data flows considering the inherent
complexity and variety of the data flow operations.
Operation comparison. To integrate the operations
of two data flows we need to compare them to
ensure that they provide the equivalent dataset at
the output. To automate their comparison we need
to formalize the semantics of data flow operations.

Before presenting CoAl that solves the first challenge, we
discuss the theoretical aspects of the last two challenges.

3.1 Operation reordering

Operation reordering has been widely studied in the
context of data flow optimization, both for traditional
relational algebra operators (e.g., [17]) and generic data
flows (e.g., [15], [18]). Different reordering scenarios
have proven to improve the performance of data flows
(e.g., pushing selective operations early in the flow).
Conversely, we observe that reordering techniques can
also be used for consolidating data flows by finding the
maximal overlapping of flow operations. Thus, here we
introduce a set of data flow transformations and generic
equivalence rules which ensure that these transforma-
tions lead to a semantically equivalent data flow.

Following the previously proposed set of flow trans-
formations in the context of ETL processes [15], in
CoAl we extend this set considering also the associative
property of n-ary operations (e.g., Join) and thus rely
on the following four flow transformations used for
reordering the operations.

 Swap. Applied to a pair of adjacent unary opera-
tions, it interchanges the order of these operations.

 Distribute/Factorize. Applied on a unary operation
over an adjacent n-ary operation, it respectively
distributes the unary operation over the adjacent n-
ary operation or factorize several unary operations
over the adjacent n-ary operation.

 Merge/Split. Applied on a set of adjacent unary
operations, it respectively merges several operations
into a single unary operation or splits a unary
operation into several unary operation.

 (Re-)associate. Applied on a pair of mutually asso-
ciative n-ary operations, it interchanges the order in
which these operations are executed.

Example. Examples of these transformations applied
to integrate DIF-3 and DIF-4 into the referent data flow
(Figure 4) are showed in Figure 6. l

Furthermore, we define here the equivalence rules
applicable to a generic set of data flow operations, which
must hold in order to guarantee a semantically equiv-
alent data flow after performing the previous reorder-
ing transformations. Our generic equivalence rules are
expressed in terms of the operation properties defined
in Section 2.2 (i.e., schema, values, order). Notice that the
equivalence rules defined in terms of these properties
can be conservative in some cases and prevent some
valid reorderings, but whenever applied, they do guar-
antee the semantic equivalence of a reordered data flow.

Let’s consider two adjacent operations oA and oB in a
data flow, such that oA precedes oB (i.e., oA   oB). Thus,
to ensure the equivalence transformation, CoAl checks if
there is no conflict of the properties among these two
operations, i.e., if the following constraints hold.

 Schema conflict. We must guarantee that all at-
tributes of the schemata used by operations oA and
oB are available also after the operation reordering.
pSpost remB

XSpreA � Hq^pSpost genA
XSpreB � Hq

Example. In DIF-2 (Figure 3), notice that Aggr4
generates the attribute qrt that is accessed by the
Rname5 operation, and thus there is a conflict of the
schema property, which prevents the swap between
these two operations l

 Values conflict. We must guarantee that none of
the attributes’ values used by one operation are
modified by another operation.
pVpostB X VpreA � Hq ^ pVpostA X VpreB � Hq
Example. Similarly, in DIF-3 (Figure 6), Aggr5 gen-
erates the value of attribute total_qty that is
consumed by the Sort6 operation, and thus there
is a conflict of the value property, which prevents the
swap between these two operations. l

 Order conflict. We must guarantee that if the results
of one operation are affected by a specific order of
an input dataset, another operation does not modify
the order of the dataset at the output.
pOpostB ñ  OpreAq ^ pOpostA ñ  OpreB q
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Example. For the operations Sort6 and First-K72

of DIF-3, CoAl finds an order conflict, since Sort6
affects the order of the tuples in the output dataset,
while the results of First-K7 are obviously af-
fected by the order of the input dataset. l

Besides these, if both oA and oB are n-ary operations,
and hence CoAl tries to apply the (re-)associate transfor-
mation, we must also ensure that oA and oB are mutually
associative operations.
Example. Notice that the equi-join operations (e.g.,
Join2 and Join6 operations in DIF-12 in Figure 3)
are associative, as well as the typical set union and
intersection operations, whilst for example outer joins (left,
right, and full) and set difference in general do not satisfy
associative property and cannot be reordered using the
(re-)associate transformation. l

Finally, only if for all the above conditions, CoAl de-
tects no conflict, it can consider reordering oA and oB .

Proof. For the proof that the first three flow trans-
formations (i.e., swap, distribute/factorize, and merge/split)
lead to a semantically equivalent data flow, we refer the
reader to the work of Simitsis et. al, [15]. Furthermore,
the proof that the association transformation leads to a
semantically equivalent data flow, when applied over
the operations that satisfy the associative property, is
based on the assumption of the equivalence of the output
schemata and the output datasets before and after the
association is applied.

