
Contents lists available at ScienceDirect
Information Systems

Information Systems 54 (2015) 336–356
http://d
0306-43

n Corr
E-m

vherrer
jferraro
journal homepage: www.elsevier.com/locate/infosys
Tuning small analytics on Big Data: Data partitioning
and secondary indexes in the Hadoop ecosystem

Oscar Romero n, Victor Herrero, Alberto Abelló, Jaume Ferrarons
Universitat Politècnica de Catalunya, BarcelonaTech, Department of Service and Information System Engineering, Carrer Jordi Girona no 1,
Edifici Omega, despatx 121, 08034 Barcelona, Catalunya, Spain
a r t i c l e i n f o

Available online 21 September 2014

Keywords:
Big Data
OLAP
Multidimensional model
Indexes
Partitioning
Cost estimation
x.doi.org/10.1016/j.is.2014.09.005
79/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: oromero@essi.upc.edu (O. Rom
o@essi.upc.edu (V. Herrero), aabello@essi.up
ns@essi.upc.edu (J. Ferrarons).
a b s t r a c t

In the recent years the problems of using generic storage (i.e., relational) techniques for
very specific applications have been detected and outlined and, as a consequence, some
alternatives to Relational DBMSs (e.g., HBase) have bloomed. Most of these alternatives sit
on the cloud and benefit from cloud computing, which is nowadays a reality that helps us
to save money by eliminating the hardware as well as software fixed costs and just pay
per use. On top of this, specific querying frameworks to exploit the brute force in the cloud
(e.g., MapReduce) have also been devised. The question arising next tries to clear out if
this (rather naive) exploitation of the cloud is an alternative to tuning DBMSs or it still
makes sense to consider other options when retrieving data from these settings.

In this paper, we study the feasibility of solving OLAP queries with Hadoop (the
Apache project implementing MapReduce) while benefiting from secondary indexes and
partitioning in HBase. Our main contribution is the comparison of different access plans
and the definition of criteria (i.e., cost estimation) to choose among them in terms of
consumed resources (namely CPU, bandwidth and I/O).

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The relevance of informed decision making has already
shifted the focus from transactional to decisional data-
bases. Nowadays, it is out of question that decision making
must be supported by means of objective evidences
inferred from digital traces gathered from the day-by-day
activity of the organizations. Up to date, data warehousing
has been the most popular architectural setting for deci-
sional systems and it is nowadays a mature and reliable
technology stack present in many big companies/organi-
zations and already making its way on SMEs. However, we
are currently witnessing a second paradigm shift due to
the success of data warehousing: the need to incorporate
ero),
c.edu (A. Abelló),
external data to the data warehouse. In short, many works
have discussed the relevance of the context in nowadays
decision making that cannot be just focused on stationary
data (i.e., that owned by the decision maker) and must
deal with situational data (i.e., any non-stationary data
relevant for decision making) as first-class citizen [1]. This
new paradigm shift has given rise to the so-called Business
Intelligence 2.0 and is inevitably coupled with the concept
of Big Data.

Although Big Data has been around for a while and has
modified the agenda of many research communities,
its definition is still far from being agreed and it usually
refers to decisional systems characterized by the 3V's:
volume (large data sets), variety (heterogeneous sources)
and velocity (referring to processing and response time).1
1 Other authors add other V's such as value (the analysis must
provide added value) and veracity (to refer to data quality issues).

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.09.005
http://dx.doi.org/10.1016/j.is.2014.09.005
http://dx.doi.org/10.1016/j.is.2014.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.005&domain=pdf
mailto:oromero@essi.upc.edu
mailto:vherrero@essi.upc.edu
mailto:aabello@essi.upc.edu
mailto:jferrarons@essi.upc.edu
http://dx.doi.org/10.1016/j.is.2014.09.005


�

O. Romero et al. / Information Systems 54 (2015) 336–356 337
As discussed in [2], Big Data analytics can either mean
Small or Big analytics. Small analytics focus on providing
basic query capabilities (typically related to SQL aggregates
such as count, sum, max, min and avg) on very large data
sets, whereas Big analytics entails the use of computation-
ally expensive and more advanced algorithms implement-
ing data mining and machine learning techniques. This is
reflected in [3], where the 43.3% of the workload used
corresponds to the former and the 56.7% to the latter.

Indeed, Small and Big analytics naturally map to tradi-
tional data warehousing analytics. Typically, OLAP [4] has
been firstly used to gain quick insight into the data and
spot interesting data sets in a first step to, later, in a second
stage and by means of Data Mining/Machine Learning,
identify and foresee trends in such data sets. In this paper,
we focus on the former and use OLAP and the multi-
dimensional model [5] to analyze the performance of
Small Analytics on Big Data.

The multidimensional (MD) model represents data as if
placed in an n-dimensional space (i.e., the data cube, which
allows us to compute the most usual Small Analytics, i.e.,
sum, count, avg, max, and min), and facilitates the under-
standing and analysis of data in terms of facts (the subjects
of analysis) and dimensions forming the multidimensional
space where to place the factual data. A dimension is
formed by a concept hierarchy representing different
granularities (or levels of detail) for studying the fact data
or measures. A fact and a set of dimensions form a star
schema (usually implemented following a star-join rela-
tional pattern). Nowadays, the MD model is not only the
de facto standard for data warehousing modeling and
OLAP but it is also increasingly gaining relevance for data
mining mainly because of its powerful foundations for
data aggregation. More specifically, the MD model intro-
duces the Roll-up operator [4], which enables dynamic
aggregation (i.e., group by) on measures along dimension
hierarchies.

In this paper we explore how to perform Small Analy-
tics in Hadoop by means of OLAP queries and analyze the
performance of different approaches while at the same
time diving into the HDFS technical details to explain the
results.

Related work. Querying star-join schemas in a user-
friendly manner is one of the main claims of OLAP. This is
still badly needed for data scientists querying Big Data [6].
For this matter, a high-level declarative language abstract-
ing the user from technical and implementation details is a
must. However, this is no longer true for MapReduce and
the Hadoop ecosystem [7], the most popular architectural
setting for Big Data. MapReduce requires user-created code
to be injected in a Java framework (i.e., the map and
reduce functions). These functions are seen as a blackbox
by the Hadoop ecosystem, which does not implement any
relational-like query optimizer. Thus, query answering is
purely based on the brute force of the cloud. Some efforts,
such as Hive,2 have introduced a declarative SQL-like
language to automatically create MapReduce jobs. Hive
translates each high-level SQL-like operator into MapReduce
2 http://hive.apache.org/
job(s), which are then sequentially scheduled to consume the
output (to be persisted in HDFS) of the previous MapReduce
job. Such approach incurred in a high latency and the
execution of several redundant tasks. Consequently, the
Stinger initiative3 focused on improving these execution
plans by means of rewriting and pruning rules. Pig!4

introduces a high-level ETL-like language called Pig Latin.
Pig Latin statements are then automatically translated into
MapReduce jobs. Like Hive, Pig! addresses the optimization
of its execution plans by defining some optimization rules
and hints. The optimization solutions presented by Hive and
Pig! resemble those of early RDBMS based on rule-based
optimization rather than current cost-based solutions [8]. To
the best of our knowledge, the only cost-based optimization
attempt in the Hadoop ecosystem is the Optiq project.5

However, Optiq was only recently accepted in the Apache
Incubator community and it is still in a very preliminary
status [9].Indeed, up to now, most efforts have focused on
tuning and further develop the Hadoop framework internals
(e.g., [10–13]) rather than applying traditional database
tuning, to which little attention has been paid and forms
the main scope of this paper.

Contributions. In this paper, we consider the conver-
gence of the most popular setting for Big Data (the Hadoop
ecosystem) and the MD model to activate Small analytics
on large data sets. Since we assume a Hadoop environ-
ment, it is unfeasible to expect a well-formed star-join
schema in terms of fact and dimension tables. For this
reason, we assume a fully denormalized fact table
approach (i.e., measures and dimension attributes are
denormalized in a single table). Our contributions are as
follows:
�
 Inspired by a traditional data warehousing setting, we
study two database design techniques that have shown
a big impact on data warehouses:
○ partitioning (either horizontal or vertical) the fact

table and
○ the effective use of secondary indexes on dimen-

sional data to solve the selection predicates of the
queries.
3 h
4 h
5 h
Next, we study how to map these design techniques on
a database sitting on a HBase cluster and study their
impact by means of exhaustive empirical tests.
�
 Finally, we have characterized our findings in terms of
cost formulas for each of the MapReduce algorithms to
compute multidimensional data cubes, which repre-
sent the seed of a query optimizer for OLAP querying on
Hadoop.
Relevantly, the use of a well-known technology such as
the MD model for computing Small Analytics on Big Data
will enable further and advanced navigation capabilities
by implementing a multidimensional algebra on top of the
two algorithms here presented and considering the best
execution plan according to our cost formulas.
ttp://hortonworks.com/labs/stinger/
ttp://pig.apache.org/
ttp://incubator.apache.org/projects/optiq.html

http://hive.apache.org/
http://hortonworks.com/labs/stinger/
http://pig.apache.org/
http://incubator.apache.org/projects/optiq.html


Fig. 1. Logical architecture.

Table 1
Node names for every technology.

Technology Master Slave

HDFS NameNode DataNode
HBase HMaster RegionServer
MapReduce JobTracker TaskTracker

O. Romero et al. / Information Systems 54 (2015) 336–356338
The paper is organized as follows. Section 2 introduces
the Hadoop ecosystem and its main features. Section 3
discusses how to build cubes on Hadoop by means of two
algorithms: the IRA (Index Random Access) and FSS (Full
Source Scan) algorithms. These algorithms benefit from
two main tuning features: partitioning and secondary
indexes and we also discuss how to implement them in
Hadoop. As subsequently discussed, partitioning is
natively supported in HBase but secondary indexes must
be simulated. At this point, we introduce the IRA and FSS
algorithms in detail. Next, Section 4 characterizes the most
relevant cost factors in order to estimate each algorithm
cost, which then it presents them in terms of cost
formulas. Section 5 presents the experimental setting
backing up our findings described in previous sections,
which is finally discussed in Section 6. This section also
presents several potential enhancements for HBase,
including the new IFS algorithm (Index Filtered Scan)
explained in Section 7.

2. Hadoop environment

As defined in [7], “the Apache Hadoop software library is
a framework that allows for the distributed processing of
large data sets across clusters of computers using simple
programming models. It is designed to scale up from single
servers to thousands of machines, each offering local compu-
tation and storage.”

