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Abstract—The flexibility of individual energy prosumers (pro-
ducers and/or consumers) has drawn a lot of attention in recent
years. Aggregation of such flexibilities provides prosumers with
the opportunity to directly participate in the energy market
and at the same time reduces the complexity of scheduling
the energy units. However, aggregated flexibility should support
normal grid operation. In this paper, we build on the flex-offer
(FO) concept to model the inherent flexibility of a prosumer
(e.g., a single flexible consumption device such as a clothes
washer). An FO captures flexibility in both time and amount
dimensions. We define the problem of aggregating FOs taking into
account grid power constraints. We also propose two constraint-
based aggregation techniques that efficiently aggregate FOs while
retaining flexibility. We show through a comprehensive evaluation
that our techniques, in contrast to state-of-the-art techniques,
respect the constraints imposed by the electrical grid. Moreover,
our techniques also reduce the scheduling input size significantly
and improve the quality of scheduling results.

I. INTRODUCTION

One of the main goals of the Smart Grid is the energy use in-
crease from Renewable Energy Sources (RES). However, due
to RES being characterized by volatile power production (e.g.,
wind power), Smart Grid takes advantage of the prosumers’
inherent flexibility to better match energy demand with supply,
termed Demand Response (DR), and thus enables an increased
share of RES energy.

In our work, we model flexible demand/supply devices
(referred to as loads for simplification) using the flex-offer
(FO) concept [1]. An FO explicitly captures the flexibility
in energy and time of a load, as presented in the following
example.
Example 1. The owner (consumer) of an electric vehicle (EV)
wants to charge his EV at 20:00 and have it charged by 7:00
the following day. The EV takes 3 hours to be charged and
requires 15kWh. Thus, the EV can start its charging between
20:00 and 4:00.

The number of loads that are flexible has recently increased
due to new technological achievements (e.g., EVs and heat
pumps). The existence of appropriate information and com-
munication technology (ICT) infrastructure [2] and a suitable
hierarchical control architecture, offer the capability to market
actors to command the DR [3]. Moreover, the establishment
of a flexibility market [4] will provide flexibility with the
opportunity to be traded [5]. However, the energy captured
by individual FOs from small load devices cannot be directly
traded in the market [6]. For instance, the power required to
participate in the ancillary service market in Denmark is in
the magnitude of few hundreds of kW where the consumption

capacity of an EV is few kW [6]. Thus, in order to trade flexi-
bility, it is essential to aggregate FOs and produce commodities
that can be traded in the emerging energy flexibility markets.
Furthermore, aggregation of FOs, applied before scheduling,
is essential to reduce the highly complex Unit Commitment
(UC) problem [7]. According to the UC problem, FOs are
scheduled, i.e., the operational time and amount is defined,
based on an objective function.

On the other hand, flexible loads and, consequently, their
corresponding FOs are connected to an electrical grid. How-
ever, the grid is characterized by power capacity limitations
and the high power requirements of new devices, such as EVs,
might lead to grid congestions. Grid sensitive load locations
(bottlenecks) are in different voltage elements. They could be
in low (local distribution) and in high voltage elements (supra-
regional distribution). For instance, a bottleneck might be a
distribution transformer (0.4-1kV) with a maximum power
value of few hundred kW. Such a transformer might serve from
few (e.g., in North America) to several hundred households
(e.g., in Europe) [8].

In our work, we follow the mapping applied in [9] and
map a bottleneck to the root of a tree, see R in Figure 1.
The root is characterized by an amount constraint that defines
the tolerable operational power range. For instance, the power
of a distribution transformer (0.4kV) shall be in the interval
[-300kW, 300kW] [3]. We also map all FOs, which belong
to the bottleneck, to the leaf nodes, see 1 in Figure 1. The
leftmost circle in the figure illustrates an FO corresponding
to the load of an EV. The x-axis represents time and the y-
axis represents power. The energy required for charging the
EV is expressed by three slices (one per time unit). The dark-
shadowed parts represent the minimum energy requirements.
The light-shadowed parts represent optional charging levels.
For instance, the EV owner is satisfied when charging level is
in the range [60%, 100%]. Moreover, as we see in the figure,
charging of the EV can start at time 1 at the earliest (tes)
and at time 5 at the latest (tls). Thus, the FO profile, which
consists of the three slices, can be time-shifted.