1) Schema equivalence. Regardless of the order of the
two adjacent n-ary operations that satisfy the asso-
ciative property, the equivalent output schemata are
provided at the output (e.g., concatenated schemata
in the case of equi-join, or equivalent schemata in
the case of set union and set intersection).

2) Dataset equivalence. The associative property, if satis-
fied by the two adjacent n-ary operations, guaran-
tees the equivalence of the output datasets before
and after the (re-)associate transformation is applied.

3.2 Operations comparison

Another challenge for consolidating two data flows is
finding the matching operations between these flows. In
general, operations oA and oB , only match if they imply
the equivalent semantics and the subgraphs having oA
and oB as their sinks provide equal datasets.

We consider four possible outcomes of comparing two
operations, oA and oB , from a referent and a new data
flow, respectively (see Figure 8).

(1) Full match: the compared operations are equivalent
(i.e., oA � oB). In that case, we can consolidate the two
operations as a single one in the integrated multi-flow.
Example. In DIF-1 and DIF-2 of Figure 3 we find some
fully matching operations, e.g., Filter1 or UDF3. l

2. The First-K operation keeps only the top K tuples of the input
dataset (e.g., LIMIT in SQL syntax).

Figure 8. Integration of data flow operations

(2) Partial (referent) match: the results of oB are sub-
sumed by the results of oA, thus oB can partially ben-
efit from the transformations already performed by oA
(i.e., oB � oA). Then, both operations can be partially
collapsed as depicted in Figure 8(2). Furthermore, the
consolidation of the partially matched operation oB may
involve an additional transformation (i.e., oB1 ) for obtain-
ing the original output data.

(3) Partial (new) match: the results of oA are subsumed
by the results of oB (i.e., oA � oB). Similarly, oA can
benefit from the transformations performed by oB .
Example. Consider an alternative scenario where the
requirement IR2 only takes into account urgent or-
ders, i.e., Filter1 uses year(o_date)=2013 AND
o_orderprior = ’1-URGENT’. Then, we would find
a partial match of the Filter operations in DIF-1 and DIF-
2, since Filter1 in DIF-2 could partially benefit from
Filter1 in DIF-1 and would need an additional filter
using o_orderprior = ’1-URGENT’. l

(4) No match: Finally, it may happen that neither oB
nor oA can benefit from one another, (i.e., oA �� oB).
Then, the two operations cannot be consolidated. Thus,
we introduce a fork in the already matched subflow, as
shown in Figure 8(4). The fork in such case requires the
copy-partition functionality (i.e., parallel flows).

Following the notation in Section 2.2, here we for-
malize the comparison of two operations oA and oB as
follows:

 oApIA,OA, SA, PreA, PostAq � oBpIB ,OB , SB , PreB , PostBq iff
IA � IB ^ OA � OB ^ SA � SB ;

 oApIA,OA, SA, PreA, PostAq � oBpIB ,OB , SB , PreB , PostBq iff
DoB1 pIB1 , OB1 , SB1 , PreB1 , PostB1 q : IA � IB ^ OA � IB1 ^ OB1 �
OB ^ SB � SA � SB1 ;

Intuitively, we find the equivalence (i.e., full match)
of two data flow operations, if their input and output
schemata coincide, while at the same time the operations
define the equivalent semantics (i.e., SA � SB). To find
the partial match between two operation oA and oB (i.e.,
cases (2) and (3) in Figure 8), we need to check if the
result of one operation (oB) can be partially obtained
from the results of another operation (oA), i.e., if the
results of oB are subsumed by the results of oA. To this
end, we look for a new operation (o1B) so that the seman-
tics of operations oA and o1B can be functionally composed
to imply the equivalent semantics as the operation oB
and hence provide the same result dataset. Note that in
general, finding the subsumption among the expressions
is known to be a challenging problem. Thus for arbitrary
operation expressions, we rely on the current state of the
art for reasoning over the expressions and assume that
the expressions are in conjunctive normal form.
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4 CONSOLIDATION ALGORITHM

We now present the CoAl algorithm for data flow con-
solidation.

Intuitively, the incremental advancement property de-
fined in the previous section, requires that for solving
the problem of integrating any two data flow graphs,
by maximizing the reuse of their data and operations,
we first need to recursively solve the subproblems of
integrating their subgraphs, from the data sources, and
following a topological order of nodes in the graphs.

Given the clear ordering and dependencies between
these subproblems, we formulate the problem of inte-
grating data-intensive flows as a dynamic programming
problem. We devise a bottom-up, iterative variant of the
algorithm that efficiently solves the problem in our case.

In particular, CoAl starts with two data flow graphs,
the referent (DIFref ) and the new (DIFnew), and pro-
ceeds following a topological order of the data flow
operations in a graph, starting from the matched leaf
(source) nodes. CoAl iteratively searches larger matching
opportunities between their operations by applying the
generic equivalence rules (Section 3.1), hence consider-
ing reordering without modifying the semantics of the
involved data flows. At each iteration, CoAl compares
two operations (one from each data flow), and continues
only if a full match is found (Section 3.2). This guarantees
the following two invariants:
(I1): At each step, only one pair of operations of referent
and new data flows can be partially or fully matched.
(I2): A new match is added to the set of matched opera-
tions if and only if the operations themselves match and
their input flows have been previously fully matched.

