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Abstract. Big Data has recently gained popularity and has strongly
questioned relational databases as universal storage systems, especially
in the presence of analytical workloads. As result, co-relational alter-
natives, commonly known as NOSQL (Not Only SQL) databases, are
extensively used for Big Data. As the primary focus of NOSQL is on per-
formance, NOSQL databases are directly designed at the physical level,
and consequently the resulting schema is tailored to the dataset and ac-
cess patterns of the problem in hand. However, we believe that NOSQL
design can also benefit from traditional design approaches. In this paper
we present a method to design databases for analytical workloads. Start-
ing from the conceptual model and adopting the classical 3-phase design
used for relational databases, we propose a novel design method consid-
ering the new features brought by NOSQL and encompassing relational
and co-relational design altogether.

Keywords: NOSQL, DW, big data, relational, co-relational, database design

1 Introduction

Deriving valuable information from raw data is nowadays a priority for most
companies [21], which see in today’s business the need to effectively monitor
and analyse own and external data to predict future trends and make informed
decisions. The success of Business Intelligence (BI) and the data-driven society
paradigm [15] gave rise to data-oriented companies and the consequent data del-
uge, which requires non-traditional sources (e.g., logs, sensors, free-text data,
images, etc.) to be included in current analytical processes. Such paradigm shift
is known as Big Data (BD), a wide concept commonly defined by the so-called 3
V’s [11], which enable data analysis in the presence of very large volumes (Vol-
ume) of heterogeneous (Variety) data in near real time environments (Velocity).

The data warehouse (DW) is the current de-facto implementation standard in
BI, where data is multidimensionally modeled (with a star-join schema), stored
in Relational Database Management System (RDBMS), and exploited by two
means [10]: OLAP and Data Mining/Machine Learning (DM/ML). Thus, the
DW is actually modeled according to OLAP needs, while for DM/ML database
dumps are generated from the DW and loaded into specialised tools (e.g., SAS



or R). The two exploitation means are still present in BD as Small (OLAP)
and Big (DM/ML) Analytics [19]. However, Small and Big Analytics require a
specific management when combined with any of the aforementioned 3 V’s. As
result, Not Only SQL (NOSQL) databases [22] raised as an alternative.

NOSQL systems focus almost exclusively on performance and are based on
distributed database principles, also using flexible data models to reduce the
impedance mismatch [2]. Aiming at exploiting the data locality principle [16],
they discourage dumping data to a file for DM/ML. Consequently, the data
scientist role emerged: a data analyst with strong Computer Science skills able to
access NOSQL systems and perform advanced analysis inside them. In parallel,
several BD tools were developed for them to conduct both Small (e.g., Hive1)
and Big Analytics (e.g., SparkR2) in BD ecosystems. As result, NOSQL systems
must consider the access patterns of DM/ML to better design the database.
However, there are no systematic design methods for them, and traditional ones
cannot be reused as-they-are since they do not consider Big Analytics.

In this paper, we present a novel database design method to support ana-
lytical workloads (i.e., Small and Big Analytics). Currently, some approaches
have discussed how to model OLAP in BD (e.g., [17]) but, to our knowledge,
there is no systematic unified modeling strategy also considering DM/ML. To
accommodate NOSQL novel features, we build on the ideas in [14], where the
relationship between relational and NOSQL databases is shown to actually be
different faces of the same coin. They claim for the co-existence of the relational
(whose core data structure is the relation) and the co-relational (whose core is a
finer-grained structure; such as the key-value) data models. In our approach, we
benefit from the well-researched relational design techniques and extend them
for the co-relational model, and from DW concepts that also apply in BD.