Using traditional aggregation techniques [10], the FOs are
aggregated resulting in aggregated FOs (AFOs). As illustrated
in Figure 1, the four FOs 1 are aggregated into two AFOs 2 .
Each profile of an AFO is produced by summing up one or
more profiles of the 4 FOs. Without considering constraints,
loads might be placed at the same time since it may be more
beneficial, e.g., from a financial point of view. However, this
could lead to violations. For instance, we see that the power
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Fig. 1: Traditional vs Constraint-based aggregation.

of the left AFO (first dark-shadowed slice in 2 ) exceeds the
constraint imposed by the grid. After being aggregated, the
AFOs are traded and scheduled, see 3 . Scheduling transforms
AFOs into assignments and forms the root power value.
However, it is impossible to schedule the output of traditional
aggregation and to respect the constraint. Thus, scheduling
leads to a constraint violation due to inappropriate aggregation,
see 4 where the power value exceeds 300kW in the first time
slot (red circle). Consequently, FO aggregation techniques that
take into account grid constraints are required. In this paper,
we propose such constraint-based aggregation which produces
AFOs that can be further scheduled and support a normal grid
operation, see 2' - 4' in Figure 1.

Contributions. First, we demonstrate the problems that
occur with traditional FO aggregation. Second, we introduce
the objectives of constraint-based FO aggregation and propose
two heuristic aggregation techniques that reduce the input by
more than 90% while retaining flexibility. Third, we evaluate
the proposed techniques in complex use case scenarios. We
show that our techniques lead to normal grid operation where
the existing state-of-the-art approaches lead to grid constraint
violations at more than 15% of the examined time horizon. Fi-
nally, we show that in cases where scheduling cannot provide
a schedule that respects grid constraints within a certain time
period, our aggregation techniques efficiently narrow down the
solution space and thus lead to valid scheduling results.

The remainder of the paper is structured as follows. Sec-
tion II introduces relevant concepts and definitions. Section III
discusses the problems of traditional aggregation and intro-
duces constraint-based aggregation objectives. In Section IV,
the two constraint aggregation solutions are proposed. Their
experimental evaluation is described in Section V. In Sec-
tion VI related work is discussed. Finally, the paper concludes
and points to future work in Section VII.

II. BACKGROUND AND PRELIMINARIES

Based on [10] and using two discrete dimensions, i.e., time
and amount, we define the following.

Definition 1. An FO f is a tuple f = (T (f), P (f)) where
T (f) is the start time flexibility interval and P (f) is the
amount profile. T (f) = [tes, tls] where tes and tls are the
earliest start time and latest start time, respectively. The
amount profile is a sequence of (m ∈ N>0) consecutive slices,
P (f) = 〈s(1), . . . , s(m)〉 where a slice s(i) is an amount
range [amin, amax]. The duration of slices is 1 time unit. For
instance, Figure 2 illustrates FO f = ([1, 5], 〈[3, 5], [2, 3]〉).

We distinguish two types of flexibilities

Fig. 2: A flex-offer f

associated with an FO that
are used as individual mea-
sures taking into account
time and amount separately.
We consider time flexibility
tf (f ) of an FO f to be the
difference between its latest
and earliest start time, i.e.,
tf(f) = tls − tes. More-
over, we consider amount
flexibility af (f ) of an FO f
to be the difference between
the sum of all the maxi-
mum and minimum values of all its slices, i.e., af(f) =∑

s∈P (f)(s.amax − s.amin). Time flexibility is measured in
time units and amount flexibility in amount units.

An FO captures all possible amount demands and/or sup-
plies of a device for a given time horizon. However, during
the scheduling process, an FO is assigned to a specific amount
at a specific time resulting in an assignment of the FO defined
as follows:
Definition 2. An assignment of an FO f is a sequence of
|P (f)| ∈ N>0 consecutive slices, as f=〈s(1), ..., s(|P (f)|)〉.
Each slice is a 2-tuple, s(i)=(ts, am), i ∈ [1, |P (f)|]. The first
element, ts, indicates the actual starting time and the second
one, am, the actual amount of the slice. The duration of each
slice is 1 time unit.