In addition, when searching for next operations to
match, the following invariant must also hold:
(I3): An operation can be reordered to be matched next,
if and only if such reordering does not change the
semantics (i.e., output) of a data flow.

The consequence of these invariants is that a pair of
matched operations is eventually consolidated in the
output, integrated multi-flow, if the flows they belong to
can be reordered so that their children are fully matched.

Thus, the correctness of the CoAl algorithm, in the
sense that it integrates input data flows without affecting
their outputs, is guaranteed by the three characteris-
tics of the algorithm, –i.e., operation comparison, incre-
mental advancement, and equivalent operation reordering,–
discussed in Section 3, and demonstrated respectively
with the invariants I1, I2, and I3.

Example. We illustrate different steps of CoAl, using
the scenario of integrating data flow DIF-3 (Figure 6),
into the referent DIF-12 multi-flow (Figure 4). l

In general, CoAl comprises four phases (see Algo-
rithm 1): i) search for the next operations to match; ii)
compare the next operations; iii) reorder input data flows if
a match has been found; and iv) integrate the solution
with the lowest estimated cost. The first three steps are

executed in each iteration of CoAl, while the last one is
executed once, when no matching possibility is left.

Algorithm 1 CoAl
inputs: DIFref, DIFnew; output: DIFint

1: altList := {r[DIFref,DIFnew,H,H],costnoInts}; � no int. alternative
2: matchQ := matchLeafs(DIFref,DIFnew);
3: while matchQ � H do
4: matchDIFPair[DIF1ref,DIF1new,allMatches,lastMatches] := dequeue(matchQ);
5: [matchOpsPair[oref ,onew],edgeref] := dequeue(lastMatches);
6: nextOpsref := findNextForMatch(DIF1ref,oref,edgeref); � Algorithm 2
7: nextOpsnew := findNextForMatch(DIF1new,onew,edgeo1new ); � Algorithm 2
8: for all pair(o1ref P nextOpsref, o1new P nextOpsnew) do
9: if o1ref � o1new _ o1ref � o1new _ o1new � o1ref then

10: DIF2ref := reorder(DIF1ref,o1ref,oref);
11: DIF2new := reorder(DIF1new,o1new,onew);
12: insert(allMatches, [[o1ref,o1new],intInfo]);
13: if o1ref � o1new then � full match
14: for i:=1 to deg(o1ref) enqueue(lastMatches, [[o1ref,o1new],edgerefi

]);
15: enqueue(matchQ, [DIF2ref,DIF2new,allMatches,lastMatches]);
16: else if o1ref � o1new _ o1new � o1ref then � partial match
17: if lastMatches � H then � no further matchings avail.
18: insert(altList, [[DIF2ref,DIF2new,allMatches,lastMatches],cost2]);
19: else
20: enqueue(matchQ, [DIF2ref,DIF2new,allMatches,lastMatches]);
21: end if
22: end if
23: end if
24: end for
25: if no matching found then
26: if lastMatches � H then � no further matchings avail.
27: insert(altList,[[DIF1ref,DIF1new,allMatches,lastMatches],cost1]);
28: else
29: enqueue(matchQ, [DIF1ref,DIF1new,allMatches,lastMatches]);
30: end if
31: end if
32: end while
33: bestAlt := findMin(altList);
34: DIFint := integrate(bestAlt);

Before detailing the four phases, we present the main
structures maintained by CoAl while looking for the final
consolidation solution.

1) matchQ: A priority queue that contains pairs of refer-
ent and new data flows with currently overlapping
areas which can be potentially extended with new
matching operations.
matchQ ::= matchDIFPair, matchQ|matchDIFPair;

2) altList: A list of all alternative solutions ending up
in a partial or full overlapping of two data flows
(referent and new), together with the estimated costs
of such consolidation solution.
altList ::=[matchDIFPair,cost],altList| [matchDIFPair,cost];

Each element of matchQ and altList contains informa-
tion of integrated data flows, i.e.,
matchDIFPair ::= rDIFref , DIFnew, allMatches,lastMatchess;

 A pair of data flows (DIFref and DIFnew), poten-
tially reordered for such integration.

 Pairs of pointers to all matched operations (all-
Matches), with information about the matching type
and integration (intInfo).
allMatches ::= [matchOpsPair,intInfo],allMatches|

[matchOpsPair,intInfo];
 A queue with pairs of pointers to the last matched

operations (lastMatches), and an out-edge in a refer-
ent graph (edgeref).
lastMatches ::� rmatchOpsPair, edgerefs, lastMatches|

rmatchOpsPair, edgerefs;
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Algorithm 2 FindNextForMatch
inputs: DIF, ocur, out-edge; output: nextOps

1: nextOps := H;
2: for all path P findPathsToForks(DIF, ocur, out-edge) do
3: for i:=1 to length(path) do
4: if canReorderppath, iq ^ fulfillsI2ppathrisq then
5: insert(nextOps,path[i]);
6: end if
7: end for
8: end for
9: return nextOps;

matchOpsPair ::=roref , onews;
CoAl first initializes the list of alternative solutions by

adding the alternative with no integration of DIFnew

and DIFref , together with the cost of having these two
data flows separately, i.e., costnoInt (Step 1).