The Hadoop ecosystem used in this paper is imple-
mented as a three level architecture in which we find
HDFS (the file system) running at the lowest level, HBase
(the storage manager) running on top of HDFS and finally
MapReduce (the query execution engine) wrapping them
so that data processing can be performed at both the file
system and the database level (Fig. 1 shows this logical
architecture). All these technologies follow a master–slave
architecture. The master node is responsible for tracking
the available state of the cluster and it basically coordi-
nates the slave nodes, which are those doing the actual
work (Table 1 shows the different nomenclatures used for
each technology).

As a consequence, these technologies are relatively
independent from each other in the sense that they do
not form a single process running in a machine, but there
is one independent process for each of them interacting to
each other through the network. In a traditional setting a
tuple is retrieved by querying the RDBMS, which forwards
the message to the file system, which, in turn, retrieves the
corresponding disk block and sends it back to the DBMS.
Typically, these communication costs are disregarded
since there is a strong coupling between the DBMS and
the file system and such communication is performed in
main memory. However, this is no longer true in an
architecture like Hadoop since the file system (HDFS),
the storage manager (HBase) and the query engine
(MapReduce) do not form a single unit and their commu-
nication is implemented via much more expensive net-
work communication.

2.1. HDFS

As defined in [14], “the Hadoop Distributed File System
(HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing
distributed file systems. However, the differences from other
distributed file systems are significant. HDFS is highly fault-
tolerant and is designed to be deployed on low-cost hard-
ware. HDFS provides high throughput access to application
data and is suitable for applications that have large data
sets.”

This fault-tolerance and high throughput access
requirements are achieved by means of balancing and
replication, which are the two strongest points of HDFS.
When a new file is to be written in the file system, it is first
split into blocks of a given size (64 MB by default, but
configurable). Afterwards, (i) each block is stored in a
DataNode (i.e., balancing) and (ii) it is replicated in
different nodes (i.e., replication). Balancing allows HDFS
to have a great performance working with large data sets,
since any read/write operation exploits the parallelism of
the cloud. Replication implies mainly high availability,
since different replicas can be used in case any of them
becomes temporally unavailable, but it may also boost
performance by choosing the closest replica and reducing
communication costs. When it comes to synchronizing
replicas, HDFS applies an eager/primary-copy strategy.
Thus, writing can only happen on the primary-copy and
its replicas are blocked until they are synchronized.

Note that HDFS also follows a master–slave architecture
as stated in Table 1. Thus, DataNodes are those storing the
data, while the control flow responsibility is taken by the
master node NameNode.

2.2. HBase

“Apache HBase is an open-source, distributed, versioned,
non-relational database modeled after Google's Bigtable:
A Distributed Storage System for Structured Data by
Chang et al. Just as Bigtable leverages the distributed data
storage provided by the Google File System, Apache HBase



Fig. 2. Internal structure of an HBase row.

O. Romero et al. / Information Systems 54 (2015) 336–356 339
provides Bigtable-like capabilities on top of Hadoop and
HDFS” (see [15]).

Data are stored in HBase by following [key,value]
structures. In such pairs, the key represents the row
identifier and the value contains the row attributes. The
[key,value] pairs are stored using the equivalent to well-
known primary indexes for RDBMS, which physically sort
rows on disk and build a Bþ tree on top of it (see [8]). In
HBase, this sorting is done on the key of the pair.

HBase also performs horizontal partitioning [16] based
on the keys. Such partitions are called “regions”, which are
the minimal balancing unit used by HBase. Data distribu-
tion is done according to the number of regions per node
(i.e., RegionServers in HBase). Tuples are distributed
depending on the region they belong to, but, in principle,
regions are not guaranteed to be of the same size and
hence data is not completely evenly distributed across the
cluster. Additional features such as region splits and
compactions (see [17]) were introduced to eventually
achieve, in the presence of large enough data volumes,
an even distribution among RegionServers.

Moreover, HBase further structures the value to sup-
port vertical partitioning [16]. Fig. 2 sketches how a table
row is stored in terms of families and qualifiers. Families
must be explicitly created by modifying the schema of the
table. However, one qualifier belongs to a family and it is
only declared at insertion time. Thus, providing enough
flexibility as expected in a schemaless database. Then, for
each family and qualifier, there are versions (timestamps).
Each combination of a family, qualifier and version deter-
mines an attribute value for a given key. For instance, a
table could have the family “building”, and this family
could have “price” and “surface” as qualifiers (i.e.,
different attributes). Versioning keeps track of the n
(configurable) most recent values of these attributes.

HBase physically stores each family in a different file and
thus, natively supports vertical partitioning. Vertical parti-
tioning is relevant for read-only workloads since it improves
the system performance, because non-relevant families (for
the current query) are not read [16]. Note that qualifiers play
a key role to decide which attributes must be stored
together on disk by placing them in the same family.

Data belonging to the same region must be stored in
the same DataNode in HDFS (in order to avoid degrading
performance). Otherwise, data would be unnecessarily
spread all over the cluster regardless of vertical and
horizontal partitioning strategies applied. Accordingly,
there must be some communication between HDFS and
HBase so data are stored where they are managed (data
locality principle). This implies that a RegionServer must
always run on top of one DataNode. Fig. 3 presents a UML
diagram depicting how HDFS and HBase are coupled.
As shown in this figure, HBase tables are horizontally
partitioned in regions that, in turn, are vertically parti-
tioned (according to families) in stores. There is exactly
one store per region and family. Data are physically stored
in stores: first, in in-memory buffers (memstores), which
are then flushed to disk as storefiles. Storefiles are repre-
sented as HFiles (having specific metadata), which are
divided into HBase blocks. Finally, these storefiles need to
be written in HDFS, so they are chunked into HDFS blocks
(note that in Hadoop they refer to HDFS blocks as synonym
of HDFS chunks, which would be more appropriate, since
they are not physical disk blocks) and replicated across
different DataNodes. Note that this is a logical schema and
thus, the physical settings in terms of which HDFS blocks
are stored are not depicted here (indeed, they depend on
the cluster configuration). In this paper, we will normally
talk about HBase blocks and therefore, when referring to a
“block”, it must be read as a HBase block unless the
opposite is explicitly said. In order to guarantee the data
locality principle (i.e., a DataNode stores the HDFS blocks
of the storefiles it holds as RegionServer), the control flow
between HBase and HDFS is as follows. When a Region-
Server writes on disk it asks to its DFS client to open a
writer stream. As the RegionServer writes, the DFS client
packages these data until it reaches the maximum HDFS
block size. At this point, the DFS client communicates to
the NameNode the need to materialize such block and it is
the latter who decides where to place the master copy of
such block (as well as its replicas). The NameNode applies
an internal policy to do so (see [18]) that firstly checks if
there is a DataNode running on the same node as the DFS
client who asked for writing the block. If so, the local
DataNode stores the master copy.

Relevantly, HBase implements a cache to store recently
read blocks. This way, HBase may save reading a block
from disk if recently read and still cached. Last, note that
HBase tuples can only be accessed using the HBase scan
object, which retrieves tuples by means of the distributed
Bþ index and thus, efficiently supports retrieving a single
key or a range of (consecutive) keys (i.e., typical Bþ
accesses).

Finally, Zookeper [19] is “a centralized service for main-
taining configuration information, naming, providing distrib-
uted synchronization, and providing group services.”. In
HBase it is basically used to keep track of the distributed
Bþ index. ZooKeeper points at the Bþ root table (-ROOT-)
and whenever a tuple must be retrieved from HBase it
finds out where to look for the tuple by exploring the Bþ .
The HBase Bþ has three levels and it is stored as a regular
HBase table. At the first level there is the Bþ root. The next
level corresponds to the regions of the catalog table
(.META.), which points to RegionServers. Finally, the third
level contains the region where these data logically
belong to.

2.3. MapReduce

As stated in [20], “Hadoop MapReduce is a software
framework for easily writing applications which process vast
amounts of data (multi-terabyte data-sets) in-parallel on
large clusters (thousands of nodes) of commodity hardware



Fig. 3. HBase and HDFS.

O. Romero et al. / Information Systems 54 (2015) 336–356340
in a reliable, fault-tolerant manner. A MapReduce job usually
splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner.
The framework sorts the outputs of the maps, which are then
input to the reduce tasks. Typically both the input and the
output of the job are stored in a file-system. The framework
takes care of scheduling tasks, monitoring them and re-
executes the failed tasks.”

MapReduce is a programming framework. The pro-
grammer must define the task input and output, and
implement the map and reduce functions. Then, paralleli-
zation is transparent.

Fig. 4 sketches an easy example of a MapReduce execu-
tion for aggregating data. The map and the reduce functions
must be provided and this is where the programmer injects
his/her code. In this example, only those rows of interest
(i.e., rows from “EUROPE” or “AFRICA”) are sent to the map
functions. Then, the map rearranges the [key,value] pairs
received and produces new [key,value]s useful for the
aggregation. Afterwards, the Merge-Sort process gathers
all these [key K,value V] produced and groups the values V
corresponding to the same key K in a new [key K,value L],
where L is a list containing all these values V. Finally, the
reduce function receives these key-value pairs and iterates
over L to properly aggregate the data. Note however the
difference between a mapper and a map (respectively, a
reducer and a reduce). A mapper is the class distributed
(i.e., the query shipped) and the map is the instance function
processing input elements. When HBase serves as input for
MapReduce, there is exactly one mapper for each region
and each mapper executes one map function for each row
in the region (in the default setting). Note that the row is
properly joined back from the different family files prior to
be sent to MapReduce. The same applies to reducers and
reduces, but in this case a reducer does not depend on how
the input is split but on the task configuration (where the
number of suggested reducers is stated). In this paper we
use the default input and output split configuration in order
to focus on tuning design issues rather than parameters of
the framework, which other works thoroughly studied (e.g.,
[10–13]). Temporal results produced by MapReduce are
stored in HDFS (e.g., the Merge-Sort output). Thus, MapRe-
duce just uses HBase for reading/storing the input/output.
Therefore, for intermediate steps the HDFS configuration
applies.

In our experiments, we have used version 1.0.4 for
Hadoop (HDFS and MapReduce) and 0.94.4 for HBase.

3. Building cubes

In this section, we present two algorithms used to
retrieve cubes from Hadoop, which correspond to the
typical options relational optimizers consider when acces-
sing a table, namely “Index Random Access” (IRA) and “Full
Source Scan” (FSS). In our approach, data is stored in HBase
and the algorithms are implemented as MapReduce jobs.



Fig. 4. MapReduce execution example.

