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ABSTRACT
Obtaining the right set of data for evaluating the fulfillment
of different quality standards in the extract-transform-load
(ETL) process design is rather challenging. First, the real
data might be out of reach due to different privacy con-
straints, while providing a synthetic set of data is known
as a labor-intensive task that needs to take various com-
binations of process parameters into account. Additionally,
having a single dataset usually does not represent the evolu-
tion of data throughout the complete process lifespan, hence
missing the plethora of possible test cases. To facilitate such
demanding task, in this paper we propose an automatic data
generator (i.e., Bijoux). Starting from a given ETL process
model, Bijoux extracts the semantics of data transforma-
tions, analyzes the constraints they imply over data, and
automatically generates testing datasets. At the same time,
it considers different dataset and transformation character-
istics (e.g., size, distribution, selectivity, etc.) in order to
cover a variety of test scenarios. We report our experimen-
tal findings showing the effectiveness and scalability of our
approach.
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1. INTRODUCTION
Data-centric processes constitute a crucial part of complex

business processes responsible for delivering data to satisfy
information needs of end users. Besides delivering the right
information to end users, data-centric processes must also
satisfy various quality standards to ensure that the data
delivery is done in the most efficient way, whilst the delivered
data are of certain quality level. The quality level is usually
agreed beforehand in the form of service-level agreements
(SLAs) or business-level objects (BLOs).
In order to guarantee the fulfillment of the agreed quality

standards (e.g., data quality, performance, reliability, recov-
erability, etc.; see [3, 23, 26]), an extensive set of experi-
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ments over the designed process must be performed to test
the behaviour of the process in a plethora of possible ex-
ecution scenarios. In essence, the properties of input data
play a major role in the resulting quality characteristics of
the ETL process. Furthermore, to obtain the finest level
of granularity of process metrics, quantitative analysis tech-
niques for business processes (e.g., [9]) propose analyzing
the quality characteristics at the level of individual activi-
ties and resources.
Obtaining data for running such experiments is often dif-

ficult. Sometimes, easy access to the real data is hard, either
due to data confidentiality or high data transfer costs. How-
ever, in most cases this is due to the fact that only a single
instance of data is available, which usually does not repre-
sent the evolution of data throughout the complete process
lifespan, and hence it cannot cover the variety of possible
test scenarios. At the same time, providing synthetic sets of
data is known as a labor intensive task that needs to take
various combinations of process parameters into account.
In the field of software testing, many approaches (e.g., [8])

have tackled the problem of synthetic test data generation.
However, the main focus was on testing the correctness of
the developed systems, rather than testing different qual-
ity characteristics, which are critical when designing data-
centric processes. Moreover, since data-centric processes are
typically fully automated, ensuring their correct and efficient
execution is pivotal.
In the data warehousing (DW) context, an example of a

complex, data intensive and often error-prone data-centric
process is the extract-transform-load (ETL) process, respon-
sible for periodically populating a data warehouse (DW)
from the available data sources. Gartner has reported in
[25] that the correct ETL implementation may take up to
80% of the entire DW project. Moreover, the ETL design
tools available in the market [19] do not provide any auto-
mated support for ensuring the fulfillment of different qual-
ity parameters of the process, and still a considerable manual
effort is expected from the designer. Thus we identified the
real need for facilitating the task of testing and evaluation
of ETL processes in a configurable manner.
In this paper, we revisit the problem of synthetic data

generation for the context of ETL processes, for evaluat-
ing both the correctness and different quality characteris-
tics of the process design. To this end, we propose an au-
tomated data generation algorithm for evaluating ETL pro-
cesses (i.e., Bijoux). Rapidly growing amounts of data rep-
resent hidden treasury assets of an enterprise. However, due
to dynamic business environments, data quickly and unpre-
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dictably evolve, possibly making the software that processes
them (e.g., ETL) inefficient and obsolete. Therefore, we
need to generate a delicately crafted set of data (i.e., bijoux)
to test different execution scenarios in an ETL process and
detect its behavior over a variety of changing parameters.
To this end, we further tackle the problem of formalizing

the semantics of ETL operations and classify them based on
the part of the input they access when processing data (i.e.,
relation, dataset, tuple, schema, attribute, or attribute value)
in order to assist Bijoux when deciding at which level data
should be generated.
Our algorithm, Bijoux, is useful during the early phases

of the ETL design, when the typical time-consuming evalu-
ation tasks are facilitated with automated data generation.
Moreover, Bijoux can also assist the complete process life-
cycle, enabling easier re-evaluation of an ETL process re-
designed for new or changed information and quality require-
ments. Finally, the Bijoux’s functionality for automated
generation of syntactic data is also important during the
ETL process deployment. It provides users with the valu-
able benchmarking support (i.e., synthetic datasets) when
choosing the right execution platform for their processes.

Outline. The rest of the paper is structured as follows.
Section 2 formalizes the notation of ETL processes in the
context of data generation and presents a general overview
of our approach using an example ETL process. Section 3
formally presents Bijoux, our algorithm for the automatic
data generation for evaluating ETL processes. In Section 4,
we introduce the architecture of the prototype system that
implements the functionality of the Bijoux algorithm and
further report our experimental results. Finally, Section 5
discusses the related work, while Section 6 concludes the
paper and discusses possible future directions.