The starting time of the first slice of the assignment must
be within the start time flexibility interval of the FO, i.e.,
f.tes ≤ as f.s(1).ts ≤ f.tls. Each slice of the assignment
has an amount value in the range of the corresponding slice
of the FO, i.e., f.s(i).amin ≤ a f.s(i).am ≤ f.s(i).amax,
∀i = [1 . . . |P (f)|]. There is a finite number of assignments
of an FO. We denote the set of all the assignments of an FO
f by L(f).

III. PROBLEM FORMULATION

In this section, we discuss how aggregation is applied
through traditional aggregation and introduce the concept of
constraint-based aggregation.

A. Traditional FO aggregation

We consider, based on [10], traditional aggregation of FOs
to be the function that given a set of FOs returns an aggregated
one, taking into account the time and amount flexibilities of
the FOs. Given a set of FOs, there are different alignments
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Fig. 3: Different alignment examples for aggregation.

that lead to different AFOs due to their time flexibility. In par-
ticular, given |F | FOs with time flexibility tf (f1 ), . . . , tf (f|F |)
respectively, the number of the aggregation results (AFOs) that
can be produced is:

∏|F |
i=1 tf (fi) + 1. For instance, the 2 FOs,

f1 and f2 in Figure 3, can be differently aligned and result
in different AFOs. Thus, for f1 and f2 with both obtaining 3
different start times, there are 3 ·3 = 9 alignments that lead to
9 aggregation results (AFOs). We show 2 of them in Figure 3.

The time flexibility interval of an AFO is determined by
the chosen alignments. In particular, the amount profile of an
FO does not have any specified starting time until the FO is
assigned. However, an FO captures all the different starting
times in the start time flexibility interval, see Definition 1. As
a result, when aggregation is applied, FOs that participate in
aggregation are aligned (a starting time among the interval is
chosen for every FO) and the amount ranges of each aligned
slice are summed, see Figure 3. We denote the aggregation
that aligns FOs according to their earliest start time as Start
Alignment (SA) aggregation, see Figure 3a. According to
SA aggregation, the earliest starting time of the AFO is the
minimum earliest starting time of the non-aggregated FOs.
The latest starting time of the AFO is the sum of its earliest
starting time and the minimum time flexibility among the
FOs. As a result, the AFO respects all the starting time
intervals of the non-aggregated FOs that produced it. For
instance, the AFO fa12 in Figure 3 has earliest starting time 1
(fa12.tes = min(f1.tes, f2.tes)). The latest starting time (tls)
of fa12 is equal to 3 (fa12.tls = fa12.tes+min(tf(f1), tf(f2))).

B. Constraint aggregation objectives and complexity

As mentioned in Section I, the value of a node (actual
load) is given by the assignments of the FOs that belong to
the node. In particular, during scheduling each FO is turned
into an assignment and the result is a set of assignments.
Consequently, the sum of the slice amounts with the same
time forms the node value at that time. However, in order to

guarantee a normal grid operation, the actual loads of the grid
must be within the bounds imposed by the constraint, e.g.,
[-300kW, 300kW]. For instance, concurrently charging a high
number of EVs can lead to transformer overload.

We assume that FOs f1 and f2 in Figure 3 belong to a node
with constraint value 2. Moreover, we see that the aggregation
result (fa12 last row column a) of SA does not enable an
assignment that respects the constraint. When scheduling is
applied on fa12, there are several potential assignments of fa12,
e.g., as fa112 = (1, 3) and as fa212 = (2, 4), see Figure 3a.
However, the constraint value is 2 and the amounts of all the
assignments are greater than the constraint. They should have
been within the range [-2,2]. Conversely, we see that when
FO aggregation takes into account the constraint, it produces
AFO f b12 (Figure 3b) that contains assignments which respect
the constraint, e.g., as f b12 = 〈(2, 2), (3, 1)〉. In this paper,
we evaluate an aggregation result through the objectives of
constraint-based aggregation.

