

Automating the Multidimensional Design
of Data Warehouses

PhD. Thesis

PhD. Student: Oscar Romero Moral
Advisor: Alberto Abelló Gamazo

Programa de Doctorat en Software
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Barcelona

December 18, 2009

A thesis presented by Oscar Romero Moral
in partial fulfillment of the requirements for the degree of

Doctor en Informàtica per la Universitat Politècnica de Catalunya

To those always there.
This work is, somehow, also yours.

Acknowledgements

“Every thesis begins with a single keystroke.”

PhD Comics, 2009

My foremost thank goes to Alberto Abelló. Without him, this dissertation would have not
been possible. I thank him for his endless patience and encouragement, for his exigency and
rigor, and for his insights and suggestions that helped to shape my research skills. Likewise, I
really appreciate that he always had time for me, despite it was not easy with two little children
around. Thanks Alberto!

I would also like to thank Ernest Teniente and my colleagues in the Grup Facing On towards
Logic database Rule Enforcement, and people in the Secció de Sistemes d’Informació, for their
support.

Thanks to Dr. Diego Calvanese, for the opportunity to stay in his group for five months, and
people in the KRDB Centre for Knowledge and Data, who made me feel like at home.

I also thank Joan Marc Montesó, for implementing the AMDO tool, and Antonio Montero,
for encapsulating the MDBE implementation in a web service. Also thanks to Josep Berbegal,
Anna Queralt, Leonor Frı́as, Gemma Grau and Jordi Conesa for their help on various details of
this thesis.

I thank my thesis committee members: Dr. Antoni Olivé, Dr. Ernest Teniente, Dr. Diego
Calvanese, Dr. Alkis Simitsis, and Dr. Juan Trujillo. It is a pleasure for me that they accepted to
be part of this committee.

I am greatly indebted to my friends, for all the good moments they provided but, specially,
for listening to me when I needed to talk, and for making me laugh when I most needed it... such
good memories I cannot capture in words!

Last but not least, I owe my deepest gratitude to my mother, who always encouraged me to
work hard and always believed in me, and also to my father and brothers, for always being there
when I needed them most, and for supporting me through all these years.

This work has been partly supported by the Ministerio de Educación y Ciencia and FEDER,
under projects TIN 2005-05406 and TIN2008-03863.

vii

Abstract

Previous experiences in the data warehouse field have shown that the data warehouse multidi-
mensional conceptual schema must be derived from a hybrid approach: i.e., by considering both
the end-user requirements and the data sources, as first-class citizens. Like in any other system,
requirements guarantee that the system devised meets the end-user necessities. In addition, since
the data warehouse design task is a reengineering process, it must consider the underlying data
sources of the organization: (i) to guarantee that the data warehouse must be populated from data
available within the organization, and (ii) to allow the end-user discover unknown additional
analysis capabilities.

Currently, several methods for supporting the data warehouse modeling task have been pro-
vided. However, they suffer from some significant drawbacks. In short, requirement-driven
approaches assume that requirements are exhaustive (and therefore, do not consider the data
sources to contain alternative interesting evidences of analysis), whereas data-driven approaches
(i.e., those leading the design task from a thorough analysis of the data sources) rely on discover-
ing as much multidimensional knowledge as possible from the data sources. As a consequence,
data-driven approaches generate too many results, which misleads the user. Furthermore, the
design task automation is essential in this scenario, as it removes the dependency on an ex-
pert’s ability to properly apply the method chosen, and the need to analyze the data sources,
which is a tedious and time-consuming task (which can be unfeasible when working with large
databases). In this sense, current automatable methods follow a data-driven approach, whereas
current requirement-driven approaches overlook the process automation, since they tend to work
with requirements at a high level of abstraction. Indeed, this scenario is repeated regarding data-
driven and requirement-driven stages within current hybrid approaches, which suffer from the
same drawbacks than pure data-driven or requirement-driven approaches.

In this thesis we introduce two different approaches for automating the multidimensional de-
sign of the data warehouse: MDBE (Multidimensional Design Based on Examples) and AMDO
(Automating the Multidimensional Design from Ontologies). Both approaches were devised to
overcome the current limitations previously discussed. On the one hand, we rely on the end-user
requirements, but we do not decline that the data sources may also contain hidden analysis capa-
bilities that, eventually, may be of interest. Nevertheless, in any case, we do not generate endless
chunks of results from the sources. On the contrary, we aim at filtering by means of objective
evidences the results obtained by analyzing the sources. Importantly, our approaches consider
opposite initial assumptions, but both consider the end-user requirements and the data sources as
first-class citizens. Furthermore, we also focus on the automation of the process, to facilitate the

ix

designer task as much as possible.

• MDBE follows a classical approach, in which the end-user requirements are well-known
beforehand. This approach benefits from the knowledge captured in the data sources, but
guides the design task according to requirements and consequently, it is able to work and
handle semantically poorer data sources. In other words, providing high-quality end-user
requirements, we can guide the process from the knowledge they contain, and overcome
the fact of disposing of bad quality (from a semantical point of view) data sources.

• AMDO, as counterpart, assumes a scenario in which the data sources available are seman-
tically richer. Thus, the approach proposed is guided by a thorough analysis of the data
sources, which is properly adapted to shape the output result according to the end-user
requirements. In this context, disposing of high-quality data sources, we can overcome the
fact of lacking of expressive end-user requirements.

Importantly, our methods establish a combined and comprehensive framework that can be
used to decide, according to the inputs provided in each scenario, which is the best approach to
follow. For example, we cannot follow the same approach in a scenario in which the end-user
requirements are clear and well-known, and in a scenario in which the end-user requirements are
not evident or cannot be easily elicited (e.g., this may happen when the users are not aware of
the analysis capabilities of their own sources). Interestingly, the need to dispose of requirements
beforehand is smoothed by the fact of having semantically rich data sources. In lack of that,
requirements gain relevance to extract the multidimensional knowledge from the sources. So
that, we claim to provide two approaches whose combination turns up to be exhaustive with
regard to the scenarios discussed in the literature.

Key Words: Data Warehouse, Data Warehousing, OLAP, Multidimensional Design, Auto-
matic Reasoning, Description Logics

Contents

1 Introduction 1
1.1 Data Warehousing Systems . 2

1.1.1 The Data Warehouse . 3
1.1.2 Exploitation Tools . 3

1.2 OLAP Tools . 4
1.2.1 Multidimensionality . 4

1.3 Multidimensional Design . 6
1.3.1 Logical Design: ROLAP vs. MOLAP 6

1.4 Multidimensional Modeling Methods . 7
1.4.1 A Piece of History . 7

1.5 Terminology and Notation . 9
1.6 Motivation . 10
1.7 Contributions . 12

1.7.1 A Comprehensive Framework: What Are Indeed Current Approaches
Providing? . 13

1.7.2 Integrating Requirements in a Largely Automated Design Approach . . . 16
1.7.3 Automatic Multidimensional Design from Ontologies 17

1.8 Organization of the Thesis . 18
1.8.1 Second Chapter: Related Work . 18
1.8.2 Third Chapter: Integrating Requirements in a Largely Automated Design

Approach . 19
1.8.3 Fourth Chapter: Multidimensional Design from Ontologies 19
1.8.4 Fifth Chapter: Conclusions and Further Work 20

2 Related Work 21
2.1 Multidimensional Design Methods . 22

2.1.1 Terminology . 22
2.1.2 A Comprehensive Survey . 22
2.1.3 Comparison Criteria . 35
2.1.4 Methods Comparison . 39

2.2 Multidimensional Algebras . 43
2.2.1 Reference Framework . 43

xi

2.2.2 The Multidimensional Algebra Vs. The Relational Algebra 45
2.2.3 A Comprehensive Survey . 47
2.2.4 Algebras Comparison . 50

3 Integrating Requirements in a Largely Automated Design Approach 55
3.1 Contributions . 60

3.1.1 Demand-driven approaches . 60
3.1.2 Automatable approaches . 61

3.2 Validating SQL Queries as Cube-Queries . 63
3.2.1 Translating the Multidimensional Operators into SQL Queries 64
3.2.2 Potential Translation Conflicts . 66
3.2.3 Discussion: The Multidimensional Integrity Constraints 70

3.3 Problem Context . 71
3.3.1 Foundations . 72
3.3.2 Internals . 76

3.4 MDBE: Multidimensional Design Based on Examples 83
3.4.1 First Stage: Concept Labeling . 85
3.4.2 Second Stage: Multidimensional Graph Validation 90
3.4.3 Third Stage: Finding Representative Results 93
3.4.4 Fourth Stage: Conciliation . 94

3.5 A Practical Case: The TPC-H . 97
3.5.1 Requirements Specificity . 98
3.5.2 Data Source Expressiveness . 99
3.5.3 Automation . 101
3.5.4 Computational Complexity & Performance 102
3.5.5 Output Quality . 103

3.6 The MDBE Tool . 105
3.7 Conclusions . 106

4 Multidimensional Design from Ontologies 109
4.1 Contributions . 112
4.2 Method Foundations . 114
4.3 AMDO: Automatic Multidimensional Design from Ontologies 115

4.3.1 Discovering Dimensional Concepts . 117
4.3.2 Discovering Measures . 119
4.3.3 Discovering Facts . 122
4.3.4 Discovering Bases . 123
4.3.5 Shaping Dimension Hierarchies . 124

4.4 Computing Functional Dependencies . 126
4.4.1 Computing Functional Dependencies Over DL Ontologies 127
4.4.2 Using Specific Reasoning Algorithms 128
4.4.3 Using Generic Reasoning Algorithms 137

4.5 Computing Bases . 145
4.5.1 Foundations . 146

xii

4.5.2 An Algorithm for Discovering Bases . 151
4.5.3 Algorithm Correctness . 156
4.5.4 Discussion . 159

4.6 A Practical Case: The TPC-H . 161
4.6.1 Requirements Specificity . 162
4.6.2 Data Source Expressiveness . 164
4.6.3 Automation . 165
4.6.4 Computational Complexity & Performance 166
4.6.5 Output Quality . 166

4.7 The AMDO Tool . 168
4.8 Conclusions . 169

5 Conclusions and Further Work 171
5.1 Further Work . 174

Appendices 179

A A Tractable Description Logic: DL-LiteA 179

B EU-Car Rentals 183

C List of Publications 189
C.1 Related to Chapter 2 . 189
C.2 Related to Chapter 3 . 190
C.3 Related to Chapter 4 . 192

References 197

xiii

xiv

List of Figures

1.1 Multidimensional view of data . 5
1.2 The multidimensional concepts . 9
1.3 A comprehensive framework for introducing current multidimensional design

methods (I) . 14
1.4 A comprehensive framework for introducing current multidimensional design

methods (II) . 15

2.1 Graphical view of the criteria used for comparing the multidimensional design
methods . 36

2.2 Conceptual representation of the reference multidimensional operators 43

3.1 Overview of the MDBE method . 56
3.2 The TPC-H relational schema . 57
3.3 Constellation schema derived by MDBE from the TPC-H benchmark case study . 59
3.4 Exemplification of an OLAP navigation path translation into SQL queries 66
3.5 MDBE: decision diagram for labeling nodes representing factual data 78
3.6 MDBE: decision diagram for labeling nodes representing dimensional data . . . 79
3.7 MDBE: state diagram showing the transition between node labels 80
3.8 Summary of the MDBE process . 84
3.9 MDBE: left, the graph for Q5 after Step 5; right, the graph for Q9 after Step 12 . 89
3.10 MDBE: examples of Cells paths in a context graph 92
3.11 The MDBE tool: uploading the TPC-H Q5 query 106
3.12 The MDBE tool: results retrieved for the TPC-H Q5 query 107

4.1 A fully denormalized relational schema of a car rental agreement 110
4.2 Diagrammatic representation (based on UML notation) of a piece of a car renting

ontology . 112
4.3 AMDO: method overview . 115
4.4 AMDO: multidimensional patterns to discover measures 120
4.5 AMDO: multidimensional schema proposed for the rental agreement fact 126
4.6 AMDO: an algorithm to compute matrix M . 130
4.7 AMDO: exemplification of to-one paths propagation by transitivity 130
4.8 AMDO: an algorithm to compute the transitive closure of dimensional concepts . 131

xv

4.9 AMDO: the FD-tree computed for the EndDurationPrice concept 146
4.10 AMDO: the searching space for the endDurationPrice concept, and a piece

of its FD-tree . 151
4.11 AMDO: an algorithm for discovering bases . 152
4.12 AMDO: an algorithm to compute SS-descendants 153
4.13 AMDO: an algorithm for generating (i+1)-sized combinations 154
4.14 AMDO: an exemplification of of a directed graph 164
4.15 The AMDO App. integrated in Protégé . 169

B.1 EU-Car Rentals class diagram: brand . 184
B.2 EU-Car Rentals class diagram: rental agreement 185
B.3 EU-Car Rentals class diagram: rental agreement subclasses 186
B.4 EU-Car Rentals class diagram: cars, discounts and enumerations 187

xvi

List of Tables

2.1 Summary of the multidimensional design methods comparison (I) 40
2.2 Summary of the multidimensional design methods comparison (II) 41
2.3 Comparison table between the relational and the multidimensional algebras. . . . 46
2.4 Summary of the comparison between multidimensional algebras. 51

3.1 Summary of the modifications brought in a cube-query by each multidimensional
operator . 65

3.2 Summary of cube-query conflicts . 67
3.3 Summary of rules used to infer the relationship multiplicities from relational

sources . 81
3.4 Valid multidimensional relationships in a relational schema 82
3.5 MDBE: graph labelings generated after the first stage of MDBE 90
3.6 MDBE statistics for the TPC-H case study . 102

4.1 AMDO: ranked facts proposed for the EU-Car Rental case study 123
4.2 AMDO: ranked facts proposed for the TPC-H case study 162

xvii

xviii

Chapter 1

Introduction

“ ’Input! Input!’, Need input!’ ”

Number 5, “Short Circuit”, 1986

Nowadays, the free market economy is the basis of capitalism (the current global economic
system) in which the production and distribution of goods are decided by market businesses
and consumers; giving rise to the supply and demand concept. In this scenario, being more
competitive than the rest of organizations becomes essential, and decision making raises as a key
factor for the organization success.

Decision making is based on information. The more accurate information I get, the better
decisions I can make to get competitive advantages. That is the main reason why information
(understood as the result of processing, manipulating and organizing data in a way that adds
new knowledge to the person or organization receiving it) has become a key piece in any or-
ganization. In the past, managers’ ability for foreseeing upcoming trends was crucial, but this
largely subjective scenario changed when the world became digital. Actually, any event can be
recorded and stored for later analysis, which provides new and objective business perspectives to
help managers in the decision making process. Hence, (digital) information is a valuable asset
to organizations, and it has given rise to many well-known concepts such as Information Society,
Information Technologies and Information Systems among others.

For this reason, today, decision making is a research hot topic. In the literature, those appli-
cations and technologies for gathering, providing access to, and analyzing data for the purpose
of helping organization managers make better business decisions are globally known as Business
Intelligence. This term implies having a comprehensive knowledge of any of the factors that
affect an organization business with one main objective: the better decisions you make, the more
competitive you are.

Under this concept we embrace many different disciplines such as Marketing, Geographic
Information Systems (GIS), Knowledge Discovery or Data Warehousing.

1

1.1 Data Warehousing Systems
Data warehousing systems are aimed at exploiting the organization data, previously integrated in
a huge repository of data (the data warehouse), to extract relevant knowledge of the organization.

A formal definition can be found in [GR09]: Data Warehousing is a collection of methods,
techniques and tools used to support knowledge workers -senior managers, directors, managers
and analysts- to conduct data analyses that help with performing decision-making processes and
improving information resources. This definition gives a clear idea of these systems final aim:
give support to decision making without regard of technical questions like data heterogeneity or
data sources implementation. This is a key factor in data warehousing. Nowadays, any event
can be recorded within organizations. However, the way each event is stored differs in every
organization, and it depends on several factors such as relevant attributes for the organization
(i.e., their daily needs), technology used (i.e., implementation), analysis task performed (i.e., data
relevant for decision making), etc. Thus, these systems must gather and assemble all (relevant)
business data available from various (and possibly heterogeneous) sources in order to gain a
single and detailed view of the organization that later will be properly managed and exploited to
give support to decision making.

The role of data warehousing can be better understood with five claims introduced by Kimball
[KRTR98]:

• We have heaps of data, but we cannot access it. Loads of data are available. However, we
need the appropriate tools to effectively exploit (in the sense of query and analyze) it.

• How can people playing the same role achieve substantially different results? Any or-
ganization may have several databases available (devoted to specific business areas) but
they are not conceptually integrated. Providing a single and detailed view of the business
process is a must.

• We want to select, group and manipulate data in every possible way. This claim underlines
the relevance of providing powerful and flexible analysis methods to be carried out in real
time.

• Show me just what matters. Too much information may be, indeed, too much. The end-
user must be able to focus on relevant information for his / her current decision making
processes.

• Everyone knows that some data is wrong. A sensitive amount of transactional data is not
correct and it has to be properly cleaned (transformed, erased, filtered, etc.) in order to
avoid misleading results.

Data warehousing systems have three main components: the data warehouse, the ETL (Ex-
traction, Transformation and Load) tools and the exploitation tools. The data warehouse is a
huge repository of data; i.e., a database. It is the data warehousing system core and that is why
these systems are also called data warehouse systems. However, it is not just another traditional
database: it depicts a single and detailed view of the organization business. By means of the ETL

2

tools data from a variety of sources is loaded (i.e., homogenized, cleaned and filtered) into the
data warehouse. Once loaded, it is ready to be exploited by means of the exploitation tools.

The reader is addressed to [GR09] for further details on data warehousing systems. In next
sections we will focus on the data warehouse and the exploitation tools, as they are tightly related
to this thesis.

1.1.1 The Data Warehouse
The data warehouse term was coined by B. Inmon in 1992 [Inm92] that he defined as: ”a subject-
oriented, integrated, time-variant and non-volatile collection of data in support of management’s
decision making process”. Where subject oriented means that data stored gives information about
a particular subject instead of the daily operations of an organization; integrated means that data
have been gathered into the data warehouse from a variety of sources and merged into a coherent
whole; time-variant means that all data in the data warehouse is identified with a particular time
period and finally, non-volatile means that data is stable in the data warehouse. Thus, more data
is added but data is never removed. This enables management to gain a consistent picture of the
business.

Despite this definition was introduced almost 20 years ago, it still remains reasonably accu-
rate. However, a single-subject data warehouse is currently referred to as a data mart (i.e., a local
or departmental data warehouse), while data warehouses are more global, giving a general enter-
prise view. In the literature, we can find other definitions like the one presented in [KRTR98],
where a data warehouse is defined as ”a copy of transaction data specifically structured for query
and analysis”; this definition, despite being simpler, is not less compelling, since it underlines
the relevance of querying in a data warehousing system. The data warehouse design is focused
on improving queries performance instead of improving update statements (i.e., insert, update
and delete) like transactional databases do. Moreover, the data warehousing system end-users
are high-ranked people involved in decision making rather than those low/medium-ranked peo-
ple maintaining and developing the organization information systems. Next table summarizes
main differences between an operational database and a data warehouse:

Criterion Operational DB Data Warehouse
Objective Operational Analysis and

(daily operations) decision making
Process Transactional, Massive querying,

repetitive and well-known specific and not-known
Main Activity Update statements Querying
Performance Relevance of Relevance of the massive

transactions time response querying time response
Users Medium/Low profile High profile
Data Model Relational Multidimensional

1.1.2 Exploitation Tools
The final aim of every data warehousing system is to exploit the data warehouse. The data
warehouse is a huge repository of data that does not tell much by itself; like in the operational

3

databases field, we need auxiliary tools to query and analyze data stored. In this field, those tools
aimed at extracting relevant information from the repository of data are known as the exploitation
tools. Without the appropriate exploitation tools, we will not be able to extract valuable knowl-
edge of the organization from the data warehouse, and the whole system will fail in its aim of
providing information for giving support to decision making. Most used exploitation tools can
be classified in three categories:

• Query & Reporting: This category embraces the evolution and optimization of the tra-
ditional query & reporting techniques. This concept refers to an exploitation technique
consisting of querying data and generating detailed pre-defined reports to be interpreted
by the end-user.

• Data Mining: Data mining is the exploration and analysis of large quantities of data in
order to discover meaningful patterns and rules [BL04]. The data mining field is a research
area per se, but as the reader may note, this kind of techniques and tools suit perfectly to
the final goal of the data warehousing systems.

• OLAP Tools: OLAP stands for On-Line Analytical Processing, which was accurately cho-
sen to confront the OLTP acronym (On-Line Transactional Processing). Its main objective
is to analyze business data from its dimensional or components perspective; unlike tradi-
tional operational systems such as OLTP systems.