2. OVERVIEW OF OUR APPROACH

2.1 Running example
To illustrate the functionality of our data generation frame-

work, we introduce the running toy example (see Figure 1)
that shows a simple ETL process, which matches the first
and last name of the customers older than 25 and loads
the initials assigned with a surrogate key, to the data ware-
house. The example includes several ETL operations. Af-
ter extracting data from two sources (I1 and I2), data are
matched with an equi-join (PKey == FKey). Furthermore,
the input set is filtered to keep only the persons older than
25 years (Age>25). The first and the last name of each
person are then abbreviated to their initials and the unnec-
essary attributes are projected out. Lastly, data are loaded
to the target data store.
The Bijoux algorithm thus follows the topological order of

the process DAG nodes, (i.e., I1, I2, Join, Filter, Project,
Attribute Alteration, and Load) and extracts the found
flow constraints (e.g., Age>25 or PKey == FKey). Finally,
Bijoux generates the data that satisfy the given constraints
and can be used to simulate the execution of the process.

2.2 Formalizing ETL processes
The modeling and design of ETL processes is a thoroughly

studied area, both in the academia [28, 18, 1, 30] and indus-
try, where many tools available in the market [19] often pro-
vide overlapping functionalities for the design and execution
of ETL processes. Still, however, no particular standard for

the modeling and design of ETL processes has been defined,
while ETL tools usually use proprietary (platform-specific)
languages to represent an ETL process model. To over-
come such heterogeneity, Bijoux uses the logical (platform-
independent) representation of an ETL process, which in the
literature (e.g., [30, 14]) is usually represented as a directed
acyclic graph (DAG). We thus formalize an ETL process as
a DAG consisting of a set of nodes (V), which are either
data stores (DS) or operations (O), while the graph edges
(E) represent the directed data flow among the nodes of the
graph (v1 ≺ v2). Formally:
ETL = (V,E), such that:
V = DS∪O and ∀e ∈ E : ∃(v1, v2), v1 ∈ V∧v2 ∈ V∧v1 ≺ v2

Data store nodes (DS) in an ETL flow are defined by a
schema (i.e., finite list of attributes) and a connection to
a source or a target storage for respectively extracting or
loading the data processed by the flow.
On the other side, we assume an ETL operation to be an

atomic processing unit responsible for a single transforma-
tion over the input data.
We formally define an ETL flow operation as a quintuple:

o = (I,O,X,P,A), where:

• I = {I1, . . . In} is a finite set of (input) relations.

• O = {O1, . . . Om} is a finite set of (output) relations.

• X (X ⊆ {I1 ∪ I2 ∪ · · · ∪ In}) is a subset of the union of
attributes of the schemata I required by the operation
(i.e., functionality schema, [27]).

• P(X) is a predicate over the subset X of attributes
from the input schemata.

• A is a vector of attributes from the output relation
that were added or altered during the operation.

This notation defines the transformations of the input
schemata (I) into the result schema (O) by applying predi-
cate P over input attributes X and potentially generates or
alters attributes in A.

2.3 ETL operation classification
Furthermore, to ensure applicability of our approach to

ETL processes coming from major ETL design tools and
their typical operations, we performed a comparative study1

of these tools with the goal of producing a common subset of
supported ETL operations. To this end, we considered and
analyzed four major ETL tools in the market; two commer-
cial, i.e., Microsoft SQL Server Integration Services (SSIS)
and Oracle Warehouse Builder (OWB); and two open source
tools, i.e., Pentaho Data Integration (PDI) and Talend Open
Studio for Data Integration.
We have noticed that some of these tools (e.g., Pentaho

Data Integration) have a very broad palette of specific op-
erations (e.g., PDI has a support for invoking external web
services for performing the computations specified by these
services). Moreover, some operations can be parametrized
to perform different kinds of transformation (e.g., tMap in
1More details at: http://www.essi.upc.edu/~petar/
etl-taxonomy.html
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Figure 1: Simple ETL flow example

Table 1: List of operations considered in the framework

Considered ETL Operations
Aggregation Join
Attribute Addition Left Outer Join
Attribute Alteration Pivoting
Attribute Renaming Projection
Cross Join Right Outer Join
Dataset Copy Router
Datatype Conversion Sampling
Difference Sort
Duplicate Removal Union
Duplicate Row Union All
Filter Unpivoting
Intersect Single Value Alteration

Talend), while others can have overlapping functionalities,
or different implementations for the same functionality (e.g.,
FilterRows and JavaFilter in PDI). To generalize such a
heterogeneous set of ETL operations from different ETL
tools, we considered the common functionalities that are
supported by all the analyzed tools. As a result, we pro-
duced an extensible list of ETL operations considered by
our approach (see Table 1).
A similar study of typical ETL operations inside several