Constraint-based FO aggregation has 3 objectives. The pro-
duced AFOs (1) shall enable scheduling results that respect the
constraint of the node where the FOs belong (hard constraint).
Moreover, (2) aggregation should retain as much flexibility as
possible and (3) at the same time reduce the number of FOs
that belong to a specific node.

1) Respect node constraints. All node constraints should
be respected. A node constraint violation corresponds to a grid
malfunction at the point where the node is. That results in
service cutoff of FOs that belong to the violated node and
thus the prosumers might not be served.

2) Minimize flexibility losses. Flexibility of FOs is im-
portant for scheduling because the more flexible FOs are, the
more degrees of freedom the scheduling has to find the optimal
solution. Moreover, AFOs capture larger flexibilities and can
more easily be traded in the energy market. We use flexibility
as a quality measure to evaluate our proposed techniques, as
AFOs might lose flexibility during aggregation.

3) Minimize the number of AFOs. FOs are part of the
scheduling input that takes place after aggregation. Therefore,
it is important for constraint aggregation to reduce the number
of FOs, because it directly reduces the complexity of the
subsequent scheduling. Moreover, unless FOs are aggregated
to capture large energy amounts, they cannot be traded in the
energy market.

The above-mentioned objectives might be contradictory and
cannot be satisfied simultaneously. In particular, as the number
of AFOs is reduced, time flexibility losses might increase
and time flexibility might be used to respect the constraint.
For instance, we see in Figure 3a that f1 and f2 have time
flexibility 2. However, AFO f b12 has tf(f b12) = 1.

Constraint aggregation complexity. Due to space limita-
tions, we illustrate the computational complexity of constraint-
based aggregation through an example. In our example, given
a set of FOs, we compute the total solution space, i.e., the
number of all the potential aggregation results.
Example 2. Given a set F of 4 FOs, f1, f2, f3, f4,
with tf (f1)=3, tf (f2)=2, tf (f3)=4, tf (f4)=5, there are
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of F [11]. Moreover, there are
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i=1 tf (fi) = 3 · 2 · 4 · 5 = 60
alignments. Thus, there are 15 ·60 = 900 possible aggregation
results.

Adding a fifth FO to the set with tf(f5) = 5, there are
B5=52 partitions of F and

∏5
i=1 tf (fi) =60 · 5=300 align-

ments. Thus, there are 52 · 300 = 15600 possible aggregation
results. Therefore, we can notice a combinatorial explosion of
the aggregation results depending on the size of the input and
its average time flexibility.

IV. CONSTRAINT-BASED FO AGGREGATION

Due to the high complexity of constraint-based aggregation,
we analyze two variations of a greedy solution to tackle the
problem. In particular, the greedy approaches process FOs
that belong to a node incrementally by evaluating binary
aggregations. Evaluation is based on different metrics in order
to examine whether further aggregation is favored or not. The
metrics take into account both the capacity limitations of the
node and the objective of the market actor who controls the
FOs of the node.

A. Constraint and target related distances

As mentioned in Section I, in order to guarantee a normal
grid operation, the node value shall be within the bounds
imposed by the constraint. In this paper, we handle the
constraint as a function.
Definition 3. We define a (constant) positive constraint func-
tion c(t) = y, t ∈ Z, y ∈ N0, where t is the time and y the
amount.

For instance, given a constraint function c(t)=300, the valid
amount range is [-300, 300]. In cases where the node value
is outside the constraint bounds, a node violation occurs, see
for instance 4 in Figure 1. When this happens, the electrical
grid is not reliable and the distribution system operator, who is
responsible for the grid, needs to expand and update the power
system infrastructure. Updating the grid is a very expensive
and time consuming procedure. In our work, since the node
value is formed by the assignments of the FOs, we correlate an
assignment to the constraint function. We consider the distance
of each slice of an assignment (positive or negative) to be zero
when it is within the range because no grid problems occur.
Otherwise, we take into account the distance to the constraint
function.
Definition 4. We define the distance of a slice of an assign-
ment, Dc(as f .s(i)), to a constraint function c as equal to
zero if the absolute slice amount is smaller or equal to c.
Otherwise, Dc(as f .s(i)) is equal to the difference between
the absolute amount value of the slice and the constraint,
i.e., Dc(as f .s(i)) = max(0, |s(i).am| − c(s(i).ts)) where
as f = 〈s(1), ..., s(|P (f)|)〉 and i ∈ [1, |P (f)|]. Consequently,
we define distance of an assignment as f , Dc(as f ), to a
constraint function c to be the sum of all its slice distances to
c, i.e., Dc(as f ) =