In this thesis we will focus on OLAP tools, but the reader is addressed to [GR09] for further
details on accessing the data warehouse.

1.2 OLAP Tools
OLAP tools are intended to ease information analysis and navigation all through the data ware-
house, for extracting relevant knowledge of the organization. This term was first introduced by
E.F. Codd in 1993 [CCS93], but it was more precisely defined by means of the FASMI (Fast
Analysis of Shared Multidimensional Information) test [Pen08]. According to it, an OLAP tool
must provide Fast query answering to not frustrate the end-user reasoning; offer Analysis tools,
implement security and concurrent mechanisms to Share the business Information from a Mul-
tidimensional point of view. This last feature is the most important one since OLAP tools are
conceived to exploit the data warehouse for analysis tasks based on multidimensionality.

1.2.1 Multidimensionality
Multidimensionality, as it is known today, was first introduced by Kimball in [Kim96], where
the author argued about the necessity of an ad hoc modeling technique for data warehouses.
Multidimensional modeling optimizes the system query performance in contrast to conventional
Entity-Relationship (ER) models [Che76] (widely used for modeling relational databases) that
are constituted to remove redundancy in the data model and optimize OLTP performance (see
discussion in section 1.1.1 for further details on data warehouses vs. OLTP databases).

4

Figure 1.1: Multidimensional view of data

Specifically, the multidimensional conceptual view of data is distinguished by the fact / di-
mension dichotomy, and it is characterized by representing data as if placed in an n-dimensional
space, allowing us to easily understand and analyze data in terms of facts (the subjects of analy-
sis) and dimensions showing the different points of view from where a subject can be analyzed.
For instance, Fig. 1.1 depicts sales (subject of analysis) of an organization from three differ-
ent dimensions or perspectives of view (time, product and place). One fact and several
dimensions to analyze it give rise to what is known as the data cube1

This paradigm provides a friendly, easy-to-understand and intuitive visualization of data for
non-expert end-users. Importantly, most events recorded are likely to be analyzed from a mul-
tidimensional point of view. An event (a potential fact) is recorded altogether with a set of rel-
evant attributes (potential analysis dimension). For example, consider a sales event. We may
record the shop, city and country where it was purchased, the item, color, size and
add-ons selected, the time (hour, minute, second and even millisecond) and date
(day, month, year), payment method, price, discount applied, the customer,
etc. Interestingly, every attribute opens a new perspective of analysis for the sales event.

More precisely, OLAP functionality is characterized by dynamic multidimensional analy-
sis of consolidated data supporting end-user analytical and navigational activities. Thus, OLAP
users are able to navigate (i.e., query and analyze) data in real-time. The user provides a naviga-
tion path in which each node (resulting in a data cube) is derived from the previous node in the
path (and thus we say that the user navigates the data). Each node is transformed into the next
one in the path by applying specific multidimensional operators. Most popular multidimensional

1The data cube refers to the placement of factual data in the multidimensional space. And thus, it can be thought as a
mathematical function. Nevertheless, nowadays it is rather common also refer to the multidimensional space as the data
cube. However, note that, in both cases, it is a language abuse, since the multidimensional space (or the placement of
data in the multidimensional space) only gives rise to a cube if three analysis dimensions are considered. We address the
reader to [ASS06] for further details.

5

operators are “roll-up” (increase the aggregation level), “drill-down” (decrease the aggregation
level), “screening and scoping” (select by means of a criterion evaluated against the data of a di-
mension), “slicing” (specify a single value for one or more members of a dimension) and “pivot”
(reorient the multidimensional view). Some works, like [PJ01] and [ASS06], add “drill-across”
(combine data from cubes sharing one or more dimensions) to these basic operations.

As a result, multidimensionality enables analysts, managers, executives and in general those
people involved in decision making, to gain insight into data through fast queries and analytical
tasks, allowing them to make better decisions.

1.3 Multidimensional Design
Developing a data warehousing system is never an easy job, and raises up some interesting chal-
lenges. One of these challenges focus on modeling multidimensionality. OLAP tools are con-
ceived to exploit the data warehouse for analysis tasks based on the multidimensional paradigm
and therefore, the data warehouse must be structured according to the multidimensional model.
Note that we are talking about the multidimensional model and not just about a paradigm. Hence,
it must properly define a data structure, a set of operations to handle data and a set of integrity
constraints. Unfortunately, we still lack of a standard multidimensional model like the relational
model is for operational databases. Nevertheless, lots of efforts have been devoted to multidi-
mensional modeling, and several models and design methods have been developed and presented
in the literature. Consequently, we can nowadays design a multidimensional conceptual schema,
create it physically and later, exploit it through the model algebra or calculus (implemented in
the exploitation tools).

1.3.1 Logical Design: ROLAP vs. MOLAP
When implementing our conceptual schema, and in general the OLAP tool, there are two main
trends: using the relational technology or an ad hoc one, giving rise, respectively, to what are
known as ROLAP (Relational On-line Analytical Processing) and MOLAP (Multidimensional
On-line Analytical Processing) architectures. ROLAP maps the multidimensional model over the
relational one (a multidimensional middleware on the top of the relational database makes this
fact transparent for the users), allowing them to take advantage of a well-known and established
technology. As consequence, ROLAP tools deal with larger volumes of data than MOLAP tools
(i.e., ad hoc multidimensional solutions), but their performance for query answering and cube
browsing is not as good. Thus, new HOLAP (Hybrid On-line Analytical Processing) tools were
proposed. HOLAP architecture combines both ROLAP and MOLAP ones trying to obtain the
strengths of both approaches, and they usually allow to change from ROLAP to MOLAP and
viceversa.

Although ROLAP tools have failed to dominate the OLAP market due to its severe limitations
(mainly slow query answering) [Pen05], at the beginning, they were the reference architecture.
Indeed, Kimball’s reference book [KRTR98] presents how a data warehouse should be imple-
mented over a RDBMS (Relational Database Management System) and how to retrieve data
from it. To do so, he introduced two logical (i.e., relational) patterns: the star schema and the

6

snowflake schema. The star schema consists of one table for the fact and one denormalized ta-
ble for every dimension, with the latter being pointed by foreign keys (FK) from the fact table,
which compose its primary key (PK). The normalized version of a star schema is a snowflake
schema; getting a table for each level with a FK pointing to each of its parents in the dimension
hierarchy. Nevertheless, both approaches can be conceptually generalized into a more generic
one consisting in partially normalizing the dimension tables according to our needs: completely
normalizing each dimension we get a snowflake schema, and not normalizing them at all results
in a star schema.

Currently, pure ROLAP tools have lost their reference position, but the star schema had, and
yet has, great impact on multidimensional conceptual modeling, as we discuss in next section.

1.4 Multidimensional Modeling Methods
As discussed in section 1.2.1, multidimensional modeling was first introduced by Kimball in
[Kim96]. Kimball’s approach was well received by the industry and a deeper and advanced
view of multidimensional modeling was presented in [KRTR98]. In these books Kimball also
introduced the first method to derive the data warehouse logical schema. Similar to traditional
information systems modeling, Kimball’s method is requirement-driven: it starts eliciting busi-
ness requirements of an organization and through a step-by-step guide we are able to derive the
multidimensional schema. Only at the end of the process data sources are considered to map data
from sources to target.

In short, Kimball’s approach follows a traditional modeling approach (i.e., from require-
ments), but it set down the principles of multidimensional modeling. Multidimensional model-
ing is radically opposite to OLTP systems modeling: the data warehouse conceptual schema is
directly derived from the organization operational sources and provides a single, detailed, inte-
grated and homogenized view of the business domain. Consequently, the data warehouse can be
thought as a strategic view of the organization data and for this reason, and unlike most informa-
tion systems that are designed from scratch, the organization data sources must be considered as
first-class citizens in the data warehouse design process. This major additional requirement has
such interesting consequences so much so that it gave rise to a new research topic and up to now,
several multidimensional modeling methods have been introduced in the literature. With the per-
spective of time, we may now highlight those features that drew the attention of the community.
The evolution of the modeling methods introduced in the literature focuses on two main aspects:
(i) the dichotomy requirements versus data sources (and how to deal with it) and (ii) the level of
abstraction of the method’s output.

1.4.1 A Piece of History
In this section we introduce the background of multidimensional modeling. Our objective here
is to provide an insightful view of how this area evolved with time. Note, however, that this
dissertation comes up from the discussion of the state of the art carried out in Section 2.1.

Shortly after Kimball introduced his ad hoc modeling method for data warehouses, some
other methods were presented in the literature. Like Kimball’s method, these methods are step-

7

by-step guides to be followed by a data warehouse expert that start gathering the end-user require-
ments. However, unlike Kimball’s work, they give more and more relevance to the data sources.
Involving the data sources in these approaches means that it is compulsory to have well-doc-
umented data sources (for instance, with up-to-date conceptual schemas) at the expert’s disposal
but it also entailed two main benefits: on the one hand, the user may not know all the poten-
tial analysis contained in the data sources and analyzing them we may find unexpected potential
analysis of interest for the user; on the other hand, we should assure that the data warehouse can
be populated with data available within the organization.

As said, to carry out these approaches manually it is compulsory to have well-documented
data sources, but in a real organization, the data sources documentation may be incomplete,
incorrect or may not even exist and, in any case, it would be rather difficult for a non-expert
designer to follow these guidelines. Indeed, when automating this process is essential not to
depend on the expert’s ability to properly apply the method chosen and to avoid the tedious and
time-consuming task (even unfeasible when working over large databases) of analyzing the data
sources.

In order to solve these problems, several new methods automating the design task were intro-
duced in the literature. These approaches work directly over relational database logical schemas.
Thus, despite they are restricted to relational data sources, they get up-to-date data that can be
queried and managed by computers. They also argue that restricting to relational technology
makes sense since nowadays it is the most widely used technology for operational databases.
About the process carried out, these methods follow a data-driven process focusing on a thor-
ough analysis of the data sources to derive the data warehouse schema in a reengineering process.
This process consists of techniques and design patterns that must be applied over the data sources
schema to identify data likely to be analyzed from a multidimensional perspective.

Nevertheless, a requirement analysis phase is crucial to meet the user needs and expecta-
tions. Otherwise, the user may find himself frustrated since he / she would not be able to analyze
data of his / her interest, entailing the failure of the whole system. Today, it is assumed that
the ideal scenario to derive the data warehouse conceptual schema embraces a hybrid approach
(i.e., a combined data-driven and requirement-driven approach). Then, the resulting multidimen-
sional schema will satisfy the end-user requirements and it will have been conciliated with the
data sources simultaneously. However, these later approaches overlook the automatization of the
process as automating their requirement-driven stages requires to formalize the end-user require-
ments (i.e., translate them to a language understandable by computers). Unfortunately, current
methods handle requirements mostly stated in languages (such as natural language) lacking the
required degree of formalization.

Another interesting trend worth to remark, is the level of abstraction used for the methods
output. The first methods introduced (such as Kimball’s method) produced multidimensional star
schemas (i.e., logical schemas), but soon the community realized it was as important as in any
other system to differentiate the conceptual and logical layer in the data warehouse design task
(for example, it was obvious when MOLAP tools gained relevance regarding ROLAP ones). As
result, newest approaches generate conceptual schemas and it is up to the user to implement them
with any of the logical design (either relational or ad hoc multidimensional) alternatives. The fact
that logical design was first addressed in data warehousing gave rise to a spread language abuse
when referring to multidimensional conceptual schemas, which are also denoted as star schemas

8

Figure 1.2: The multidimensional concepts

(originally, star schemas were logical design models introduced by Kimball, see section 1.3.1 for
further details). The reason is that multidimensional conceptual schemas also are star-shaped
(with the fact in the center and the dimensions around it), and the star schema nomenclature was
reused for conceptual design.

1.5 Terminology and Notation

Lots of efforts have been devoted to multidimensional modeling, and several models and ap-
proaches have been developed and presented in the literature to support the design of the data
warehouse. However, since we lack a standard multidimensional terminology, terms used among
different methods may vary. To avoid misunderstandings, in this section we detail a specific
terminology (based on YAM2 [ASS06]) to be used in this document. Relevant concepts will be
bolded for the sake of understandability:

Multidimensionality is based on the fact / dimension dichotomy. Dimensional concepts
produce the multidimensional space in which the fact is placed. Dimensional concepts are
those concepts likely to be used as a new analytical perspective, which have traditionally been
classified as dimensions, levels and descriptors. Thus, we consider that a dimension consists
of a hierarchy of levels representing different granularities (or levels of detail) for studying data,
and a level containing descriptors (i.e., level attributes). We denote by atomic level the level
at the bottom of the dimension hierarchy (i.e., that of the finest level of detail) and by All level
the level at the top of the hierarchy containing just one instance representing the whole set of
instances in the dimension. In contrast, a fact contains Cells which, in turn, contain measures.
As in [MK00], we consider that a fact may contain not just one but several different levels of
data granularity. Therefore, one Cell represents individual cells of the same granularity that
contain data corresponding to the same fact (i.e., a Cell is a ”Class” and cells are its instances).
Specifically, a Cell of data is related to one level for each of its associated dimensions of analysis.

9

Finally, one fact and several dimensions for its analysis produce a star schema.
For example, consider Figure 1.2. There, one fact (sales) containing two measures (price

and discount) is depicted. This fact has three different dimensions of analysis (place, time
and product sold). Each dimension has its own aggregation hierarchy. For instance, the time
dimension has three levels of detail (i.e., year, month and day) that, in turn, contain some de-
scriptors (for example, the holiday or leap year attributes). Furthermore, the sales fact
contains several Cells. Each level of data granularity available for a given fact gives rise to a Cell
within that fact. Thus, we may analyze this fact from a wide range of data granularities: from its
finest data granularity (i.e, {product× day× city}, which is the one shown in the figure as
daily sales) up to its coarsest data granularity2 (i.e., {category × year × country},
which is shown as sales per year). Any of the factual instances within daily sales
or sales per year is called a cell. Finally, note that we consider {product × day ×
city} to be the multidimensional base of the Cell with the finest granularity level (i.e., that
related to the atomic levels of each dimension, which is also known as the atomic Cell) and
{category × year × country} to be the base of the Cell with the coarsest data granular-
ity. Thus it means that one value of each one of these levels determines one cell (i.e., a sale
with its price and discount).

1.6 Motivation

In this section we discuss the advantages and disadvantages of current multidimensional design
methods. Specifically, we will motivate our work focusing on the weaknesses of current ap-
proaches. To do so we carried out a detailed analysis of the current state of the art (see chapter
2 for further details). In this section we present the conclusions of this work. As result, we
were able to identify the major drawbacks still not addressed in the literature. For presenting our
results we take advantage of the method classification introduced by Winter & Strauch [WS03].
According to it, multidimensional modeling methods may be classified within a demand-driven,
a supply-driven or a hybrid framework. They properly define each framework as follows:

• Supply-driven approaches: Also known as data-driven, start from a detailed analysis of
the data sources to determine the multidimensional concepts in a reengineering process.

• Demand-driven approaches: Also known as requirement-driven or goal-driven, focus on
determining the user multidimensional requirements (as typically performed in other in-
formation systems) to later map them onto data sources.

• Hybrid approaches: Propose to combine both paradigms in order to design the data ware-
house from the data sources but bearing in mind the end-user requirements. In this docu-
ment, we distinguish as well between interleaved hybrid approaches and sequential hybrid
approaches. The main difference is that sequential approaches perform the demand-driven
and supply-driven stages independently and later on conciliate results got in a final step,

2Note that we do not consider the All levels in this example.

10

whereas interleaved approaches perform both stages simultaneously benefiting from feed-
back retrieved by each stage all over the whole process and obtaining better results at the
end.

Each paradigm has its own advantages and disadvantages, which we remark in the following
discussion:

Carrying out an exhaustive search of dimensional concepts among all the concepts of the
domain (like supply-driven approaches do) has a main benefit with regard to those approaches
that derive the schema from requirements and later conciliate them with the data sources (i.e.,
demand-driven approaches): in many real scenarios, the user may not be aware of all the poten-
tial analysis contained in the data sources and, therefore, overlook relevant knowledge. Demand-
driven and hybrid approaches do not consider this and assume that requirements are exhaustive.
Thus, knowledge derived from the sources not depicted in the requirements is not considered
and discarded. As a counterpart, supply-driven approaches tend to generate too many results
(since they overlook the multidimensional requirements, they must apply their design patterns
all over the data sources) and mislead the user with non relevant information. Furthermore,
demand-driven approaches (or demand-driven stages within a hybrid approach) are not auto-
mated whereas supply-driven stages tend to facilitate their automation. The main reason is that
demand-driven stages would require to formalize the end-user requirements (i.e., translate them
to a language understandable by computers). Unfortunately, current methods handle require-
ments mostly stated in languages (such as natural language) lacking the required degree of for-
malization. Thus, matching requirements over the data sources must be performed manually.
However, the time-consuming nature of this task can render it unfeasible when large databases
are used.

In general, most approaches do not automate the process and just present a set of steps (i.e.,
a guideline) to be followed by an expert in order to derive the multidimensional schema. Mainly,
these methods introduce different patterns or heuristics to discover concepts likely to play a
multidimensional role and to carry out these approaches manually it is compulsory to have well-
documented data sources at the expert’s disposal. This prerequisite is not easy to fulfill in many
real organizations and in order to solve this problem, current automatable methods directly work
over relational databases (i.e., getting up-to-date data). These methods (or stages within hy-
brid approaches) follow a supply-driven paradigm and thus, rely on a thorough analysis of the
relational sources. Relevantly, they mainly share three limitations:

User requirements not considered: Despite user requirements are essential to fulfill the expec-
tations of end-users, these methods mainly do not consider them. In general, they introduce
a set of design patterns to identify which multidimensional role may play each relational
concept. The multidimensional schema is eventually derived in a reengineering process
from the relational schemas by applying these patterns.

Design patterns to identify facts: Identifying facts automatically is a hard task and these ap-
proaches either demand to identify facts manually or they rely on heuristics such as table
cardinalities or numerical attributes that may identify false facts or overlook real ones.
Certainly, these heuristics may help to identify potential facts but their isolate use without
considering other inputs (for instance, requirements or additional semantics or metadata)

11

generates too much results that will surely contain facts of no interest for the end-user
(since requirements are not considered) or they may even discard interesting ones (for
instance, factless facts [KRTR98]).

Dependency on normalization: Design patterns used to identify dimensional data are mainly
based on “foreign” (FK) and “candidate key” (CK) constraints. In multidimensional de-
sign, it is well-known that facts and dimensions must be related by means of many-to-
one relationships (i.e., one fact instance is related to just one instance of each dimension)
[KRTR98]. Starting from a logical schema, however, may present some inconveniences
when looking for many-to-one relationships. A relational schema is tied to design deci-
sions made when devising the system and these decisions either made to fulfill the system
requirements (for instance, improve query answering, avoid insertion / deletion anomalies,
preserve features inherited from legacy systems, etc.) or naively made by non-expert users,
have a big impact on the quality of the multidimensional schemas got by current automat-
able approaches. In fact, these approaches require a certain degree of normalization in the
input logical schema to guarantee that it captures as much as possible the to-one relation-
ships existing in the domain. Discovering this kind of relationships is crucial in the design
of the data warehouse, and the most common way to represent them at the logical level
is by means of foreign and candidate key constraints. Therefore, the accuracy of results
depends on the degree of normalization of the logical schema, since some FKs and CKs
are lost if we do not use a schema up to third normal form.

Summing up, demand-driven approaches assume that requirements are exhaustive, whereas
supply-driven approaches rely on discovering as much multidimensional knowledge as possi-
ble. As a consequence, supply-driven approaches generate too many results. Furthermore,
current automatable methods follow a supply-driven approach, whereas current demand-driven
approaches overlook the process automation, since they tend to work with requirements at a
high level of abstraction. Finally, all current hybrid approaches follow a sequential approach
with two well-differentiated steps: the supply-driven and the demand-driven stages. Each one
of these stages, however, suffers the same drawbacks as pure supply-driven or demand-driven
approaches.

1.7 Contributions
Previous experiences in the data warehouse field have shown that the data warehouse multidi-
mensional conceptual schema must be derived from a hybrid approach: i.e., by considering both
the end-user requirements and the data sources, as first-class citizens. Like in any other system,
requirements guarantee that the system devised meets the end-user necessities. In addition, since
the data warehouse design task is a reengineering process, it must consider the underlying data
sources of the organization: (i) to guarantee that the data warehouse must be populated from data
available within the organization, and (ii) to allow the end-user discover unknown additional
analysis capabilities.

As discussed in previous section, the latter issue leaded to the development of several ap-
proaches relying on a thorough analysis of the data sources. As previously discussed in this

12

chapter (see Section 1.2.1), most current digital events recorded are suitable for being analyzed
from a multidimensional point of view and, consequently, these methods generate two many re-
sults. Filtering the results provided by these approaches is a must, but currently, they leave to
the user the burden to (manually) filter them. Similarly, demand-driven approaches consider the
requirements in depth and thus, they generate proper-sized solutions. However, these methods
make the user responsible for mapping the requirements over the data sources. Indeed, these
tasks are not just hard and time-consuming but can even be unfeasible for large data sources.