Currently, NOSQL design is, at best, performed at the logical level, in a
performance-wise manner and not following the classical ANSI/SPARC archi-
tecture. However, this results to be problematic as BD requirements are more
dynamic than in DW. Data scientists frequently ask for new attributes, entities
or relationships that were not considered in their statistical models before. Thus,
since the schema will change and we cannot assume a complete view of the user
needs will be available at design time, we need to accommodate variability [9]
during the design phase (not only that coming from schema evolution, but also
caused by heterogeneity of data). For this reason, we claim for starting the design
at the conceptual level and for identifying relevant subject areas of analysis [10].
Oppositely, purely performance-oriented solutions work at the attribute level
and denormalise relational tables (to avoid joins) and cluster attributes accord-
ing to their affinity [16] (i.e., how often they are queried together). However,
such solutions do not accommodate evolution as entity correspondences are not
preserved. Therefore, we advocate for a high level subject-oriented (i.e., coarser)
design preserving the main focus of analysis, which is further refined accord-
ing to the characteristics of each subject identified (to accommodate variability
inside). Such refinement includes the decision per subject of using either the re-

1 https://hive.apache.org 2 https://spark.apache.org



lational or co-relational data model (i.e., the degree of denormalization). Finally,
performance is considered at the physical level and, according to the expected
workload, each subject is vertically fragmented to improve the effective read ra-
tio [16]. We apply our method to an anonimised real-world BD case study and
discuss the pros and cons compared to a purely performance-oriented solution.

Contributions. In particular, our main contributions are as follows:

– We follow the traditional 3-phase design: conceptual, logical and physical.
– Integrate both relational and co-relational design into a single quantitative

method, also considering classical DW subject orientation.
– We showcase the use of our method in a real use case.

Outline. Section 2 briefly introduces co-relational data models considered.
Section 3 introduces the use case. Section 4 details the proposed method. Sec-
tions 5 the impact of our method and Section 6 the related work. Finally, Sec-
tion 7 concludes the paper.

2 Co-relational Models

The three co-relational models considered in this paper are key-value, document
and column-family. Fig. 1 classifies their underlying structures with respect to
the schema nature. Schemas are explicit if they are declared, which allows the
database to automatically parse the instance data. Explicit schemas can in turn
be either fix or variable. In the former, all instances’ data follow the same schema,
which is globally declared once, while in the latter, instance data is individually
embedded with its schema. A DBMS with implicit schema does not manage any
information about the instance structure, which is a black-box for the system,
and data must be parsed at the application level.

To exemplify those three models, we will use a toy example. Let us sup-
pose the following information: “the city of Barcelona (BCN) has a popula-
tion of 2,000,000 inhabitants and it is located in Catalonia (CAT)”. This could
be captured in a single relation (city), with three attributes: name, population
and region. Using SQL notation, it would look like: city(name, population,

region) VALUES (’BCN’, ’2,000,000’, ’CAT’) .

Key-value stores have the simplest layout. Instance data is stored in tables and
represented with a key (i.e., identifier), and a value (i.e., associated data). Neither
the key nor the value are tied to a specific format. The former is typically a string
and the value a binary object. Thus, no declarative query language and optimizer
can be provided to accesss the data, and only simple actions (such as get and
put by key) are provided via low-level APIs. Consequently, the application layer
is responsible for interpreting each instance, and we consider the schema to be
implicit. Our example could be represented as: [’BCN’, ’2,000,000;CAT’ ].

Document stores keep documents within collections (i.e., namespace). A doc-
ument is a key-value structure where the value is a semi-structured document
(typically JSON or XML), that can be seen as a set of entries in the form of
(potentially nested) key-value pairs. Thus, the schema is explicit but variable,



Fig. 1. DBMS based on
their schema properties Fig. 2. Use case conceptual schema

since the XML or JSON structure is stored with the instance. In our example,
the corresponding document would be [id:’BCN’, population:’2,000,000’,

region:’CAT’]. So structuring the value opens the door for higher-level query
languages and optimization. Typically, document stores use a query-by-example
approach. Given a pattern document (e.g., name = ’BCN’ or salary > 5000 ),
all documents fulfilling such pattern are retrieved.