O. Romero et al. / Information Systems 54 (2015) 336–356 341
As discussed in Section 1, we assume a fully denormalized
fact table containing all data related to the subject of
analysis. This solution incurs in extra space, but it avoids
joins. In addition, it allows storing the snapshot of the
dimensional data at the time the fact occurred (i.e.,
facilitating the tracking of slowly changing dimensions).
The two algorithms implemented are as follows:
�
 IRA: This algorithm uses predefined indexes to solve
selection predicates in the query and obtains the
identifiers of the needed tuples meeting such predi-
cates. Finally, it retrieves the necessary fact table data
through random accesses. Thus, IRA mirrors the typical
access plan used with primary indexes [8].
�
 FSS: This algorithm is the baseline to check whether
using secondary indexes on HBase makes sense or not.
Essentially, it scans the whole fact table and filters it by
exploiting the parallelism provided by the cloud.
These algorithms were theoretically presented in [21]
and now have been adapted for large distributed scenarios.
Prior to introduce these two algorithms in detail we first
elaborate on the two tuning features we aim at exploiting
when implementing the IRA and FSS algorithms: data
partitioning and secondary indexes.
3.1. Tuning features

In this section, we go through the details of each tuning
feature previously mentioned. Firstly, we discuss how both
horizontal and vertical partitioning are achieved in HBase
in order to finally identify what factors are playing a key
role in this matter so they are taken into account when
tuning. Secondly, we simulate secondary indexes in HBase.
3.1.1. Data partitioning
As discussed in Section 2, HBase horizontal partitioning

distributes data across regions. When reading from HBase,
MapReduce splits the input data addressing each region to
a different mapper and thus, the number of regions (i.e.,
horizontal partitioning) directly affects the degree of
parallelism of MapReduce tasks.

HBase allows DBAs to manually partition the relations
instead of using an automatic policy. This resembles the
situation for distributed RDBMS where data distribution is
done at design time. However, the Hadoop ecosystem is
thought to provide highly scalable settings and thus a
static/predefined partitioning would not always be the
best choice. For this reason, HBase can be configured to use
different policies for dynamic/automatic partitioning and
even provides tools to let DBAs implement their own. For
the sake of simplicity, we will focus on the default policy.
This systematically checks if there is a storefile larger than
a given threshold. If so, a new region split is triggered and
a new partition (i.e., region) is created. Importantly, if a
storefile is split, all storefiles (i.e., family files) belonging to
the same region will also split (even if they did not reach
the set threshold) to preserve data locality. Formula (1)
shows how this threshold size is set:

split:threshold¼minðR2mem:size;max:sizeÞ ð1Þ

The splitting threshold is defined as the minimum of
(i) a function of the number of regions in the correspond-
ing RegionServer (R) and the maximum size of the mem-
store (mem:size), and (ii) a constant value max:size. The
rationale behind such formula is to use max:size as split-
ting factor in the long term. However, purely using a
constant may lead to low performance in many cases. On
the one hand, a large value would generate few partitions,
and therefore very large amounts of data would be needed
to exploit the parallelism of the cloud. On the other hand, a
small value would lead to too many partitions that would
impact on the final execution cost due to the startup time
of too many parallel tasks. Since setting the right max:size
would not be easy, this formula is thought to deal with this
trade-off. Thus, at the beginning, the first element is used
and data split at a faster pace (regardless of max:size).
Eventually, that value will increase until surpassing
max:size after a certain amount of splits have taken place.
Only from then on, the splitting step will remain constant.

Accordingly, the partitioning strategy tested in this
paper depends on a combination of the following factors:
(i) the number of RegionServers, and (ii) the vertical
partitioning and compression strategies that will impact
on the growth pace of the storefiles. We kept the memstore



Fig. 5. Effect of vertical partitioning on region splits.

Table 2
Snapshot of a secondary index.

Key (hierarchy member) Value (list of fact keys)

Region%Europe%France%Lyon keya, keyc
Region%Europe%Italy%Milan keyd, keye
Region%Africa%Kenya%Nairobi keyb, keyf, keyg
Gender%Male keyc, keyd, keyf
Gender%Female keya, keyb, keye, keyg

O. Romero et al. / Information Systems 54 (2015) 336–356342
size mem:size to its default value (i.e., 128 MB). Examples of
this are as follows:
�
 Let us assume a situation with five regions (i.e., parti-
tions) in total:
○ If the number of RegionServers is five and the

regions are evenly distributed (i.e., every RegionSer-
ver stores one region), then R¼1 and according to
the previous formula, the next region split will occur
when any of the storefiles reaches

split:threshold¼ 12mem:size

○ If the number of RegionServers is one, and therefore
all the regions are stored in the same RegionServer,
then

split:threshold¼ 52mem:size
Thus, the more the RegionServers we have, the more
the regions (i.e., partitions) are created.
�
 Each storefile contains exactly one family and conse-
quently the number of vertical partitions (i.e., families)
determines the number of storefiles. Thus, the larger
the number of families the harder for a storefile to
reach the splitting threshold, since, with less partitions,
each family will contain more attributes and therefore
it is faster for any of them to reach the splitting
threshold (Fig. 5 shows this graphically). Note that this
implies that horizontal partitioning pace depends on
the vertical partitioning design.
�
 Compression has a similar effect on the storefile size.
A strong compression makes the storefiles to use less
space, so it takes more data to reach the splitting
threshold. This effect is the other way round with
lower compression (or no compression at all).

Summing up, since max:size and mem:size are two
constant values, the number of RegionServers sets the
split threshold, whereas the vertical partitioning and the
compression algorithm used (if any) determine how
fast the split threshold is reached (e.g., with no compres-
sion and one family the split threshold will be reached
faster than with ten families and a heavy compression
algorithm).

An important issue the reader may note about this
policy is that it does not guarantee an even distribution of
data. More precisely, such an even data distribution can
only be assumed to take place eventually, when the
constant value max:size is used as main splitting factor
(bear in mind that distribution in HBase is performed
based on the number of regions each RegionServer holds
as pointed out in Section 2.2). Consequently, HBase does
not take into account the amount of data each RegionSer-
ver contains when distributing, but the number of regions.
Furthermore, the first argument of Function (1), which is
the main splitting factor in the short time, is quadratic and
may lead to sensible differences in the data distribution
between nodes. The poor performance of HBase and
MapReduce when distributing data has already been high-
lighted in previous works (e.g., see [22]).

Section 5.3 further elaborates on the distribution of
data in HBase in our experimental settings.

3.1.2. Secondary indexes
Although analytical queries usually perform aggrega-

tions over non-very-selective rows, they exhibit selective
predicates rather often. Accordingly, we aim at exploiting
indexing techniques to avoid full scans of fact tables.
However, note that HBase only provides a distributed Bþ
on the keys and no further support for customized indexes
is provided. Therefore, we assume a traditional approach
for indexing where indexes are built before querying data,
since they can be reused to answer disparate queries if
incrementally maintained to reflect the subsequent
updates.

Setting-up. In our approach, secondary indexes are
implemented as HBase tables containing [key K,value V]
pairs such that the key K refers to a point at the atomic
level of the dimension and the list of fact keys stored in V
points to the fact table rows corresponding to that dimen-
sion member. An example can be found in Table 2. There, it
is shown that the “Region” dimension contains three
aggregation levels (from coarser to finer level: “Conti-

nent”, “Country” and “City”), whereas the “Gender”

dimension only contains one level (“Gender”).
Relevantly, an index key instantiates a whole aggrega-

tion path (i.e., a dimensional value for each level in the
hierarchy). For example, the tuples from the fact table with
keys keyd and keye correspond to “Europe”, “Italy” and
“Milan”members of the “Region” dimension. Thus, given
that HBase tables are physically stored sorted by key, we
can easily pose queries at different aggregation levels. For
instance, retrieving the “All” aggregation level would
mean to scan the HBase table implementing the secondary
index using the dimension name as prefix (e.g., Region).
Alternatively, retrieving a finer aggregation level would
mean to set the prefix to the desired granularity



O. Romero et al. / Information Systems 54 (2015) 336–356 343
(e.g., Region%Europe%Italy). Note that this approach resem-
bles that of traditional multiattribute indexes [8].

Usage. Without loss of generality, in our implementa-
tion, we assume conjunctive selection predicates and,
accordingly, our selection algorithm has been implemen-
ted as a MapReduce job reading from the HBase tables
implementing secondary indexes, with the execution flow
as follows:
(i)
 The selection predicates in the input query are split
into atomic clauses. Each clause is stored in an
HDFS file.
(ii)
 A MapReduce job is set to read such files as input and
there is a mapper for each file (thus, note the number
of atomic clauses impacts on the parallelism provided
for this MapReduce job).
(iii)
 Each mapper reads the corresponding entries of the
secondary index in HBase by using a scan object to
retrieve the keys corresponding to a certain dimen-
sional member according to the prefix configuration
previously discussed (see Section 3.1.2).
(iv)
 The map functions emit the keys that match the
corresponding clause.
(v)
 The reducer functions receive each key as many times
as the number of atomic predicates this key satisfies.
As output, it only emits those keys received as many
times as the number of clauses in the predicate.
Fig. 6. Using secondary indexes with MapReduce.
This selection algorithm could be extended so that step
(iv) informs whether a certain key matches or not the
corresponding logic clause and step (v) evaluates the parse
tree corresponding to the whole predicate. Fig. 6 exem-
plifies the selection algorithm considering the secondary
index depicted in Table 2.
3.2. IRA and FSS algorithms

In this section, we focus on the MapReduce implemen-
tation of the algorithms previously introduced (namely
IRA and FSS) and how they produce the desired data cube
according to the input query. We assume input queries
following the cube-query pattern [23] (thus, with a multi-
dimensional flavor). In terms of SQL, a cube-query state-
ment contains a SELECT clause with a set of (aggregated)
measures and dimension descriptors, a conjunction of
logic clauses (typically known as slicers) and a GROUP BY
clause setting the desired granularity and producing the
data cube multidimensional space. Section 5 further ela-
borates on the characteristics of the queries used in
our tests.

Indexed Random Access (IRA). This approach uses
secondary indexes to solve the selection predicate in the
input query. Thus, it firstly triggers one MapReduce job to
query the secondary index (see Section 3.1.2) and then, in a
second MapReduce job, it performs a random access to the
fact table for each key retrieved by the first job. Fig. 7
depicts the execution process of this algorithm.

Once the set of keys matching the selection predicates
has been found (first MapReduce execution), they are
stored in a temporal HBase table where each key is in a
different row. Note that this automatically sorts the keys,
allowing then to exploit block cache since those keys
accesses are also sorted (see Section 2.2). This temporal
table is the input for the second MapReduce job, which
builds the data cube by retrieving the right attributes,
grouping and finally aggregating. Relevantly, grouping and
aggregation are automatically performed by the MapRe-
duce framework and thus, in this second MapReduce job
we focus on retrieving the needed values. Here, each map
function is responsible for looking for the desired attribute
values, by means of a random access following the input
fact key. Finally, the map emits a [key,value] pair (as
shown in Fig. 4) and it goes on through the rest of the
MapReduce phases to group and aggregate such data.