In this thesis we introduce two different approaches for automating the multidimensional de-
sign of the data warehouse: MDBE (Multidimensional Design Based on Examples) and AMDO
(Automating Multidimensional Design from Ontologies). Both approaches were devised to over-
come the current limitations discussed in previous section. On the one hand, we rely on the end-
user requirements, but we do not decline that the data sources may also contain hidden analysis
capabilities that, eventually, may be of interest. Nevertheless, in any case, we do not generate
endless chunks of results from the sources. On the contrary, we aim at filtering by means of
objective evidences the results obtained by analyzing the sources. Importantly, our approaches
consider opposite initial assumptions, but both consider the end-user requirements and the data
sources as first-class citizens. Furthermore, we also focus on the automation of the process, to
facilitate the designer task as much as possible.

Nowadays, we may find several methods for supporting the data warehouse conceptual de-
sign but, all of them, start from very different assumptions that make them hardly comparable.
For example, some approaches claim to fully automate the design task, but they do so by over-
looking the end-user requirements in a fully supply-driven approach (and thus, making the user
responsible for manually filtering the results obtained according to his / her needs). Similarly,
exhaustive demand-driven approaches claim to derive high-quality outputs, but they completely
overlook the task automation. For this reason, every approach fits to a narrow-ranged set of
scenarios and do not provide an integrated solution for every real-world case. Importantly, our
methods establish a combined and comprehensive framework that can be used to decide, accord-
ing to the inputs provided in each scenario, which is the best approach to follow. For example,
we cannot follow the same approach in a scenario where the end-user requirements are clear and
well-known, and in a scenario in which the end-user requirements are not evident or cannot be
easily elicited (e.g., this may happen when the users are not aware of the analysis capabilities of
their own sources). Interestingly, the need to dispose of requirements beforehand is smoothed
by the fact of having semantically rich data sources. In lack of that, requirements gain relevance
to extract the multidimensional knowledge from the sources. So that, we claim to provide two
approaches whose combination turns up to be exhaustive with regard to the scenarios discussed
in the literature.

1.7.1 A Comprehensive Framework: What Are Indeed Current Approaches
Providing?

To overcome the situation above discussed, we aim to establish a clear framework in which place
the most relevant design methods introduced in the literature. This comprehensive picture of the
state of the art will help to identify the major drawbacks of current approaches and, regarding

13

Figure 1.3: A comprehensive framework for introducing current multidimensional design meth-
ods (I)

them, this thesis main contributions. As earlier introduced in this chapter and discussed in depth
in Chapter 2, the data warehouse design task must consider (i) the end-user requirements and
(ii) the data sources. Furthermore, we also aim to analyze the (iii) automation degree achieved
and (iv) the quality of the output produced. In the following, we rate the most relevant methods
introduced in the literature with regard to these four criteria. Note that, in this way, we are able
to identify, at first sight, the assumptions made by each approach and moreover, analyze the
goodness of the process proposed: i.e., the automation degree achieved and the quality of the
outputs produced.

Consider Figures 1.3 and 1.4. Axes x and y represent the assumptions of each method;
i.e., the use of the requirements and the data sources in each approach. The x axis measures
how important requirements are in the approach, and if the method proposes to formalize them
somehow, to facilitate their analysis. The y axis assesses how important the analysis of the data
sources is for the approach, and if detailed patterns are provided to exploit them. Finally, axes
z measure either the automation degree achieved (see Figure 1.3) and the quality of the output
produced (see Figure 1.4) regarding the assumptions made by the method (i.e., axes x and y). In
the 3D-space formed, every approach is identified as a rhombus labeled with the bibliographical
item in the reference list of this thesis. Furthermore, for the sake of understandability, we provide
the projection of each rhombus in the three planes (green points for the XZ plane projections;

14

Figure 1.4: A comprehensive framework for introducing current multidimensional design meth-
ods (II)

blue points for the XY plane and red points for the XZ plane). The methods depicted in both
figures are the MDBE (see Chapter 3) and AMDO (see Chapter 4) approaches proposed in this
thesis, and the most relevant multidimensional design methods introduced in the literature. Each
approach is placed in the 3D-space according to the conclusions extracted from Section 2.1.4.

On the one hand, the first figure shows that the automation degree achieved, in the general
case, is medium or low. Only 6 approaches automate the design task up to a fair degree. Im-
portantly, this figure shows our first main contribution: both the MDBE and AMDO approaches
automate the design task as much as possible. However, note that they follow two different
paradigms. Despite considering both, requirements and the data sources as first-class citizens,
MDBE leads the process by exploiting the knowledge of the requirements, whereas AMDO leads
the process from a thorough analysis of the data sources (and thus, they are placed in opposite
vertexes). On the other hand, the quality of the output produced by most approaches is medium
/ high, but MDBE and AMDO produce yet semantically richer outputs. In other words, they
are able to extract more valuable knowledge from the requirements / data sources. All these
assertions will be properly justified in this document, but our approaches provide detailed algo-
rithms for discovering multidimensional concepts traditionally overlooked such as factless facts,
bases, aggregate measures and semantic relationships between the multidimensional concepts

15

identified.
As said, both methods are complementary, as each one starts from a different set of assump-

tions. In this thesis, our objective is to provide the best method for each potential real-world
scenario we may find. In this sense, MDBE follows a classical approach. It assumes that the
data warehouse designer has been able to gather the organization multidimensional requirements
(it means, then, that the end-user has been able to clearly state which are his / her informational
needs). By analyzing the data sources and requirements, MDBE generates schemas fulfilling
the requirements and conciliating them with the data sources. In contrast with MDBE, AMDO
focuses on those scenarios in which the multidimensional requirements are not clear, and a thor-
ough analysis of the organization data is required. Nowadays, many organizations are not aware
of their own data and therefore, of their own potential analysis perspectives. In these cases, it is
interesting to use AMDO to discover them and help the end-users to decide what kind of analysis
could be of their interest. However, different from traditional supply-driven approaches, AMDO
filters results obtained in each stage (by means of quality evidences) and performs the upcoming
stages with knowledge known to be of interest to the user.

1.7.2 Integrating Requirements in a Largely Automated Design Approach
Our first relevant contribution is a largely automated approach for supporting multidimensional
design based principally on Multidimensional Design By Examples (MDBE); an automated method
following an interleaved hybrid approach. Unlike other hybrid approaches, MDBE does not
carry out two well-differentiated phases (i.e., data-driven and requirement-driven) that need to
be conciliated a posteriori but instead performs both phases simultaneously. Consequently, each
paradigm benefits from feedback obtained by the other, and eventually MDBE is able to derive
more valuable information than approaches in which the two phases are carried out sequentially.
To our knowledge, this is the first interleaved hybrid method introduced in the literature.

In our approach we derive MD conceptual schemas from relational sources according to end-
user requirements. There are two steps: requirement formalization and the MDBE method. As
in previous requirement-driven methods (or requirement-driven stages within hybrid methods), a
prior requirements elicitation step is required. However, our approach is not based on a step-by-
step manual process in which the requirements and data sources that will eventually derive the
MD schema are analyzed in details, but rather on a largely automatable approach. Requirements
are typically expressed at a high level of abstraction and need to be formalized prior to automation
of the analysis step. In our framework, requirements are expressed as SQL queries over the
relational data sources (i.e., at the logical level over the data sources). SQL queries provide a
clearly defined structure that will facilitate full automation of the MDBE method (the second step
in our approach). Although requirement formalization must be performed manually, translating
requirements into SQL queries requires considerably less effort than carrying out any of the
step-by-step requirement-driven approaches in current use. In our approach, we have reduced
the amount of manual operations as much as possible (i.e., removing ambiguous semantics by
formalizing the requirements) and delegated most of the design workload to the MDBE method,
which will use the semantics captured in the requirements and the data sources to automate the
rest of the process.

The inputs of the MDBE method are the end-user information requirements (expressed as

16

SQL queries) and the integrated logical model of the data sources. The output is a constellation
schema (i.e., a star schema for each fact identified) derived from the data sources and capable of
retrieving data requested in the input requirements. Briefly, MDBE validates whether each input
SQL query represents a valid cube-query (i.e., if the query retrieves data that can be analyzed
from a multidimensional perspective). Note that we translate requirements into regular SQL
queries over the transactional data sources and do not require a specific translation that would
make multidimensional sense. MDBE analyzes each input SQL query to validate whether it
represents a multidimensional requirement and notifies if it is able to derive at least one multidi-
mensional schema that can retrieve data requested in the SQL query. Conciliation of the schemas
proposed for each query produces the output constellation schema.

1.7.2.1 Correspondence Between SQL and the Multidimensional Algebra

The validation step of the MDBE method gives rise to another relevant contribution. The MDBE
method generates sound and meaningful multidimensional schemas by validating if each input
SQL query represents a valid multidimensional query. In other words, if the input SQL query
represents a valid set of multidimensional operators.

Unfortunately, we do not dispose of a standard set of multidimensional operators (see sec-
tion 1.3). To overcome this major drawback we carried out a thorough study to identify a set of
multidimensional operators subsuming all the operators introduced in the literature. Then, we
analyzed how these operators should be translated into SQL queries (i.e., when mapping from
the multidimensional to the relational model, like a ROLAP tool would internally do). As con-
sequence, we were able to identify the subset of SQL corresponding to the multidimensional
algebra and viceversa; as well as three problematic scenarios that must be considered (and fixed
if needed) during the translation process to avoid changing the semantics of the multidimensional
query performed.

This study conforms the foundations of the MDBE validation process. An input SQL query
is said to represent a valid set of multidimensional operators if we are able to find a correct
mapping from the SQL query to the multidimensional algebra. If so, we will be able to find
a multidimensional schema meeting the requirements stated in the query. Note that, beyond
our purpose, this work can be reused for validating the multidimensional queries generated in
a ROLAP tools. Importantly, the criteria identified in this study correspond to the integrity
constraints of the multidimensional model considering multidimensionality as the data structure,
and the whole set of multidimensional operators surveyed as the set of operators allowed to
handle data.

1.7.3 Automatic Multidimensional Design from Ontologies
AMDO assumes a scenario in which the data sources available are semantically richer and there-
fore, it does not ask for the multidimensional requirements beforehand. Oppositely to MDBE,
it is a sequential hybrid approach (a fully supply-driven followed by a demand-driven stage)
aimed at discovering relevant knowledge for analysis purposes. Furthermore, it does not work
over relational sources but from a conceptual view of the organization business. Indeed, we start
from a conceptual formalization of the domain to avoid being tied to logical design decisions that

17

would directly impact on the quality of the output schemas. The role of a conceptual layer on
top of information systems has been discussed in depth in the literature. In case of reengineering
processes like the data warehouse conceptual design, the benefits are clear: the conceptual layer
provides more and better knowledge about the domain to carry out this task. Note that MDBE
overcomes the limitations of the logical schemas by means of the multidimensional requirements.

In our approach we choose Description Logics (DL) ([BCM+03]) ontologies as our method
input. Thus, we benefit from the reasoning services provided by ontology languages, that will fa-
cilitate the automation of our task. Although other works already proposed to work at the concep-
tual level, AMDO is the first method presented in the literature automating the whole design task:
i.e., identifying facts, measures and dimension hierarchies. As a novel contribution, AMDO also
identifies potential bases (see section 1.5) of interest for each fact discovered. AMDO considers
all the multidimensional concepts in depth by analyzing their semantics and how they should be
identified from the sources. As result we propose new and original design patterns. Previous
(conceptual) approaches mainly rely on their requirement elicitation (i.e., demand-driven) stages
to discover the multidimensional concepts rather than on an accurate analysis of the data sources.
In this sense, AMDO follows a completely different framework based on a thorough and fully
automatic analysis of the sources and then, carrying out a guided requirement elicitation stage a
posteriori. Therefore, unlike previous approaches, the automatic analysis of the sources leads the
process and we allow the designer to restrict and control the process by stating his / her require-
ments on the fly. Importantly, AMDO does not generate endless amounts of multidimensional
results, but, prior to show them to the user, filters them according to quality indicators.

To our knowledge, our approach is the first one considering the data warehouse design from
ontologies. Hence, we do believe that this work opens new interesting perspectives. For example,
we can extend the data warehouse and OLAP concepts to other areas like the Semantic Web,
where ontologies play a key role providing a common vocabulary. One consequence would be
that despite the data warehouse design has been typically guided by data available within the
organization, we would be able to integrate external data from the web into our data warehouse
to provide additional up-to-date information about our business domain (this novel concept of
data warehousing is known in the literature as Web-Warehousing [RALT06]).

1.8 Organization of the Thesis
This thesis has been organized in five chapters (including this one). A brief overview of each one
is shown below.

1.8.1 Second Chapter: Related Work
This chapter presents the state of the art of two different topics: multidimensional design methods
and multidimensional algebras. While the first one aims to contextualize the work carried out in
this thesis, the second one is needed to identify the multidimensional model constraints, which
must be enforced when automating the multidimensional design task.

All in all, we present a detailed picture of the current state of both fields, as well as a com-
prehensive comparison between current methods / algebras presented in the literature.

18

1.8.2 Third Chapter: Integrating Requirements in a Largely Automated
Design Approach

This chapter presents the first of the two multidimensional design methods introduced in this
thesis: a largely automated approach based on MDBE.

We start this chapter explaining the overall idea behind this approach. This method takes
a classical approach. We assume that the end-user knows his / her informational needs and
therefore, the system designer will be able to gather the multidimensional requirements. After
a detailed explanation of how MDBE works, we discuss its set of contributions regarding the
related work. As discussed in this chapter, MDBE is the first method formalizing the end-user
requirements (as SQL queries over the OLTP systems), and automating their use at the same time
as analyzing the data sources. This approach gives rise to a new and original framework that we
call interleaved hybrid approach.

Next, we discuss how we are able to derive correct multidimensional schemas from SQL
queries representing the multidimensional requirements. Our work focuses on a deep analysis of
the multidimensional semantics regarding SQL. In short, we identify the mapping between the
multidimensional algebra and SQL, which relevantly, it is the same that a ROLAP tool would
exploit. If the SQL query represents a correct multidimensional navigation path (i.e., a set of
multidimensional operators), we map it onto the data sources and accordingly, we identify which
multidimensional role each relational concept must play. Eventually, this mapping will produce
a multidimensional schema.

Once the foundations of the MDBE method have been set, we introduce a detailed step-by-
step view of our method. Furthermore, we also introduce a practical case of study (the TPCH-H)
to show the feasibility of the method and the quality of results obtained. Prior to present our
conclusions, we also introduce the MDBE tool that implements our method.

1.8.3 Fourth Chapter: Multidimensional Design from Ontologies
This chapter presents our second approach for automating the multidimensional design task: the
AMDO method. This chapter emulates as much as possible the structure of the previous one.

First, we introduce the main idea behind our approach. Although classical approaches for
information systems design start with a requirement elicitation stage, sometimes, it may be dif-
ficult to gather them. The data warehousing system design is a reengineering task and therefore,
it must consider the underlying operational sources of the organization. This approach, despite
considering the end-user requirements as first-class citizens, it starts by thoroughly analyzing
the data sources, as any supply-driven approach would do. However, we provide a novel frame-
work by completely automating the process from the conceptual point of view. After discussing
the general idea and the main contributions of AMDO, we present our method and we set and
formalize its working context. First, we introduce the multidimensional patterns it applies to
analyze the data sources. Then, we discuss how to efficiently compute them. Relevantly, AMDO
relies on a novel algorithm conceived to discover bases (i.e., multidimensional keys), which have
been traditionally overlooked in the design process.

In this chapter, we provide two different case studies upon which we show AMDO’s feasibil-
ity: the EU-Car Rental and the TPC-H. Finally, we conclude by introducing the the AMDO tool,

19

which implements our approach.

1.8.4 Fifth Chapter: Conclusions and Further Work
Conclusions about the work presented in this thesis and future work to be carried out are dis-
cussed in this section.

20

Chapter 2

Related Work

“ In the middle of difficulty lies opportunity. ”

Albert Einstein

The related work discussed in this chapter refers to two different topics: multidimensional
design methods and multidimensional algebras.

The necessity of the first study is clear. This thesis introduces two novel multidimensional
design methods and therefore, it is a must to clearly depict the current situation of the area. On
the contrary, the reason why a study about multidimensional algebras is relevant to this thesis
is, at first sight, subtler. As discussed in Section 1.7, one of this thesis main objectives is to
automate, as much as possible, our design approaches and consequently, automatically produce
correct multidimensional schemas. Automating the design task, however, entails that outputs
produced must have been validated during the process. A multidimensional schema is correct if
(i) it is aligned with the multidimensional data structure and (ii) preserves the multidimensional
integrity constraints (see Section 1.3). Only then, we can guarantee that data manipulation (by
means of the multidimensional operators) will always be correct.

Despite we do not yet benefit from a standard multidimensional model, there is a general
consensus on the model data structure (indeed, the multidimensionality introduced by Kimball
-see Section 1.2.1- is assumed to be a de facto data structure standard), but this is not the case of
the model integrity constraints and set of operators. For this reason, we surveyed all the multidi-
mensional algebras that, to our knowledge, were introduced in the literature. After this analysis,
we were able to find an implicit agreement on how multidimensional data should be manipu-
lated and eventually, identify the multidimensional integrity constraints preserving a correct data
manipulation. Thus, the schemas produced by our approaches guarantee the multidimensional
constraints identified in our study and consequently, they fully make multidimensional sense.

For both topics, we first present a detailed state of the art and later, a comprehensive frame-
work that will facilitate the comparison and further discussion of the methods / algebras we may

21

find in the literature.

2.1 Multidimensional Design Methods

2.1.1 Terminology
For the sake of understandability, in this document we take advantage of the method classifi-
cation introduced by Winter & Strauch [WS03]. For this reason, we first introduce the nota-
tion proposed. According to it, multidimensional modeling methods may be classified within a
demand-driven, a supply-driven or a hybrid framework. They properly define each framework
as follows:

• Supply-driven approaches: Also known as data-driven, start from a detailed analysis of
the data sources to determine the multidimensional concepts in a reengineering process.

• Demand-driven approaches: Also known as requirement-driven or goal-driven, focus on
determining the user multidimensional requirements (as typically performed in other in-
formation systems) to later map them onto data sources.

• Hybrid approaches: Propose to combine both paradigms in order to design the data ware-
house from the data sources but bearing in mind the end-user requirements. In this docu-
ment, we distinguish as well between interleaved hybrid approaches and sequential hybrid
approaches. The main difference is that sequential approaches perform the demand-driven
and supply-driven stages independently and later on conciliate results got in a final step,
whereas interleaved approaches perform both stages simultaneously benefiting from feed-
back retrieved by each stage all over the whole process and obtaining better results at the
end.

2.1.2 A Comprehensive Survey
This section presents an insight into current multidimensional design methods. These methods
were selected according to three factors: reference papers with a high number of citations (ac-
cording to Google Scholar [Goo] and Publish or Perish [Har]), papers with novelty contributions
and in case of papers of the same authors, we have included the latest version of their works.
As general rule, each method is described and classified according to the terminology presented
in Section 1.5. Finally, we follow a chronological order when introducing the design methods
surveyed. Thus, we provide a comprehensive framework of the evolution of multidimensional
design methods (note that Section 1.4.1 sketches this survey):

Kimball et al. [KRTR98] introduced multidimensional modeling as known today. In addition,
they also introduced the first method to derive the multidimensional schema. Being the
first approach, it does not introduce a formal design procedure, but a detailed guide of
tips to identify the multidimensional concepts and then, give rise to the multidimensional
schema. The presentation is quite informal and it relies on examples rather than on formal

22

rules. Kimball’s approach follows a demand-driven framework to derive a data warehouse
relational schema (i.e., logical).

First, the designer must identify all the data marts we could possibly build. Data marts are
essentially defined as pragmatic collections of related facts. Although data sources are not
considered, they already suggested to take a look to the data sources to find which data
marts may be of our interest.

Next step aims to list all conceivable dimensions for each data mart. At this point it is sug-
gested to build an ad hoc matrix to capture our multidimensional requirements. Rows rep-
resent the data marts, whereas columns represent the dimensions. A given cell is marked
whether that dimension must be considered for a data mart. This matrix is also used to
show the associations between data marts by looking at dimensions shared. This process
is supposed to be incremental. First, it is suggested to focus on single-source data marts,
since it will facilitate our work and later, in a second iteration, look for multiple-sources
data marts combining the single-source designs.

The method’s third step designs the fact tables of each data mart:

• First, we must declare the grain of detail (i.e., the data granularity of interest). It
is suggested to be declared by the design team at the beginning, although it can
be reconsidered during the process. Normally, it must be determined by primary
dimensions.