Column-family stores are key-value stores that further structure the value
into families, which contain groups of attributes (aka columns). Similar to doc-
uments, we could query and retrieve the whole instance, a family, or a specific
attribute within a family. Families actually denote vertical fragments, and each
is physically stored in a different disk file. From the schema point of view, fam-
ilies are static and defined at table creation time, whereas attributes can be
dynamically specified at data insertion time (i.e., the attribute name is stored
together with the instance data). Thus, the table schema (i.e., the families)
is (i) explicitly declared, static, and shared by all instances, but also (ii) ex-
plicit and variable within families, since attributes may vary among instances,
and finally (iii) data types are implicit since the attribute value is stored in
the form of key-values. Our example could result in a table with two families,
namely population and region, and a constant attribute in each of them, named
value, to store each attribute: [’BCN’, population:{value:’2,000,000’},
region:{value:’CAT’}]. Alternatively, we could use a family all containing
both attributes: [’BCN’, all:{population:’2,000,000’,region:’CAT’}].
Similar to key-value stores, we may use a single column inside the family:
[’BCN’, all:{value:’2,000,000;CAT’}].

3 Motivating Use Case

This section presents a BD real-world use case where our method was applied to
create a decisional NOSQL repository as a complement to the existing relational
DW. We choose this use case for being representative of all the problems typi-
cally due to variability in BD projects. We outline the limitations of traditional
approaches, and define the objectives to be tackled by a design method.



Fig. 2 shows the conceptual schema of the use case domain (due to a disclo-
sure agreement, class names have been altered but relationships between them
remain the same). Customers (either individual Persons or Companies) buy
Products that are composed of Services which, in turn, are complemented
by different Supplements. Complaints can be filed if services do not fulfill the
customer expectations. To contact customers, their Contact Information is
registered in the form of eMails, Addresses or Phone numbers. Finally, com-
panies can agree on Contracts that comprise several products. Our company
needed to predict actions from customers regarding products.

The large heterogeinity involving some entities becomes the first limitation
(e.g., dozens of products, several hundreds of services and some thousands of
supplements). Relational tables provide a homogeneous representation of enti-
ties and we would need to either create a table for each possible specialised entity
or a single general table containing the union of all attributes. This would poorly
perform since deploying thousands of tables, that would be joined to produce the
general entity, or creating a table with thousands of attributes (Supplement alone
has almost one hundred) results unpractical and generates expensive queries [22].
Furthermore, new products are constantly developed and released. In the OLTP
system, this was solved by implementing specialisations with ad-hoc tables con-
taining generic columns storing different attributes depending on the specialised
entity. For example, the product table contained hundreds of columns of type
varchar(50). A row representing productA stores in column C the product

model, while those of type productB use C to store location). A dictionary at
the application level keeps track of the mapping of each product column (e.g.,
C) to its real meaning (e.g., productA → model).

Schema evolution becomes extremely important in the context of Big Analyt-
ics as analysts constantly look for new patterns and therefore ask for new data to
be included in the decisional datasets. Reflecting such changes in the relational
model is possible, but turns out to be costly as it either requires to alter the cur-
rent table (massively updating the new columns for existing instances) or create
a sibling one (same key) for the new attributes (this was the approach followed
in the data sources of our company). Thus, in our use case, changes affecting
the DW were simply ignored, resulting in data scientists spending most of their
time collecting data from different sources, and cleaning and merging them by
themselves prior to conduct the analysis.

Data matrices are the query output for Big Analytics. Traditional DW relies
on star-join schemas [12] and data is organised in factual and dimensional ta-
bles, which represent subjects of analysis (e.g., Sales) and analysis facets (e.g.,
Store, Time), respectively. Dimensional data contains hierarchies representing
the different levels to which aggregate factual data for each facet. This, e.g.,
allows aggregating to count sales per store and year, and later easily dis-
aggregate them per day. However, star-join schemas cannot be easily used to
produce data matrices, because joins between different cuboids are necessary.
Consider Product to be the subject and Customer one of its facets, and we want
to produce a flatten data matrix where each row represents a product bought



Fig. 3. Summary of steps composing the design method

by a customer. The matrix columns hold any type of information regarding
such event, and limitations arise when they must contain data at coarser levels,
like totalAmountBought (i.e., the total amount bought by the customer of the
product in a given matrix row). Since this is not an atomic value, but an ag-
gregated one through the Product-Customer relationship, a parallel aggregation
on Product per Customer must be computed and subsequently joined so that
all products from the same customer show the same value. Such requirement is
usual in DM/ML, but goes against the star-join query pattern [12]. In BI, this
issue is tackled once data is loaded in specialised software (such as R) and never
considered when designing the database.