CoAl then starts by searching for the matching leaf
(source) nodes of new and referent data flows (i.e.,
matchLeafs, Step 2). The source data stores are compared
based on their main characteristics, i.e., source type, source
name or location, and extracted attributes. CoAl initializes
matchQ with the pair of the referent and new data flows,
together with the found matching pairs of source data
stores (i.e., initially both allMatches and lastMatches).

Example. When integrating DIF-3 (Figure 6), into the
referent flow, i.e., DIF-12 (Figure 4), we first identify
common source nodes of the two data flow graphs (i.e.,
orders and lineitem). l

The four phases of CoAl are as follows:
i) Search for the next operations to match. At each itera-

tion, we consider extending a single pair of currently
overlapping data flows from the priority queue
(matchQ) with a new pair of matching operations.
For a dequeued pair of data flows (i.e., dequeue,
Step 4), we identify the operations in these flows to
be compared next, starting from a pair of previously
identified full matches (i.e., oref and onew dequeued
from lastMatches; dequeue, Step 5). Finding oper-
ations to be compared next in both data flows is
performed by means of two calls to the function
FindNextForMatch (i.e., Algorithm 2) in steps 6
and 7). In FindNextForMatch we apply the generic
equivalence rules explained in Section 3.1, and find
the operations that can be pushed down towards the
last fully matched operations, thus fulfilling I2 (i.e.,
canReorder and fulfillI2, Step 4 in Algorithm 2).
Notice that we search until we reach the operation
that has multiple outputs (i.e., findPathsToForks,
Step 2), since swapping operations down a fork
would affect the semantics of other branches in a
data flow.
Example. For the fully matching source nodes
orders, of DIF-12 and DIF-3, we find the fol-
lowing sets of operations to be compared next:
ordersDIF�12 = {Filter1, Join2}; ordersDIF�3 =
{Filter1, Join3, Join4}. l

ii) Compare the next operations. CoAl then compares each
pair of operations from the previously produced sets
(i.e., nextOpsref and nextOpsnew), using the com-

parison rules discussed in Section 3.2. Depending on
the result, it identifies: (a) a full match, o1ref � o1new
(Step 13); (b) a partial match, o1new � o1ref _ o1ref �
o1new (Step 16) or (c) no match, o1ref �� o1new.
Example. From the two sets of operations that can
be compared next, we find two full matches be-
tween Filter1(DIF-12) and Filter1(DIF-3), and
Join2(DIF-12) and Join4(DIF-3). l

It may also happen that no matching is found for
any pair of operations (Step 25).

iii) Reorder the input data flows. If CoAl finds a (full or
partial) match, it proceeds (if needed) with operation
reordering to align the input data flows and enable
integration of the previously matched operations,
i.e., to satisfy I2, (i.e., reorder, steps 10 and 11).
Example. Following the above example, for the
full match of the Filter operations in DIF-12 and
DIF-3, no additional operation reordering is neces-
sary and CoAl directly adds Filter1 to the cur-
rent maximum overlapping area (i.e., I2 is satis-
fied). But, for the full match between Join2(DIF-
12) and Join4(DIF-3), CoAl must perform operation
reordering (i.e., (re-)associate Join4 down Join3
in DIF-3), so that the Join4 operation could be
matched next (I2). l

CoAl then extends the overlapping of input data
flows with matching pair of operations to allMatches,
together with their integration information (i.e., in-
sert, Step 12). Next, based on the type of the previ-
ously found match, CoAl proceeds as follows:

 For a full match, it enqueues back to priority
queue the two data flows (possibly reordered)
to further extend the matching in the next it-
erations (i.e., enqueue, Step 15), starting from
the last matched pair of operations added (i.e.,
lastMatches). Notice that CoAl needs to enable
the search in all possible output branches of
the referent data flow, thus we enqueue back
the currently matched operations once for each
of the next out-edges to be followed from the
previously matched operations (see Step 14).

 For a partial match, if there are no other pre-
viously matched operations from which it can
extend matching (Step 17), CoAl estimates the
cost of the current solution and inserts it, along
with its cost, to the list of alternatives (Step 18).
Otherwise, it enqueues back to matchQ the two
data flows to further extend the matching in
other branches. (i.e., enqueue, Step 20).