• Next, we choose the analysis dimensions for each fact table. Dimensions selected
must be tested against the grain selected. This must be a creative step. We need to
look for the dimension pieces (i.e. levels and descriptors) in different (and potentially
heterogeneous) models and through different documents which, in the end, results in
a time-consuming task. At this point, it is also suggested to choose a large number
of descriptors to populate dimensions.

• Finally, the last stage adds as many measures as possible within the context of the
declared grain.

Cabibbo and Torlone [CT98a] present one of the most cited multidimensional design meth-
ods. This approach generates a logical schema from Entity-Relationship [Che76] (ER)
diagrams, and it may produce multidimensional schemas in terms of relational databases
or multidimensional arrays. At first sight, this method may be thought to follow a supply-
driven paradigm, as it performs an in-depth analysis of the data sources. However, no
formal rules to identify the multidimensional concepts from the data sources are given.
In fact, multidimensional concepts must be manually identified by the user (i.e., from re-
quirements). For this reason, we consider it to follow a hybrid framework. In general, like
Kimball’s approach, this approach is rather informal but they set up the foundations that
were later used by the rest of methods.

This method consists of four steps. First and second steps aim to identify facts and dimen-
sions and restructure the ER diagram. Both steps may be performed simultaneously and
benefit from the feedback retrieved by each step. Indeed the authors suggest to perform
them in an iterative way to refine results obtained. However, no clue about how to identify

23

facts, measures and dimensions are given and they must be identified from the end-user
requirements. Once they identified, each fact is represented as an entity. Next, we add
dimensions of interest that may be missing in the schema but could be derived from exter-
nal sources or metadata associated to our data sources. At this point, it is also compulsory
to refine the levels of each dimension by means of the following transformations: (i) re-
placing many-to-many relationships, (ii) adding new concepts to represent new levels of
interest, (iii) selecting a simple identifier for each level entity and (iv) removing irrele-
vant concepts. Finally, two last steps aim to derive the multidimensional schema. Some
clues are given to derive a multidimensional graph that will be directly mapped into the
multidimensional schema.

Golfarelli and Rizzi [GMR98] 1 present one of the reference methods in this area. This work
presents a generic overview of the multidimensional design process that embraces their
previous works such as [GR98], and recently revisited in [GR09]. This approach presents
a formal and structured method (partially automatable) that consists of six well-defined
steps. However, the fourth step aims to estimate the data warehouse workload which goes
beyond the scope of this study:

• First step analyzes the underlying information system and produces a conceptual
schema (i.e., a ER diagram) or a logical schema (i.e., a relational schema).

• Second step collects and filters requirements. In this step it is important to identify
facts. The authors give some tips to identify them from ER diagrams (entities or n-ary
relationships) or relational schemas (tables frequently updated are good candidates).

• Next step derives the multidimensional conceptual schema from requirements and
facts identified in previous steps. This step may be carried out semi-automatically as
follows:

– Building the attribute tree: From the primary key of the fact we create a tree by
means of functional dependencies. Thus, a given node (i.e., an attribute) of the
tree functionally determines its descendants.

– Pruning and grafting the attribute tree: The tree attribute must be pruned and
grafted in order to eliminate unnecessary levels of detail.

– Defining dimensions: Dimensions must be chosen in the attribute tree among
the root vertices.

– Defining measures: Measures are defined by applying aggregation functions, at
root level, to numerical attributes of the tree.

– Defining hierarchies: The attribute tree shows a plausible organization for hier-
archies. Hierarchies must be derived from to-one relationships that hold between
each node and its descendants.

• Finally, the last two steps derive the logical (by translating each fact and dimension
into one relational table) and physical schemas (the authors give some tips regarding
indexes to implement the logical schema in a ROLAP tool).

1A revisited version of this design method has been published in [GR09]. However, to preserve the chronological
order, we will refer to [GMR98] in this section.

24

The fourth step of this method aims to estimate the workload of the data warehouse. The
authors argue that this process may be used to validate the conceptual schema produced in
the third step, as queries could only be expressed if measures and hierarchies have been
properly defined. However, no more information is provided.

Boehnlein and Ulbrich-vom Ende [BvE99] present a hybrid approach to derive logical schemas
from SER (Structured Entity Relationship) diagrams. SER is an extension of ER that vi-
sualizes existency dependencies between objects. For this reason, the authors argue that
SER is a better alternative to identify multidimensional structures. This approach has three
main stages:

• Pre-process: First, we must transform the ER diagram into a SER diagram. A de-
tailed explanation is provided.

• Step 1: Business measures must be identified from goals. For instance, the authors
suggest to look for business events to discover interesting measures. Once business
measures have been identified, they are mapped to one or more objects in the SER
diagram. Eventually, these measures will give rise to facts.

• Step 2: The hierarchical structure of the SER diagrams is helpful to identify poten-
tial aggregation hierarchies. Dimensions and aggregation hierarchies are identified
by means of direct and transitive functional dependencies. The authors argue that
discovering dimensions is a creative task that must be complemented with a good
knowledge of the application domain.

• Step 3: Finally, a star or snowflake schema is derived as follows: each fact table
is created by using the set of primary keys of their analysis dimensions as its com-
pound primary key, and denormalizing or normalizing the aggregation hierarchies
accordingly.

Hsemann et al. [HLV00] present a requirement-driven method to derive multidimensional sche-
mas in multidimensional normal form (MNF). This work introduces a set of restrictions
that any multidimensional schema produced by this method will satisfy. Furthermore, al-
though this approach produces conceptual schemas, they also argue that the design process
must comprise four sequential phases (requirements elicitation and conceptual, logical and
physical design) like any classical database design process:

• Requirement analysis and specification: Despite it is argued that the operational ER
schema should deliver basic information to determine the multidimensional analy-
sis potential, no clue about how to identify the multidimensional concepts from the
the data sources is given. Business domain experts must select strategically relevant
operational database attributes and specify the purpose to use them as dimensions or
measures. The resulting requirements specification contains a tabular list of attributes
together with their multidimensional purpose, similar to Kimball’s proposal. Sup-
plementary informal information may be added such as standard multidimensional
queries that the user would like to pose.

25

• Conceptual design: This step transforms the semi-formal business requirements into
a formalized conceptual schema. This process is divided in three sequential stages:

– Context definition of measures: This approach requires to determine a base for
each measure (i.e., a minimal set of dimension levels functionally determining
the measure values). Furthermore, measures sharing bases are grouped into the
same fact, as they share the same dimensional context.

– Dimensional hierarchy design: From each atomic level identified, this step grad-
ually develops the dimension hierarchies by means of functional dependencies.
Descriptors and levels are distinguished from requirements. In this approach,
the authors distinguish between simple and multiple (containing, at least, two
different aggregation path) hierarchies. Moreover, specialization of dimensions
must be considered to avoid structural NULL values when aggregating data.

– Definition of summarizability constraints: The authors argue that some aggre-
gations of measures over certain dimensions do not make sense. Therefore, they
propose to distinguish meaningful aggregations from meaningless ones and in-
clude this information in an appendix of the conceptual schema.

Finally, the authors argue that a multidimensional schema derived by means of this method
is in dimensional normal form (MNF) [LAW98] and therefore it fully makes multidimen-
sional sense. Consequently, we can form a data cube (i.e., a multidimensional space) free
of summarizability problems. In short, it is achieved by means of five constraints: mea-
sures must be fully functionally identified by the multidimensional base, each dimension
hierarchy must have an atomic level, each dimension level must be represented by identi-
fier attribute(s), every descriptor must be associated to a dimension level and dimensions
generated must be orthogonal. By following their method, all these constraints are guar-
anteed.

Moody and Kortink [MK00] present a method to develop multidimensional schemas from ER
models. It was one of the first supply-driven approaches introduced in the literature, and
one of the most cited papers in this area. Although it is not the first approach working
over ER schemas, they present a structured and formal method to derive multidimensional
logical schemas. Their method is divided into four steps:

• Pre-process: This step develops the enterprise data model if it doesn’t exist yet.

• First step: This step classifies the ER entities in three main groups:

– Transactional entities: These entities record details about particular events that
occur in the business (orders, sales, etc). They argue that these are the most
important entities in a data warehouse and form the basis of fact tables in star
schemas, as these are the events that decision makers want to analyze. Although
the authors do not consider requirements, they underline the relevance of re-
quirements to identify facts, because not all the transactional entities will be of
interest for the user. Moreover, they provide the key features to look for this kind
of entities: the entity must describe an event that happens at a point in time, and
it must contain measures or quantities summarizable.

26

– Component entities: These entities are directly related to a transaction entity
via a one-to-many relationship and they define details or components of each
business event. These entities will give rise to dimension tables in star schemas.

– Classification entities: These entities are related to component entities by a chain
of one-to-many relationships. Roughly speaking, they are functionally depen-
dent on a component entity directly or by transitivity. They will represent di-
mension hierarchies in the multidimensional schema.

The authors assume that a given entity may fit into multiple categories. Therefore,
they define a precedence hierarchy for resolving ambiguities: Transaction > Classi-
fication > Component. Thus, if an entity may play a transaction entity role, it is not
considered neither as a classification nor a component entity. The rest of entities in
the ER schema will not be included in the multidimensional schema.

• Second step: Next step aims to shape dimension hierarchies. The authors provide
some formal rules to identify them. Specifically, a dimension hierarchy is defined as
a sequence of entities joined together by one-to-many relationships all aligned in the
same direction. Moreover, they introduce the concept of minimal entity (i.e., atomic
level) and maximal entity (i.e., that with a coarser granularity data). Some formal
rules to identify minimal and maximal entities are given. For instance, minimal en-
tities are those without one-to-many relationships, and maximal are those without
many-to-one relationships.

• Third step: Transactional entities will give rise to facts, whereas dimension hierar-
chies will give rise to their analysis perspectives. The authors introduce two different
operators to produce logical schemas:

– Collapse hierarchy: Higher levels in hierarchies can be collapsed into lower lev-
els. Indeed, the authors propose to denormalize the hierarchies according to
our needs, as typically performed in data warehousing to improve query perfor-
mance.

– Aggregation: Can be applied to a transaction entity to create a new entity con-
taining summarized data. To do so, some attributes are chosen to be aggregated
(i.e., measures) and others to aggregate by (i.e., dimensional concepts).

By these operators, this approach introduces five different dimensional design alter-
natives. According to the resulting schema level of denormalization and the gran-
ularity of data, they introduce rules to derive flat schemas, terraced schemas, star
schemas, snowflake schemas or star cluster schemas. They also introduce the notion
of constellation schema that denotes a set of star schemas with hierarchically linked
fact tables.

Bonifati et al. [BCC+01] present a hybrid semi-automatic approach consisting of three basic
steps: a demand-driven, a supply-driven and a third stage to conciliate the two first steps
(i.e., it introduces a sequential hybrid approach). The final step aims to integrate and
conciliate both paradigms and generate a feasible solution that best reflects the user’s ne-
cessities. This method generates a logical multidimensional schema and it was the first to

27

introduce a formal hybrid approach with a final step conciliating both paradigms. More-
over, this method has been applied and validated in a real case study:

• We start collecting the end-user requirements through interviews and expressing user
expectations through the Goal / Question / Metrics (GQM) paradigm. GQM is com-
posed of a set of forms and guidelines developed in four stages: (i) a first vague
approach to formulate the goals in abstract terms, (ii) a second approach using forms
and a detailed guide to identify goals by means of interviews, (iii) a stage to integrate
and reduce the number of goals identified by collapsing those with similarities and
finally, (iv) a deeper analysis and a detailed description of each goal. Next, the au-
thors present an informal guideline to derive a logical multidimensional schema from
requirements. Some clues and tips to identify facts dimensions and measures from
the forms and sheets used in this process are given.

• Second step aims to carry out a supply-driven approach from ER diagrams capturing
the operational sources. This step may be automated, and it performs an exhaustive
analysis of the data-sources. From the ER diagram, a set of graphs that will give rise
to star schemas are created as follows:

– They label potential fact entities according to the number of additive attributes
they have. Each identified fact is taken as the center node of a graph.

– Dimensions are identified by means of many-to-one and one-to-one relation-
ships from the center node. Moreover, many-to-many relationships are trans-
formed into one-to-many relationships. Finally, each generalization / specializa-
tion taxonomy is also included in the graphs.

Next, they introduce an algorithm to derive snowflake schemas from each graph. This
transformation is immediate and once done, they transform the snowflake schemas
into star schemas by flattening the dimension hierarchies (i.e., denormalizing dimen-
sions).

• Third step aims to integrate star schemas derived from the first step with those iden-
tified from the second step. In short, they try to map demand-driven schemas into
supply-driven schemas by means of three steps:

– Terminology analysis: Before integration, demand-driven and supply-driven
schemas must be converted to a common terminological idiom. A mapping
between GQM and ER concepts must be provided.

– Schema matching: Supply-driven schemas are compared, one-by-one, to demand-
driven schemas. A match occurs if both have the same fac. Some metrics, with
regard to the number of measures and dimensions, are calculated.

– Ranking and selection: Supply-driven schemas are ranked according to the met-
rics calculated in the previous step and presented to the user.

As final remark, this method does not introduce the concept of descriptor in any moment.
However, since they map relational entities into levels, we may consider attributes con-
tained in the entities as the multidimensional descriptors.

28

Phipps and Davis [PD02] introduced one of the first methods automating part of the design
process. This approach proposes a supply-driven stage to be validated, a posteriori, by
a demand-driven stage. It is assumed to work over relational schemas (i.e., at a logical
level) and a conceptual multidimensional schema is produced. In this approach, their
main objective is the automation of the supply-driven process with two basics premises:
numerical fields represent measures and the more numerical fields a relational table has, the
more likely to play a fact role. Furthermore, any table related with a to-many relationship
is likely to play a relevant dimensional role. In general, they go one step beyond in the
formalization of their approach since a detailed pseudo-algorithm is presented in this paper
(and therefore, automation is immediate). However, this approach generates too many
results and a demand-driven stage is needed to filter results according to the end-user
requirements. Thus, the demand-driven stage in this approach is rather different from
the rest of demand-driven approaches, because they do not derive the multidimensional
schema from requirements but they use requirements to filter results. This method consists
of five steps:

• First step finds tables with numerical fields and create a fact node for each table
identified. Tables with numerical fields are sorted in descending order of number of
numeric fields. Tables will be processed in this order.

• Second step creates measures based on numerical fields within fact tables.

• Third step creates date and / or time dimension levels with any date / time fields per
fact node.

• Fourth step creates dimensions (consisting of just one level) for each remaining ta-
ble attribute that is non-numerical, non-key and non date field. Although this may
be considered as a controversial decision (any other attribute would give rise to a
dimension of analysis), it was the first method handling partially denormalized data
sources.

• Fifth step recursively examines the relationships of the tables to add additional levels
in a hierarchical manner. To do so, it looks for many-to-one relationships (according
to foreign keys and candidate keys) all over the schema.

The heuristics used to find facts and determine dimensional concepts within a fact table
are rather generic, and they generate results containing too much noise. Consequently, the
authors propose a final requirement-driven step to filter results obtained. This step present
a step-by-step guide to analyze the end-user requirements expressed as MDX queries and
guide the selection of candidate schemas most likely to meet user needs. This last step
must be manually performed.

Winter and Strauch [WS03] present a detailed demand-driven approach. This is a reference
paper because it presents a detailed discussion between different multidimensional design
paradigms. Furthermore, they present a method developed from the analysis of several
data warehouse projects in participating companies. However, their approach is rather
different from the rest of methods. They do not assume the multidimensional modeling

29

introduced by Kimball like the rest of methods do, and they present a high-level step-by-
step guideline.

In short, they identify the best practices that a data warehouse design project must consider,
according to their analysis task. The design process must be iterative and it is divided into
four stages:

• First step embraces the analysis of the information supply (i.e., from the sources) and
the analysis of the information needed.

• Next, we must match requirements demanded with current information supply and
order requirements accordingly.

• In a third step, information supply and information demand must be synchronized on
a full level of detail (i.e., considering data granularity selected).

• Finally, we must develop the multidimensional schema. This schema must be evalu-
ated and if needed, reformulate the process from the first step to develop the multidi-
mensional schema in an iterative way.

Despite this approach gives relevance to the data sources and demands to synchronize data
demanded with the sources, we consider it to be a demand-driven approach since no clue
about how to analyze the data sources is given.

Vrdoljak et al. [VBR03] present a semi-automatic supply-driven approach to derive logical
schemas from XML schemas. This approach considers XML schemas as data sources.
Therefore, the authors propose to integrate XML data in the data warehouse, as XML is
now a de facto standard for the exchange of semi-structured data. Their approach works
as follows:

• Preprocessing the XML schema: The schema is simplified to avoid complex and
redundant specifications of relationships.

• Creating and transforming the schema graph: Every XML schema can be represented
as a graph. Two transformations are carried out at this point; functional dependencies
are explicitly stated (by means of key attributes) and nodes not storing any value are
discarded.

• Choosing facts: Facts must be chosen among all vertexes (i.e., nodes) and arcs (i.e.,
edges) of the graph. An arc can be chosen only if it represents a many-to-many
relationship.

• Building the dependency graph: For each fact, a dependency graph is built. The
graphical representation of the XML schema facilitates finding the functional de-
pendencies. The graph must be examined in the direction expressed by arcs and
according to cardinalities included in the dependency graph. It may happen that
no cardinality is provided. In this case, XML documents are queried by means of
XQueries to look for to-one relationships. The authors also consider many-to-many
relationships to be of interest in some cases. However, these cases must be manually
identified by the user. Finally, the dependency graph will give rise to aggregation
hierarchies.

30

• Creating the logical schema: Facts and measures are directly depicted from vertexes
and arcs chosen whereas dimensions are derived from the aggregation hierarchies
identified.

Jensen et al. [JHP04] present a supply-driven method from relational databases. They present
data-mining techniques to be applied over the intensional data to discover functional and
inclusion dependencies and, eventually, derive snowflake schemas.

Their method starts collecting metadata such as table and attribute names, cardinality of
attributes, frequency, etc. Later, data is divided into three groups according to its potential
multidimensional role: measure, keys and descriptive data. Next, integrity constraints such
as functional and inclusion dependencies are identified between attributes and finally, the
snowflake schema is produced.

First two steps are performed consulting the database catalog. The role of each attribute
is derived with a bayesian network that takes as input metadata collected for each at-
tribute. Third step discovers the database structure by identifying functional and inclusion
dependencies that represent many-to-one relationships that will give rise to dimensions.
Candidate keys and foreign keys are identified assuming that there are no composite keys
in the database. Furthermore, inclusion dependencies among foreign keys and candidate
keys are identified in this step. These dependencies will be mainly used to identify di-
mensions. This step is critical, since all permutations of candidate keys and foreign keys
are constructed with the consequent computational cost. To pair two keys, both must have
the same attribute type and the candidate key must have, at least, as many distinct values
for the attribute as the table containing the foreign key. If these constraints hold, a SQL
statement is issued to check if the join of both tables (by means of these attributes) has
the same cardinality as the table containing the candidate foreign key. If so, an inclusion
dependency is identified between both keys. Next, they propose an algorithm to derive
snowflake schema from this metadata:

• Fact tables are identified in a semi-automatic process involving the user. First, facts
are proposed by means of the table cardinality and the number of measures identified
by the bayesian network. Then, the user chooses those of his / her interest.

• Inclusion dependencies discovered form different connected graphs. A connected
graph is considered to be a dimension if exists a inclusion dependency between a
fact table and a graph node. In this case, that node will play the atomic level role
of the dimension. The authors propose an algorithm to break potential cycles and
give rise to the aggregation hierarchy from the graph. When shaping the aggregation
hierarchy, two consecutive levels are analyzed to avoid aggregation problems (i.e.,
duplicated or lost values).

Giorgini et al. [GRG05] present a hybrid approach to derive the conceptual multidimensional
schema. They propose to gather multidimensional requirements and later map them onto
the data sources in a conciliation process. However, they also suggest that their approach
could be considered a pure demand-driven if the user do not want to consider the data
sources.

31

The authors introduce an agent-oriented method based on the i* framework [Yu97]. They
argue that it is important to model the organization setting in which the data warehouse
will operate (organization modeling) and capture the functional and non-functional re-
quirements of the data warehouse (what authors call the decisional modeling).

If we consider their hybrid approach, the next step is to match requirements with the
schema of the operational sources. In this approach both ER diagrams and relational
schemas are allowed as inputs describing the data sources. This matching stage consists
of three steps:

• Requirement mapping: Facts, dimensions and measures identified during the require-
ment analysis are now mapped over the data sources. According to the kind of data
sources considered, the authors introduce a set of hints to map each concept. For ex-
ample, facts are mapped onto entities or n-ary associations in ER diagrams and onto
relations in relational schemas.