∑|P (f)|
i=1 Dc(as f .s(i)).

The objective of the market actor controlling the FOs of
a node, e.g., an aggregator, is formulated through a target
function. Target expresses the optimal schedule, without con-
sidering the constraint, and can be used to represent an optimal
business goal, e.g., optimal price/amount correlation. Target
might contradict the constraint and it could lead to AFOs
with assignments that violate the constraint, see for instance
2 in Figure 1. We define both the target function and the

assignment distance to the target function as follows:
Definition 5. We define a (constant) signed target function
g(t) = a, where t ∈ Z is the time and a ∈ Z the amount.
Definition 6. We define the distance of an assignment as f
to a target function g, Dg(as f ), as equal to the sum of the
absolute differences between g and the amount values of all the
slices of the assignment, i.e., Dg(as f) =

∑m
i=1

(
|g(s(i).ts)−

s(i).am|
)
, as f = 〈s(1), ..., s(m)〉.

In our work, we take into account both the capacity lim-
itations of the grid and the market actor’s objective. Thus,
we consider both the distance to the constraint and the target
function to evaluate our results. In particular, we take into
account the sum of the distances (target and constraint) and we
use weights (coefficients) to prioritize the constraint violation.
Of course, when constraint is respected, only the distance to
the target function is taken into account.
Definition 7. We define the distance of an assignment as f
to a target function g and a constraint function c, Dg,c(as f ),
as the weighted sum of its target and constraint distances
with weights α and β respectively, i.e., Dg,c(as f ) = α ·
Dg(as f ) + β ·Dc(as f ), α, β ∈ R.

As mentioned in Section II, since an FO f captures a set
of assignments (L(f)), there is at least one assignment of f
that has the smallest distance.
Definition 8. We define the target to constraint distance of
a FO f to a target function g and a constraint function c,
Dg,c(f ), as the minimum distance among all its assignments
to g and c, i.e., Dg,c(f ) = minas f∈L(f) Dg,c(as f ).
Example 3. For instance, given α = 1, β = 10, c(t) = 2,
and g(t) = 3, an assignment of fa12 in Figure 3 with the
minimum distance is: as fa12 = [1, 3] where Dg,c(as f a12 ) =
1 ·0+10 ·1 = 10 = Dg,c(f

a
12 ). On the contrary, an assignment

of f b12 with the minimum distance is: as f b12 = 〈[1, 2], [1, 2]〉
where Dg,c(as f b12 ) = 1 · (1 + 1) + 10 · 0 = 2 = Dg,c(f

b
12 ).

B. Aggregation techniques

We now present our 2 heuristic constraint-based FO ag-
gregation techniques. Both the techniques are variations of
the same abstract Greedy algorithm (Algorithm 1). They start
by selecting (Line 2) the FO (fnom) with the maximum tar-
get to constraint distance (max f∈SF (Dg,c(f )). The reason is
that apart from reducing the number of the AFOs, aggregation
shall also produce FOs that are closer to the target in order
to improve scheduling results. Thus, starting aggregation with
FOs with high “distances” (used instead of target constraint
distance for simplification) is desirable and increases the
chance of reducing the overall distance. Then, the selected FO,
fnom, is removed from the initial set (Algorithm 1, Line 2).