Design Objectives: Given those limitations, we present the list of objectives
to be overcome by considering co-relational data models.

(a) Simplify the representation of large specialisations so that queries on such
entities are kept simple.

(b) Consider schema evolution at design time and acknowledge the possibility
of adding new features or values later.

(c) Generate flatten data matrices (i.e., without nested structures).
(d) Performance must be considered first-class citizen.

Note that (a) and (b) correspond to dealing with variability.

4 Design Method for Relational and Co-relational

In current BD settings, the lack of know-how to address database design results
in most solutions being designed only considering performance. Oppositely, our
method advocates for a top-down approach: we drive the design from the con-
ceptual schema and find a physical design resilient to variability while perfor-
mance penalisation is minimised. Spanning the 3-phases shown in Fig. 3, in the
first phase we assume that a requirement engineering (RE) process, tailored for
analysis-oriented systems [7], has been conducted. During RE the conceptual
schema must be produced (in BI/BD settings typically by using reengineering
techniques [3]) and entity evolution likelihood quantified. Such quantification is
typical of DW, where it is used to identify Slowly Changing Dimensions (SCD)
[12]. Note we assume a correct RE process was conducted and thus, although the
conceptual schema may evolve, the current knowledge is correct. Starting
from the conceptual schema, the second phase decides the degree of normaliza-
tion after identifying subjects of analysis and, accordingly, proposes a relational



Fig. 4. Graph representation after the first three steps

or co-relational data model. The last phase accommodates performance issues
and, according to the currently known workload, vertically fragments the iden-
tified subjects to improve the effective read ratio [16].

4.1 Phase I: Conceptual Schema

Step 1. Firstly, we transform the conceptual schema (assumed to have been
reified) into an undirected graph G = (V,E) where nodes V denote entities,
and edges E denote relationships between them (tagged with the relationship
type and its multiplicity). We consider three relationship types (i.e., “special-
isation”, “composition”, or “association”). Aggregations, unlike compositions,
cannot guarantee membership between entities and for our goal they are treated
as “associations”. Finally, multiplicities are also kept in G.

Use case. We produced the conceptual schema by reverse engineering from
the available data sources. The result is depicted in Fig. 2 (numbers by the
entities denote their evolving likelihood, being 4 the highest probability), and
its transformation into G is shown in Fig. 4(a).

4.2 Phase II: Logical Schema

Step 2. Binary large objects (BLOBs), such as images, videos or other non-
detachable objects, cannot be decomposed in smaller subcomponents and are
directly understood by the application (i.e., its schema is implicit). Thus, key-
value stores rise as a natural option to store them. Any entity containing a BLOB
entails the creation of a new node vBLOB in G. This is linked to the entity node v
by means of a edge of type “BLOB”. Although this is a physical decision, since
BLOBs are separated because of performance reasons (i.e., unknown format,
large size, and rarely retrieved together with other attributes), doing it earlier
does not affect the result and simplifies the process.



Use case. BLOBs could be found in Contract, where PDF documents were
stored. Fig. 4(b) shows how the Contract vertex is updated accordingly.

Step 3. We then explore the conceptual schema to identify two different types of
entity sets: first, sets of nested entities and, second, sets of heterogeneous entities.
Nested entities essentially refer to compositions where the content can only ex-
ist within the container’s scope (compositions). Heterogeneous entities are those
where the schema may vary among instances (specialisations). Thus, general
entities (e.g., Contact Information) are narrowed in other specialised enti-
ties (e.g., Address, Phone, etc.). Entities not involved in any specialisation are
considered homogeneous as their schema is fix. Thus, the goal of this step is to
group entities regarding the aforementioned types and synthesise G in groups of
independent domain concepts (i.e., subjects). This process accordingly results
in a hypergraph H = (X,E′) where a hypernode x ∈ X maps to a subgraph
of G representing each group entity and E′ represents the set of hyperedges.
Note an entity can be part of several heterogeneous hypernodes if involved in
specialisations belonging to different groups. In these cases, such entity must be
replicated in each hypernode. Hypernodes are adorned with its type: Nested,
heTerogeneous or hoMogeneous. Also, they take the name of their main entity;
either the container entity from compositions or the most general entity from
specialisations. Note a hypernode might be adorned with more than one type.
We define a dominant function� among the tags as follows: (N)� (T )� (M)
so that only one tag prevails over others. Hyperedges E′ are created from “as-
sociations” in G, from where they inherit their multiplicity.