• Hierarchy construction: For each fact identified, the data sources are analyzed look-
ing for functional dependencies based on the algorithm already discussed in [GMR98].

• Refinement: This step aims to rearrange the fact schema in order to better fit the user’s
needs. In this process, we may distinguish among concepts available (mapped from
requirements), unavailable (demanded in the requirements but not mappable to the
data sources) and what is available and not needed. The authors propose to use this
information to reorder dimensions (grafting and pruning the aggregation hierarchies)
and / or try to find new directions of analysis.

Prat et al. [PACW06] present a method to derive the conceptual, logical and physical schema
of the data warehouses according to the three abstraction levels recommended by ANSI /
X3 / SPARC. Starting from end-user requirements, the conceptual phase leads to a UML
[Grob] model. To this end, UML is enriched with concepts relevant to multidimensionality
that will facilitate the generation of the logical schema. The logical phase maps the en-
riched UML model into a multidimensional schema and finally, the physical phase maps
the multidimensional schema into a physical database schema depending on the target
implementation tool (in this case Oracle MOLAP). At each phase, they introduce a meta-
model and a set of transformations to perform the mapping between metamodels. In this
study, we will focus on the method to produce the conceptual and logical schemas and we
will avoid to discuss the transformations to be performed to derive the physical schema.

• Conceptual phase: In this first step, the authors embrace requirements elicitation
and the conceptual representation of requirements. First, requirements should be
captured by means of a UML-compliant system analysis method. Requirements en-
gineering techniques used in transactional design processes may be considered, and
for example, they mention interviews, joint sessions, study of existing reports and
prototyping of future reports as potential techniques to be used. Next, requirements
are represented in a UML class diagram that needs to be enriched to capture multidi-
mensional semantics. To do so, they present an extension of the UML metamodel.

32

– Classes which are not association classes are denoted as ordinary classes. Sim-
ilarly, associations which are not association classes are denoted as ordinary
associations.

– Each attribute of an ordinary class must be identified as an attribute or not. Ac-
cording to authors, it must be decided by the end-user and designers jointly.

– Each attribute belonging to one-to-one or many-to-one relationships is trans-
ferred to the to-many side.

– Generalizations are transformed to facilitate their mapping to the logical level.
Each specialization is mapped to a new class that is related to the superclass by
means of an aggregation relationship.

• Logical phase: Creating the logical schema from the enriched conceptual model pro-
duced in the first phase is immediate and a set of transformations expressed in Object
Contraint Language (OCL) [Groa] are presented. They also introduce an ad hoc
multidimensional metamodel to represent the logical schema as follows:

– Every many-to-many association of the conceptual model is identified as a fact
of interest and their attributes (if any) are mapped into measures of the fact. This
fact would be dimensioned by mapping the ordinary classes directly or indirectly
involved in the association. Similarly, every ordinary class containing numerical
values of interest is also identified as a fact. In this case, the fact is dimensioned
by one dimension level defined by mapping the class (similar to the approach
presented in [PD02]).

– Next, following many-to-one relationships between ordinary classes we give rise
to aggregation hierarchies for each dimension level identified in the previous
step.

– Descriptors are defined from those non-identifier attributes from the classes in-
volved in the dimension hierarchy that have not been chosen as measures of
interest.

– Finally, for each measure and for each dimension related to the fact where the
measure is defined, it is compulsory to define which aggregation functions pre-
serve a meaningful aggregation.

Mazón et al. [MTL07] present a semi-automatic hybrid approach that obtains the conceptual
schema from user requirements and then, verifies and enforces its correctness against the
data sources by means of Query / View / Transformation (QVT) relations. Their approach
work over relational sources and requirements expressed in the i* framework. The modus
operandi of this approach shares many common points with [BCC+01], but in this case,
they also provide mechanisms for validating the output schema.

This approach starts with a requirement analysis phase. They introduce a detailed demand-
driven stage in which the user should state his / her requirements at high level by means
of business goals. Then, the information requirements are derived from the information
business goals. Both, goals and information requirements must be modeled by an adapta-
tion of the i* framework and eventually, the multidimensional conceptual schema must be

33

derived from this formalization. Finally, the authors propose to express the resulting mul-
tidimensional schema by using an ad hoc UML extension (i.e., their own data structure)
provided in the paper.

Next, they propose a final step to check the conceptual multidimensional model correct-
ness. The objective of this step is twofold: they present a set of QVT relations based on
the multidimensional normal forms (MNF) to align the conceptual schema derived from
requirements with the relational schema of the data sources. Thus, output schemas will
capture the analysis potential of the sources and at the same time, they will be validated
according to the MNF. The MNF used in this paper are an evolution of those used in
[HLV00], and they share the same objective. By means of five QVT relations that may be
semi-automated, this paper describes how the conceptual multidimensional schema should
be aligned to the underlying relational schema:

• 1MNF (a): A functional dependency in the conceptual schema must have a corre-
sponding functional dependency in the relational schema.

• 1MNF (b): Functional dependencies among dimension levels contained in the source
databases must be represented as aggregation relationships in the conceptual schema.
Therefore, they complement the conceptual schema with additional aggregation hi-
erarchies contained in the sources.

• 1MNF (c): Summarized measures that can be derived from regular measures must
be identified in the conceptual schema. Therefore, they support derived measures.

• 1MNF (d): Measures must be assigned to facts in such a way that the atomic levels
of the fact form a key. In other words, they demand to place the measure in a fact
with the correct base (and thus, preserve the proper data granularity).

• 2MNF and 3MNF: These constraints demand to use specializations of concepts when
structural NULLs in the data sources do not guarantee completeness.

Song et al. [SKD07] present an automatic supply-driven method that derives logical schemas
from ER models. This novel approach automatically identifies facts from ER diagrams by
means of the connection topology value (CTV). The main idea underlying this approach
is that facts and dimensions are usually related by means of many-to-one relationships.
Concepts at the many-side are fact candidates and concepts in the one-side are dimension
candidates. Moreover, it distinguishes between direct and transitive many-to-one relation-
ships:

• First, the authors demand a preprocess to transform ER diagrams into binary (i.e.,
without ternary nor many-to-many relationships) ER diagrams.

• The CTV value of an entity is a composite function of the topology value of direct
and indirect many-to-one relationships. In this formula, direct relationships have a
higher weighting factor with regard to transitive ones. Thus, all those entities with a
CTV value higher than a threshold are proposed as facts. Note that facts are identified
by their CTV and therefore, it would be possible to consider factless facts.

34

• For each fact entity, its analysis dimensions are identified by means of many-to-one
relationships. Moreover, the authors propose to use Wordnet and annotated dimen-
sions (that represent commonly used dimensions in business processes) to enrich
aggregation hierarchies depicted.

This approach does not introduce any clue to identify measures, levels and descriptors.
However, working over ER diagrams, it would be rather easy to assume that measures are
identified by means of numerical attributes once a concept has been identified as a fact,
whereas descriptors can be identified from those entities identified as dimensions. Fur-
thermore, no clue about how to identify levels is given and indeed, in the examplification
provided in the paper, every dimension identified contains just one level (i.e., they do not
identify aggregation hierarchies).

2.1.3 Comparison Criteria
In order to provide a comprehensive framework of the multidimensional design methods, we aim
to provide a detailed comparison of the methods discussed in the previous section. Setting a basis
for discussion will facilitate the mapping of the surveyed methods to a common framework from
which compare each approach, detect trends such as features in common or analyze the evolution
of assumptions made by the modeling methods. For this reason, this section presents the criteria
used in the comparison presented in Section 2.1.4.

These criteria were defined in an incremental analysis of the methods surveyed. For each
method we captured its main features that were mapped onto different criteria. If a method
introduced a new criterion, the rest of works were analyzed to know their assumptions with
regard to this criterion. Therefore, criteria presented below were defined in an iterative process
during the analysis of the multidimensional design methods.

We have summarized these criteria in three main categories: general aspects, dimensional
data and factual data. A graphical representation of these features is found in Figure 2.1. Next
to each criterion, the values it may take are provided (in brackets, the acronyms). For example,
the values that we assign for the paradigm criterion are demand-driven (DD), supply-driven
(SD), interleaved hybrid (IH) or sequential hybrid (SH). General aspects refer to those criteria
regarding general assumptions made in the method, whereas dimensional and factual data criteria
refer to how dimensional data and factual data are identified and mapped onto multidimensional
concepts.

General Aspects: The general criteria are summarized into nine different items:

• Paradigm: According to our terminology introduced in Section 2.1.1, multidimensional
modeling methods may be classified as supply-driven, demand-driven or hybrid approaches.
The reader may found a slightly different classification in [LBMS02].

• Application: Most methods are semi-automatic. Thus, some stages of these methods must
be performed manually by an expert (normally those stages aimed to identify factual data)
and some others may be performed automatically (normally those aimed to identify di-
mensional data). In general, only a few methods fully automate the whole process. On

35

Figure 2.1: Graphical view of the criteria used for comparing the multidimensional design meth-
ods

the contrary, most methods present a detailed step-by-step guide that is assumed to be
manually carried out by an expert.

• Pre-process: Some methods demand to adapt input data into a specific format that facil-
itates their work. For instance, these processes may ask to enrich a conceptual model
with additional semantics or perform data mining over data instances to discover hidden
relationships.

• Input abstraction level: Most methods (mainly those automatable) work with inputs ex-
pressed at a logical level (e.g., relational schemas) whereas some others work with inputs
at a conceptual level (e.g., from conceptual formalizations such as ER diagrams or from
requirements in natural language).

• Output abstraction level: Several methods choose to directly generate a star or snowflake
schema, whereas some others produce multidimensional conceptual schemas. Although
many approaches argue that the data warehouse method should span the three abstraction

36

levels, only a few of them produce the conceptual, logical and physical schema of the data
warehouse.

• Data sources: There are three items summarizing main features about how data sources
are considered in the method.

– Type of data sources: The input abstraction item informs about the abstraction level
of the input, whereas this item specifies the kind of technology of the data sources
supported by the method. For example, if the method works at the conceptual level
it may work from UML, ER conceptual schemas or OWL ontologies, and if it works
at the logical level it may work from relational schemas or XML schemas.

– Data sources analysis: Most methods perform a fully supply-driven analysis of the
data sources. However, some of them also perform a requirement-driven analysis of
the data sources. Clearly, this item is tightly related to the paradigm item. Never-
theless, note that a method may follow a hybrid approach but do not consider at all
requirements when analyzing the data sources.

– Pattern formalization: Supply-driven stages usually define design patterns to identify
the potential multidimensional role that concepts depicted in the data sources may
play. Some methods present these patterns in an informal way, but most of them
use some kind of structured language. For example, ad hoc algorithms are the most
common representation but some other methods use description logic formulas or
QVT Transformations.

• Requirements representation: If requirements are considered, this item summarizes how
requirements are represented. For example, most methods use ad hoc representations (like
forms, sheets, tables or matrixes), whereas some others use UML diagrams or the i* frame-
work. Finally, some of them lower the level of abstraction of requirements to a logical level
by means of SQL queries or MDX queries [Mic].

• Validation: Some methods integrate a validation process to derive meaningful multidimen-
sional schemas. For example, restricting summarization of data to those dimensions and
functions that preserve data semantics or forming multidimensional spaces by means of
orthogonal dimensions.

• Implementation: Some methods have been implemented in CASE tools or prototypes.

Factual Data: These criteria summarize how a given method identifies and handles factual data
(i.e., facts and measures). First, criteria used to identify measures are summarized as follows:

• Data sources: Up to now, looking for numerical concepts is the only heuristic introduced
to identify measures from the data sources.

• Requirements: Most approaches consider requirements to identify measures. We distin-
guish if the method only considers explicit measures or also implicit ones. Implicit mea-
sures are those explicitly stated in the requirements but implicit in the data sources (i.e.,

37

there is not a concept in the data sources that would correspond to it, but they can be
derived from an already existing concept(s) in the data sources). For example, derived
measures. Therefore, some kind of reasoning over the data sources is needed.

Next, we introduce criteria used to identify facts. These criteria refer to how facts are iden-
tified from the data sources or from requirements, and how they may be semantically related in
the resulting schema:

• Factless facts: This kind of facts were introduced by Kimball [KRTR98]. They are also
known as empty facts and they are very useful to describe events and coverage and a lot of
interesting questions may be asked from them.

• Data sources: Most of the methods demand to explicitly identify facts by means of the
requirements, but some others use heuristics to identify them from the data sources. For
example, in case of relational sources, most use heuristics such as table cardinalities and
the number of numerical attributes that a table contains. Furthermore, some works also
look for concepts with high to-one connectivity (i.e., with many potential dimensional
concepts).

• Requirements: Similar to measures, if requirements are considered, we distinguish among
explicit and implicit facts. However, implicit facts have a slightly different meaning. We
denote by implicit facts those that have not been explicitly stated in the requirements but
can be identified from a requirement-driven analysis of the sources.

• Semantic relationships: In case of producing a conceptual schema, some methods are
able to identify semantic relationships between facts. We distinguish among associations,
aggregations (also called roll-up / drill-down relationships) and generalizations. In the
multidimensional model, it means that we may perform multidimensional operators such
as drill-across or drill-down over them.

Dimensional Data: These criteria analyze how the method identifies and handles dimensional
data (i.e., dimensions, levels and descriptors). We have two main groups of items. Those refer-
ring to how dimensional data is identified (either from the data sources or from requirements),
and how they are semantically related in the resulting schema. The process to identify dimen-
sions, levels and descriptors must be understood as a whole and unlike criteria used to identify
factual data we do not distinguish among criteria to look for different dimensional concepts.
Roughly speaking, most approaches start looking for concepts representing interesting perspec-
tives of analysis and from these concepts they look for aggregation hierarchies (i.e., levels). The
whole hierarchy is then identified as a dimension and level attributes are considered to play a
descriptor role:

• Fact-centered: Most methods look for dimensional data once they have identified facts.
From each fact, dimensional concepts are identified using a wide variety of techniques
according to the method inputs, but always looking for functional dependencies from the
fact.

38

• Data sources: There are several techniques to identify dimensional concepts from data
sources. We classify these techniques in three main groups: discovering functional depen-
dencies, discovering bases and others. At the conceptual level, functional dependencies
are modeled as to-one relationships, and at the logical level it depends on the technol-
ogy. For example, in the relational model, dimensional concepts are identified by means
of foreign keys and candidate keys. Bases (see Section 1.5 for further information) are
used to identify dimensional concepts as well. In this case, the method looks for candi-
date multidimensional bases in order to identify interesting perspectives of analysis (i.e.,
levels).

• Requirements: Dimensional concepts are mostly identified from the data sources once
facts and measures have been identified. However, demand-driven approaches rely on
requirements to identify dimensional concepts and some hybrid approaches also enrich
their supply-driven stages with requirements. Like facts, we distinguish between explicit
dimensional concepts and implicit ones.

• Intra-dimensional: Most of the methods distinguish between descriptors and levels, but
some others do not.

• Inter-dimensional: Some approaches are able to identify semantic relationships between
dimensions. In this case, we consider associations and generalizations as potential rela-
tionships.

2.1.4 Methods Comparison
In this section we present a detailed summarization of the main features of each method regarding
the criteria introduced in previous section, which provides a common framework to compare and
discuss methods surveyed. Results are shown in Tables 2.1 and 2.22, in which MDBE (see
Chapter 3) and AMDO (see Chapter 4) are also considered. Methods surveyed are distributed in
these tables according to the chronological order. There, rows correspond to criteria introduced in
Section 2.1.3 and columns correspond to each method studied. A given cell contains information
for a method for a certain criterion (we address the reader to Figure 2.1 to remind the meaning
of each acronym). Most of the criteria are evaluated as yes / no, but some other have alternatives.
Acronyms used to represent these alternatives may be found in Figure 2.1. Two general values
can be found for any criterion: - means that this criterion does not make sense for the method (for
example, if it does not consider the data sources then, any of the criteria related to them cannot be
evaluated for this method), whereas none means that, despite this criterion could be considered
for this method, none of the alternatives are considered (i.e., it is overlooked). Therefore, none
is the equivalent to the no value but for criteria having several values.

Analyzing these tables we can find some interesting trends as well as assumptions that have
been considered in most of the methods surveyed. First approaches tried to contextualize the
multidimensional modeling task by providing tips and informal rules about how to proceed. In
other words, they presented the first guidelines to support multidimensional design. Later, when

2Note that these tables were used to produce Figures 1.3 and 1.4 in pages 14 and 15.

39

[KRTR98] [CT98a] [GMR98] [BvE99] [HLV00] [MK00] [BCC+01] [PD02]
General Aspects
Paradigm DD IH SH SH DD SD SH SH
Application G G S G G G S S
Pre-process - DCS - ECS - DCS - -
Input Abstr. C C C/L C C C C/L L
Output Abstr. L L C/L/P L C L L C
Data Sources
↪→ Type - ER ER/Rel SER - ER ER Rel
↪→ Analysis - RD Full Full - Full Full Full
↪→ Patterns F. - None Alg None - None Alg Alg
Req. Expr. ad hoc ad hoc ad hoc ad hoc ad hoc - ad hoc MDX
Validation No No No No MNF No No No
Tool No No Yes Yes No No No No
Factual Data
Facts

Factless Facts Yes No No No No No No No
Requirements Expl Expl Expl Expl Expl - Expl No
Data Sources
↪→ C.Num.Val. - No No No - Yes Yes Yes
↪→ Connectivity - No No No - No No No
↪→ Cardinality - No No No - No No Yes
Semantic Rels. - - Ass - Ag - - None

Measures
Requirements Impl Expl Expl Impl Expl - Expl No
Data Sources - No NV No - NV NV NV

Dimensional Data
Fact-centered No No Yes Yes No No Yes Yes
Requirements Expl Expl Expl Expl Expl - Expl No
Data Sources
↪→ Func. Depend. - No Yes Yes - Yes Yes Yes
↪→ Bases - No No No - No No No
↪→ Others - No No No - No No Yes
Related

Interdim. None - None - None - - None
Intradim. L/D L/D L/D L L/D L/D L/D L

Table 2.1: Summary of the multidimensional design methods comparison (I)

main features with regard to multidimensional modeling were set up, new formal and powerful
methods were developed. These new methods focused on formalizing and automating the pro-
cess. Automation is an important feature along the whole data warehouse lifecycle and multidi-
mensional design has not been an exception. Indeed, first methods were step-by-step guidelines,
but in the course of time many semi-automatic and automatic approaches have been presented.
This evolution also conditioned the type of inputs used, and logical schemas were considered
instead of conceptual schemas. Nowadays, last methods introduced present a high degree of
automation. Moreover, we may say that this trend also motivated a change of paradigm. At
the beginning, most methods where demand-driven or, in case of being hybrid approaches, they
gave much more weight to requirements than to data sources. However, eventually, data sources
gained relevance. This makes sense because automation has been tightly related to focusing on
data sources instead of requirements. Consequently, first methods introduced gave way to others
largely automatable and mostly following a supply-driven framework. Nevertheless, today, it is

40

[WS03] [VBR03] [JHP04] [GRG05] [PACW06] [RA06] [MTL07] [SKD07] [RA07a]
General Aspects
Paradigm DD SH SD SH DD IH SH SD SH
Application G S A S G A S A S
Pre-process - TCS DM - ECS - - TCS -
Input Abstr. C L L C C L C/L C C
Output Abstr. C L L C C/L/P C C L C
Data Sources
↪→ Type - XML Inst ER/Rel - Rel Rel Rel OWL
↪→ Analysis - Full Full RD - RD RD Full Full
↪→ Patterns F. - None Alg None - Alg QVT None DL
Req. Expr. ad hoc ad hoc - i* UML SQL i* - -
Validation No No AC No AC MC MNF No MC
Tool No Yes Yes Yes Yes Yes Yes Yes No
Factual Data
Facts

Factless Facts No No No No Yes Yes No Yes No
Requirements Expl Expl - Expl Expl Impl Expl - -
Data Sources
↪→ C.Num.Val. - No Yes No - No No No Yes
↪→ Connectivity - No No No - No No Yes Yes
↪→ Cardinality - No Yes No - No No No No
Semantic Rels. None - - None None Ass/S Ass/S None Ass/Ag

Measures
Requirements Expl Expl - Expl Expl Impl Impl - -
Data Sources - No NV No - No No No NV

Dimensional Data
Fact-centered No Yes Yes Yes No No No Yes Yes
Requirements Expl No - Expl Expl Impl Impl - -
Data Sources
↪→ Func. Depend. - Yes Yes Yes - Yes Yes Yes Yes
↪→ Bases - No No No - No No No Yes
↪→ Others - No No No - No No No No
Related

Interdim. None - - None None Ass/S S None Ass
Intradim. - L/D L/D L/D L/D L/D L/D L L/D

Table 2.2: Summary of the multidimensional design methods comparison (II)

assumed that the ideal approach to design multidimensional data warehouses must be a hybrid
approach. In this line, last works introduced are mainly hybrid approaches.