Full Source Scan (FSS). This algorithm is purely based
on the brute force of the cloud by exploiting parallelism as
much as possible. It reads the whole HBase table, finds the
tuples matching the selection predicate in the map func-
tion and uses the subsequent phases of the MapReduce
framework to group and aggregate data. The example
shown in Fig. 4 sketches a typical FSS execution. Note
that, unlike the previous algorithm, FSS only triggers one
MapReduce job.

For this algorithm we just implemented a small opti-
mization with regard to traditional MapReduce jobs by
using the HBase scan object to filter out those rows not
matching the selection predicate. Thus, the map function
just needs to redefine (i) the key as the data cube
dimensional data (i.e., GROUP BY attributes) and (ii) the
value as the measure values to be aggregated in the reduce



Fig. 7. Index Random Access (IRA).

O. Romero et al. / Information Systems 54 (2015) 336–356344
function. Like in the previous approach, the MapReduce
framework automatically does the grouping and the
aggregation is implemented in the reduce phase.

4. Cost-based formulas

Our ultimate goal is to estimate the cost of each of the
algorithms presented in Section 3.2 (depending on the
partitioning in Section 3.1.1). Consequently this section
introduces, in a first step, the factors that will take part on
the formulas that, in a second step, will be used to perform
such estimations.

4.1. Cost factors

In this section, we focus on the two main cost factors
detected, which deserve further discussion to be precisely
defined in terms of Hadoop.

4.1.1. Read cost
This is a well-known cost (also for RDBMS) related to

retrieving blocks from disk. The more the blocks to read,
the higher the cost. Here, disk blocks refer to HBase blocks
(see Section 2.2) and it corresponds to the overall number
of blocks to be read by the algorithm.

A relevant factor affecting the read cost is the vertical
partitioning strategy applied by HBase. In the presence of
vertical fragmentation, when it comes to reading a certain
attribute, HBase may not need to read the whole tuple but
just the stores containing such attribute. As explained in
Section 2.2, vertical partitioning is performed after hor-
izontal partitioning in HBase and thus, we should not talk
about families, but about stores (in which there is exactly
one per family and region). For instance, if the attributes a
and b belong to the same family f, then only those stores
related to f must be read. However, in case they are stored
in different families fa and fb, then all the stores for both
families must be read.

4.1.2. Fetch/Flush cost
The file system (HDFS), the database (HBase) and the

query answering engine (MapReduce) are three different
processes so they do not share memory. Consequently, they
communicate to each other through the network by means
of Remote Procedure Calls (RPC), which means that a call to
this communication protocol happens each time a certain
amount of rows is sent from one component to another and
thus, it must also be considered as a main factor as well as
the involved network costs. HBase data are ultimately
stored in HDFS chunks and wrapped in a specific format
(see HFile in Fig. 3), so HDFS reads these data from the file
system but it is unable to understand them. Therefore, it is
HBase responsibility to interpret the data received from
HDFS and properly apply the scan properties (i.e., those of
the HBase scan object) on the tuples. Afterwards, the fetch
cost pops up again when sending data from HBase to
MapReduce (i.e., when a MapReduce job is configured to
read from HBase tables). Thus, this cost should be consid-
ered in both cases. However, for the sake of simplicity, we
will only consider the transmission cost between HBase and
MapReduce. Note that by doing so, we do not diminish the
cost of moving data between HDFS and HBase but we
contemplate it as part of the read/write cost explained
above (sending data to the client asking for it is normally
considered part of the read/write task). The fetch/flush cost
becomes more important when it comes to moving data
across the cloud, but it is even relevant when source and
target sit in the same machine. This is a well-known
bottleneck in the Hadoop ecosystem and nowadays we
can find Hadoop-derived products, such as Cloudera Impala
[10], that reduce the impact of this cost by coupling the
different components and communicating through main
memory. Hadoop v2.2.0 also tackles this issue by imple-
menting “Short-Circuit Local Reads” in HDFS, as explained
in [24]. This technique allows a DFS Client (HBase) to
directly read data bypassing the DataNode (HDFS), see
Fig. 3. Of course, this can only be used when they are both
located in the same machine. However, note that this
solution does not solve the fetch/flush cost between HBase
and MapReduce, but between HDFS and HBase.

4.2. Cost formulas

In this section, we aim at estimating each algorithm
cost. These formulas come from the knowledge gathered
at studying the Hadoop ecosystem and build on top of the



Table 3
Variables used in the costs formulas.

Variables Description

tD Time to access a disk block
tRPC Time of one RPC call
tbyte Time to transfer one byte through the network
tMR MapReduce start-up time
tshuffle Time involved since mappers write their temporal results until reducers read them
PX Parallelism provided by “X” (i.e., the maximum number of MapReduce subtasks running at once)
BX Number of blocks of “X”
RX Number of rows per block of “X”
jTj Cardinality (i.e., number of rows) of the fact table T
family_row_lengthi Average overall length of the attributes to be retrieved from family ith
fkey_length Average space per fact key in the index
block_size Size of a disk block (i.e., 64 kb)
#f Number of families to be read
#σ Number of slicers in the predicate
Sf ½i� Selectivity factor (i.e., percentage of tuples in the output wrt the input) of the predicate [or ith slicer]
C HBase scan buffer size

O. Romero et al. / Information Systems 54 (2015) 336–356 345
main cost factors discussed in the previous section. In the
spirit of relational query optimizers, these formulas are
meant to be the seed of a cost-based model to deploy a
query optimizer for Hadoop, which is the main objective of
our future work.

Prior to introduce the costs formulas, we would like to
start defining the variables used in this section. Table 3
shows their meaning.

Index Random Access (IRA). IRA consists of two
MapReduce jobs: (i) for accessing the secondary index,
and (ii) for retrieving those values of interest from the fact
table. The cost formula of IRA should be the sum of these
two tasks plus the cost of starting two MapReduce jobs
(which is only relevant when we are processing small
amounts of data), as shown in the following formula:

IRA¼ IRAindexþ IRAtableþ2tMR ð2Þ

Thus, since the first MapReduce accesses the secondary
index (which is an HBase table) once per slicer, we first
estimate the amount of blocks read (Formula (3)). For each
access, at least, one block is read but in general additional
blocks may be read depending on the number of keys to
retrieve and the number of keys stored per block in the
index. Thus, to compute the number of blocks we first
weight the cardinality of the table with the slicer selectiv-
ity factor (i.e., the number of fact keys we need to retrieve
from the index) and multiply this value by the average size
of each key, which is the size of all the keys in bytes. Note
that, in the worst case, the first key is always read when
accessing the first block and that is the reason to subtract
one to the number of keys to be read in subsequent blocks.
Finally, we compute the number of blocks by dividing the
size of the keys read by the size of the block (in bytes):

Bi ¼ 1þðSf i jTj�1Þfkey_length
block_size

ð3Þ
IRAindex ¼
tD ∑

#σ

i ¼ 1
Bi

 !
þFindex

Pindex
þtshuffleþ

Sf jT j
tRPC
C

þtbytefkey
�

minðPreduce
In Formula (4), we estimate the overall cost of accessing
the index as, in first term, (i) the blocks read for all the
slicers in the query predicate and (ii) transferring them to
mappers (i.e., fetch cost), plus the shuffle cost (i.e., the cost
of merging and sorting the output from mappers and the
cost of storing and reading intermediate results from
HDFS), plus the cost of transferring the final result to
HBase (one RPC call per key, the network cost of sending
the data, and the cost of writing the temporal table storing
the selected keys).

The first factor is weighted by the parallelism provided
when querying the secondary index. Note hence that
Pindex describes the workload portion that can be run
simultaneously in the mapper task accessing the second-
ary index. However, such parallelism degree depends
on how the MapReduce job input is split. According to
what has been explained in Section 2.3, it is the minimum
of the number of slicers, the number of regions in the
index, and the number of RegionServers. For instance,
if the number of regions in the index is one (or the
number of slicers is one), it does not matter how many
RegionServers there are in the cluster since the MapRe-
duce input will not split and no parallelism would be
provided at all. Note that, in general, this is different from
the parallelism of flushing and writing the temporal table,
which is bounded by both the number of reducers and the
number of regions generated in that table. The fetch cost
Findex also involved in this part of the formula depicts the
cost of moving the selection keys from the secondary
index to mappers (see Formula (5)). For each slicer, there
is one RPC call needed to request that secondary index
entry plus the cost of sending through network as many
bytes as the whole set of keys related to such slicer
occupies
_length
�
þBtemptD

r ; PtempÞ
ð4Þ



O. Romero et al. / Information Systems 54 (2015) 336–356346
Afterwards, the MapReduce shuffle cost comes to play.
Firstly, note that the keys stored in the secondary index are
lexicographically sorted and thus, when processing these
keys in this MapReduce job we do not need to consider the
full cost of the Merge-Sort phase since the output of the
mappers is already sorted as their input is. In other words,
having the keys already sorted in the secondary index
means there is no Sort cost at all during the Merge-Sort,
but yet keys outputted from different mappers need to be
merged so there is still need of considering the Merge cost.
For the sake of simplicity, we do not go through the details
of this cost (e.g., see [8] for more details on the Merge-Sort
cost). Secondly, and as it was pointed out in Section 2.3,
intermediate MapReduce results are written in HDFS. The
tshuffle variable reflects the cost of interacting with HDFS to
store the intermediate results:

Findex ¼ ∑
#σ

i ¼ 1
ðtRPCþtbyteSf i jTjfkey_lengthÞ ð5Þ

The value for Btemp can be estimated by using Formula
(6). We just multiply the number of keys in the output by
the size of each fact key, then this is divided by the size of
the block. This value is rounded up since it corresponds to
the precise number of blocks needed (thus, this value is
not an average like Bi ). Note that data inserted in HBase is
first stored in in-memory buffers (i.e., memstores) as
stated in Section 2.2. According to this, it could be the
case that the whole temporal table fits in a single mem-
store so there would be no need of flushing it to disk. In
such situation, our formulas should take Btemp ¼ 0 since no
physical blocks are written and no memory costs are
considered. For the sake of simplicity, we then assume
that this temporal table is fully either in disk or in main
memory, though a real-world scenario could contemplate
a situation where it is partially in disk and partially in
memory. Consequently, the condition to whether enable
Btemp or not is Sf jT jfkey_length4mem:size:

Btemp ¼
Sf jTjfkey_length

block_size

� �
ð6Þ

After accessing the index it is time to retrieve the right
data from the fact table. This second cost is depicted in
Formula (7) and resembles how we accessed the index. In
this case, Ptemp refers to the parallelism provided by
MapReduce when accessing the temporal table, and it is
defined as the minimum of the number of RegionServers,
and the number of regions of the temporal table. In other
words, Ptemp corresponds to the input split available for the
second MapReduce job. However, we may expect a low
number of regions for the temporal table, since this is
several times smaller than the fact table (it only stores fact
keys) and as a consequence, the HBase horizontal parti-
tioning strategy barely splits the table (see Formula (1) in
Section 3.1.1), which, in turn, affects the parallelism
provided at this step.