Use case. Fig. 4(c) shows H. The hypernodes in H (named after the main
hypernode entity) contain the following entities:
Xcustomer = {Customer, Person, Company, Contact Inf, eMail, Address, Phone}
Xproduct = {Product, Service, Supplement, (plus all their subclasses)}
Xcontract = {Contract}
Xcomplaint = {Complaint}

Step 4. We now identify hypernodes to be potentially merged in order to im-
prove performance. Note, however, this compromises the variability resilience as
modifications in a graph node will impact on the hypernodes it has been placed
in. To prevent this, we only merge hypernodes detected as part of the same sub-
ject. Following well-known DW principles [12], only hypernodes connected by
hyperedges with 1-1 and 1-* multiplicities are considered. Merging hypernodes
related by 1-1 hyperedges clearly preserves the subject, and the main entity in
this case corresponds to the hypernode with higher likelihood to evolve (as it
facilitates further changes in the merged hypernode schema). Similarly, hyper-
nodes related by a 1-* hyperedge can only be merged if the to-one end of the
hyperedge represents an SCD. Since the SCD evolution likelihood is very low,
the main entity of the merged hypernode is its counterpart hypernode in the
hyperedge. Replication of an SCD in different merged hypernodes can occur if
such SCD is connected to several hypernodes. Finally, the created hypernode
acquires the most dominant adornment of the merged ones.

Use case. In the use case, no 1-1 hyperedge exists. Contract, however,
was identified as an SCD. We thus merged Xproduct and Xcontract and created



Xproduct contract. The merged hypernode is adorned as (N) and Product is ac-
cordingly identified as main entity. Incident hyperedges on the merged hypern-
odes are now related to Xproduct contract.

Step 5. For each hypernode, we decide whether it should be designed following
the relational or co-relational model depending on the adornments defined. We
use the evolution likelihood threshold te as indicator to resolve situations where
more than one solution is possible.

1. Hypernodes adorned with (M) should be designed by means of relational
structures unless they are expected to evolve, as their fix schema can be
separately declared and shared by all instances. Oppositely, if their evolu-
tion likelihood is above te, then they should be designed with co-relational
structures to facilitate the accommodation of schema changes.

2. Hypernodes adorned with (T ) can be either represented by relational or co-
relational structures. Several alternatives exist in case of the former [4], while
the most natural way to model heterogeneous entities in case of the latter
is with explicit but variable schemas. Deciding between the two data mod-
els depends on the degree of heterogeneity. Co-relational should be chosen
when the number of heterogeneous entities involved is large (e.g., Product).
Alternatively, we can consider relational if only few specialised entities exist
(e.g., Contact Information). In the latter case, two types of schema evolu-
tion must be considered: (i) if only new attributes can be added to existing
entities, an analogous rationale to M holds, (ii) if new specialisations are reg-
ularly created (e.g., new types of Supplement), then a co-relational model
is a better option. Note that the expertise of the database designer is key to
decide, given the RE process artefacts, in which case each hypernode falls.

3. Finally, hypernodes adorned with (N) must be stored in co-relational struc-
tures by means of nested lists, which allow recursively storing lists of lists.
This way, the container holds its components. In case (N) hypernodes con-
tain entities with fix schema, these are stored in co-relational structures by
embedding their schema into the instance. Note that relational structures
may also be used, but each of the entities must then be mapped to a re-
lational table and their relationships represented with foreign keys (heavily
penalizing performance). Schema evolution in (N) hypernodes is smoothly
absorbed by the co-relational model.