Algorithm 1 Abstract Greedy
Input: SF - set of FOs; g,c - a target and a constraint function
Output: SF - set of AFOs

1: ftmp ← null; fa ← null;
2: fnom ←SelectNomFO(SF ); SF ← SF \ fnom;
3: while ∃f ∈SF not aggregated do
4: {fa, ftmp} ←BestAggregation(SF , fnom)
5: if Dg,c(fa)<Dg,c(fnom) then
6: SF ← SF \ ftmp; fnom ← fa
7: else
8: AnnotateAsAFO(fnom)
9: SF ← SF ∪ fnom

10: fnom ← SelectNomFO(SF ); SF ← SF \ fnom;
11: return SF

Algorithm 2 Simple Greedy extends Greedy (same input and
output as Greedy)

1: function BestAggregation(SF , fnom)
2: ftmp←ClosestToZeroDistance(SF )
3: fa ←BinaryAggregation(fnom, ftmp)
4: return {fa, ftmp}

Afterwards, algorithm continues until all FOs are aggregated
(Line 3). The two variations of Greedy examine different FOs
to produce an AFO, i.e., fa (Line 4). If there is an AFO
(fa) with smaller distance than fnom, the algorithm continues
aggregation with the aggregated one and removes ftmp from
the initial set SF (Line 6). Otherwise, it annotates fnom as
AFO and continues by selecting another fnom from the non-
aggregated ones (Lines 8–10). The algorithm stops when all
the FOs are annotated as AFOs (Line 3) and returns set SF
with the AFOs (Line 11).

Simple Greedy (SG). Apart from fnom, SG also selects
a single FO ftmp to examine whether it will aggregate them
or not (Algorithm 2, Line 2). In particular, it selects the FO
(ftmp) among the set that has the closest to zero distance to
increase the chances of reducing the distance of fnom. Then, in
each step, it examines all the potential aggregations between
the two FOs, i.e, fnom and ftmp to identify the AFO that
reduces the distance of fnom (Algorithm 2, Line 3).

Exhaustive Greedy (EG). EG explores a larger solution
space than SG. In particular, during each step, it examines
all the potential binary aggregations between fnom and all
the FOs in set SF (Algorithm 3, Line 3) compared to SG

Algorithm 3 Exhaustive Greedy extends Greedy
1: function BestAggregation(SF , fnom)
2: fa ← fnom; ftmp ← null;
3: for each f ∈ SF do
4: fy ←BinaryAggregation(fnom, f )
5: if Dg,c(fy)< Dg,c(fa) then
6: fa ← fy; ftmp ← f ;

7: return {fa, ftmp}

Algorithm 4 Best binary aggregation function
Input: fnom, ftmp - FOs
Output: fa - an AFO

1: function BinaryAggregation(fnom, ftmp)
2: fa ← fnom
3: for each alignment al of {fnom,, ftmp} do
4: fx ←AGG-2-to-1(fnom, ftmp, al)
5: if Dg,c(fx)<Dg,c(fa) then
6: fa ← fx
7: return fa

that examines only the binary aggregations among fnom and
one FO from SF . EG then stores the AFO with the smallest
distance (Line 6). When the comparisons finish, it returns the
AFO with the minimum distance (fa) and the FO (ftmp) that
participated in the production of fa (Line 7).

Constraint allocation feature. Since aggregation should
lead to a valid schedule, it is desirable to examine, after each
step, whether the node constraint is respected or not. However,
this would require to schedule during each step the current
FOs/AFOs, i.e., solve the UC problem. Due to the fact that the
UC problem is an NP-complete problem [12], our aggregation
algorithms instead act preventively in terms of constraint
handling. In particular, it is possible for both algorithms to
consider a constraint value lower than the original one. For
instance, we typically allocate the constraint to 50% of its
original value. As a result, the allocation feature obstructs
aggregation to violate the constraint. Consequently, in cases
where more than one AFOs have slice amounts closer to the
constraint, it increases the chance for scheduling to form a
node value that respects the constraint.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

We experimentally evaluate the proposed techniques in
complex congestion scenarios. Our experiments are based
on power characteristics from real loads (e.g., [13], [14])
that show similar use behavior and are complemented with
potential flexibility, e.g., [15]. One amount unit corresponds
to 0.5kW. The grid power capacity constraint used in the
experiments represents medium voltage grids, e.g., [16]. We
use a mixed portfolio of FOs that represents a variety of
devices and characteristics regarding flexibility and power
demand/supply. In particular, we generate 6 datasets of FOs
with different sizes to be able to examine the scalability of the
techniques in terms of input. The sizes of the datasets follow
an arithmetic progression with both initial term and common
difference equal to 500 FOs. Thus, the last dataset has 3000
FOs. In order to create imbalances and congestion situations,
the number of the negative FOs is 10% of every dataset.