The numerator then corresponds to reading the blocks
from the intermediate table, plus the cost of reading the
necessary blocks from the fact table, plus the fetch cost of
retrieving those data from HBase to MapReduce. Despite
coming from random accesses, there is a probability that
two fact keys fall into the very same block of the fact table.
Since the input is sorted by key and HBase implements a
cache (see Section 2.2), it may happen that the second key
does not produce any real disk access but a hit in the
cache. Thus, we estimate the percentage of distinct blocks
to be read as ð1�ð1�Sf ÞRi Þ. Note that this scenario depends
on the selectivity factor (the more tuples to be retrieved,
the higher the chance), but also on the number of rows per
block in each family (Ri).

The cost Ftable depicts the fetch cost when it comes to
the fact table and also depends on the number of tuples
and the row length in the corresponding families as shown
in Formula (8). Firstly, note that, since we are using a
secondary index for the selection in this algorithm, neither
the rows of no interest nor the selection attributes must be
considered. Thus, we only have to send the measures and
dimensions of the rows that matched the selection during
the first MapReduce execution.

Moreover, when it comes to sending data from HBase
to the client, the HBase scan object can be configured to
pack a certain amount of tuples C together, and send them
at once. By doing so, HBase benefits from network band-
width, but it uses more memory to implement the needed
buffer. Note that IRA would not benefit from the buffer,
because it retrieves one row per map function from the
mapper, which implies C¼1. Nevertheless, we have
included C in the fetch cost formula Ftable to show that it
is generic and can be then reused for FSS (by just using a
different value of C).

Thus, the final IRA fetch cost for the fact table is given
by the cost of performing one RPC call plus sending as
many data as needed in each packet (which depends on
the number of families and their row length), multiplied
by the number of packets (i.e., one per row in the output).

IRAtable ¼
BtemptDþ ∑

#f

i ¼ 1
ð1�ð1�Sf ÞRi ÞBitDþFtable

Ptemp
ð7Þ

Ftable ¼ Sf jTj
tRPC
C

þtbyte ∑
#f

i ¼ 1
family_row_lengthi

 !
ð8Þ

Full Source Scan (FSS). The baseline for the comparison
is the full scan. As its name suggests, the cost of this
approach consists basically in reading the whole table.
Thus, the execution cost is as denoted in Formula (9). Note
that this performs the selection by reading the whole
table, so there is no need for a previous MapReduce job
accessing the index. This also means that those families
containing the selection attributes must be read as well
and, unlike IRA, #f additionally includes those families
containing selection attributes:

FSStable ¼
tD ∑

#f

i
BiþFtable

Ptable
þtMR ð9Þ

The fetch cost Ftable in this formula is given by shipping
families containing measures, dimensions and selection attri-
butes for those rows matching the selection. Rows are first
read from HDFS and sent to HBase. Then, HBase applies the



O. Romero et al. / Information Systems 54 (2015) 336–356 347
object scan configuration to the received rows and filters out
the undesired tuples. Since this selection process is done at
this reading time, these non-matching rows are not sent to
the MapReduce task. Accordingly, the fetch cost is computed
as in Formula (8). In this case, we can benefit from buffering
the tuples by configuring a high value of C. Last, but not least,
note that we do not consider the Merge-Sort cost of the
MapReduce job since we aim at comparing IRA and FSS and,
at this stage, in both cases the same amount of data will go
through the Merge-Sort. Consequently, this factor has been
simplified from the IRAtable and FSStable formulas.

As a matter of fact, note that our formulas assume an
even distribution of data across the cluster. If this was not
the case, the skewed distribution would affect the Px
variables, which represent the parallelism achieved in the
MapReduce jobs. Additionally, note that Px are also affected
by the MapReduce configuration parameters, which we
keep at their default values (e.g., number of mappers and
reducers). In this sense, our work mainly focuses on
database tuning (i.e., at the HBase level), impacting on the
variables in the numerator of the formulas, and it comple-
ments previous works working at the MapReduce frame-
work (such as [12,13]), which introduce tuning techniques
that would maximize the value of each Px.
5. Experimental setting

Next, we aim at validating the cost formulas discussed
in the previous section by means of empirical testing and,
accordingly, we devised a thorough battery of tests. As
previously discussed, we focus on database tuning and we
avoid playing with the configuration parameters of the
Hadoop ecosystem. The experiments were devised con-
sidering the following primary factors: (i) the database
size, (ii) the query topology, and (iii) data partitioning.
First, we present the parameters used to generate different
configurations of these factors. Note that replication is
set to 1 and is not tested in our experiments. The reason is
that testing the system availability and robustness is out
of the scope of this paper. Then, for each resulting
combination the IRA and FSS algorithms were triggered
and we kept trace of the performance obtained in
each case.

All tests have been performed in a homogeneous user-
shared cluster but limited to one CPU per machine (since
the other is exclusively used for the cluster management).
The number of machines used is variable. Thus, we run the
same experimental setting but using 2, 5 and 8 nodes
(more details in Section 5.2). Nevertheless, as stated
Table 4
Summary of the factors and values to test.

Test parameters

Scale factor (SF)
Number of queries
Number of RegionServers
Vertical partitioning strategies
Compression
previously, the machines used are homogeneous and the
specifications are as follows:
�
 2 CPUs Intel Xeon Dual-Core 2.333 GHz, FSB 1333 MHz,
4 MB Cache.
�
 12 GB RAM.

�
 Hard disk SEAGATE Barracuda 320 GB S-ATA-2.

�
 2 NICs Intel Pro/1000 Gigabit Ethernet

As a mere summary of what is going to be explained
next, Table 4 shows the test parameters.

5.1. Database size

The input database was populated according to the
TPC-H specification (see [25]). However, the insertion
process was modified to load a single fully denormalized
fact table. The data volumes chosen (the so-called Scale
Factor, SF from here on, in the TPC-H benchmark) were 2, 4
and 6. In the normalized TPC-H, these SFs correspond to 2,
4 and 6 GB. However, in our case, these SFs turned
approximately into 60, 120 and 180 GB. The reason of such
difference is mainly data denormalization but also because
HBase stores for each attribute value, the key, the family,
the qualifier and the version it belongs to (i.e., all its
metadata). This also means that both read and write costs
are topped by these additional metadata, and we include
these in the family_row_length and fkey_length values.

5.2. Query topology

The queries have been defined as a summarization of
the real TPC-H queries and are aimed at testing the three
main predicates of a cube-query: the cardinality (i.e.,
number of atttributes) of grouping, projection and selec-
tion attribute sets, plus the query selectivity factor. In
order to do such summarization, the process applied has
been to test the minimum, the maximum and the mean of
each of these values (according to the TPC-H queries),
while other features remain at the median (which mea-
sures the centrality of the distribution much better than
the mean). The selectivity factors tested are powers of ten
between the minimum and the maximum in TPC-H. For
instance, if the TPC-H query with the lowest projection
cardinality is one, and the highest is nine, we have defined
three queries with one, five and nine projection attributes,
while the rest of the features are set to their median when
projection attributes are studied. Table 5 shows the values
to test for each characteristic.
Values

2 (�60 GB), 4 (�120 GB) and 6 (�180 GB)
15 (see Table 5)
2, 5 and 8
ColumnFamily, AffinityMatrix and SingleColumn
GZ and none



Table 5
TPC-H query statistics.

Cardinality Min Max Mean Median

Projection 1 9 5 3
Grouping 0 6 3 1
Selection 2 8 5 2
Selectivity factor 10�5 1 NA 10�2

O. Romero et al. / Information Systems 54 (2015) 336–356348
5.3. Data partitioning

In Section 3.1.1, what factors affect the HBase data
partitioning policy are explained. Accordingly, the values
assigned to each of these factors are as follows:
�
 The number of RegionServers to test is 2, 5 and 8. We
chose 2 because it is the minimum number of Region-
Servers to deploy a distributed system. Then, we choose
8 as a number large enough as to test the difference
between both settings (as a rule of thumb, previous
works argued that an 8-machine Hadoop cluster com-
petes in performance with parallel databases, e.g., [13])
but at the same time being reasonable as to be able to
trigger a large amount of tests. Finally, five RegionSer-
vers because it is the mean of the other two.
�
 The vertical partitioning is also tested by three different
strategies. The first one is to use one family per attribute.
Since there are approximately 60 attributes in the TPC-H,
we are then using 60 families as well. We will refer to
this vertical partitioning strategy as ColumnFamily from
now on. The second strategy is the other way round and
thus a single family stores all the attributes (SingleColumn
strategy). Finally, in order to test out some intermediate
strategy between these two, we use the affinity matrix
algorithm to compute affinities between attributes and
decide how to partition [16]. The result after applying the
affinity matrix is a family grouping six attributes (more
precisely, the six attributes used for the projection,
grouping and selection medians, which are repeated in
12 out of 15 queries each) whereas the rest remain in an
attribute per column (meaning their affinity is too low as
to group them). We will refer to this strategy as
AffinityMatrix.
�
 For compression only two values are tested (either no
compression or using GZ). The reason is that the GZ
algorithm is the only one natively offered by HBase.
6 A salt is random data used as an additional input of a function. For
instance, in cryptography, salts are used to wrap hash function inputs into
more complex inputs.
As discussed in Section 4.2, our formulas assume an
even distribution of data. As we have seen in Section 3.1.1,
however, the default split policy in HBase has some
deficiencies that do not guarantee an even distribution of
data. Such deficiencies are put into numbers in Fig. 8. This
figure depicts the standard deviation of the distribution of
data obtained when varying the SF and the number of
RegionServers in a ColumnFamily scenario. Lower standard
deviations indicate evener distributions of data. On the
one hand, the higher the number of RegionServers we
have, the lower the standard deviation we obtain (see
Formula (1)). On the other hand, increasing the data
volume always worsens the uniformity of data distribution
as long as regions do not split at constant pace.