Similarly, if no match is found (Step 25), this solution
along with its estimated cost is also added to the list
of potential alternatives only if it is not possible to
further extend the matching.
Example. In the given example (i.e., DIF-3 and DIF-
12), this occurs after we match the join operations
(i.e., Join2 from DIF-12 and Join4 from DIF-3).
Going further in data flows DIF-12 and DIF-3, we
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cannot find any matching operation that can enlarge
the common areas of these two data flows. Thus,
we add the currently matched data flows as an
alternative solution, resulting in an integrated multi-
flow branching after the matched join operation (i.e.,
Join3;{1-4} in Figure 7) l

Otherwise, CoAl continues matching in other
branches (i.e., enqueue, Step 29).
The algorithm finishes the matching process when
all operations of input data flows are explored and
compared (i.e., no more elements in the matchQ).

iv) Integrate an alternative solution. After all iterations
finish, CoAl analyzes the list of the found alterna-
tives, looks for the one with the lowest estimated
cost (i.e., findMin, Step 33), and integrates it using
the integration information (i.e., integrate, Step 34).

Finally, CoAl returns the integrated multi-flow (i.e.,
DIFint).

4.1 Computational complexity
To integrate a referent (DIFref � pVref , Eref q) and a new
(DIFnew � pVnew, Enewq) data flow, the CoAl algorithm
at first glance indicates at worst quadratic complexity
(in terms of |Vref | � |Vnew|), due to the Cartesian product
of operations that can be compared next (see Step 8).
However, there are several characteristics that either di-
rectly from the invariants of the CoAl algorithm or from
empirical experiences show that this is not a realistic
upper bound of the algorithm.

 Under the assumption that input data flows are
compact in terms that they do not have redundant
operations (i.e., operations of a single flow that can
be fully matched; see Section 3.2), it is impossible that
multiple alternative paths branching from a single
operation in a multi-flow completely match with a
path of another data flow.

 The search is led by the size of paths in the new
data flow (i.e., |pnew|avg), which is typically shorter
than the paths in the referent data flow.

 When searching next operations to compare (i.e., Al-
gorithm 2), due to conflicting dependencies among
operations (see Section 3.1), it is also unrealistic
that all the operations in the paths of encompass-
ing requirement subgraphs could be reordered to be
compared next, which drastically reduces the actual
number of comparisons inside the loop.

We further analyze the complexity of the CoAl al-
gorithm based on the search space of the algorithm
while looking for the next operations to match. That
is, we take into account the number of the main loop
iterations (see Step 3), and for each loop, the number of
operations searched to be compared next in each loop
(see Algorithm 2). While the cost of Algorithm 2 for
a new data flow in bounded by the maximal size of
new data flow graphs, the cost for a referent one grows
iteratively as the size of the data flow graph grows, hence
we take the latter one into account when estimating the

complexity of the CoAl algorithm. Additionally, notice
that the number of the main loop iterations (Step 3) de-
pends on the number of elements previously enqueued
to the matchQ and lastMatched, which occurs only when
we find a full match between two data stores or two
operations (see steps 2 and 13 in Algorithm 1). In the
worst case for the complexity, we can find a full match
for all operations in a path of a new data flow, i.e., the
path is completely subsumed by the referent flow.

We start by estimating the number of iterations of the
main loop. The complexity for a single path of new data
flow (i.e., pnew) can be obtained as follows:
cppref �int pnewq �

°|pnew |
i�1 degporefi q l

If we consider an average outdegree of a referent data
flow graph (i.e., degavgpDIFref q):
cppref �int pnewq �

°|pnew |
i�1 degporefi q �

� |pnew|
avg � degavgpDIFref q l

Furthermore, CoAl performs such search for all paths
starting from the previously matched source data stores,
i.e., maximally for |DSnewS

| � |DSrefS | paths.
c1pDIFref �int DIFnewq � c1 �

= |DSnewS
| � |DSrefS

| � |DSnewS
| � |pnew|

avg � degavgpDIFref ql

Using graph theory, we can further represent the
average outdegree of a directed graph (i.e., DIFref �

pVref , Eref q) as |Eref |
|Vref |

. At the same time, the average
length of a source-to-target path |pnew|avg can be obtained
as the average depth of a new graph. Assuming that a
graph resulting from a single information requirement is
a tree, and the tree is balanced, we can obtain its depth
as log |Enew |

|Vnew |�|DSnewS
|

|DSnewS
|. That is:

c1 � |DSnewS
| � |DSrefS

| � |DSnewS
|�

�plog |Enew |
|Vnew |�|DSnewS

|

|DSnewS
|q �

|Eref |

|Vref |
l

Next, for each loop, we estimate the complexity of
searching for the next operations to compare in the refer-
ent data flow graph. Starting from a pair of last matched
operations, we search in all paths, and identify the
next operations that are candidates to be reordered and
compared next (see Algorithm 2). Such search in general
resembles the tree traversal with the last matched oper-
ation as a root and target data stores as leaf nodes. We
estimate the size of such tree and thus the complexity
of its traversal with the average depth of a tree (i.e., the
average length of a source-to-target path), multiplied by
the average outdegree of the graph. Again, based on the
graph theory, we can express such estimations in terms
of the size of a referent data flow graph. That is:
c2 � depthavgpDIFref q � deg

avgpDIFref q �

= plog |Eref |

|Vref |�|DSrefR
|

|DSrefS
|q �

|Eref |

|Vref |
l

Thus, we estimate the complexity of the algorithm as:
cint � c1 � c2 �

= p|DSnewS
| � |DSrefS

| � |DSnewS
| � plog |Enew |

|Vnew |�|DSnewS
|

|DSnewS
|q �

|Eref |

|Vref |
q � pplog |Eref |

|Vref |�|DSrefR
|

|DSrefS
|q �

|Eref |

|Vref |
q l

Assuming that the average size (i.e.,|Enew|, |Vnew|) and
the number of source data stores (i.e., |DSnewS

|) in a
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Figure 9. Search space exploration Figure 10. CoAl ’s execution time Figure 11. Space/time correlation