Use case. The data model chosen for the hypernodes are the following:

Co-relational for Xcustomer and Xproduct contract (adorned both with (N))
Relational for Xcomplaint (adorned with (M))

4.3 Phase III: Physical Schema

Step 6. We now focus on the remaining hyperedges (i.e., “associations”). Since
two data models are being considered, these hyperedges might be relating two
hypernodes to be modeled with different data models. Design rules are intro-
duced in Table 1, where all situations are shown. Rows denote what reference



R-R Co-Co R-Co

Reference 1-1 1-* *-1 *-* 1-1 1-* *-1 *-* 1-1 1-* *-1 *-*

“->” 3 7 3 7 3 3 3 3 3 7 3 7

“<-” 3 3 7 7 3 3 3 3 3 3 3 3

Table 1. Feasible reference directions for hyperedges

direction is possible given the case in the columns, where R is used to refer to a
relational hypernode, and Co to a co-relational hypernode. The feasibility of a
certain reference is given by considering whether the source hypernode accepts
mono-valued or multi-valued attributes, or both. The relational model can only
take mono-valued attributes and designing R-R hyperedges can be devised in a
traditional manner [4], although *-* can also be designed by transforming one
end into Co. Co-Co hyperedges can be indifferently designed, as multi-valued at-
tributes are natively supported. Similarly, for R-Co hyperedges, references from
the R-end are only possible when the Co-end has a to-one multiplicity, whereas
references from the Co-end are always possible.

Use case. (i) The hyperedge relating Xcomplaint and Xproduct contract has a
*-1 multiplicity relating a relational to a co-relational hypernode. Consequently,
this hyperedge is designed through a reference from Xcomplaint to Xproduct contract.
(ii) Two hyperedges relate Xproduct contract and Xcustomer: one originally relating
Product and Customer, and the other Contract and Company. Both hyperedges
connect two co-relational hypernodes and have a *-1 multiplicity. Thus, they are
implemented as two references from Xproduct contract to Xcustomer (each reference
corresponds to a hyperedge).

Step 7. We aim to improve performance by maximizing the effective read ratio
by grouping/splitting entities according to the known workload. Unlike other
approaches, we fragment honouring the subjects identified, which cannot be
split. Importantly, fragmentation is implemented in most RDBMS and given by
all column-family stores. For each hypernode, we identify the vertical fragments
checking how often two attributes are queried together. To compute such affinity,
we can use well-known techniques such as the affinity matrix (AM) [16]. Columns
and rows in AM represent attributes and a cell describes the frequency these
two attributes are queried together. Given a certain threshold ta, fragments are
identified. AM assumes the query workload is given, but this might not be true
(e.g., a situation where the solution is built from scratch and there is no past
experience on how the database is queried). In such cases, the expected workload
is identified during RE. Such process requires the participation of data analysts
and techniques such as observation [7].

Use case. For each hypernode, an AM must be created. Fig. 5 illustrates
the resulting AM for hypernode Xproduct contract. Attributes from the use case
entities have been renamed to numbered table prefixes in order to honour the
disclosure agreement, and cells are percentages. At the bottom of the figure,
we sketch a simplified version of the query workload corresponding to four
parametrised batch processes creating different matrices. Frequencies represent
how many times queries were run per month and we transform them into percent-
ages. Q1, Q3 and Q4 were executed 20 times/month and Q2 15 times/month.





pr1 pr2 pr3 pr4 pr5 pr6 pr7 se1 se2 se3 se4 su1 su2
pr1 − 73.4 73.4 46.7 100 46.7 46.7 46.7 46.7 46.7 46.7 73.4 73.4
pr2 − 73.4 46.7 73.4 46.7 46.7 46.7 46.7 46.7 46.7 73.4 73.4
pr3 − 46.7 73.4 46.7 46.7 46.7 46.7 46.7 46.7 73.4 73.4
pr4 − 46.7 46.7 46.7 46.7 46.7 46.7 46.7 46.7 46.7
pr5 − 46.7 46.7 46.7 46.7 46.7 46.7 73.4 73.4
pr6 − 46.7 46.7 46.7 46.7 46.7 46.7 46.7
pr7 − 46.7 46.7 46.7 46.7 46.7 46.7
se1 − 46.7 46.7 46.7 46.7 46.7
se2 − 46.7 46.7 46.7 46.7
se3 − 46.7 46.7 46.7
se4 − 46.7 46.7
su1 − 73.4
su2 −