In particular, 40% of the positive FOs represent electrical
vehicles (EVs), 30% represent heat pumps (HPs), and 30%
clothes washers (CWs). The negative FOs represent wind
turbines (WT) and photovoltaics (PV) that are less flexible
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Device EST tf #slices Min amounts af
EV (day) 6 5 4 U∗{5, 7} U{0, 2}

EV (night) N∗(18, 1), [17, 20] N(10, 1), [8, 12] U{3, 4} U{5, 7} U{0, 2}
CW (day) N(16, 1), [15, 17] U{1, 3} U{2, 4} U{3, 4}, U{1, 2} 0

CW (night) N(20, 1), [19, 21] N(8, 1), [5, 10] U{2, 4} U{3, 4}, U{1, 2} 0
HP (day) N(13, 1), [12, 14] N(3, 1), [1, 5] U{4, 7} U{5, 8} U{0, 2}

HP (night) 17 3 U{3, 6} U{5, 8} U{0, 2}
WT, PV (day) N(14, 1), [13, 15] U{3, 4} U{4, 10} U{8, 10} U{0, 2}

WT, PV (night) N(23, 1), [22, 24] U{1, 4} U{5, 8} U{8, 10} U{0, 2}
TABLE I: Flex-offers characteristics, U∗: uniform distribution, N∗: Gaussian distribution
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Fig. 5: 3K FOs input

with longer profiles. We allocate FOs during day time and
night time for all the devices (50%-50%). Details about the
characteristics of the datasets are shown in Table I.

Moreover, for comparison reasons we use two baseline
aggregation techniques. We compare our techniques with Start
Alignment (SA) aggregation [10] (see Section III-A where all
the FOs are aggregated into one FO). We also use a Start
Alignment with Grouping (SAG) aggregation technique where
a grouping phase is used in advance [10]. Consequently, FOs
with the same earliest start time and the same time flexibility
are grouped together and SA is applied on each group. As a
result, for each group of FOs, a single AFO is produced.

In order to examine whether an aggregation result allows
the constraint to be respected or not, we implemented a
stochastic scheduling technique based on the Evolutionary
Algorithm (EA) proposed in [17]. EA is applied on a set of
FOs (aggregated or not) and forms the node value with the
possible minimum distance to target and constraint function.
We see in Figure 5 how the node value is formed when EA
is applied on the results of each aggregation technique along
with the constraint and the target function values.

The experiments were conducted on a 2.9 GHz Intel core
i7 processor with two cores, physical memory of 8 GB, and
MacOS. The techniques are implemented in Java 1.8.

B. Use case

We examine our techniques in a case where target is greater
than the constraint so that a bottleneck appears. Target is 3500
and constraint is 3000 (e.g., 6.6kV - 11kV substation [16]). We
also use the constraint allocation feature. Thus, the constraint
value used by the aggregation techniques is 1500. We set the
target coefficient to 1 and we use a very high value for the
constraint coefficient (10000) when the distance is computed,
in order to prioritize the constraint respect.

In Figure 4a, we see how the highest and the lowest node
values (amount peaks) are formed when EA is applied on the

initial (“In.” label) non-aggregated set and on the aggregation
result of each technique. For a better illustration we show the
cases where the input is 500, 1500 and 3000 FOs. We see
in Figure 4a that when the input size is 500, the peaks formed
by EA (scheduling) are quite far away from the constraint and
as the input size is increased, the peaks approach and finally
exceed the constraint. In the same figure, we also observe that
when the input size is small (500), all the techniques lead
to scheduling that respects the constraint. When the size is
increased to 1.5K FOs, SA violates the constraint, and in the
last case of 3K FOs only EG respects the constraint.