ETL tools has been performed before in [27]. However, this
study classifies ETL operations based on the relationship of
their input and output (e.g., unary, n-ary operations). Such
operation classification is useful for processing ETL opera-
tions (e.g., in the context of ETL process optimization). In
this paper, we further complement such taxonomy for the
data generation context. Therefore, as the result, we clas-
sify ETL operations based on the part of the relation they
access when processing the input data (i.e., relation, dataset,
tuple, schema, attribute, or attribute value) in order to assist
Bijoux when deciding at which level data should be gener-
ated. In Figure 2, we show how different parts of a relation
are classified, which forms the basis for our ETL operation
classification.
We further define the semantics of ETL operations using

the notation introduced above, i.e., o = (I,O,X,P,A).
An ETL operation processes input relations I, hence based

on the classification in Figure 2, the semantics of an ETL
operation should express transformations at (1) the schema
(i.e., generated/projected-out schema), (2) the tuple (i.e.,
passed/modified/generated/removed tuples), and (3) the da-
taset level (i.e., output cardinality).
We further give an example of formalizing the semantics
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Figure 2: Relation-access based classification

of an ETL operation (SingleValueAlteration2) that follows
previously described notation.
∀(I,O,X,S,A) (F(I,O,X,S,A) → (SO=SI ∧ |O|=|I|))
∀ti∈I (S1(ti[X]) →
∃to∈O (to[SO \ A]=ti[SI \ A] ∧ to(A)=S2(ti[X])))

2.4 Bijoux overview
Intuitively, starting from a logical model of an ETL pro-

cess and the semantics of ETL operations, Bijoux analyzes
how the attributes of input data stores are restricted by the
semantics of the ETL process operations (e.g., filter or join
predicates) in order to generate the data that satisfy these
restrictions. To this end, Bijoux moves iteratively through
the topological order of the nodes inside the DAG of an
ETL process and extracts the semantics of each ETL oper-
ation to analyze the constraints that the operations imply
over the input attributes. At the same time, Bijoux also
follows the constraints’ dependencies among the operations
to simultaneously collect the necessary parameters for gen-
erating data for the correlated attributes (i.e., value ranges,
datatypes, and the sizes of generated data). Using the col-
lected parameters, Bijoux then generates sufficient sets of
2SingleValueAlteration operation defines the functionality of
modifying the attribute from the input schemata of an op-
eration if a given condition is satisfied.
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input data to satisfy all found constrains, i.e., to simulate
the execution of the complete data flow. The algorithm can
be additionally parametrized to support data generation for
different execution scenarios.
Typically, an ETL process should be tested for different

sizes of input datasets (i.e., different scale factors) to ex-
amine its scalability in terms of growing data. Importantly,
Bijoux is extensible to support data generation for different
characteristics of input datasets (e.g., size), attributes (e.g.,
value distribution) or ETL operations (e.g., operation selec-
tivity). We present in more detail the functionality of our
data generation algorithm in the following section.

3. DATA GENERATION ALGORITHM
The Bijoux algorithm (see Algorithm 1) explores the input

logical model of an ETL process (ETL), extracts the flow
constraints, as well as other generation parameters at the
level of attributes and ETL operations and generates the
data to correspond to these parameters.
In particular, the algorithm includes three main stages

(i.e., 1 - extraction, 2 - analysis, and 3 - data generation).
Example. For illustrating the functionality of our algo-

rithm, we will use the running example introduced in Sec-
tion 2.1. Input datastores of the example ETL flow are: I
= {I1, I2}, with schemata SI1 = {PKey, Age, Name} and
SI2 = {FKey, LastName}; whilst the topological order of
their nodes is: {Join, Filter, Project, Attribute Alteration1,
Attribute Alteration2}. 2

Before going into detail about the three steps of Bijoux,
we present the main structures maintained by the algorithm.
While analyzing the given ETL process model, Bijoux keeps
three structures for recording different parameters that po-
tentially affect the data generation process:

• Constraints Matrix (TC ). Two-dimensional array that
for each attribute (rows) of the input data stores, and
each operation (columns) of the input ETL process,
contains a set of constraints that the given ETL oper-
ation implies over the given input attribute (e.g., con-
straint(Age,Filter) = Age > 25; see Figure 3).

• Attribute parameters (AP). An array of the data gen-
eration parameters at the level of individual attributes
of input data stores of the ETL process. An element of
this array contains information about the considered
attribute (i.e., attribute name, attribute datatype, at-
tribute property list). Attribute property list further
contains an extensible list of attribute properties that
should be considered during data generation (e.g., dis-
tribution(PKey) = uniform; see Figure4:left).

• Operation parameters (OP). An array of the data gen-
eration parameters at the level of ETL operations, ex-
tracted from an input ETL flow or defined by the user.
An element of this array contains information about
the considered ETL operation (i.e., operation name,
operation property list). Operation property list fur-
ther contains an extensible list of operation or quality
properties that should be considered during data gen-
eration (e.g., operation_selectivity(Filter) = 0.7 ; see
Figure 4:right).