Figure 12. CoAl characteristics Figure 13. Alternative solutions

new data flow is constant, the theoretical complexity for
the problem of integrating data flows can be given as a
function of the size of the referent data flow (i.e., |Eref |),
the number of its data sources (i.e., |DSrefS |), and its
average outdegree (i.e., |Eref |

|Vref |
).

5 EVALUATION

5.1 Prototype
CoAl works at the logical level and integrates data flows
coming from either high level business requirements
(e.g., [11]) or platform-specific programs (e.g., queries,
scripts, ETL tool metadata; [19]). We built a prototype
that implements the CoAl algorithm. The prototype is
integrated into a larger ecosystem for the design and
deployment of data flows from information require-
ments [20]. Communication with different external mod-
ules of the ecosystem for import/export of data flows is
enabled using a platform-independent representation of
a data flow, namely xLM (i.e., XML encoding of data flow
metadata [21]). Data flows in other languages could be
translated to/from xLM using external tools (e.g., [12]).

5.2 Experimental setup
We selected a set of 15 data flows, translated from the
referent TPC-H benchmark queries3. Notice that even
though the TPC-H benchmark provides a relatively small
set of input queries, such set covers different sizes and
complexities of input data flows and suffices to demon-
strate the functionality of the CoAl algorithm. Thus the
obtained results are generalizable to other inputs. CoAl’s
flexibility to deal with different complexities of data
flow operations is previously showed in sections 2 and
3. Considered data flows (similar to those presented
in Section 2.1), span from only 4 to the maximum of

3. Selected TPC-H queries: q1, q2, q3, q4, q5, q6, q9, q10, q11, q13,
q16, q17, q18, q19, q21. Other queries are discarded due to limitations
of the available external SQL translation module.

20 operations, performing various data transformations,
i.e., filters, joins, projections, aggregations, user defined func-
tions. More information about the selected queries can
be found in the TPC-H specification [14]. We translated
the selected SQL queries, into the platform-independent
representation that CoAl understands (i.e., xLM).

To cover a variety of input scenarios (i.e., different
orders in which input data flows are provided), we
have considered different permutations of incoming data
flows. Since the total number of different permutations
for the chosen 15 queries is not tractable (i.e., 15!, ¡
1307 billions), we have randomly sampled, a uniformly
distributed set of 1000 permutations and obtained the
average values of the observed numbers. For each per-
mutation, we have simulated the incremental arrival of
input data flows, starting by integrating the first 2 data
flows, and then incrementally adding the other 13.

5.3 Scrutinizing CoAl
We first analyzed the distribution of the values obtained
in the considered sample of permutations. For all of them
we confirmed a positive (right) skew, which indicated
the stability of our data flow integration algorithm. Thus,
in the reminder of this section, we report the mean
values obtained from the considered permutations.

Search Space. As shown in Figure 9 (Real complexity),
the search space (i.e., #states refers to the complexity
in Section 4.1) grows linearly with the number of input
data flows. For input flows of an average size of 15
operations, the number of states considered starts from
only several when integrating 2 data flows and go up to
the maximum of 170 states when integrating the 15th

data flow (Figure 9 reports the average values).
We additionally estimated the theoretical computa-

tional complexity of CoAl for given inputs, following the
formula in Section 4.1 and compared it to the obtained
real values (see Theoretical complexity (formula estimated)
in Figure 9). We observed that the overestimation and a
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Figure 14. Performance gains (worst integration case) Figure 15. Performance gains (best integration case)

slight deviation of the tendency of the formula estimated
complexity comes from the generalizations adopted for
estimating the average depth and the degree of a data
flow graph. Fitting the formula with the average values
directly computed in the execution (see Theoretical com-
plexity (formula computed) in Figure 9), showed the co-
inciding tendency with the real complexity and smaller
overestimation resulted from the averaged values.

On the other side, following the complexity discussion
in Section 4.1, we analyzed the time needed to complete
the search in terms of the size of the referent data flow
(i.e., number of edges). This analysis showed that the
time also grows linearly following the size of a referent
data flow (see Figure 10), starting from only 6.4 ms
with the initial size of a referent data flow (i.e., 15
edges), and going up to the maximum of 195ms when
integrating the fifteenth data flow over the referent data
flow with 147 edges. These values showed a very
low overhead of CoAl, making it suitable for today’s
right-time BI applications. Moreover, such results further
show CoAl’s scalability for larger input complexities. We
additionally analyzed the correlation of the time and the
search space (see Figure 11), and showed that the growth
of execution time follows the same (linear) trend as
the complexity growth, which validated our complexity
estimations discussed in Section 4.1.