For this reason, in our experimental setting we guar-
anteed an even distribution of data by using the presplit
functionality HBase provides. This functionality allows a
table to split before inserting data based on some criteria.
In our setting the keys are designed consecutively
(although not generated/inserted consecutively) and used
to presplit the table and distribute it. Once the insertion
process starts, the default split policy takes place but,
comparative to the previous situation, several regions are
now created beforehand, populated in parallel and there-
fore growing and splitting at a similar pace. Oppositely,
without presplitting, the table was initially composed of
one region placed in one RegionServer. Thus, that region
(respectively, that RegionServer) received all the insertions
until the first region split took place. Indeed, many splits
were needed before all the RegionServers in the cluster
came to play and hence being detrimental to parallelism.

One may be tempted to think that such approach is
only valid when knowing the keys beforehand. However,
carefully designing the key to evenly distribute the work-
load is a well-known technique known as key-design
[26,27]. For example, a poor key design would be to use
the insertion timestamp as key because the rows would
then be always stored in the most recent region. Oppo-
sitely, a good key design must guarantee that all regions
are constantly active (i.e., storing new data) and therefore
leveraging the distribution of data. For example, we may
use salted6 timestamps, where the salt is generated
artificially, uniformly and proportionally to the number
of machines. In general, the key-design problem is an
orthogonal issue to be carefully considered for each
system.
6. Discussion of results

In this section, we discuss the conclusions drawn from
the battery of experiments carried out. First, we argue
about the correctness of the formulas presented in Section
4.2 by justifying that (i) no relevant parameter has been
omitted to devise the cost formulas and then we show that
(ii) these formulas properly predict the best algorithm in
98.15% of the cases, given an even distribution of data in
the RegionServers, all in all, validating the feasibility of
using these formulas to predict the behavior of Hadoop.
6.1. Relevant cost parameters

In Section 5, we have discussed what parameters were
used to characterize the query topology and data parti-
tioning. Here we discuss the conclusions drawn for each of
these factors. For the sake of simplicity, those factors
related to partitioning are fixed to their highest value (as
shown in Table 6), when testing the query topology.



Table 6
Test factors fixed.

Scale factor 6
Number of RegionServers 8
Compression None

Fig. 11. Selection attributes in AffinityMatrix.

Fig. 10. Grouping attributes in SingleColumn.

Fig. 9. Grouping attributes in ColumnFamily.

Fig. 8. Standard deviation of the data distribution for the ColumnFamily
strategy.

O. Romero et al. / Information Systems 54 (2015) 336–356 349
Oppositely, on testing partitioning, values modifying the
query topology are fixed to the median.
6.1.1. Query topology
From the results obtained for the query topology study

we draw the following conclusions:
�
 Grouping and projection cardinality. Fig. 9 depicts the
behavior of each algorithm with queries evaluating the
grouping cardinality under the ColumnFamily vertical
partitioning strategy.
This figure clearly shows that reading more attributes
increases the cost since more families must be read.
Indeed, the ColumnFamily strategy raises a 100% effec-
tive read ratio since there is one family per attribute
and only relevant attributes are read. Oppositely, Fig. 10
shows that the SingleColumn strategy is not affected by
the number of attributes to be read.
In case of using the AffinityMatrix strategy, the tests
show an intermediate effect, as expected. When read-
ing a new attribute from a family already read leads to
no additional cost, but if the attribute is stored in
another family not yet read it increases the read cost.
Importantly, the same explanation provided for group-
ing attributes holds for projection attributes.
�
 Selection cardinality. The number of selection clauses
(i.e., slicers) impacts on the cost depending on the
selection algorithm we are applying: either (i) using
secondary indexes, like IRA or (ii) by accessing the fact
table and evaluating the selection predicate on the
values of the tuple, like FSS. On the one hand, (i)
represents the number of random accesses to be
performed to the secondary index (one access per slicer
in the query). On the other hand, (ii) means reading
more or less families (depending on the vertical parti-
tioning strategy), so the rationale presented for group-
ing and projection attributes also holds here.
Our tests show that accessing the index becomes more
costly as the number of attributes to be read increases
(see Fig. 11). Note that in this case we are focusing on a
relative comparative between (i) and (ii) and how these
two scenarios affect the read cost and it must not be
understood as an overall query performance discussion.
Indeed, since some factors have been fixed to constant
values (see Table 6), the overall performance cost refers
to this scenario. The impact of those other factors will
subsequently follow.
�
 Selectivity factor. The selectivity factor showed to be
the most relevant parameter for the query topology.
While the three previous factors tell us the number of
families/attributes to be read, the selectivity factor tells
us the number of rows to be read. Thus, the selectivity
factor allowed us to perform a first approach to how
each algorithm performs compared to the other.
Consider now Fig. 12, which clearly shows that the
selectivity factor plays a crucial role to choose between



Fig. 12. Selectivity factor in SingleColumn. Fig. 13. FSS performance regarding the vertical partitioning.

Fig. 14. IRA performance regarding the vertical partitioning.

Table 7
Decision table for the best vertical partitioning.

O. Romero et al. / Information Systems 54 (2015) 336–356350
the two algorithms. On the one hand, IRA performs
better when dealing with low selectivity factors (which
is the expected outcome since IRA was precisely
designed to match the behavior of indexes in RDBMS
and perform random accesses instead of a full table
scan). Note that it grows exponentially as the selectivity
factor does. The last two values have been removed
from this figure in order to avoid detracting it (but they
correspond to 11,800 and 56,295 s). On the other hand,
FSS offers better results as the selectivity factor grows.
As more data has to be retrieved from the table, random
accesses become more costly and sequential reads
become more efficient (even if the whole table is to be
read). Thus, note that the same behavior as in RDBMS is
shown for the Hadoop ecosystem. Note that though the
steep increases in the tail of the FSS graph, this increase
is not due to the read cost (FSS always reads the whole
table) but due to the fetch cost, which is strongly related
to the query selectivity factor. In this figure, the selectiv-
ity factor increases by powers of 10 and for Sf¼1 the
whole table is shipped to MapReduce, whereas only 10%
of the tuples are sent for Sf¼10�1. Comparatively, this
figure also shows the lack of parallelism behind the IRA
approach (which depends on the number of atomic
selection clauses and the size of the intermediate table)
and its quick performance degradation, since (i) the
temporal table produced as an intermediate step in IRA
does not split in enough regions as to match the
parallelism of FSS (which depends on the number of
regions of the table), and (ii) the fetch cost is computed
in IRA by means of C¼1 (see Section 4.2).

6.1.2. Data partitioning
For the data partitioning study we draw the following

conclusions regarding the three factors impacting on how
data is partitioned in Hadoop (see Section 3.1.1): the
vertical partitioning strategy, number of RegionServers,
and compression rate.
�
 Vertical partitioning. As outlined in the query topology
discussion, the vertical partitioning strategy resulted to be
a crucial parameter in our tests. Indeed, it impacts on the
data volume to be read for a query. In general, a strong
vertical partitioning leads to an optimal read cost. To
better exemplify this, Fig. 13 depicts FSS performance for
the three vertical partitioning strategies introduced in
Section 3.1.1. There, the performance clearly improves
when data is partitioned in a precise manner with regard
to the attributes required by the query at hand (i.e.,
ColumnFamily and AffinityMatrix). Note that, again, we
relate the vertical partitioning strategy to the selectivity
factor, as they are clearly correlated, whereas the number
of grouping and projection attributes, as well as the
number of selections is fixed to the median. Using a
SingleColumn strategy clearly worsens the performance,
regardless of the selectivity factor, since the amount of
attributes read (including those not requested by the
query) is bigger. In addition, the fetch increase previously
discussed is reflected in all three vertical partitioning
strategies.
Fig. 14 shows the behavior of IRA. Oppositely, the perfor-
mance of IRA does not clearly depend on the vertical
partitioning strategy. This result is sound because IRA
relies on random accesses and it exploits the HBase Bþ
index to find the target row. However, the vertical
partitioning strategy still has a certain impact on the
algorithm performance, because the index tells us the
region where to find that row but it depends on the
vertical partitioning strategy to either read one storefile



Fig. 16. Performance given by the number of RegionServers.Fig. 15. Insertion performance.

O. Romero et al. / Information Systems 54 (2015) 336–356 351
containing one needed attribute or a larger one containing
several unneeded attributes.
Table 7 further elaborates on the best vertical partitioning
strategy regardless of the algorithm used and based on
the Scale Factor (i.e., size of the workload to deal with and
roughly speaking the parallelism consequently needed)
per column, and the number of RegionServers (parallelism
provided) per row. The abbreviations are as follows: AM
stands for (AffinityMatrix) and CF for (ColumnFamily). Note
that SingleColumn does not even appear in the table.
Relevantly, this table holds for all the selectivity factors and
the two algorithms tested. Specifically it shows that when
the workload is too large for the parallelism provided (i.e.,
more parallelism would be needed) a ColumnFamily strat-
egy is preferred as the effective read ratio increases (no
unneeded attributes are read). Oppositely, when the
provided parallelism is enough to deal with the workload
provided then using an AffinityMatrix strategy results in a
better performance (since reads are more sequential and
therefore they benefit from parallelism, even though the
100% attribute effectiveness ratio is not achieved like in
ColumnFamily). This table provides valuable guideline for
the designer. Following this reasoning it means that if we
extend this table by adding new rows representing experi-
mental settings with more RegionServers (i.e., larger
amounts of parallelism provided) the SingleColumn strat-
egy should eventually appear in the table as the best
option. To verify this assumption we triggered a testbed
with all the machines in the cluster (i.e., 23 nodes). At this
point, the SingleColumn strategy was not yet able to
improve the performance of the AffinityMatrix but we
verified that with a greater number of RegionServers the
relative performance gap between both strategies drasti-
cally diminishes. According to this evidence, the SingleCol-
umn strategy is likely to appear in Table 7 in the presence
of a large number of RegionServers, although we were not
able to determine the precise number.
Fig. 15 elaborates on the insertion performance regarding
the three vertical partitioning strategies. There, a huge
gap in performance can be seen when inserting, espe-
cially between ColumnFamily and the other two. This is
related to the number of write operations needed
regarding the vertical partitioning and accordingly the
ColumnFamily is largely affected, whereas the SingleCol-
umn raises as the cheapest solution. As usual, the
AffinityMatrix remains as a middle ground solution.
As conclusion, the decision to apply a certain vertical
partitioning strategy must be taken with regard to the
size of the database, the number of machines available
and the frequency of writes. On the one hand, when it
comes to reads, the more the parallelism provided by the
system, the lower the affinity threshold to use when
grouping attributes in families. Alternatively, grouping
attributes with very high affinities is mandatory. On the
other hand, when it comes to write, the lower number of
families, the better. Thus, the SingleColumn strategy is
preferable for write intensive workloads (e.g., OLTP),
whereas stronger partitioning strategies are preferred
for read only workloads (e.g., OLAP).
�
 Number of RegionServers. The number of RegionServers,
in the presence of enough regions, has a positive effect on
the final performance, as shown in Fig. 16, where the
configuration shown in Table 6 also applies. There, the
overall performance of FSS with a SingleColumn strategy
drastically improves as we pass from 2 to 5 servers.
Similarly, we still have a gain when passing from 5 to 8
servers. However, the gain is relatively smaller. This result
is an empiric evidence of a well-known trade-off of
distributed systems formulated in different laws such as
the Universal Scalability Law [28], which argue that the
performance gain is not linear due to contention.
In our tests, due to the small size of the intermediate
temporal table containing only keys (which is not really
partitioned), IRA performance remains mostly unaffected
by the number of RegionServers. Indeed, the same con-
clusions drawn for the effect of vertical partitioning
strategies on IRA can be mapped to this scenario.
�
 Compression and data volume. The tests carried out for
compression raise the same evidences previously dis-
cussed. Compression reduces the amount of data to read
and send from HDFS to HBase, but it trades with the
additional cost of decompression since HBase is respon-
sible for decompressing data and ship it to MapReduce.
Consequently, the fetch cost is unaffected by compres-
sion. Our results show that compression must only be
considered when designing very large tables and there is
a explicit need for reducing the amount of data stored
on disk. In any other case, the decompression would add
an additional cost that would overtake the benefits of
compressing stored data since, from the point of view of
MapReduce, compression reduces the size of the data
stored in HBase so horizontal partitioning is affected
and, in turn, the number of regions, eventually hurting