In what follows, we discuss the three main stages of our
data generation algorithm. Notice that the first stage (ex-

traction) processes the complete ETL process to extract nec-
essary generation parameters and fill the above mentioned
structures (i.e., AP, OP, and TC ). The analysis and data
generation stages further use these structures to generate
data for each attribute of the input data stores.

1. Extraction stage (Steps 1 - 12) starts from the logi-
cal model of an ETL process (ETL) and first obtains
the source data stores from the process DAG (Step 2).
The algorithm then for each attribute of the source
data stores (i.e., a[i]; Step 5) and each ETL operation
in a topological order of its node in a DAG (i.e., o[j];
Step 7) extracts the data generation parameters, i.e.,
Steps 6 and 8, respectively. At the same time, this
stage extracts the semantics of each operation o[j] and
searches for the constraints that the operation implies
over the given attribute a[i] (i.e., c[i, j]; Step 9). As a
result, extraction stage generates the above mentioned
structures (i.e., AP, OP, and TC ) used throughout the
rest of the algorithm.
Example. Bijoux first iterates through the set of 5 at-
tributes of input schemata (I1 = {PKey,Age,Name}
and I2 = {FKey, LastName}) and extracts parame-
ters at the attribute level (i.e., attribute datatype and
value distribution; see the extracted values in Figure
4:left). Moreover, for each ETL operation of the ex-
ample ETL flow in Figure 1, in the topological order
of their nodes (i.e., Join, Filter, Project, Attribute Al-
teration1, Attribute Alteration2 ), Bijoux collects the
parameters at the operation level (i.e., operation selec-
tivity; see the extracted values in Figure 4:right). At
the same time, for each operation and each attribute
affected by that operation, Bijoux stores the semantics
of that operation in TC (see Figure 3).

2. Analysis stage (Steps 13 - 42) is responsible for iter-
ating over each attribute of the generated structures
and analyzing how the collected parameters (i.e., AP
and OP; Steps 18 and 20) affect our data generation
process. For each attribute (i.e., ith row of TC), we
store the information used during the data generation
stage (e.g., datatype, attribute properties) inside the
gPi structure, as well as the value ranges. In a typ-
ical scenario, a single ETL operation may apply con-
straints over multiple attributes from the input. Thus,
the data for these dependent attributes (i.e., the at-
tributes included in a single ETL operation constraint;
e.g., Join[PKey = FKey] in Figure 3) must be simul-
taneously generated. To this end, after analyzing data
generation parameters of a single attribute for a sin-
gle operation, we must follow the list of all dependent
attributes from the given operation (Step 21), and ana-
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Figure 3: Data gen. parameters (Constraints Matrix - TC)
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Figure 5: TC during the first iteration of the analysis stage

lyze data generation parameters for these attributes in
the same manner (Steps 24, 26, and 27). Similarly, we
analyze operation constraint semantics. Based on the
operation constraints, we find the range (lower and up-
per limit) of each attribute value (and dependent ones)
and update it accordingly whenever the same attribute
is encountered in the following operations (Steps 27,
28 and 36). The idea of ranges has a broad spectrum
of applicability, because it can be applied to numeri-
cal attributes as well as data and textual ones. Later,
these ranges will drive the data generation stage. At
the end of this stage, the genParams list contains the
information for all the dependent attributes, i.e., the
attributes for which the data should be simultaneously
generated.

Example. In the first iteration of the analysis stage,
Bijoux analyzes the operation semantics for the first
(PKey) attribute (i.e., the first row from the TC ma-
trix). For the PKey attribute Bijoux finds the con-
straint “PKey = FKey”, and by analyzing it, it discov-
ers that it also contains a dependent attribute FKey.
Therefore, the algorithm then iterates not only over
the operations that use PKey in their semantic, but
also those that use the dependent attribute FKey (see
Figure 5). Bijoux continues further to collect all the
constraints of operations that use the next attribute
(i.e., Age), and finds Filter (Age > 25) and Project
that use this attribute. Bijoux thus updates the range
of Age (Step 36) and sets the lower limit to 25, as we
need to generate values greater than 25. The algo-
rithm continues in the same manner for the rest of the
unprocessed attributes. 2

3. Data generation stage (Steps 44 - 47), finally, uses the
generation parameters (genParams), resulted from the

Algorithm 1 Bijoux Algorithm
Input: ETL, size
Output: genData
1: AP ← ∅; OP ← ∅; TC ← ∅;
2: DS ← SourceNodes(ETL);
3: for each DS ∈ DS do
4: SI ← InputSchema(DS);
5: for each attribute a[i] ∈ SI do
6: AP[i] ← Extract(a[i]);
7: for each operation o[j] ∈ TopOrder(ETL) do
8: OP[j] ← Extract(o[j]);
9: TC[i,j] ← Extract(c[i,j]);
10: end for
11: end for
12: end for
13: visited ← Boolean Array[Attributes(TC)] {false};
14: for (i := 1 to Rows(TC)) do
15: if (!visited[i]) then
16: visited[i] ← true; genParams ← φ;
17: SetRange(rangei,DefBounds(datatypei));
18: gPi ← Analyze(AP[i]);
19: for (j := 1 to Operations(TC)) do
20: Update(gPi, Analyze(OP[j]));
21: for each k ∈ DepAttrsIndexes(TC[i,j]) do
22: visited[k] ← true;
23: SetRange(rangek,DefBounds(datatypek));
24: gPk ← Analyze(AP[k]);
25: for (l := 1 to Columns(TC)) do
26: Update(gPk, Analyze(OP[l]));
27: UpdateRange(rangek,TC[k,l]);
28: UpdateRange(rangei,TC[k,l]);
29: if (isSelectivityRequired) then
30: UpdateRangeInv(rangekinv ,TC[k,l]);