Algorithm characteristics. We also studied the behavior
of CoAl internal characteristics. Figure 12 shows how the
number of matched operations (#matchedOperations)
and the number of flow transitions (#flowTransitions),
related to the I2 invariant, are affected by the size of the
problem. The average number of matches increases from
1 to 4 (excluding the matched data sources), until the
sixth integrated data flow, and then this trend slows only
up to 5 matched for the following data flows. This hap-
pens because an integrated flow may impose branching
(multiple outputs) for the subflows shared among the
input data flows (see Section 4). Such behavior restricts
the operation reorderings from one branch down the
fork, as it would change the semantics of the shared
subflow, and thus of all the dependent branches.

This trend is also confirmed by the number of different
flow transitions (i.e., number of different operation re-
orderings; see Figure 12). This further showed that in the
basic integration scenario different orders of incoming
data flows might produce different integration solution
(although all of them will be semantically equivalent).
Notice, however, that tracing the metadata of original

data flows and all integration alternatives (whose num-
ber grows linearly with the size of the problem; see
Figure 13), would facilitate the maintenance of integrated
multi-flows and the revision of some integration choices.

Improvement in the overall execution time. Additionally,
by reviewing the integrated multi-flows for the consid-
ered sample of order permutations, we have identified
a certain variation of the result characteristics (i.e., a
relative standard deviation of the output size is around
20%), and thus we isolated two permutations whose
outputs we further analyzed, i.e., (1) the best case -
among the considered permutations, the permutation
that produces the largest overlapping (i.e., the most
matched operations) between the input data flows, and
(2) the worst case - among the considered permutations,
the permutation that produces the smallest overlapping
(i.e., the least number of matched operations) between
the input data flows. For these two cases, we analyzed
the execution time of the multi-flow after integrating
all 15 data flows from the input, and compared it with
the total execution time for the 15 individually executed
data flows. Notice that we do not present here optimal
solutions in terms of performance, but rather analyze
how different degrees of data and transformation reuse
affect the overall execution time of a data-intensive
multi-flow. For these experiments we ran data flows in
Pentaho Data Integration tool using a dataset of 10k to
20k tuples generated from the TPC-H data generator.

The results are illustrated in Figures 14 and 15 for
the worst and the best overlapping case, respectively. We
first individually executed the data flows from the input,
and observed that it took 19.1s in total to execute 15
data flows with the maximum of 2.4s for executing the
data flow of Q2 from TPC-H. We further executed the
integrated solutions of the best and the worst case, as
explained above. Notice in Figures 14 and 15 that some
data flows are penalized by the integration (e.g., Q17),
i.e., their execution time increased due to unfavorable
reordering of more selective operations (e.g., filters over
joins) to achieve larger overlapping with the referent
data flow. Conversely, some larger data flows (e.g., Q2
and Q5) largely benefit from the integration by reusing
already performed data processing of other data flows.
Note that in both cases the overall execution time of the
integrated multi-flow decreased. The best case solution
(see Figure 15) took 13s for the overall execution, whilst
the worst case solution (see Figure 14) took 15.7s. We thus
observed approx. 31.9% of improvement of the overall
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execution time for the best and 17.8% for the worst case,
which finally confirms our initial assumptions.

We additionally confirmed that the improvement of
the overall execution time is correlated with the amount
of overlapping (i.e., number of shared data and opera-
tions). For instance, the improvement in the overlapping
size from the worst to the best integration case discussed
above (i.e., 51 in the worst to 79 in the best case) showed
to be approx. proportional to the improvement of the
overall execution time for these two cases.

Furthermore, integration of multiple data flows, en-
abled extra optimization inside the considered execution
tool, by allowing the pipelined execution of the unified
data flow. This finally resulted with 2.4s of the overall
execution pipeline for the best case, and 3.2s for the worst
case. Notice that we report these results for showing one
of the benefits of integrating different data flows (see
shaded bars in Figures 14 and 15), while for the fair
comparison we used the results not taking into account
the advantage of the enabled pipeline execution.

6 RELATED WORK
From the early years, the reuse in data integration setting
has been encouraged and envisioned as beneficial [6],
since organizations typically perform data integration
efforts that involve overlapping sets of data and code.
However, such problem has also been characterized as
challenging due to inherently complex enterprise en-
vironments. Different guidelines and approaches have
been proposed to tackle this issue in various scenarios.