Attributes

Customer(cus1,cus2,cus3,cus4)
Address(ad1,ad2)
Contract(con1,con2)
Product(pr1,pr2,pr3,pr4,pr5,pr6,pr7)
Service(se1,se2,se3,se4)
Supplement(su1,su2)
Complaint(com1,com2,com3,com4)

Query workload

Q1(pr1,pr2,pr3,pr4,pr5,pr6,pr7,se1,se2,se3,se4,su1,su2)
Q2(cus1,cus2,cus3,cus4,ad1,ad2,con1,con2,pr1,pr2,pr3,pr4,pr5,pr6,pr7,se1,se2,se3,se4,su1,su2,com1,com2,com3,com4)
Q3(pr1,pr2,pr3,pr5,su1,su2,com4)
Q4(pr1,pr5,com2,com1,com4)

Fig. 5. Affinity matrix for hypernode Xproduct contract

In our use case, ta was set to 73.4% and led to two fragments: one containing
{pr1, pr2, pr3, pr5, su1, su2} and another with the rest of attributes.

Deployment. Importantly, note that deciding relational or co-relational to de-
sign a hypernode is not bind to the choice of a specific kind of DBMS, but to
unveil its nature. Although our method remains agnostic of the chosen product,
we finish our case study showing how to deploy the hypergraph in a commercial
relational DBMS (i.e., Oracle) and in an open source co-relational store (i.e.,
HBase plus Hive). The output of our method then hints the best storage model,
but the subsequent technological instantiation and the corresponding product-
oriented tuning fall out of the scope of this paper.

Despite having a relational architecture underneath, Oracle3 supports data
structures traditionally not considered relational-like. Of special relevance for
this paper are the data types XMLType and NESTED TABLE. The former cor-
responds to XML data and the latter to tables embedded in other table columns.
These data structures map to co-relational structures introduced in Section 2.
Documents in Oracle can therefore be stored through the data type XMLType,
and vertical fragments be implemented with NESTED TABLE. Thus, relational
hypernodes would be designed as regular relational tables whereas co-relational
hypernodes can be designed through XMLType structures (if no vertical fragmen-
tation is applied), and NESTED TABLES for hypernodes vertically fragmented.

Another example coming from the open-source world is HBase4 plus Hive1.
HBase is a column-family system. Consequently, vertically fragmented hypern-
odes can be naturally stored, regardless being relational or co-relational. Simi-
larly, both relational and co-relational hypernodes where vertical fragmentation
did not apply can still be designed as single-family HBase tables. Neverthe-
less, benefits from using relational structures (HBase has no global schemas and
therefore embeds the schema into each instance) and document stores (column
values are stored as string and parsing relies on the application level) are then
lost in HBase. This cannot be solved from the point of view of the storage, but
Hive can be added on top to provide a relational view so that queries can be run
as if the underlying storage was relational.

3 https://www.oracle.com/database 4 https://hbase.apache.org



5 Scrutinizing Our Method

This section discusses how our method meets design objectives in Section 3.

Objective (a): Our method properly deals with large specializations by means
of Steps 3 and 5. In Step 3, entities related by specializations are grouped as part
of the same subject. In Step 5, subjects are evaluated to decide the data model
to design them. If classified as too heterogeneous, then the co-relational model
is chosen. In the use case, for Product, Service and Supplement the number of
potential tables was reduced from dozens, hundreds or thousands, respectively,
to one entity with explicit and variable schema.

Objective (b): Two key characteristics of our method facilitate schema evo-
lution. Firstly, the main entities from the conceptual model are identified as
centroids of a clustered subject-oriented design. Secondly, schema evolution like-
lihood, quantified per entity in Step 1, is used in Step 5 to decide the data model
of each subject. In our use case, we easily added new attributes to entities as well
as specialization and composition relationships. During the project we added 205
new attributes/relationships and none required to reconsider the current design.