31: end if
32: Add(genParams,
33: <gPk,rangek,rangekinv>);
34: end for
35: end for
36: UpdateRange(rangei,TC[i,j]);
37: if (isSelectivityRequired) then
38: size1 ← Calculate(OP[j],size);
39: size2 ← CalculateInv(OP[j],size);
40: UpdateRangeInv(rangeiinv ,TC[i,j]);
41: end if
42: end for
43: Add(genParams,<gPi,rangei,rangeiinv>);
44: for each <gP,range,rangeinv>∈ genParams do
45: genData ← GenData(gP,range,size1) ∪
46: GenData(gP,rangeinv,size2);
47: end for
48: end if
49: end for

analysis stage and the ranges information, and gener-
ates data to satisfy all the restrictions extracted from
the input ETL process (ETLFlow), (i.e., Step 45). As
discussed before, data generation process can be fur-
ther parametrized with additional information (e.g.,
the scale factor of the generated dataset - size).

Example. For the FKey and PKey attributes, Bi-
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joux previously found the constraint that these two
attributes need to have equal values to satisfy the join
condition (see Figure 5). Therefore, since both at-
tributes are long integers with a uniform distribution
(see Figure 4:left) and if the user has specified the size
of the input load to be 100, Bijoux generates 100 nu-
merical long values equal among them using the uni-
form distribution generator. Notice that here we do
not consider specific ranges of the generated values for
FKey and PKey since only the condition that they are
mutually equal is sufficient. On the other side, the
generated integer values for the Age attribute must
satisfy the range defined in the previous stage, i.e.,
(25,MAX_INT ), and follow the normal value distri-
bution.

The above description has covered the general case of data
generation without considering other generation parameters.
However, given that our data generator aims at generating
data to satisfy other configurable parameters, we illustrate
here as an example the adaptability of our algorithm to the
problem of generating data to additionally satisfy operation
selectivity. To this end, the algorithm now also analyzes the
parameters previously stored in OP (see Figure 4:right).
From the extracted OP (see Figure 4:right), Bijoux finds

that the Filter operation has a selectivity of 0.7. While it-
erating over the TC matrix (see Figure 3), Bijoux extracts
operation semantics for Filter and finds that it uses the at-
tribute Age (Age > 25 ). With the selectivity factor of 0.7
from OP , Bijoux infers that out of all incoming tuples for
the Filter, 70% should satisfy the constraint that Age should
be greater than 25, while 30% should not (i.e., 30% of Age
values should be less or equal to 25). We analyze the selec-
tivity as follows:

• To determine the total number of incoming tuples for
Filter, we consider preceding operations, which in our
case is Join with selectivity 0.6. Considering the in-
put load size is 100, this means that in total 0.6 ∗
(max(100, 100)) = 60 tuples pass the join condition.

• From these 60 tuples only 70%, based on the Filter
selectivity, (i.e., 42 tuples) will successfully pass both
the filtering (Age > 25 ) and the join condition (PKey
= FKey).

• The remaining of 18 tuples should fail (i.e., Age ≤ 25 ).
In order to generate the data that do not pass this
operation of the flow, we rely on the inverse constraints
that we parse from the algorithm (Steps 30 and 40).

Finally, after Bijoux collected and analyzed information
from TC (Age > 25 ; see Figure 3), AP (long value normally
distributed with mean 30 and standard deviation 5; see Fig-
ure 4:left) and OP (selectivity 0.7 ; see Figure 4:right), it
proceeds to the data generation stage. Similarly, since the
Join operation precedes Filter, Bijoux must also consider
its semantics (i.e., PKey = FKey). Its respective parame-
ters from AP suggest long numerical values having a uniform
distribution.
As a result of the above analysis, we need to generate a

dataset (I1 and I2) such that the output of the Join opera-
tion is 60 tuples that satisfy join condition, out of which, 42
have Age greater than 25, while the rest have Age smaller
or equal to 25.