In these tables we can also note the evolution of how the multidimensional model has been
considered. First approaches used to produce logical multidimensional schemas but later, most
of them generate conceptual schemas. One reason for this situation could be that Kimball in-
troduced multidimensional modeling at the logical level (i.e., as a specific relational implemen-
tation). With the course of time, it has been argued that it is necessary to generate schemas
at a platform-independent level and in fact, the multidimensional design should span the three
abstraction levels (conceptual, logical and physical) like in the relational databases field.

About the kind of data sources handled, most of the first approaches choose conceptual entity-
relationships diagrams describing the data sources. ER diagrams were the most spread way to
represent operational databases (the most common type of data source to populate the data ware-
house) but the necessity to automate this process and the need to provide up-to-date conceptual

41

schemas to the data warehouse designer motivated that many methods worked over relational
schemas instead of conceptual schemas. Almost every method either considers ER diagrams or
relational schemas to describe the data sources. Lately, with the relevance gained by the seman-
tic web area, some other works automating the process from XML schemas or OWL ontologies
have been presented. About requirements, their representation have varied considerably. At the
beginning, ad hoc representations such as forms, tables, sheets or matrixes were proposed but
lately, many methods propose to formalize requirements representation with frameworks such as
UML diagrams or i*. Moreover, some works have also proposed to lower the level of abstrac-
tion of requirements to the logical level by means of SQL or MDX queries, which opens new
possibilities of automation.

Finally, we can also identify a trend to validate the resulting multidimensional schema as well
as the importance to provide a tool supporting the method.

About how to identify factual data, there are some trends that most approaches follow. Look-
ing at the data sources, numerical concepts are likely to play a measure role whereas concepts
containing numerical attributes or those with a high table cardinality are likely to play a fact role.
First methods were mainly demand-driven but later, most of them used these heuristics to identify
factual concepts within supply-driven stages. However, these heuristics do not identify facts or
measures but concepts likely to play that role. Thus, requirements must be considered to filter the
(vast) amount of results obtained, and in the last years requirements have gained relevance again.
Capturing inter-relationships between schemas (i.e., facts) have also gained relevance lately, as
they open new analysis perspectives when considering multidimensional algebras. Finally, the
reader may note that although Kimball introduced the concept of factless facts from the very
beginning, it has been traditionally overlooked. Lately, some methods considered them again.
One of the reasons could be that it is difficult to automate the identification of facts that do not
have measures.

According to our study, dimensional concepts have been traditionally identified by means
of functional dependencies. From the very beginning, some methods proposed to automate the
identification of aggregation hierarchies. In fact, many methods use requirements to identify
factual data and later they analyze the data sources looking for functional dependencies to iden-
tify dimensional data. Maybe for this reason, the use of requirements to identify dimensional
concepts has not been that relevant as to identify factual data. Another clear trend with regard
to dimensional concepts is that, in general, the more automatable a method is, the more fact-
centered it is. About relationships among dimensional concepts, inter-dimensional relationships
(like relationships between facts) open new perspectives of analysis when considering multidi-
mensional algebras. However, in this case they have been traditionally overlooked; even more
than this kind of relationships between facts. On the contrary, intra-dimensional relationships
gained more and more relevance from the very beginning. Most methods agree that distinguish-
ing among dimensions, levels and descriptors is relevant for analysis purposes.

42

Figure 2.2: Conceptual representation of the reference multidimensional operators

2.2 Multidimensional Algebras

2.2.1 Reference Framework

Due to the lack of a standard multidimensional model, and hence, the lack of a common notation,
we need a reference framework in which to translate and compare the multidimensional algebras
presented in the literature. Otherwise, a comparison among the different algebras would be rather
difficult. In this section we introduce a set of operators (introduced in detail in [ASS06] and
conceptually sketched in Figure 2.2) that, together with the data structured introduce in Section
1.5, is used in this paper to concisely and univocally define the multidimensional concepts and
operators, as well as to provide a common notation:

• Selection: By means of a logic clause C over a descriptor, this operation allows to choose
the subset of points of interest out of the whole n-dimensional space. For example, consider
Figure 1.1 (see page 5), which depicts a data cube derivable from the conceptual schema
shown in Figure 1.2 (see page 9). If we are only interested on analyzing data related to
Barcelona, we must perform a selection (where C would be equal to Barcelona)
over the place dimension.

43

• Roll-up: It groups cells in the data cube based on an aggregation hierarchy. This operation
modifies the granularity of data by means of a many-to-one relationship (corresponding to
a part-whole relationship) that relates instances of two levels from the same dimension. As
argued in [HS97], drill-down (i.e., the inverse operator of roll-up) can only be applied if
we previously performed a roll-up and did not lose the correspondences between cells. For
example, consider again Figures 1.1 and 1.2. If we are interested in analyzing the sales
by country, we must perform a roll-up from city to country. Accordingly, roll-up
will perform the necessary data aggregation of the factual instances grouped according to
the city - country aggregation relationship.

• ChangeBase: This operation reallocates exactly the same instances of the data cube into
a new n-dimensional space with exactly the same number of points, by means of a one-
to-one relationship. Actually, it allows two different kinds of changes in the space base:
we can just rearrange the multidimensional space by reordering the levels or, if more than
one set of dimensions determine the data cube cells (i.e., if there are alternative bases), by
replacing the current base with an alternative one. Consider again the example discussed
previously. On the one hand, we could rearrange the dimensions to show, for example, the
place dimension in the y axis and product in the x axis. On the other hand, if we had an
alternative multidimensional base, for example, {product× year× shareholder},
we could replace the current base {product× year× place}with the alternative base
proposed. Note that both bases must be related by a one-to-one relationship and therefore,
the multidimensional space is preserved (in our example, this alternative base would make
sense if each shareholder controls the sales of just one city).

• Drill-across: This operation changes the subject of analysis of the data cube by means
of a one-to-one relationship. The n-dimensional space remains exactly the same, only the
cells placed on it change. For example, suppose that we dispose of a star schema analyzing
stock data and sharing the same analysis dimensions as those depicted in Figure 1.2. In
this case, we could drill-across from the current data cube shown in Figure 1.1 to another
one with exactly the same amount of cells but, instead of just containing sales instances
it would contain sales and stock information.

• Projection: It selects a subset of measures from those shown in the data cube. Following
our example, we can remove the discount measure by just projecting the price.

• Set Operations: These operations allow to operate two data cubes if both are defined
over the same n-dimensional space. We consider union, difference and intersection as
the most relevant ones. For example, consider two data cubes derived from Figure 1.1
by means of selections: one selecting data concerning Barcelona over the place
dimension and another selecting data concerning Lleida. These two cubes could be
united to produce a single data cube showing factual data concerning Barcelona and
Lleida.

The algebra composed by these operators is closed (applied to a data cube, the result is
another data cube), complete (any correct data cube can be computed as the combination of a

44

finite set of these operators) and minimal (none can be expressed in terms of others, nor can
any operation be dropped without affecting its functionality). Other operations can be derived
by sequences of these operations. This is the case of slice (which reduces the dimensionality of
the original data cube by fixing a point in a dimension) by means of selection and changeBase
operations. For instance, referring to Figure 1.1, we can slice it by fixing the place dimension
to a specific value (e.g., Barcelona) by means of a selection, and then change the space base
to time × product through a changeBase without losing cells (note that it holds because just
after the selection we obtain the following multidimensional base: time× product× 1).

2.2.2 The Multidimensional Algebra Vs. The Relational Algebra
In this section, we present the proper subset of the relational algebra corresponding to our ref-
erence framework. Our objective is twofold: (i) we place the multidimensional framework with
regard to a formal, well-known and standardized algebra; and (ii) we improve the understand-
ability of the whole picture by placing the multidimensional algebra introduced with regard to a
reference framework and thus, clearly and concisely defining its semantics.

In this study, we aim to keep the comparison between both algebras at the conceptual level
and avoid considering the data warehouse implementation aspects. For this reason, we assume,
without loss of generality, that each multidimensional data cube (i.e., each navigation path node)
is implemented as a relation in the relational database (i.e., as a denormalized relational ta-
ble). Accordingly, the data cube of finest granularity that we may query from the multidimen-
sional schema shown in Figure 1.2 (see page 9), would be implemented with the following
relation: {city name, day, product id, country name, month, year, leap year,
product descr, category name, category desc, price, discount}. Where the
underlined fields denote the multidimensional base and therefore, the relation primary key. In this
section, we will refer to this kind of denormalized relation as the multidimensional table. Then,
multidimensional tables contain (1) identifier fields (i.e., identifier descriptors that determine a
level of detail) determining factual data, for example: city name, day and product id in
the above example; (2) numerical fields, e.g., price and discount, representing multidi-
mensional data (i.e., measures) and (3) descriptive fields, e.g., country name, month, year,
leap year, product descr and category name (i.e., non-identifier descriptors).

Finally, we consider the relational algebra presented in [Cod72]. Thus, we consider “selec-
tion” (σ), “projection” (π), “union” (∪), “difference” (−) and “natural join” (./) as the relational
algebra operators. We talk about “natural join”, or simply “join”, instead of “cartesian product”
(the one presented in [Cod72] and from which “join” can be derived) since the “cartesian prod-
uct” without further restrictions is meaningless in the multidimensional model, as discussed in
Section 2.2.3.

Table 2.3 summarizes the mapping between both sets of algebraic operators. Note that we
consider the “group by” and “aggregation” as relational operators, and both will be justified con-
sequently below. We use the following notation in the table: XMeasures if the multidimensional
operator is equivalent to the relational one but it can be only applied over relation fields represent-
ing measures, XDescs if the multidimensional operator must be applied over descriptors fields
and finally, XDescsid

if it can be only applied over identifier descriptors fields. Consequently,
a X without restrictions means both operators are equivalent, without additional restrictions. If

45

the translation of a multidimensional operator combines more than one relational operator, the
subscript + is added. Next, we clearly define the relational algebra proper subset mappable from
/ to the multidimensional algebra (multidimensional concepts are bolded, whereas relational
concepts are “quoted”):

• The multidimensional selection operator is equivalent to a restricted relational “selection”.
It can only be applied over descriptors and then, it is equivalent to restrict the relational
“selection” just over level data. According to our notation, we express the multidimen-
sional selection in terms of the relational algebra as σDescriptors.

• Similarly, the multidimensional projection operator is equivalent to the relational one re-
stricted to measures; that is, specific Cell data. In terms of the relational algebra we could
express it as πMeasures.

• OLAP tools emphasize on flexible data grouping and efficient aggregation evaluation over
groups, and it is the multidimensional roll-up operator the one aimed to provide us with
powerful grouping and aggregation of data. In order to support it, we need to extend
the relational algebra to provide grouping and aggregation mechanisms. This topic has
been studied and previous works like [LW96], [Klu82] and [Lar99] have already presented
extensions of the relational algebra to what is called the grouping algebra. All of them
introduce two new operators; one to group data and apply a simple addition, counting or
maximization of a collection of domain values and the other one to compute the aggre-
gation of a given attribute over a given nested relation. Following the [Lar99] grouping
algebra, we will refer to them as the “group by” and the “aggregation” operators. In terms
of this grouping algebra, a roll-up operator consists of a proper “group by” operation along
with an “aggregation” of data.

• Drill-across typically consists of a “join” between two multidimensional tables sharing the
same multidimensional space. Notice that to “join” both tables it must be performed over
their common level identifiers that must univocally identify each cell in the multidimen-
sional space (i.e., over the data cube base). Moreover, once “joined”, we must “project”
out the columns in the multidimensional table drill-acrossed to, except for its measures.
Formally, let A and B be the multidimensional tables implementing, respectively, the ori-
gin and the destination Cells involved. In the relational algebra it can be expressed as:

Reference Operator “Selection” “Projection” “Join” “Union”/“Diff.” “Group by” “Aggregation”
Selection XDescs

Projection XMeasures

Roll-up XDescsid+ XMeasures+

Drill-across XDescsid+ XDescsid+

Add Dim. XDescsid
changeBase Remove Dim. XDescsid

Alt. Base XDescsid+ XDescsid+

Union/Difference X

Table 2.3: Comparison table between the relational and the multidimensional algebras.

46

πDescriptorsA,MeasuresA,MeasuresB(A ./ B)

• ChangeBase allows us to rearrange our current multidimensional space either by changing
to an alternative base (adding / removing a dimension, replacing dimensions) or reorder-
ing the space (i.e., “pivoting” as presented in [FBSV00]).

When changing to an alternative base we must assure it does not affect the functional
dependency of data with regard to the data cube base. Hence:

– When adding dimensions we must preserve the multidimensional space. Thus, it
means that the added dimension must be represented as a fixed point in the multi-
dimensional space (i.e., it would not introduce a new axis in the multidimensional
space). It can be achieved either by introducing the new dimension at the All level
(note that the All level represents the whole dimension as one instance) or by fix-
ing an instance, at any level of detail, by means of a selection. Therefore, in the
relational algebra, adding a dimension is achieved through a “cartesian product”
between the multidimensional table and the dimension table (that would contain a
unique instance). Specifically, if C is the initial multidimensional table and D the
relation implementing the added dimension, it can be expressed as:

C × D, where |D| = 1

– On the contrary, to remove a dimension we need to get rid of the proper level iden-
tifier projecting it out in the multidimensional table.

– To change the set of dimensions identifying each cell, i.e., choosing an alternative
base in which to place the data, we must perform a “join” between both bases and
project out the replaced level descriptors in the multidimensional table. In this case,
the “join” must be performed through the identifier descriptors of levels replaced and
levels introduced. Formally, letA be the multidimensional table, B the table showing
the correspondence between both bases and d1, ..., dn the identifier descriptors of
those dimensions introduced. In the relational algebra, it is equivalent to:

πDescriptorsB(d1,...,dn),MeasuresA(A ./ B)

– Finally, pivoting just asks to reorder the levels identifiers using the SQL “order by”
operator, not mappable to the relational algebra. For this reason, it is not included in
Table 2.3.

• The multidimensional union (difference) unites (differences) two data cubes defined over
the same multidimensional space. In terms of the relational algebra, it is equivalent to
“union” (“difference”) two multidimensional tables.

2.2.3 A Comprehensive Survey
For the sake of comprehension, the reference operators presented in Section 2.2.1 will be bolded
in this section, whereas the multidimensional operators introduced in each algebra appear “in
quotes”:

47

Li and Wang [LW96] introduce a multidimensional algebra as well as its translation to SQL.
To do so, they introduce an ad hoc grouping algebra extending the relational one (i.e., with
grouping and aggregation operators). This algebra was one of the first multidimensional
algebras introduced, and the authors main aim was to construct data cubes from local
operational databases.

More precisely, it defines five multidimensional operators representing mappings between
either data cubes or relations and data cubes. The “add dimension” and “transfer” oper-
ators are aimed to rearrange the multidimensional space similar to a changeBase: while
“Add dimension” adds a new analysis dimension to the current data cube, “transfer” trans-
fers a dimension attribute (i.e., a descriptor) from one dimension to another via a cartesian
product. Since multidimensional concepts are directly derived from non-multidimensional
relations, dimensions may be vaguely defined, justifying the transfer operator; the “cube
aggregation” operator performs grouping and aggregation over data, being equivalent to
roll-up and finally, the “rc-join” operator, that allows us to join a relational table with a
dimension of the data cube, selects those dimension values also present in the table. This
low level operator is tightly related to the multidimensional model presented, and it is
introduced to relate non-multidimensional relations with relations modeling data cubes.

Agrawal et al. [AGS97] present an algebra composed by six operators rather relevant, since
they inspired many following algebras. First, “push” and “pull” transform a measure into
a dimension and viceversa, as in their model measures and dimensions are handled uni-
formly. In our framework they would be equivalent to define semantic relationships be-
tween the proper dimensions and cells and then, drill-across and changeBase respectively;
“destroy dimension” drops a cube dimension rearranging the multidimensional space and
hence, being equivalent to changeBase, whereas the “restriction” operator is equivalent to
selection; “merge” to roll-up and “join” to an unrestricted drill-across. Consequently, the
latter can even be performed without common dimensions between two data cubes, giving
rise to a cartesian product. However, a cartesian product does not make any multidimen-
sional sense if it is not restricted, since it would not preserve disjointness when aggregating
data ([RA05]). Finally, note that we can project data by means of “pull”ing the measure
into a dimension and performing a “destroy dimension” over it.

Gyssens and Lakshmanan [GL97] present an algebra based on the classical relational alge-
bra operations. Therefore, it includes “selection”, “projection”, “union” / “intersection” /
“difference” and the “cartesian product”; all of them being equivalent to their analogous
operators in our reference algebra, except for the latter which is mappable to an unrestricted
drill-across as discussed in the previous algebra. The “fold” and “unfold” operators add
/ remove a dimension, like in a changeBase; whereas roll-up is decomposed in two op-
erators: “classification of tables” (i.e., grouping of data) and “summarization of tables”
(aggregation of data). Hence, this algebra proposes to differentiate grouping (i.e., the con-
ceptual navigation between levels through a part-whole relationship or in other words, the
result of mapping data into groups) from aggregation (i.e., aggregating data according to
an aggregation function).

Thomas and Datta [TD97] and [TD01] present an algebra with eight operators based on

48

[AGS97]. Therefore, the “restriction” operator is equivalent to selection; the “metric pro-
jection” to projection; the “aggregation” to roll-up and the “union” / “difference” opera-
tors to those with the same name in our reference algebra. Moreover, similar to [AGS97],
measures can be transformed into dimensions and viceversa. Hence, the “force” and “ex-
tract” operators are equivalent to the “push” and “pull” ones. Finally, they rename the
“join” operator in [AGS97] as “cubic product”, and denote by “join” an specific “cubic
product” over two data cubes with common dimensions (i.e., preserving disjointness if
joined through their shared dimensions) since, in general, a cartesian product does not
make multidimensional sense.

Lehner [Leh98] present an algebra composed by five operators. “Roll-up” and “drill-down”
and the “split” and “merge” operators are equivalent to roll-up and drill-down. Accord-
ing to its model data structure that differentiates two analysis phases of data, these four
operations are needed because “roll-up” and “drill-down” find and interesting context in
a first phase, whereas “split” and “merge” modify the data granularity dynamically by the
dimensional attributes (i.e., descriptors) defined in the “classification hierarchies” nodes
of the data structure. It also introduces two operators to aggregate data: the “implicit” and
the “explicit” aggregation. The first one is implicitly used when navigating by means of
“roll-up”s, whereas the second one can be explicitly stated by the end-user. Since they are
equivalent, these operators are just differentiated because of the conceptual presentation
followed in the paper. Finally, “slicing” operator reduces the multidimensional space in
the same sense as selection, whereas the “cell-oriented operator” derives new data pre-
serving the same multidimensional space by means of “unary operators” (-, abs and sign)
or “binary operators” (*, +, -, /, min and max). “Binary operators” ask for two multidi-
mensional objects aligned (i.e., over the same multidimensional space). In our framework
it is obtained defining derived measures in design time.

Cabibbo and Torlone [CT98b], [CT97] and [CT98a] present an algebra with nine operators
where, similar to [GL97], roll-up is decomposed into “roll-up” (i.e., grouping) and “ag-
gregation”. “Level description” is equivalent to changeBase: it changes a level by another
one related through a one-to-one relation to it. In our framework we should define a se-
mantic relationship among levels involved and perform a changeBase; “simple projection”
projects out selected measures and reduces the multidimensional space by dropping dimen-
sions: it can just drop measures (equivalent to projection), dimensions (to changeBase)
or combine both. Finally, “abstraction” is equivalent to the “pull” operator in [AGS97] and
“selection”, “cartesian product” and “natural join” to those discussed along this section.

Hacid and Sattler [HS98] present an algebra based on description logics (DL) and developed
from [AGS97]. Therefore, it also introduces “restrict”, “destroy” (equivalent to “destroy
Dimension”) and “aggr” (equivalent to “merge”). Furthermore, the “join” and “Join” op-
erators can be considered an extension of the “join” operator in [AGS97]: both operators
restrict the original “join” to make multidimensional sense and consequently, being equiv-
alent to drill-across; although the second one also allows to group and aggregate data
before showing it (i.e., being equivalent to drill-across and roll-up).

49

Pedersen [Ped00] presents an algebra where “selection”, “projection”, “union” / “difference”
and roll-up and drill-down are equivalent to those with the same name presented in our
framework, whereas the “value-based join” is equivalent to drill-across and the “identity-
based join” to “cartesian product”. Moreover, it also differentiates the “aggregate oper-
ation” (i.e., grouping) from the “roll-up”; the “duplicate removal” operator is aimed to
remove cells characterized by the same combination of dimensional values. In our frame-
work it can never happen because of the base definition introduced. Finally, it presents a
set of non-atomic operators; the “star-join” operator combines a selection with a roll-up,
by the same aggregation function, over a set of dimensions, and the “SQL-like aggrega-
tion” applies the “aggregate operation” to a certain dimensions and projects out the rest
(that is, performs a changeBase).