Schema mapping management. The data exchange and data
integration problems set the theoretical underpinnings of
the complexity of what we today call an ETL process
[22]. Schema mappings, as a set of logical assertions
relating the elements of source and target schemata, play
a fundamental role in both data exchange [23] and data
integration [1] settings. Intuitively, schema mappings
are predecessors to more complex ETL transformations
[22]. Various approaches and tools dealt with automating
schema mapping creation (e.g., [23], [24]), while others
further proposed high-level operations over the set of
mappings, i.e., composition, inversion, and merge, (e.g.,
[25]). We find the problems of composing and merging
schema mappings especially interesting for the context of
data flow consolidation in terms of reducing information
redundancy and minimality. The remarks of these works
motivated our research, but moving towards more com-
plex scenarios of today’s BI introduced new challenges
both regarding the complexity of schema mappings (e.g.,
grouping, aggregation or ”black-box” operations) and
the diversity of data sources, that these approaches could
not support (i.e., only relational or XML data formats
have been previously considered). Conversely, we pro-
pose the generic solutions for both operation reordering
and operation comparison problems that solve the prob-
lem for an arbitrary set of data flow operations.

Workflow optimization. Equivalence rules used in data
flow optimization can be conveniently applied in the

context of consolidating data flows to maximize the data
and operation sharing (see Section 3.1). Both traditional
query optimization [17] and multi-query optimization
approaches [7] focus on performance and consider a dif-
ferent subset of operations than those typically encoun-
tered in complex data flows (e.g., operations with ”black-
box” semantics). Recently, more attention has been given
to solving the data flow optimization problem for a
generic set of complex operations (e.g., [15], [18]). In
the former work, the problem of ETL optimization has
been modeled as a state-space search problem [15], with
a set of generic equivalence transitions used to gener-
ate new (eventually optimal) states. Such equivalence
transitions inspired those presented in Section 3.1 (i.e.,
swap, factorize/distribute, merge/split), but state generation
is based solely on the information about the schemata
used and produced by ETL operations. We propose a
less conservative approach where we distinguish three
different properties of data flow operations (i.e., schema,
value, and order) and thus we are able to detect more
promising reordering (optimization) opportunities. On
the other side, the later approach [18] does consider
the attributes’ value as an important operation property,
but overlooks the dataset order. The main reason is that
the approach focuses solely on the set of second order
operations written in an imperative language for a big
data analytics system (e.g., Map, Reduce, Cross, etc.).

Recent optimization approaches (e.g., [26]) discuss the
problem of finding the optimal global query plan for a
set of input queries by means of data and operation shar-
ing. Another approach considers two non-orthogonal
challenges when looking for the optimal data flow de-
sign: operation sharing and reordering [26]. However, un-
like CoAl, this approach focuses mainly on the tradeoffs
of using these two approaches in the context of data
flow optimization and does not study how operation
reordering can enhance and maximize data and operation
sharing among different data flows. Moreover, these
approaches are limited to the typical relational algebra
operators, while CoAl provides a generic framework for
the comparison and reordering of arbitrary data flow
operations (see Section 2).

Data flow design. The modeling and design of data-
intensive flows is a thoroughly studied area, both in
the academia [10], [16], [27] and industry, where many
tools available in the market often provide overlapping
functionalities for the design and execution of these
flows. However, neither the research nor the available
tools provide the means for automatically adapting data
flow designs to changing information requirements.

To the best of our knowledge, the only work tackling
the integration of ETL processes is in Albrecht and
Naumann [28]. The authors propose a set of high level
operators for managing the repository of ETL processes.
However, the work lacks the formal definition and
automatic means for such operators. Additionally, the
authors do not consider the incremental consolidation
of data flows led by information requirements.
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7 CONCLUSIONS AND FUTURE WORK

We have presented CoAl, our approach to facilitate
the incremental consolidation of data-intensive flows.
CoAl starts from data flows that satisfy single informa-
tion requirements. Iteratively, CoAl identifies different
possibilities for integrating new data flows into the
existing multi-flow, focusing on the maximal data flow
reuse. Finally, CoAl suggests a unified data flow design
evaluating it with the user-specified cost model.

We have developed a prototype that implements the
complete functionality of CoAl. We used it to evaluate
the efficiency, scalability, and the quality of the output
solutions of our approach, reporting the improvement
of the overall execution time as well as other benefits of
integrated multi-flows.

The final goal of our overall work is to provide an
end-to-end platform for self-managing the complete life-
cycle of BI solutions, from information requirements to
deployment and execution of data-intensive flows [20].
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S. Nadal, “Quarry: Digging up the gems of your data treasury,”
in EDBT, 2015, pp. 549–552.

[21] A. Simitsis and K. Wilkinson, “The specification for xLM: an
encoding for analytic flows,” 2014.

[22] P. Vassiliadis, “A survey of extract-transform-load technology,”
IJDWM, vol. 5, no. 3, pp. 1–27, 2009.

[23] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa,
and Y. Velegrakis, “Clio: Schema mapping creation and data
exchange,” in Conceptual Modeling: Foundations and Applications,
2009, pp. 198–236.

[24] S. Dessloch, M. A. Hernández, R. Wisnesky, A. Radwan, and
J. Zhou, “Orchid: Integrating Schema Mapping and ETL,” in
ICDE, 2008, pp. 1307–1316.
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