3.1 Enhanced ETL flow example
The running example of the ETL flow that we have used

so far is expressive enough to illustrate the functionality of
our framework, but it appears too simple to showcase the
benefits of our approach. In this respect, we introduce here
a more complex ETL flow (Fig. 7), which performs the same
task as the simple example, but ensures greater data quality
of the output data.
To this end, this ETL flow includes an additional filter op-

eration that checks for null values of a specific attribute (i.e.,
Age) and filters out corresponding tuples, thus improving
data completeness. Furthermore, it includes one additional
input data store (i.e., Alt_DS) that acts as an alternative
data source in order to cross-check data and improve their
consistency and completeness, by filling in missing values.
Thus, the Join of the alternative data store to the flow is
followed by a Value Alteration operation to perform the re-
quired calculations and the added attributes, which are then
no longer required for subsequent operations, are added to
the list of projected out attributes of the following Project
operation.
Using our algorithm, as we have defined above, we can

generate input data not only to test the ETL process flow,
but also to obtain feedback that can guide the process con-
figuration and tuning to satisfy non-functional requirements.
This is possible due to the use of configurable set of param-
eters during the data generation process and the use of ade-
quate measures for the evaluation of quality characteristics
during process simulation [26].
In our example, we can configure the size of the gener-

ated data for the alternative data store, resulting in variable
matching of datasets to fill in missing values and thus differ-
ent levels of data quality. Based on measured data quality
and given related business requirements, this can allow for
the identification of the right size of alternative data stores,
relative to the size of existing data sources, which in real use
case scenarios can have important implications on the cost.
Another configurable parameter for data generation is dis-

tribution. Using different distribution properties in our ex-
ample, we can adjust the matching between data stores,
providing similar analysis capabilities with the previous ex-
ample. In addition, we can configure the distribution of null
values, enabling the assessment of the performance of the
Filter_Null operation.
When it comes to operation selectivity, it can be config-

ured for the Join2 operation as well as for the Filter_Null
operation, resulting in generated input data of variable prop-
erties that impose differences in the measured performance
and data quality of the ETL process.
We have explained above how the parametrization of our

input data generation enables the testing and tuning of an
ETL process with respect to data quality and performance.
Essentially, the same ETL flow can be simulated using dif-
ferent variations of the data generation properties and the
measured quality characteristics will indicate the best mod-
els. Similarly, other quality characteristics can be consid-
ered, for example reliability and recoverability, by adjusting
the distribution of input data that result to exceptions and
the selectivity of exception handling operations.

4. EXPERIMENTS
In this section, we report the experimental findings, after
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Figure 7: Enhanced ETL flow example

scrutinizing different performance parameters of Bijoux, by
using the prototype that implements its functionalities.
We first introduce the architecture of a prototype system

that implements the functionality of the Bijoux algorithm.
Input. The main input of the Bijoux framework is an

ETL process. As we previously discussed, we consider that
ETL processes are provided in the logical (platform-indepen-
dent) form, following previously defined formalization, and
carrying different parameters that can lead the process of
data generation (e.g., attribute distribution, operation se-
lectivity). Beside, data generation parameters can be also
defined separately (e.g., scale factors).

Bijoux’s architecture. The Bijoux’s prototype is mod-
ular and based on the layered architecture. The three main
layers implement the core functionality of the Bijoux algo-
rithm (i.e., extraction, analysis, and data generation), while
the additional two layers are responsible for communicating
with the outside world, for importing ETL flows and export-
ing obtained results back to the user. Notice that while the
former three layers are integral part of our tool, the latter
two can be externally provided and plugged to our frame-
work (e.g., flow import plugin [14]).

Output. The output of our framework is the collection
of datasets generated for each input data store of the ETL
process. These datasets are generated to satisfy the con-
straints extracted from the flow as well as the parameters
gathered from the process description (i.e., distribution, op-
eration selectivity, load size).

4.1 Experimental setup
Here, we focused on testing both the functionality and

correctness of the Bijoux algorithm discussed in Section 3,
and different quality aspects, i.e., data generation overhead

(performance) and scalability wrt. the growing complexity
of both the ETL design and input load sizes. We performed
the performance testing considering the several ETL test
cases, which we describe in what follows.
Our experiments were carried under a Windows 32-bit

machine, Processor Core 2 Duo, 2.1 GHz and 4GB of RAM.
The test cases consider a subset of ETL operations, i.e.,
Join, Filter, Attribute Addition and Project. Starting from
this basic scenario, we use the implemented flow genera-
tion scripts to automatically create other, more complex,
synthetic ETL flows. To this end, we incrementally repli-
cate the existing ETL operations and add them to the given
ETL flow. The motivation for building these flow genera-
tion scripts comes from the fact that obtaining the real world
set of ETL flows covering different scenarios with different
complexity and load sizes is hard and often impossible.

Basic scenario. The basic scenario contains two input
datastores I1, I2, and the considered operations are Join,
Filter, Project, Attribute Addition. So in total, we have four
operations present in the flow.

Scenarios creation. Starting from this basic scenario,
we create more complex ETL flows by adding additional op-
erations, i.e., Join, Filter in various positions of the original
flow.
We iteratively create 6 cases of different ETL flow com-

plexities and observe the Bijoux’s execution times for these
cases, starting from the basic ETL flow:

• Case 1. Basic ETL scenario, consisting of four opera-
tions, i.e., Join, Filter, Project, Attribute Addition, as
described above.

• Case 2. ETL scenario consisting of 5 operations, start-
ing from the basic one and adding an additional Filter
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operation to the flow.