Objective (c): Conceptually, the multidimensional model is a good starting
point for creating matrices. However, the star-join schema statically binds the
subjects of analysis with dimensions at design time. To accommodate variability
our method identifies subjects (Steps 3 and 5) reflecting them in the database
schema. However, unlike a star-join schema, we do not identify dimensions at
design time but at query time, depending on analysts concrete needs. Thus, we
deploy a dimensionless decisional schema, relieving dimensional data of meet-
ing well-formedness OLAP characteristics (e.g., multidimensional normal forms
[13]). Decoupling both concepts in the schema provides us with the needed flex-
ibility to tackle unforeseen dimensional concepts. For example, in our use case,
several new features were required by data scientists throughout the project.
Many times, such features were computed by aggregating data in an already
identified dimension but at a coarser granularity, which would have raised the
problems discussed in Section 3.

Objective (d): To evaluate performance, we compare the subject-oriented re-
sult obtained for our case study (S) against a performance-oriented (P ) design
for the same workload, built by computing the AM at the attribute level over the
universal relation [16]. Considering the same ta we chose (i.e., 73.4%), we obtain
one fragment per entity Customer, Address, Contract and Service; plus two
more fragments P1 : {pr1, pr5, com4}, and P2 : {pr2, pr3, su1, su2}, correspond-
ing to a vertical fragmentation of Product./Supplement./Complaint. Despite S
only proposed three hypernodes, the number of joins needed is larger than in P ,
since attribute grouping in P is perfectly tailored to the queries in the current
workload (Table 2 reports on the number of joins). Thus, average number of
joins of S turns to be 6.3% worse than that of P , a reasonable price for the gain
obtained. Note, furthermore, that the effective read ratio of S matches that of
P since we apply vertical fragmentation per hypernode (see Step 7).



Query Frequency Joins (S) Joins (P)

Q1 26.7% 0 1

Q2 20.0% 3 4

Q3 26.7% 1 0

Q4 26.7% 1 0

Average: 1.134 1.063

Table 2. Join operations in the subject- (S) and performance-oriented (P) designs

6 Related Work
Operational (write-intensive) RDBMS use normalization to avoid redundancy
and therefore insert, update and delete anomalies [8]. Oppositely, decision sup-
port (read-intensive) systems use denormalization in order to avoid joins and
improve performance. Multidimensional modeling [12], the de-facto standard for
DW, is a simple yet powerful metaphor that focuses on subjects of analysis and
their facets, which is implemented with a star-join relational schema. However,
the star-join schema is not appropriate for flexible BD settings since not only the
subject, but also the potential dimensions of analysis are fixed at design time.
Furthermore, adding new dimensional or factual data is a costly operation in
the DW, since it is typically implemented with relational technology.

Column-oriented engines take vertical fragmentation to the extreme, and re-
design the DBMS architecture enabling the combination of light-weight encoding
and vector processing [16]. Such engines have shown excellent performance for
read-intensive workloads [20] and adaptive systems dynamically exploit vertical
or horizontal layouts depending on the workload [1]. However, current techniques
for fragmenting a database vertically, such as attribute clustering or AM [16], do
not consider evolution and assume static workloads. Also, vertical fragmentation
is not always the best modeling choice [1]. Finally, several guidelines specific for
NOSQL design are nowadays available [6, 18, 22] presenting high-level guidelines
that map either to phase two or three of our method. Other approaches bet
for the integration of heterogeneous data by means of functional SQL-like lan-
guages [5] and, thus, integration occurs at query time rather than at design time.
To our knowledge, this is the first holistic approach encompassing the relational
and co-relational design altogether.

7 Conclusions

We have presented a novel method to holistically address the design of relational
and co-relational databases in the presence of analytical workloads. Unlike most
spread habits among BD practitioners, we underline the importance of the con-
ceptual schema and propose a method resembling traditional database design
following the classical 3-phase design: conceptual, logical and physical. However,
we do not diminish the importance of performance in BD, but rather balance it
with other equally important aspects such as data structural variability, which
we have shown that can be managed by subject-oriented design (a well-known
DW concept). We have exemplified our method with a real case study paradig-
matic of the typical modeling complexities found in BD projects, and shown the
benefits of our design approach.
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