Table 8
Parameter values for cost estimation.

Parameter Value

tD 0.002 s.
tRPC 0.001 s.
tbyte 0.000001 s.
tMR 30 s.
block_size 64 kb
C 100

O. Romero et al. / Information Systems 54 (2015) 336–356352
the overall parallelism achieved in the system. For these
reasons, we decided not to consider compression in our
formulas. However, adding compression would simply
mean to add the decompression CPU cost to the reading
cost in our formulas, and considering the compressed sizes.

6.1.3. Final discussion
Summing up, the main factors to be considered when

choosing between IRA and FSS are (i) the query selectivity
factor and the database size, (ii) the vertical partitioning
strategy applied to data and (iii) the number of Region-
Servers available. Importantly, all these factors are con-
sidered in our formulas, which do not simply consider the
parallelism provided but show the relevance of database
tuning in Hadoop. However, even if the price of having an
expert DBA able to perform such tuning may put several
organizations off and rather use the brute force on the
cloud, our formulas show that the impact of the tuning in
cloud databases is not to be diminished as it has nowadays
been systematically done.

Indeed, a careful look at our formulas shows that adding
more machines (i.e., RegionServers) would increase the values
in the denominator of the formulas, while database tuning, in
a smarter move, would reduce the values in the numerators.
Consequently, improving the overall performance means to
either (i) decrease the values computed in the numerator,
and/or (ii) increase the denominator. We accordingly claim
that database tuning is still relevant, and not to be ignored.
However, it is also true that there is a limit for the optimiza-
tion obtained by database tuning. In short, the numerator sets
the workload for each machine in the system (represented in
the denominator) and, for this reason, there will always be a
point where no further optimization can be achieved without
adding more machines into the system.

6.2. Predicting the right access plan

Next we prove the accuracy of our cost formulas by
comparing their results against the empirical tests conducted.
To do so, we triggered an exhaustive testbed considering the
main factors discussed in Section 6.1.3. The values appearing
in Table 8 are those used for computing the formulas. Some
values (such as block size, number of families, and size of the
families) are precisely defined but times and lengths have
been empirically estimated,7 which may have introduced an
7 For the tbyte value we considered a very small value trying to
simulate the cost of sending one byte through network, though this is not
error when computing our predictions. Configuration para-
meters were kept at their default value.

The results obtained are shown in Fig. 17, where the
first column refers to the selectivity factor. The yellow and
red cells correspond to the cases where our formulas failed
to predict the best algorithm, while the rest show agree-
ment. Thus, the number of right predictions (blue and
green) is 159 out of 162 queries, which yields a 98.15% of
accuracy. Accordingly, taking these formulas for a cost-
based optimizer would correctly predict the best access
plan in more than nine out of ten queries. This result holds
for a balanced workload distributed throughout the clus-
ter. Oppositely, if the default balancing mechanism is used,
these same tests yield an accuracy of 90.12% because of the
reasons discussed in Section 5.3.

The prediction errors appeared are part of the trade-off
between complexity and accuracy when devising the cost
formulas since, in general, by making our formulas simpler
we incur in less computational cost but, in turn, the overall
accuracy is worsened. Therefore, prediction errors are
unavoidable to pop up in some cases.

All in all, these results justify the feasibility of building
a cost-based optimizer for Hadoop. Previous experiences
with RDBMS showed that cost-based query optimizers are
preferable to rule-based ones, due to the difficulty to
identify optimization rules properly characterizing the
system main factors. In addition, alternative algorithms
to retrieve data from the sources are also needed. For
instance, the IRA performance improvement ratio in those
scenarios providing less parallelism (i.e., SF¼6 with only
two RegionServers and SingleColumn configuration) is
�35.06, �34.08 and �9.9 with respect to the perfor-
mance of FSS for the lowest selectivity factor queries
(respectively, 10�5, 10�4 and 10�3).
7. A hybrid solution: the index filtered scan

The formulas and empirical tests performed raised
some deficiencies on the FSS algorithm (the baseline
algorithm in Hadoop). Indeed, when the selectivity factor
is high enough, the HBase scan object does not filter any
row out before sending data to MapReduce. Consequently,
the fetch cost in this scenario is at its peak. After a
thorough analysis of the results obtained, and in order to
smooth its impact, we propose the Index Filtered Scan
(IFS), which is an improved version of the FSS algorithm. In
short, IFS exploits indexes, meant to be previously created,
to identify the keys satisfying the selection predicates
without accessing the data in the table. Thus, before
sending data to MapReduce it will filter out those rows
not meeting the selections in HBase. Note that IFS resem-
bles the typical access used with bitmaps [8].

As previously discussed, HBase does not support any
kind of secondary index natively. Thus, as proof of concept,
we simulated IFS as follows (see Fig. 18). It first uses the
indexes but avoiding random accesses to the fact
(footnote continued)
possible in a real scenario due to the TCP/IP protocol (i.e., packet size and
headers).



Fig. 17. Prediction of the best access plan. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 18. Index Filtered Scan (IFS).

O. Romero et al. / Information Systems 54 (2015) 336–356 353
table (which would be costly for high selectivity factors).
Alternatively, it aims at scanning the whole fact table.
Thus, we use secondary indexes in a first MapReduce job
to find out the fact keys. Then, we create an in-memory
bitstring (which is created once and transparently distrib-
uted to all nodes in the cluster) based on those keys
obtained from the secondary index. In the second MapRe-
duce job, the bitstring is checked in the mapper and only if
the bit representing that row is enabled the map function
is then executed. As in the other algorithms, we auto-
matically group and aggregate the final values by means of
the MapReduce framework.

7.1. IFS cost formulas

In the spirit of our cost formulas, the IFS algorithm is
characterized as follows. Since IFS, like IRA, performs a
preliminary access to the secondary index, its execution



Fig. 19. Differences in the fetch cost for FSS and IFS.

O. Romero et al. / Information Systems 54 (2015) 336–356354
cost function is composed of two MapReduce jobs:

IFS¼ IRAindexþFSS0tableþ2tMR ð10Þ
For the first MapReduce, the very same explanations

given in Section 4.2 also hold here.
The second phase of this algorithm consists in retrieving

the right data from the fact table. Thus, the cost formula is
similar to that of FSS. Note the subtle (and relevant)
difference. As selection predicates are computed by means
of the secondary index there is no need to consider
attributes used to filter (i.e., in the selection predicates) in
the fetch cost. Hence, the #f variable only counts those
families containing measures and dimensions (and not
selection attributes), just like IRA does.

7.2. IFS empirical testing

In order to test IFS, we repeated the tests discussed in
Section 5 for this new algorithm. However, even if the
performance of IFS is rather close to that of FSS for large
selectivity factors, it does not manage to beat FSS. The
reason is the overhead introduced when simulating bit-
maps. Unlike IRA, we were not able to exploit bitmaps at
the HBase level and as a consequence, the FSS fetch cost
(i.e., cost of sending data from HBase to MapReduce) tends
to be lower than in IFS because rows not matching the
selection predicates can be filtered out within HBase.
Instead, IFS does the filtering at the MapReduce level.
Fig. 19 exemplifies these differences in the fetch cost. “P”,
“G” and “S” in this figure refer to projection, grouping and
selection attributes, respectively.

Nevertheless, as said, IFS is still able to compete with
FSS because under certain circumstances (i.e., with high
selectivity factors), IFS is more efficient when dealing with
selection predicates, specially in highly partitioned tables.
Indeed, FSS sends all the query attributes (i.e., projection,
grouping and selection attribute) to MapReduce. Oppo-
sitely, IFS does not need to retrieve slicer attributes and the
mapper, checking the bitmap, only triggers the map
function if the tuple fulfills the selection predicates of
the query. FSS suffers from this drawback because the
HBase scan object does not distinguish between filtering
attributes (to select tuples) and the rest of the attributes
(data to be retrieved to build the cube). Ideally, the first
ones should be checked at the HBase level and not sent to
MapReduce reducing, this way, the fetch cost. Neverthe-
less, the real gain would be implementing the filtering
bitmap natively inside HBase. This would allow us to filter
tuples at the HBase level and do not even send them to
MapReduce (see Fig. 19). In this way, the IFS algorithm
would clearly beat FSS in the presence of queries with
several slicers and selective predicates.

8. Conclusions and future work

In this paper we have presented the impact of secondary
indexes and partitioning on Hadoop. To do so, we have
described in detail two access plans, namely IRA (which



8 Note that IRA would also benefit from native index management.

O. Romero et al. / Information Systems 54 (2015) 336–356 355
exploits secondary indexes and random accesses) and FSS (the
baseline algorithm typically used in Hadoop), in terms of cost
formulas, as typically done in cost-based optimization in
RDBMS. We then have devised a thorough testbed to validate
our formulas by showing that (i) no relevant cost factor was
omitted and (ii) their correctness to foresee the best access
plan according to the cost factors identified.