• Case 3. ETL scenario consisting of 6 operations, start-
ing from the basic one and adding an additional Join
operation to the flow. When adding a Join operation
we also add a Project and an Input datastore (repli-
cated from the existing one), in order to guarantee
matching schemata.

• Case 4. ETL scenario consisting of 7 operations. Ad-
ditional Join and Filter operations are added to the
basic flow choosing the random but correct position on
the fly.

• Case 5. ETL scenario consisting of 8 operations, start-
ing from the basic scenario and adding Join and two
Filter operations.

• Case 6. ETL scenario consisting of 9 operations. Two
additional Join operations along with a Filter opera-
tions are added to the basic flow.

4.2 Experimental results
We measure the execution time of the data generation

process for the above 6 scenarios covering different ETL flow
complexities. For each scenario we run Bijoux and generate
4 different datasets (i.e., with different load size). The load
size is represented with the number of generated tuples per
each input datastore of the flow.

• 100 (0.1K) generated tuples

• 1,000 (1K) generated tuples

• 10,000 (10K) generated tuples

• 100,000 (100K) generated tuples

Figure 8 illustrates the increase of data generation time
when moving from the simplest ETL scenario to a more com-
plex one, while keeping the load size constant (i.e., the bars
of the same color represent generation time for the same load
size with different ETL flow complexities). In addition, it
also shows the increasing generation time for the load sizes
from 100 to 100,000 tuples for a single ETL flow complexity.
Importantly, notice that while the increase of the time wrt.
the growing ETL flow complexity shows to be tractable, the
margin of increasing time wrt. the size of generated data is
much higher, indicating the exponential complexity of the
data generation problem in terms of the size of generated
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Figure 10: Linear trend of the data generation time for the
extreme ETL complexities (cases 1 and 6) wrt. the increas-
ing load size

data. The similar exponential trend is also observed in Fig-
ure 9, where we analyze the execution time for different load
sizes. The growing trend of the execution time wrt. to the
ETL flow complexity is justified by the fact that the seman-
tics of the flow are increasing in number of operation and
complexity, imposing more rules and constraints over the
generated data.
Regarding the exponential correlation of the execution

time to the growing load size, we perform the additional
analysis where we proportionally scaled the differences in
the load size and the corresponding execution time by using
the logarithmic scale (see Figure 10). Interestingly, we have
observed the linear trend of the generation time wrt. the
load size in this case, for the two extreme scenarios under
the study: case 1. for the ETL flow with 4 operations, and
case 6. for the ETL flow with 9 operations. On the ad-
ditional note, the performance shows a linear trend, which
indicates further scaling up opportunities by means of par-
allelizing data generation tasks for independent datasets.

5. RELATED WORK
The problem of constraint-guided generation of synthetic

data has been previously studied in the field of software test-
ing [8]. The context of this work is the mutation analysis of
software programs, where for a program, there are several
“mutants” (i.e., program instances created with small, incor-
rect modifications from the initial system). The approach
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analyzes the constraints that “mutants” impose to the pro-
gram execution and generates data to ensure the incorrect-
ness of modified programs (i.e., “to kill the mutants”). This
problem resembles our work in a way that it analyzes both
the constraints when the program executes and when it fails
to generate data to cover both scenarios. However, this work
mostly considered generating data to test the correctness of
the program executions and not its quality criteria (e.g.,
performance, recoverability, reliability, etc.).
Moving toward the database world, [31] presents a fault-

based approach to the generation of database instances for
application programs, specifically aiming to the data gen-
eration problem in support of white-box testing of embed-
ded SQL programs. Given an SQL statement, the database
schema definition and tester requirements, they generate
a set of constraints which can be given to existing con-
straints solvers. If they are satisfiable, a desired database
instances are obtained. Similarly, for testing the correct-
ness of relational DB systems, a study in [7] proposes a
semi-automatic approach for populating the database with
meaningful data that satisfy database constraints. Work
in [2] focuses on a specific set of constraints (i.e., cardinal-
ity constraints) and introduces efficient algorithms for gen-
erating synthetic databases that satisfy them. Unlike the
previous attempts, in [2], they generate synthetic database
instance from scratch, rather then by modifying the existing
one. Furthermore, in [5], they propose a query-aware test
database generator called QAGen. The generated database
satisfies not only constraints of database schemata, table
semantics, but also the query along with the set of user-
defined constraints on each query operator. Other work [12]
presents a generic graph-based data generation approach, ar-
guing that the graph representation supports the customiz-
able data generation for databases with more complex at-
tribute dependencies. The approach most similar to ours
[15] proposes a multi-objective test set creation. They tackle
the problem of generating branch-adequate test sets, which
aims at creating test sets to guarantee the execution of
each of the reachable branches of the program. Moreover,
they model the data generation problem as a multi-objective
search problem, focusing not only on covering the branch
execution, but also on additional goals the tester might re-
quire, e.g., memory consumption criterion. However, the
above works focus solely on relational data generation by
resolving the constraints of the existing database system.
Our approach follows this line but in a broader way, given
that Bijoux is not restricted to relational schema and is able
to tackle more complex constraint types, not supported by
the SQL semantics. In addition, we do not generate a single
database instance, but rather the heterogeneous datasets
based on different information (e.g., input schema, data
types, distribution, etc.) extracted from the ETL flow.
Both research and industry are particularly interested in

benchmarking ETL and in general integration processes in
order to evaluate process designs and compare different in-
tegration tools (e.g., [22, 6]). Both works note the lack of
a widely accepted standard for evaluating integration pro-
cesses. The former work focuses on defining a benchmark
at the logical level of data integration processes, meanwhile
assessing optimization criteria as configuration parameters.
Whereas, the later works at the physical level by providing a
multi-layered benchmarking platform called DIPBench used
for evaluating the performance of data integration systems.