Regarding the number of the AFOs, we see that SA pro-
duces only one AFO in all the input cases (Figure 4b) and
its time flexibility is always 1, i.e., the minimum among all
the FOs. We also notice that SAG, due to the grouping that
applies, produces a low number of AFOs and also achieves
a similar to the initial time flexibility distribution among the
AFOs, see Figure 4c. However, the aggregation result of SAG
violates the constraint when the input is increased to 2.5K and
3K (shown in Figure 4a). Furthermore, in Figure 5, we see how
the node value is formed based on EA when the aggregation
input is 3K. In the same figure, we notice that SAG not only
violates the constraint, but there is also violation in 5 out of
the 28 scheduling points (approximately in the 18% of the
time horizon).

Regarding SG, the number of AFOs scales linearly with
the input size and achieves a time flexibility higher than EG.
However, EG is the only algorithm that forms a node value
that respects the constraint in all the input cases. It maintains
the number of AFOs low (93% input reduction on average)
and uses time flexibility to lead to a schedule that respects the
constraint. That is why it has the lowest average time flexibility
and a distribution with low boundaries, see Figure 4c.

Regarding the processing time, EG is the slowest algorithm
due to the high number of comparisons it requires. It shows a
similar to linear growth rate behavior, see Figure 4d. SG is fast



since it only compares just two FOs in every step. Similarly,
SA and SAG are the fastest algorithms due to the very low
number of aggregations they perform.

Experimental summary. We observe that SG is fast and
respects the constraint while SA does not. When size increases
(>2K FOs), both SG and SAG violate the constraint. On the
other hand, EG examines a larger solution space and leads
to results that respect the constraint when the input size is
large, see Figure 5, case of 3K FOs. It is indicative that
even when we apply EA on the initial set of 3K FOs for
10 minutes, it still cannot provide a result that respects the
constraint, see Figure 5 label “In.”. On the contrary, EG uses
approximately 67 seconds for its execution and EA applied
afterwards produces the first result that respects the constraint
in approximately two seconds. That means that EG is able to
provide filtered inputs to scheduling so that initially unsolvable
cases can be solved. However, when the input is large, EG
requires high processing times. It requires 24.08 minutes to
process a dataset of 10K FOs.

VI. RELATED WORK

The role of an aggregator that handles flexible loads has
been investigated in many previous works, e.g., [18], [19].
Such works use highly complex models and focus on con-
trolling and scheduling methods. Their main characteristic is
that the aggregator operates as an aggregated load controller
that tries to follow a power reference and eventually tackles
the scheduling problem to offer DR and ancillary services,
e.g., [20]. On the contrary, in our work we use a low com-
plexity generic model to represent energy flexibilities, namely
flex-offers (FOs). Moreover, the main goal of our techniques
is to produce flexible and non-scheduled AFOs that can be
traded as commodities in emerging energy flexibility markets.
Thus, our proposed techniques, SG and EG, produce AFOs
that can lead to normal grid operation and use a generic target
function that can capture overall business case scenarios.

Furthermore, there is an extensive literature tackling the
unit commitment (UC) problem (scheduling), e.g., [21], [22].
In [17] the aggregation of FOs before scheduling showed
an improvement of scheduling results compared to applying
scheduling individually. Our work can be also applied in
advance of scheduling process and not only reduces the com-
plexity of the UC problem, but in addition, partially handles
scheduling goals as it “filters” invalid results and improves
their quality.

VII. CONCLUSION AND FUTURE WORK

This paper introduces constraint-based aggregation over a
generic data model that captures flexibilities in time and
amount dimensions. It proposes two techniques that take into
account the power capacity constraint limitations imposed
by the grid. Moreover, the paper evaluates the proposed
techniques in complex congestion scenario. The experimental
evaluation shows that the proposed techniques can efficiently
aggregate FOs and at the same time enable scheduling to
respect the grid constraints, unlike existing techniques.

In our future work, we will focus on enhancing our tech-
niques by automating the setting of aggregation parameters
through sampling techniques. Moreover, we will extend our
proposed algorithms to investigate the financial perspective of
constraint-based aggregation on the future energy market.
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