Although secondary indexes and partitioning are well-
known tuning techniques for RDBMS they have been
systematically ignored in distributed settings, where par-
allelism is massively exploited in the cloud and seen as the
only alternative to improve performance. In this paper, we
have shown how these techniques can help to drastically
improve the performance of OLAP queries to compute
Small Analytics on Big Data by means of vertical fragmen-
tation (i.e., the definition of families in HBase) and the
creation of secondary indexes.

8.1. The impact of partitioning and indexing

On the one hand, we have shown that the huge impact
vertical partitioning strategies may have in HBase even if
the HBase official documentation states that no more than
three families should be defined (see [29]). With our
approach we have shown just the opposite, and in our
tests partitioning in 60 families combined with sequential
reads has resulted in a much better performance. Never-
theless, when it comes to writing, using that many families
resulted in a worse insertion performance because of the
need to write in 60 different files (one per family). Our
claim though is that there should not be a universal
vertical partitioning strategy for HBase and it should
depend on the kind of workload, the database size and
the number of machines in the system. Indeed, like in a
relational DBMS, it is crucial to properly design the
database according to its workload. On the other hand,
secondary indexes resulted as effective as in relational
settings and the IRA algorithm systematically beat the FSS
algorithm for low selectivity factors. All in all, we have
shown the feasibility to characterize each access plan in
terms of cost formulas, which foresee the need for a query
optimizer in Hadoop/HBase.

8.2. Outlining improvements for HBase

With the testbed carried out, we have also shown that
HBase still suffers from several deficiencies that deserve
further improvements. Firstly, we have shown that there is
an important execution cost (fetch cost) due to the fact
that the three main technologies in Hadoop are loosely
coupled, which results in shipping data from HBase to
MapReduce through the network. Secondly, HBase must
develop native secondary indexes. The tests we conducted
simulated indexes. However, these algorithms were in a
clear disadvantage in front of the baseline algorithm, since
two MapReduce jobs were needed. Ideally, the secondary
indexes should be integrated in HBase as a primary
structure. This way, the indexes would have their own
namespace separated from tables and the temporal table
created after processing the index in IRA (the second
MapReduce job input) could have its own split policy
(e.g., for creating smaller regions) and boost the paralle-
lism within MapReduce by enabling more mappers. Also,
a native index would reduce the IFS execution to one
MapReduce job and, in turn, its fetch cost.8 Actually, as
discussed, IFS should be seen as an improvements of FSS
since the selection predicates would not be checked in
MapReduce but in HBase.

All in all, the main final conclusion is that Hadoop is
still a relatively immature technology compared to RDBMS
and there is much room for improvement, for example, by
reconsidering well-known physical design techniques
applied in RDBMS. However, a good database design is
not enough by itself and there is always a turning point in
which the next performance improvement can only be
obtained by means of adding more nodes, which, in turn,
should entail rethinking the database design to reach the
optimal performance for this new number of machines.
Acknowledgments

We would like to thank Yolanda Becerra for her help on
setting up and managing the Hadoop cluster. This work
has been partly supported by the Spanish Ministerio de
Ciencia e Innovacion under project TIN2011-24747.

References

[1] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.-N. Mazón,
F. Naumann, T.B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis,
G. Vossen, Fusion cubes: towards self-service business intelligence,
Int. J. Data Warehous. Min. 9 (2) (2013) 66–88.

[2] M. Stonebraker, What Does ‘Big Data’ Mean? September 2012.
〈http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-
mean/fulltext〉.

[3] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, H.-A.
Jacobsen, BigBench: towards an industry standard benchmark for
big data analytics, in: SIGMOD Conference, ACM, New York (USA),
2013, pp. 1197–1208.

[4] A. Abelló, O. Romero, On-line analytical processing, in: Encyclopedia
of Database Systems, Springer, New York (USA), 2009, pp. 1949–
1954.

[5] T. B. Pedersen, Multidimensional modeling, in: Encyclopedia of
Database Systems, Springer, New York (USA), 2009, pp. 1777–1784.

[6] K. Morton, M. Balazinska, D. Grossman, J.D. Mackinlay, Support the
data enthusiast: challenges for next-generation data-analysis sys-
tems, Proc. VLDB Endow. 7 (6) (2014) 453–456.

[7] Welcome to Apache Hadoop! 〈https://http://hadoop.apache.org/〉
(Online; accessed 05 March 2014).

[8] H. Garcia-Molina, J.D. Ullman, J. Widom, Database Systems—The
Complete Book, 2nd ed. Pearson Education, Upper Saddler River,
New Jersey (USA), 2009.

[9] J. Pullokkaran, Introducing Cost Based Optimizer to Apache Hive,
August 2013. 〈https://cwiki.apache.org/confluence/download/attach
ments/27362075/CBO-2.pdf〉.

[10] Impala, 〈http://www.cloudera.com/content/cloudera/en/product
s-and-services/cdh/impala.html〉(Online; accessed 12 March 2014).

[11] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke, Nephele/
pacts: a programming model and execution framework for web-
scale analytical processing, in: Proceedings of the First ACM Sympo-
sium on Cloud Computing, SoCC, ACM, 2010, pp. 119–130.

[12] J. Dittrich, et al., Hadoopþþ: making a yellow elephant run like a
cheetah (without it even noticing), Proc. VLDB Endow. 3 (1) (2010)
518–529.

[13] D. Jiang, et al., The performance of mapreduce: an in-depth study,
Proc. VLDB Endow. 3 (1) (2010) 472–483.

http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref1
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref1
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref1
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref1
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref6
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref6
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref6
https://http://hadoop.apache.org/
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref8
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref8
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref8
https://cwiki.apache.org/confluence/download/attachments/27362075/CBO-2.pdf
https://cwiki.apache.org/confluence/download/attachments/27362075/CBO-2.pdf
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref12
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref13
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref13


O. Romero et al. / Information Systems 54 (2015) 336–356356
[14] HDFS Architecture Guide, 〈http://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html#Introduction〉(Online; accessed 05 March 2014).

[15] HBase – Apache HBase Home, 〈https://hbase.apache.org/〉, [Online;
accessed 05-March-2014].

[16] M.T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
3rd ed. Springer, New York (USA), 2011.

[17] 9.7. Regions, 〈https://hbase.apache.org/book/regions.arch.html〉 (Online;
accessed 03 March 2014).

[18] Replication Target Chooser in HDFS, 〈http://svn.apache.org/repos/
asf/hadoop/common/tags/release-1.0.4/src/hdfs/org/apache/
hadoop/hdfs/server/namenode/ReplicationTargetChooser.java〉
(Online; accessed 05 March 2014).

[19] Apache ZooKeeper – Home, 〈http://zookeeper.apache.org/〉 (Online;
accessed 10 March 2014).

[20] MapReduce Tutorial, 〈https://hadoop.apache.org/docs/r1.0.4/
mapred_tutorial.html#Overview〉 (Online; accessed 05 March 2014).

[21] A. Abelló, J. Ferrarons, O. Romero, Building cubes with mapreduce,
in: DOLAP, 2011, pp. 17–24.
[22] C. Doulkeridis, K. Nørvåg, A survey of large-scale analytical query
processing in mapreduce, VLDB J. 23 (3) (2014) 355–380.

[23] R. Kimball, The DataWarehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses, John Wiley, New York (USA), 1996.

[24] Hadoop Distributed File System-2.2.0 – Short-Circuit Local Reads,
〈https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-
hdfs/ShortCircuitLocalReads.html〉 (Online; accessed 02 March 2014).

[25] Decision Support Benchmark (TPC-H), 〈http://www.tpc.org/tpch〉.
[26] L. George, HBase—The Definitive Guide: Random Access to Your

Planet-Size Data, O'Reilly, 2011.
[27] HBase Schema Design, 〈http://2013.nosql-matters.org/cgn/wp-con

tent/uploads/2013/05/HBase-Schema-Design-NoSQL-Matters-A
pril-2013.pdf〉 (Online; accessed 28 July 2014).

[28] B. Schwartz, E. Fortune, Forecasting mysql scalability with the
universal scalability law, November 2010. 〈http://www.percona.
com/files/white-papers/forecasting-mysql-scalability.pdf〉.

[29] On the Number of Column Families, 〈http://hbase.apache.org/book/
number.of.cfs.html〉 (Online; accessed 12 March 2014) (Chapter 6.2).

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
https://hbase.apache.org/
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref16
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref16
https://hbase.apache.org/book/regions.arch.html
http://svn.apache.org/repos/asf/hadoop/common/tags/release-1.0.4/src/hdfs/org/apache/hadoop/hdfs/server/namenode/ReplicationTargetChooser.java
http://svn.apache.org/repos/asf/hadoop/common/tags/release-1.0.4/src/hdfs/org/apache/hadoop/hdfs/server/namenode/ReplicationTargetChooser.java
http://svn.apache.org/repos/asf/hadoop/common/tags/release-1.0.4/src/hdfs/org/apache/hadoop/hdfs/server/namenode/ReplicationTargetChooser.java
http://zookeeper.apache.org/
https://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html#Overview
https://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html#Overview
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref22
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref22
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref23
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref23
https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html
https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html
http://www.tpc.org/tpch
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref26
http://refhub.elsevier.com/S0306-4379(14)00145-8/sbref26
http://2013.nosql-matters.org/cgn/wp-content/uploads/2013/05/HBase-Schema-Design-NoSQL-Matters-April-2013.pdf
http://2013.nosql-matters.org/cgn/wp-content/uploads/2013/05/HBase-Schema-Design-NoSQL-Matters-April-2013.pdf
http://2013.nosql-matters.org/cgn/wp-content/uploads/2013/05/HBase-Schema-Design-NoSQL-Matters-April-2013.pdf
http://www.percona.com/files/white-papers/forecasting-mysql-scalability.pdf
http://www.percona.com/files/white-papers/forecasting-mysql-scalability.pdf
http://hbase.apache.org/book/number.of.cfs.html
http://hbase.apache.org/book/number.of.cfs.html

	Tuning small analytics on Big Data: Data partitioning and secondary indexes in the Hadoop ecosystem
	Introduction
	Hadoop environment
	HDFS
	HBase
	MapReduce

	Building cubes
	Tuning features
	Data partitioning
	Secondary indexes

	IRA and FSS algorithms

	Cost-based formulas
	Cost factors
	Read cost
	Fetch/Flush cost

	Cost formulas

	Experimental setting
	Database size
	Query topology
	Data partitioning

	Discussion of results
	Relevant cost parameters
	Query topology
	Data partitioning
	Final discussion

	Predicting the right access plan

	A hybrid solution: the index filtered scan
	IFS cost formulas
	IFS empirical testing

	Conclusions and future work
	The impact of partitioning and indexing
	Outlining improvements for HBase

	Acknowledgments
	References