These works also note that an important factor in bench-
marking data integration systems is defining similar work-
loads while testing different ETL scenarios to evaluate ETL
flows and measure satisfaction of different quality objectives.
These approaches do not provide any automatable means for
generating benchmark data loads, while their conclusions do
motivate our work in this direction.
Some approaches have been working on providing data

generators that are able to simulate real-world data sets for
the purpose of benchmarking and evaluation. [10] presents
one of the first attempts of how to generate synthetic data
used as input for workloads when testing the performance
of database systems. They mainly focus on the challenges
of how to scale up and speed up the data generation process
using parallel computer architectures. In [17], the authors
present a tool called Big Data Generator Suite (BDGS) for
generating Big Data meanwhile preserving the 4V charac-
teristics of Big Data 3. BDGS is part of the BigDataBench
benchmark [29] and it is used to generate textual, graph
and table structured datasets. BDGS uses samples of real
world data, analyzes and extracts the characteristics of the
existing data to generate loads of “self-similar” datasets. In
[21], the parallel data generation framework (PDGF) is pre-
sented. PDGF generator uses XML configuration files for
data description and distribution and generates large-scale
data loads. Thus its data generation funcionalities can be
used for benchmarking standard DBMSs as well as the large
scale platforms (e.g., MapReduce platforms). Other proto-
types (e.g., [11]) offer similar data generation functionalities.
In general, this prototype allows inter-rows, intra-rows, and
inter-table dependencies which are important when generat-
ing data for ETL processes as they must ensure the multi-
dimensional integrity constraints of the target data stores.
The above mentioned data generators provide powerful ca-
pabilities to address the issue of generating data for testing
and benchmarking purposes for database systems. However,
they are not particularly tailored for ETL-like processes, i.e.,
the data generation is not led by the constraints that the
process operation imply over the data.
Lastly, given that the simulation is a technique that im-

itates the behavior of real-life processes, and hence repre-
sents an important means for evaluating processes for dif-
ferent execution scenarios [20], we discuss several works in
the field of simulating business processes. Simulation mod-
els are usually expected to provide a qualitative and quan-
titative analysis that are useful during the re-engineering
phase and generally for understanding the process behavior
and reaction due to changes in the process [16]. [4] further
discusses several quality criteria that should be considered
for the successful design of business processes (i.e., correct-
ness, relevance, economic efficiency, clarity, comparability,
systematic design). However, as shown in [13] most of the
business process modeling tools do not provide full support
for simulating business process execution and the analysis of
the relevant quality objectives. We take the lessons learned
from the simulation approaches in the general field of busi-
ness processes and go a step further focusing our work to
data-centric (i.e., ETL) processes and the quality criteria
for the design of this kind of processes [24, 26].

3volume, variety, velocity and veracity
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6. CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of synthetic data gen-

eration in the context of multi-objective evaluation of ETL
processes. We propose an ETL data generation framework
(Bijoux), which aims at automating the parametrized data
generation for evaluating the correctness of ETL process
models, as well as a set of different quality criteria (e.g., re-
liability, recoverability, freshness, etc.), ensuring both accu-
rate and efficient data delivery. Thus, beside the semantics
of ETL operations and the constraints they imply over input
data, Bijoux takes into account different quality-related pa-
rameters, extracted or configured by an end-user, and guar-
antees that generated datasets fulfill the restrictions implied
by these parameters (e.g., operation selectivity).
We have evaluated the feasibility and scalability of our ap-

proach by prototyping our data generation algorithm. The
first experimental results have shown a linear (but increas-
ing) behavior of Bijoux’s overhead, which suggests that the
algorithm is potentially scalable to accommodate more in-
tensive tasks. At the same time, we have observed different
optimization opportunities to scale up the performance of
Bijoux, considering both the higher complexity of ETL flows
and larger volumes of generated data. We further plan to
extend the set of ETL operations supported by Bijoux.
As another immediate future step, we consider testing the

framework for covering a broader spectrum of configurable
parameters, especially focusing on the ones that enable the
evaluation of different quality criteria of an ETL process.
Moreover, we plan on additionally validating and exploiting
the functionality of this approach in the context of quality-
driven ETL process design. Finally, following the experi-
mental observations, we plan on adapting Bijoux to support
scaling up the data generation process, by means of paral-
lelizing independent data generation tasks.
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