Vassiliadis [Vas00] presents an algebra with three operators. “Navigation” allows us to roll-
up, and according to [Vas98], it is performed by means of “level-climbing” (reducing the
granularity of data), “packing” (grouping data) and “function application” (aggregating
by an aggregation function). Finally, “split a measure” is equivalent to projection and
“selection” to the reference selection.

Yin and Pedersen [YP04] present an algebra over an XML and OLAP federation: “selection
cube” allows us to select data; “decoration” adds new dimensions to the data cube (i.e.,
mappable to a changeBase) and “federation generalized projection” (FGP) roll-ups the
data cube and removes unspecified dimensions (changeBase) and measures (projection).
Note that although Roll-up is mandatory, FGP can combine it with a projection or/and
changeBase.

Franconi and Kamble [FK04] present an algebra with four operations. “Slice” and “multi-
slice” select a single or a range of dimensional values; “union” / “intersection” / “differ-
ence” combine two aligned data cubes, whereas “join” is rather close to drill-across but in
a more restrictive way, forcing both data cubes to share the same multidimensional space.
“Derived measures” derives new measures from already existent. In our framework, as al-
ready said, derived measures should be defined in design time. Finally, notice that roll-up
is not included in their set of operators, since it is considered in their model data structure.

Finally, to conclude our survey, we would like to remark that some of these approaches have
also presented an equivalent calculus besides the algebra introduced above (like [GL97] and
[CT98b]). Moreover, [GMR98] presents a query language to define the expected workload for
the data warehouse. We have not included the latter in Table 2.4 because it can not be smoothly
compared to the algebraic operators. Anyway, analyzing it, we can deduce that many of our
reference operators are also supported by their model like selection, projection, roll-up, union
and even a partial drill-across, as they allow to overlap fact schemes.

2.2.4 Algebras Comparison
This section presents a comparison between the multidimensional algebras surveyed in the previ-
ous section. To the best of our knowledge, it is the first comparison of multidimensional algebras

50

Union
Algebra Operator Selection Projection Roll-up changeBase Drill-across Difference Remarks

Drill-down Intersection

“Add Dimension” Xp
“Transfer” ∼

[LW96] “Cube Aggr.” X
“Rc-join” X
“Union” X
“Push” Xp Semantic

Rels.
“Pull” D Xp Semantic

[AGS97] Rels.
“Destroy Dimension” D Xp

“Restriction” X
“Join” X

“Merge” X
“Selection” X
“Projection” X

“Cartesian Product” ∼
[GL97] “Union/Diff./Inters.” X

“Fold/Unfold” Xp
“Classification” D

“Summarization” D
“Restriction” X

“Metric Projection” X
“Aggregation” X

“Cartesian Product” ∼
[TD97] “Join” X

“Union/Diff.” X
“Extract” Xp Semantic

Rels.
“Force” Xp Semantic

Rels.

“Slicing” X
“Roll-up/Drill-down” X

[Leh98] “Split/Merge” ∼
“Implicit/Explicit Aggr.” Xp

“Cell Operators” Derived
Measures

“Cartesian Product” ∼
“Natural Join” X

“Roll-up” D
“Aggregation” D

[CT98b] “Level Description” Xp Semantic
Rels.

“Scalar Function App.” Derived
Measures

“Selection” X
“Simple Projection” X Xp

“Abstraction” X+ Xp+
“Restrict” X
“Destroy” Xp

[HS98] “join” X
“Join” X+ X+
“Aggr” X

“Selection” X
“Projection” X
“Union/Diff.” X

“Identity-based Join” ∼
“Aggregate Formation” Xp

[Ped00] “Value-based Join” X
“Duplicate Removal” Base

definition
“SQL-like Aggr.” Xp

“Star-join” X+ X+
“Roll-up/Drill-down” X

“Navigate” X
[Vas00] “Selection” X

“Split Measure” X
“Derived Measures” Derived

Measures
[FK04] “Join” Xp

“Slice/Multislice” X
“Union/Diff./Inters.” X

“Selection Cube” X
[YP04] “Decoration” Xp

“Fed. Gen. Projection” X+ X+ X+

Table 2.4: Summary of the comparison between multidimensional algebras.

51

carried out. In [VS99], a survey describing the multidimensional algebras in the literature is pre-
sented. Regarding this previous work, in this study, we include up-to-date references and provide
a detailed comparison of the algebras.

Results presented along this section are summarized in Table 2.4. There, rows, represent-
ing an algebraic operator, are grouped according to which algebra they belong to (also ordered
chronologically), whereas columns represent multidimensional algebraic operators in our frame-
work (note that roll-up and drill-down are considered together since one is the inverse of the
other). The notation used is the following: a X cell means that those operations represent the
same conceptual operator; a ∼ stands for operations with similar purpose but different proceed-
ing making them slightly different; a Xp means that the operation partially performs the same
data manipulation as the reference algebra operator despite the latter also embraces other func-
tionalities, and a X+ means that this operation is equal to combine the marked operators of our
reference algebra, meaning it is not an atomic operator. Analogously, there are some reference
operators that can be mapped to another algebra combining more than one of its operators. This
case is showed in the table with a D (from derived). Note that this last mark must be read ver-
tically unlike the rest of marks. For example, in [AGS97], we can project data by means of
the “pull” and “destroy dimension” operators. Finally, note that we have only considered those
operations manipulating data and therefore, those aimed to manipulate the data structure are not
include.

A detailed analysis of Table 2.4 draws interesting conclusions. In short, we are able to iden-
tify the multidimensional backbone shared by all the algebras. Firstly, selection, roll-up and
drill-down operators are considered in every algebra. It is quite reasonable since roll-up is the
main multidimensional operator and selection is a basic one, allowing to select a subset of mul-
tidimensional points of interest out of the whole n-dimensional space. Projection, drill-across
and set operations are included in most of the algebras. In fact, along the time, just two of the
first algebras presented did not include projection and drill-across. We may include set opera-
tions in our algebra depending on the transformations that the model allows to perform over data
and indeed, it is a personal decision to make. However, we do believe that to unite, intersect or
difference two data cubes is a kind of navigation desirable. Finally, changeBase is also partially
considered in most of the algebras. Specifically, they agree on the necessity of modifying the
n-multidimensional space by adding / removing dimensions, and they include it as a first-class
operator. Moreover, our framework provides additional alternatives to rearrange the multidimen-
sional space (i.e., to change the multidimensional space base by “pivoting”). In general, we can
always rearrange the multidimensional space in any way, if we preserve the functional depen-
dencies of the cells with regard to the levels conforming the multidimensional space base; i.e.,
if the replaced dimension(s) and the new one(s) are related through a one-to-one relationship.
Importantly, according to this study, all the algebras surveyed are subsumed by our reference
framework.

Finally, the algebra comparison presented in this section has revealed many implicit agree-
ments about how multidimensional data should be handled. Although this is not the aim of
this thesis, we strongly believe that a reference set of operators such as the multidimensional
backbone identified in our study could be used to develop design methods oriented to improve
querying, develop better and more accurate indexing techniques and facilitate query optimiza-
tion (i.e., provide us with all the benefits of a reference framework). Experiences in the field of

52

databases have proved that a common framework to work with is crucial for the evolution of the
area, and issues such as query optimization or better indexing techniques are even more critical
than in an operational database, due to the huge amount of data stored in the data warehouse.

53

54

Chapter 3

Integrating Requirements in a
Largely Automated Design
Approach

“ Research is the act of going up alleys to see if they are blind. ”

Plutarch

Data warehousing systems were designed to support decision-making within organizations.
These systems homogenize and integrate data in a huge repository (i.e., the data warehouse) to
create a single, detailed representation of the organization from which relevant knowledge can be
extracted and applied in the organization’s decision-making processes. It is widely accepted that
the conceptual schema of a data warehouse must be structured according to the multidimensional
model. The multidimensional conceptual view of data is distinguished by the fact / dimension
dichotomy and represents data as if placed in an n-dimensional space, which facilitates the inter-
pretation and analysis of data in terms of facts (the subjects of analysis) and dimensions showing
the different perspectives from which a subject can be analyzed.

Since a data warehouse is the result of homogenizing and integrating relevant data in a single,
detailed view, it is assumed that the multidimensional conceptual schema of the data warehouse
must be derived from the organization’s data source schemas. Traditionally, this process has
been performed manually, but automation is essential as it removes the dependency on an ex-
pert’s ability to properly apply the method chosen and the need to analyze the data sources,
which is a tedious and time-consuming task (which can be unfeasible when working with large
databases). In recent years, several approaches have been proposed for automating this process,
most of which follow a data-driven model in which data sources are analyzed thoroughly to
derive the data warehouse schema in a reengineering process that overlooks the end-user mul-

55

Figure 3.1: Overview of the MDBE method

tidimensional requirements. However, as discussed in [WS03], a requirement analysis phase is
crucial in ensuring that end-user needs and expectations are met. Otherwise, end-users may be-
come frustrated as they would not be able to analyze data of interest to them, which would result
in the failure of the whole system. The literature contains several requirement-driven methods,
but all of them must be carried out manually. Automating requirement-driven approaches would
require the formalization of end-user requirements (i.e., translating them into a computer un-
derstandable language), whereas current methods handle requirements that are mainly stated in
languages (such as natural language) which lack the required degree of formalization.

For this reason, the ideal scenario for deriving the data warehouse conceptual schema would
consist of a hybrid approach (i.e., a combination of data-driven and requirement-driven paradigms).
Therefore, the resulting multidimensional schema would satisfy end-user requirements and be
conciliated with the data sources simultaneously (i.e., capturing the analytical potential in the
data sources and able to be populated with data within the organization). However, current
automatable methods follow a fully data-driven approach, and current requirement-driven ap-
proaches are not automatable because they tend to work with requirements at a high level of
abstraction.

In this chapter we present a largely automated approach for supporting multidimensional
design based principally on Multidimensional Design By Examples (MDBE), which is an auto-
mated method conciliating both types of paradigms. Unlike other hybrid approaches, MDBE
does not carry out two well-differentiated phases (i.e., data-driven and requirement-driven) that
need to be conciliated a posteriori but instead performs both phases simultaneously. Conse-
quently, each paradigm benefits from feedback obtained by the other, and eventually MDBE is
able to derive more valuable information than approaches in which the two phases are carried out
sequentially (a detailed list of the main advantages of MDBE over previous approaches is given
in Section 3.1).

In our approach we derive multidimensional conceptual schemas from relational sources
according to end-user requirements. There are two steps: requirement formalization and the
MDBE method (see Figure 3.1). As in previous requirement-driven methods (or requirement-
driven stages within hybrid methods), a prior requirements elicitation step is required. However,
our approach is not based on a step-by-step manual process in which the requirements and data
sources that will eventually derive the multidimensional schema are analyzed in detail, but rather

56

Figure 3.2: The TPC-H relational schema

on a largely automatable approach.
Requirements are typically expressed at a high level of abstraction and need to be formal-

ized prior to automation of the analysis step. In our framework, requirements are expressed as
SQL queries over the relational data sources (i.e., at the logical level over the data sources).
SQL queries provide a clearly defined structure that will facilitate full automation of the MDBE
method (the second step in our approach). Although requirement formalization must be per-
formed manually, translating requirements into SQL queries requires considerably less effort
than carrying out any of the step-by-step requirement-driven approaches in current use (see Sec-
tion 3.1 for further discussion of this issue). In our approach we have reduced the amount of
manual operations as much as possible (i.e., removing ambiguous semantics by formalizing the
requirements) and delegated most of the design workload to the MDBE method, which will use
the semantics captured in the requirements and the data sources to automate the rest of the pro-
cess.

The inputs of the MDBE method are the end-user information requirements (expressed as
SQL queries) and the integrated logical model of the data sources. The output is a constella-

57

tion schema [KRTR98] (i.e., a conceptual schema for each fact identified) derived from the data
sources and capable of retrieving data requested in the input requirements. Briefly, MDBE vali-
dates whether each input SQL query represents a valid multidimensional query (i.e., if the query
retrieves data that can be analyzed from a multidimensional perspective). Note that we translate
requirements into regular SQL queries over the transactional data sources and do not require a
specific translation that would make multidimensional sense. MDBE analyzes each input SQL
query to validate whether it represents a multidimensional requirement and notifies if it is able
to derive at least one multidimensional schema that can retrieve data requested in the SQL query.
Conciliation of the schemas proposed for each query produces the output constellation schema.

To illustrate a practical application of our approach we now introduce the TPC benchmark H
(TPC-H) [Tra09]. TPC-H is a decision support benchmark that introduces a relational database
logical schema (see Figure 3.2) and a suite of 22 business-oriented queries. This benchmark
was designed to represent a real-world information system, so its database schema and queries
have been chosen for their industry-wide relevance. The database schema presented portrays the
activity of a wholesale supplier. TPC-H does not represent the activity of a particular business
sector but rather that of any industry in which a product needs to be managed, sold or distributed
internationally (e.g., car rental, food distribution, parts, suppliers, etc.). Queries presented in
the benchmark have been given a realistic context and were chosen to be representative and to
answer to real-world questions. The queries are defined by the following components:

• A high-level description of the business question, which illustrates the context in which
the query could be used. For example, ”report the amount of business that was billed,
shipped, and returned” (Q1), ”list the revenue volume done through local suppliers” (Q5),
”determine the value of goods shipped between certain nations to help in the re-negotiation
of shipping contracts” (Q7) or ”identify customers who might be having problems with the
parts that are shipped to them” (Q10).

• The functional query definition, which uses the SQL-92 standard to define the function to
be performed by the query. As an example, business query #5 (Q5) is expressed in SQL
as:

SELECT n name, sum(l extendedprice * (1 - l discount)) as revenue
FROM customer, orders, lineitem, supplier, nation, region
WHERE c custkey = o custkey and l orderkey = o orderkey and
l suppkey = s suppkey and c nationkey = n nationkey and
s nationkey = n nationkey and n regionkey = r regionkey and
r name = ’[REGION]’ and o orderdate >= ’[DATE]’ and
o orderdate < ’[DATE]’ + ’1’ year
GROUP BY n name
ORDER BY revenue desc;

TPC-H is a decision support benchmark, and it would make sense to propose a multidimen-
sional schema (i.e., develop a data warehouse) for analyzing this data. This has already been con-
sidered in data warehouse research. One example is the Star Schema benchmark (SSB) [P. 09],
which was devised from the TPC-H benchmark and introduces a multidimensional schema de-
rived manually from the TPC-H relational schema. We use TPC-H to demonstrate how to derive
the multidimensional schema with our approach and then, we confirm the reliability of the result

58

Figure 3.3: Constellation schema derived by MDBE from the TPC-H benchmark case study

obtained by comparing it to that of the multidimensional schema proposed in SSB (see Section
3.5.5.1).

We consider the TPC-H relational schema as the integrated relational schema of the data
sources, and the high-level descriptions of the business queries as the end-user information re-
quirements (gathered in the requirements elicitation step). TPC-H also provides the SQL query
for each end-user requirement (i.e., the requirement formalization required in our approach).
Consequently, it provides all of the inputs needed to launch the MDBE method. Eventually,
MDBE will generate a set of multidimensional schemas (see Figure 3.3) from the data sources
(in this case, the TPC-H logical schema) that meet the end-user requirements (the 22 TPC-H
SQL queries).

In summary, MDBE has three main benefits: (i) It is a fully automatic approach that handles
and analyzes the end-user requirements automatically. (ii) Unlike data-driven methods, we focus
on data of interest to the end-user. However, the user may not be aware of all the potential anal-
yses of the data sources and, in contrast to requirement-driven approaches, MDBE can propose
new multidimensional knowledge related to concepts already queried by the user. (iii) Finally,
MDBE proposes meaningful multidimensional schemas derived from a validation process. Input
queries are validated to determine whether they make multidimensional sense, so the schemas
proposed are sound and meaningful. As such, MDBE could be used as a validation tool for
multidimensional requirements in addition to its design function.

This chapter provides a detailed description of our approach. In Section 3.1 we highlight the
main advantages of MDBE over alternative approaches. In Section 3.3 we present our framework
and discuss the foundations of our approach in depth. Section 3.4 focuses on the the core of our
approach, the MDBE method. Finally, in Section 3.5 we present the statistics of our approach
over the TPC-H case study and compare the results with those presented in the Star Schema

59

Benchmark.

3.1 Contributions
For the sake of understandability, we present two discussions introducing our contributions. The
first one focus on the MDBE contributions regarding demand-driven approaches1,whereas the
second one focus on the contributions regarding automated supply-driven approaches (for a de-
tailed related work, we address the reader to Section 2.1).

3.1.1 Demand-driven approaches
In general, matching requirements over the data sources demands a good knowledge of the data
sources. As discussed, this is the major drawback of current demand-driven approaches, and is
compounded by the time required to analyze the data sources. In our approach, although we
also need a reasonable knowledge of the sources to create the SQL queries (i.e., formalize the
requirements), the required effort is considerably lower. We use a well-established language
such as SQL to facilitate the mapping of the requirements over the data sources. Consequently,
we only need an expert to create these queries, and many real organizations will have access to
someone with these skills. Our framework has two main advantages over current demand-driven
approaches:

• MDBE, like current automatable methods, works exclusively with relational data sources.
This means that the organization has a relational transactional system, which makes it very
likely that a number of employees will possess the skills required to create the queries; the
database administrator, for example, would have a perfectly suited profile. On this point,
we make the same assumptions as used in current automatable approaches.

• Although our approach follows a hybrid paradigm, most of the tasks are automated. Briefly,
this means that the user is not required to deeply analyze the sources. This contrasts with
current demand-driven approaches, which require detailed and exhaustive analysis of the
data sources; hints and tips are given (in case of the most formal methods, multidimen-
sional patterns) that the data warehouse expert must then manually search for across all
data sources (logical or conceptual schemas, depending on the approach chosen). The
time-consuming nature of this task can render it unfeasible when large databases are used.

For example, [MK00] introduces a commonly cited method for deriving the multidimen-
sional schema from an Entity-Relationship [Che76] (ER) schema. It requires each ER
entity to be classified as a transactional (the basis for fact tables), component (details or
components of business events that will produce dimensions) or classification (that will
be used to shape the dimension hierarchies) entity. The authors give advice on how these
entities can be identified. Thus, ”transactional entities must describe events that hap-
pen at a point in time and contain measures or quantities that can be summarized”.

1Although many times we just refer to demand-driven or supply-driven approaches, we, indeed, also refer to any
approach or stage within a hybrid approach following that paradigm.

60

Formal rules are given for each type of entity to give shape to the multidimensional
schema. For example, a typical rule is discovering functional dependencies (FDs) to iden-
tify dimensional data. Manual discovery of FDs is an unfeasible task for most systems
[RCARM09, DKM08, TZ04], and automatic methods for identifying FDs need to ad-
dress this task at the instance level (i.e., using the instance semantics). These methods
have various drawbacks, propose solutions that are computationally expensive, and reg-
ister drops in performance when a large number of attributes or instances are processed
[HCTJ93, MR92, SBHR06, TZ04].

Other important demand-driven approaches, such as [HLV00], use a formal framework to
derive the multidimensional schema. However, little information is given about how to
identify the multidimensional concepts over the data sources. This scenario is repeated in
the most recent demand-driven approaches; for example, [PACW06] derives the multidi-
mensional conceptual, logical and physical (using the Oracle MOLAP Tool) with a UML
[Grob] based method that introduces a metamodel and a set of transformations to perform
the mapping between each metamodel. However, this approach suffers from the same
drawback as previous approaches, and analysis of the sources may still be unfeasible if
it has to be performed manually. More comprehensive descriptions of these methods and
how they work can be found in Section 2.1.2.

In contrast, our approach introduces a manual formalization step but the user does not need
to analyze the data sources or perform the complete mapping of the requirements over the
data sources. Importantly, the exhaustive analysis and iterative application of the multidi-
mensional patterns are delegated to the MDBE method. In other words, the counterpart
to our method would require the entire automated process described in Section 3.4 to be
carried out manually (by properly applying the multidimensional patterns introduced in
Sections 3.3.1 and 3.3.2), which is the case of current demand-driven methods. Therefore,
the manual workload in our proposal is considerably lighter than in previous approaches.

3.1.2 Automatable approaches

The MDBE method was designed to overcome the limitations shared by current automatable
methods. To our knowledge, (i) MDBE is the first method with an automated demand-driven
stage. Our approach requires end-user requirements to be formalized as SQL queries, after
which MDBE validates each SQL query to determine whether it makes multidimensional sense
(see Section 3.3.1 for further information). The main contribution in this area is that (ii) MDBE
validates the explicit and implicit multidimensional knowledge in the query. For example, rela-
tionships between concepts depict the potential multidimensional role that each concept could
play, and joins stated in the WHERE clause identify relationships (i.e., concept associations)
explicitly stated by the user that, in some cases, may not be in the logical schema of the data
sources. For example, consider a database overlooking foreign keys. In these cases, previous
approaches that rely on primary key - foreign key relationships would overlook this information.
In contrast, in our approach, these missing relationships will be stated (if they are of relevance for
the user) by means of concept associations (i.e., joins) in the SQL query. Thus, if a join attribute
is identified as dimensional data, this multidimensional role is propagated to its join counterpart

61

(like a supply-driven approach would do if the proper primary key - foreign key relationship
were defined). Another example would be a denormalized database. In this case, if the query
performs data grouping (i.e., it contains a GROUP BY clause) or contains comparison clauses
in the WHERE clause, the attributes involved in these clauses are identified as dimensional data.
In other words, the SQL queries may provide additional relevant knowledge to that captured in
the sources. Nevertheless, we also harness the knowledge contained in the data sources (as in
supply-driven approaches), such as foreign key and candidate key constraints, if present. In ad-
dition, (iii) MDBE works at the attribute level (SQL queries handle attributes), whereas other
automatable methods work at the table level. Consequently, relational attributes can be labeled
as dimensional or factual data and, in turn, relational tables are identified as dimensional data,
factual data or tables containing factual data and dimensional data [KRTR98]. We can therefore
identify the role played by each attribute in each relation and split it into different concepts in
the resulting multidimensional schema. Thanks to these contributions, (iv) MDBE is able to
handle denormalized relational schemas to some extent. The analysis of requirements at the at-
tribute level allows MDBE to identify dimensional or factual attributes that previous approaches
would overlook. However, regarding dimensional data identified from denormalized relations,
MDBE cannot automatically generate the dimension hierarchies as the domain FDs needed to
shape hierarchies are missing in the source schema. In other words, each requirement (i.e., SQL
query) will identify attributes representing interesting analysis perspectives, but the relationships
between these attributes (i.e., the dimension hierarchies) cannot be extracted from denormal-
ized data sources. In these cases, the designer will be responsible for restructuring this kind of
dimensional data.

MDBE also provides the advantage of carrying out the demand-driven and supply-driven
stages simultaneously in many aspects. This means that we are able to produce more and better-
quality outputs than methods in which the two stages are performed sequentially. For example,
(v) MDBE can derive implicit knowledge according to the input query and the data sources.
Some attributes in the query may not play a relevant role in the output produced, in which case
they could be overlooked. However, we analyze all of the potential alternatives, as well as meta-
data in the logical schema, and consider how these alternatives would affect the output schema,
in some cases deriving interesting alternatives overlooked by the user. This contribution is im-
portant because it is often assumed in data warehouse modeling that the user may not recognize
the analytical potential of all the data sources and, therefore, may overlook potentially useful
analytical alternatives. However, analyzing all of the data sources can be expensive and produce
too much noise in the final result [WS03]. We present an intermediate solution, in which con-
cepts are analyzed to determine their analytical potential if they are implicitly related to concepts
already stated in the end-user requirements (see step 6 in section 3.4.1 for further details).

In addition, (vi) MDBE can derive new concepts that are not stated in the logical schemas.
Since we handle requirements automatically, we can analyze them in depth and identify informa-
tion such as concept specializations or newly derived measures (see Section 3.3.1.1 for further de-
tails). (vii) MDBE also keeps track of relevant metadata extracted from the requirements, which
will be relevant in the implementation stage: specifically, interesting data granularity within a fact
(see Step 2 in Section 3.4.1) and data summarizability properties (see Steps 1 and 3 in Section
3.4.1).

62

3.2 Validating SQL Queries as Cube-Queries

As discussed in Chapter 2 there is no agreement on the multidimensional model integrity con-
straints nor in the set of multidimensional operators. However, if we aim to automate the data
warehouse design task, we must guarantee that the conceptual schemas produced are aligned
with the multidimensional model. Section 2.2 surveyed and compared current multidimensional
algebras in the literature. By a detailed analysis of this comparison, we shown that there is an
implicit agreement on how to manipulate multidimensional data. As presented in Section 2.2.4,
this backbone is strictly subsumed by the reference algebra introduced in Section 2.2.1.

This chapter introduction sketches the idea behind our approach. The end-user requirements
must be expressed as SQL queries over the relational sources. Then, MDBE validates whether
each input SQL query represents a valid multidimensional query (i.e., if the query retrieves data
that can be analyzed from a multidimensional perspective) and eventually, derives multidimen-
sional schemas from the relational sources that meet the multidimensional requirements. At this
point, the question is immediate; how do we know if a SQL does really make multidimensional
sense?

[KRTR98] introduced the template query (also known as cube-query), to retrieve a Cell of
data from the relational database management system (according to the SQL’92 standard):

SELECT l1.ID, ..., ln.ID, [F(]c.Measure1[)], ...
FROM Cell c, Level1 l1, ..., Leveln ln

WHERE c.key1=l1.ID AND ... AND c.keyn=ln.ID [AND li.attr Op. K]
[GROUP BY l1.ID, ..., ln.ID]
[ORDER BY l1.ID, ..., ln.ID]

The FROM clause contains the “Cell table” and the “level tables”. These tables are properly
linked in the WHERE clause. Additionally, the WHERE clause can also contain logic clauses
restricting an specific level attribute (i.e., a descriptor) to a constant K by means of a comparison
operator (i.e., equality, inequality, major, minor, etc.). The GROUP BY clause shows the identi-
fiers of the levels used to aggregate data. Those columns in the grouping must also be selected in
the SELECT clause in order to identify the result (i.e., we must select the multidimensional base
to give rise to the multidimensional space). Finally, the ORDER BY clause sorts the output of
the query by these identifiers.

Note, however, that navigating and analyzing the data warehouse goes far beyond than just
retrieving a Cell of data. In a navigation path, Cells may be combined and, in general, manipu-
lated, by the multidimensional algebra. Thus, how this template would look like when capturing
a whole navigation path? and importantly, will it always be correct? To answer these questions,
we carried out the following studies:

• Section 2.2.4 shows that our reference algebra subsumes all the multidimensional operators
surveyed. From this starting point, we studied how each of the multidimensional operators
in the reference framework should be translated into SQL (see Section 3.2.1).

• Next, we analyze the potential problems we must deal with when combining two or more
multidimensional operators in the same cube-query (see Section 3.2.2).

63

By the analysis of the results got in these two studies, we identify the constraints that a SQL
query must guarantee to be aligned with the multidimensional model and make multidimensional
sense.

3.2.1 Translating the Multidimensional Operators into SQL Queries

MDBE requires to express the end-user requirements as SQL queries over the relational sources.
Thus, in our study, we need to analyze how the multidimensional algebra must be translated into
SQL. Importantly, note that this translation is also implicitly performed by ROLAP tools (see
Section 1.3.1 for further details about ROLAP tools). As discussed in Section 1.2.1, OLAP users
are able to navigate (i.e., query and analyze) data in real-time. The user provides a navigation
path in which each node (resulting in a data cube) is derived from the previous node in the path
(and thus we say that the user navigates the data). Each node is transformed into the next one in
the path by applying specific multidimensional operators. In a relational implementation of the
OLAP tool (i.e., in a ROLAP tool), the navigation path is eventually translated (in a transparent
way to the user) into SQL. Interestingly, to know if a SQL query makes multidimensional sense
we need to analyze how a ROLAP tool translates the multidimensional operators into SQL and
identify which constraints must satisfy a SQL query to be a cube-query (i.e., to make multidi-
mensional sense).

In this section, we first analyze how each multidimensional operator in our reference mul-
tidimensional algebra (see Section 2.2.1) is expressed as a cube-query. First, for the sake of
understandability, we present a practical scenario to be used as example in this section. Consider
a snowflake implementation of the conceptual schema depicted in Figure 1.2 (see page 9). The
cube-query that would retrieve the sales Cell depicted in the figure is:

SELECT d.day, p.id, c.name, s.price, s.discount
FROM sales s, day d, product p, city c
WHERE s.product id = p.id AND s.day = d.day
AND s.city name = c.name

Note that no grouping is needed as we are just retrieving an atomic Cell. Accordingly, we
use atomic cube-query to denote a cube-query retrieving a materialized Cell from the relational
database management system. Next, we show how this cube-query would be modified by each
multidimensional operator2 (a summarization of the results obtained is shown in Table 3.1):

• Selection: In SQL, it means to and the corresponding comparison clause to the WHERE
clause. For example, consider the atomic cube-query presented as example. If we want
to analyze the sales data regarding to the city of Barcelona, we must perform a
selection over the city dimension (see Figure 3.4).

• Roll-up: In SQL, it entails to replace the identifiers of the level from where we roll-up
with those of the level that we roll-up to. Thus, the SELECT, GROUP BY and ORDER
BY clauses must be modified accordingly. Measures in the SELECT clause must also

2For a detailed discussion on this issue, we address the reader to [ASS03].

64

Clause Selection Roll-up ChangeBase Drill-across Projection Union
SELECT Replace Replace Add Remove

(LevelID) (LevelID) (Measure) (Measure)
FROM Add Add Union

(Levels) (Cell) (Cells and Levels)
WHERE AND Add Add Union OR

(conditions) (links) (links) (links) (conditions)
GROUP BY Replace Replace

(LevelID) (LevelID)
ORDER BY Replace Replace

(LevelID) (LevelID)

Table 3.1: Summary of the modifications brought in a cube-query by each multidimensional
operator

be summarized using an aggregation function. In our example (see Figure 3.4), we per-
form two different roll-ups: on the one hand, we roll-up from product id to the All
level. On the other hand, we roll-up from city to country. Note that the country
table is added to the FROM clause, and we replace the city identifier with that of the
countrylevel in the SELECT, GROUP BY and ORDER BY clauses. Finally, we add the
proper links in the WHERE clause. About rolling-up from product to the All level,
note that it is equivalent to remove both the product identifiers and its links.

• ChangeBase: In SQL it can be performed in two different ways. If we reorder the base
(i.e., when “pivoting”), we just need to reorder the identifiers in the ORDER BY and
SELECT clauses. But if changing the base, we need to add the new level tables to the
FROM and the corresponding links to the WHERE clause. Moreover, identifiers in the
SELECT, ORDER BY and GROUP BY clauses must be replaced appropriately. Following
with the same example shown in Figure 3.4, we can change from {day×country×All}
to {day × country}. Note that both bases are conceptually related by means of a one-
to-one relationship. Specifically, this case typically applies when dropping a dimension
(i.e., rolling-up to its All level and then changing the base). We roll-up to the All for
representing the whole dimensions instances as a single one and therefore, producing the
following base: {day × country × 1}. Now, we can changeBase to {day × country}
without introducing aggregation problems (since we changeBase through a one-to-one
relationship).

• Drill-across: In SQL, we must add a new Cell table to the FROM clause, its measures
to the SELECT, and the corresponding links to the WHERE clause. In general, if we are
not using any semantic relationship, a new Cell table can always be added to the FROM
clause if both Cells share the same base. In our example, suppose that we have a stock
Cell sharing the same dimensions as the sales Cell. Then, we could drill-across to the
stock Cell and show both the stock and sales measures (see Figure 3.4).

• Projection: In SQL it entails to remove measures from the SELECT clause. Following our
example, we can remove the discount measure by projecting the stock and price
measures.

65

Figure 3.4: Exemplification of an OLAP navigation path translation into SQL queries

• Union: In SQL, we unite the FROM and WHERE clauses of both SQL queries and finally,
we or the selection conditions in the WHERE clauses. Importantly, note that we can only
union queries over the same Cell table. Intuitively, it means that, in the multidimensional
model, the union is used to undo selections. We can unite our example query to one
identical but querying for data concerning Lleida instead of Barcelona. As previ-
ously stated in section 2.2.1, these considerations can be easily extended to difference and
intersection.

3.2.2 Potential Translation Conflicts
As discussed in previous section, OLAP users navigate the multidimensional data by providing
a navigation path in which each node (resulting in a data cube) is derived from the previous
node in the path by means of the multidimensional operators. For example, consider Figure
3.4, where a whole navigation path is depicted. At a given point, a node may combine a finite
set of multidimensional operators. For instance, in the fifth node, this cube-query combines a
selection, a changeBase, a drill-across, a projection and two roll-ups. The mapping to SQL
of a single multidimensional operation does not represent a problem, but when combining the
modifications brought about by a set of operations in a single SQL query, some conflicts could
appear. Therefore, if these problems are not detected and treated appropriately, the automatic
translation can retrieve unexpected results. In this section, we define and classify conflicts raised
when automatically translating a navigation path to SQL.

Suppose an arbitrary navigation path. The user chooses a source data cube from where start-
ing to operate and automatically, the ROLAP tool will conform a cube-query to retrieve the
demanded data cube. Note that this data cube is our starting point so that it has not been yet
manipulated by any operation. Consequently, it is placing a Cell of data on the n-dimensional
space formed by its analysis dimensions. In a relational implementation, this Cell could have

66

been materialized. If it was, the ROLAP tool will retrieve the materialized data. Otherwise, it
will look for an appropriate Cell, in a lower aggregation level, from where to obtain the needed
Cell by means of roll-ups. For example, according to Figure 1.2 (see page 9), we could start
our analysis from the materialized Cell (i.e., the daily sales per product and city) or
from a non-materialized one; e.g., annual sales per product and city. As the latter is
not materialized, we need to perform an implicit roll-up over the atomic Cell, from month to
year, to get the needed data.

As presented in Table 3.2, certain operations may pop up a conflict when combined with an
specific source cube-query. We denote source cube-query to an atomic cube-query modified by a
sequence (note that we talk about sequence, because, in the multidimensional model, order mat-
ters) of operations. If no operation has been performed over the atomic cube-query we consider
the empty sequence (∅). Hence, a cell is crossed (×) when the sequence of operations in the
source cube-query contains a specific operation that may cause a conflict with the next one to be
performed. For example, it may happen if our source cube-query includes a selection and next
operation to be carried out is a roll-up.

Note that all the conflicts shown in Table 3.2 are caused by data aggregation anomalies. As
introduced in [LS97], operations performed must satisfy the disjointness, completeness and com-
patibility of the summarization (i.e., the compatibility of the dimension, the aggregation function
and the kind of measure involved in the summarization) to guarantee its correct summarization.
Otherwise, two operations that, as a whole, do not preserve the three conditions will raise up a
conflict. Therefore, as presented in Section 3.2.1, roll-up is the only operator performing data
aggregation and consequently, it is the only one that may directly raise up conflicts when com-
bined with other operators in the same cube-query. Importantly, roll-up is the most relevant
multidimensional operator, as it allows to modify the data granularity. Specifically, according to
Table 3.2, all conflicts are related to roll-up and drill-across. The rest of operations except for
selection, propagate conflicts if already present in the cube-query, but do not introduce new ones.
Consequently, projection, union and changeBase never raise a conflict. Intuitively, projection
removes measures from the SELECT clause and dropping a measure just means to discard one
column of the Cell table; union ores conditions of two data cubes with the same n-dimensional
space not removing / adding any point; and changeBase always asks for a one-to-one relation-
ship, avoiding conflicts due to its own nature.

Operation/Source ∅ Selection Roll-up Projection Drill-across ChangeBase Union
Selection
Roll-up X X X X
Projection
Drill-across X X X
ChangeBase
Union

Table 3.2: Summary of cube-query conflicts

Oppositely, drill-across and selection may introduce conflicts in the translation to SQL of the
navigation path. Drill-across asks for a one-to-one relationship but sometimes, a one-to-many

67

relationship is enough. In these cases, due to not materialized Cells, we need to perform implicit
roll-ups to get the necessary one-to-one relationship and consequently, potentially raising up
the same conflicts caused by a roll-up. Similarly, it may happen with non-materialized atomic
cube-queries that would need to perform implicit roll-ups. A selection may cause an specific
conflict along with a roll-up if we select a subset of points of the data cube and later roll-up,
which would prevent the ROLAP tool of using the pre-aggregated data (as done in the general
case). Consequently, note that it is enough to analyze the potential conflicts between each pair of
operators, since all of them are caused by conciliating multiple aggregations of data in just one
cube-query and therefore, the order performed between the operators, at the cube-query level,
does not matter.

Since all conflicts are due to data aggregation anomalies, we have classified them in three
groups according to the three necessary conditions needed to guarantee a correct data summariz-
ability: those performing multiple aggregation functions in a query (not preserving compatibility
of data), those raising hidden many-to-many relationships (not preserving disjointness) and fi-
nally, those related to the selection granularity (not preserving completeness).

3.2.2.1 The Multiple Aggregation Problem

The first conflict is related to the functions used to aggregate data when combining more than
two roll-ups in the same cube-query. To analyze this problem, we consider two scenarios: (i)
if the roll-ups are performed over the same dimension or (ii) over different ones. In the first
case, we can always solve the problem disregarding the first roll-up and just performing the
second one. This assumption holds because, in a given time, multidimensional data can only
be showed at a certain aggregation level for each dimension. Thus, in the worst scenario, we
can solve this conflict by rolling-up from the atomic level. Oppositely, when performed over
different dimensions, we must aggregate data for each of the dimensions. SQL does not allow to
aggregate data by means of two different functions in the same query, and this conflict can not
be solved in a single cube-query.

For example, in the first case, if we roll-up the sales Cell showed in Figure 1.2 (see page 9)
from day to month, and later we roll-up from month to year, the whole sequence of roll-ups
can be directly expressed as:

SELECT y.year, p.id, c.name, SUM(s.price), AVG(s.discount)
FROM sales s, product p, city c, day d, month m, year y
WHERE s.product id = p.id AND s.day = d.day
AND s.city name = c.name AND d.month id = m.month
AND m.year id = y.year
GROUP BY y.year, p.id, c.name
ORDER BY y.year, p.id, c.name

On the contrary, if we first roll-up from day to month, and later from city to country,
nested queries are compulsory:

68

SELECT p.id, co.name, m.month, AVG(s.price), AVG(s.discount)
FROM (SELECT p.id, c.name, m.month, AVG(s.price), AVG(s.discount)

FROM sales s, product p, city c, day d, month m
WHERE s.product id = p.id AND s.day = d.day
AND s.city name = c.name AND d.month id = m.month
GROUP BY p.id, c.name, m.month
ORDER BY p.id, c.name, m.month), country co

WHERE s.product id = p.id AND s.day = d.day
AND AND s.city name = c.name AND c.country name = co.name
GROUP BY p.id, co.name, m.month
ORDER BY p.id, co.name, m.month)

Even if SQL allowed to perform more than one aggregation function in the same query, we
would face another problem: the order between the aggregation functions. For example, note
that, in the above query, the price measure is aggregated by means of the average function
over the time dimension, and by means of the sum function over the place dimension. Thus,
it is important to realize that our own multidimensional conceptual design fixes the order of the
aggregation functions when exploring the Cell hierarchy. Thus, order does really matter since
sum of averages is different from an average of sums.

The above conflict could be avoided if SQL allowed to perform more than one aggregation
function per query, and set up an order between them. For example, as showed below, an SQL
extension stating explicitly two GROUP BY’s (very similar to SQL’99 GROUPING SETS modus
operandi), would avoid using nested queries when combining more than one conflictive roll-up.
First GROUP BY would be related to the first aggregation function and analogously to second
one:

SELECT p.id, co.name, m.month, SUM(s.price), AVG(s.discount)
FFROM sales s, product p, city c, day d, month m, country co
WHERE s.product id = p.id AND s.day = d.day
AND AND s.city name = c.name AND d.month id = m.month AND
c.country name = co.name
GROUP BY p.id, c.name, m.month
GROUP BY p.id, co.name, m.month
ORDER BY p.id, co.name, m.month

Although this problem has been presented as a roll-up plus roll-up problem, it goes far
beyond, as it may happen when obtaining non materialized Cells from materialized ones. For
example, if we start our navigation path from the monthly sales per city Cell that has
not been materialized, ROLAP tools will need to perform a roll-up from day to month to obtain
the needed data. So that, we have already performed an implicit roll-up that could arise conflicts
if we next perform an explicit one from city to country. Similarly, as presented in Section
3.2.2.2, implicit roll-ups may also occur when performing a drill-across from a non materialized
Cell (indeed, implicit roll-ups can also appear when changingBase, but in this case, the implicit
and explicit roll-ups are performed over the same dimension -see the (i) case above- and thus,
avoiding conflicts).

3.2.2.2 The Fan-Shaped Problem

In this section we introduce a family of problems that occur when disjointness of data aggrega-
tion is not preserved. It typically appears related to drill-across, either through semantic rela-

69

tionships or shared dimensions. Drill-across asks for a one-to-one relationship, but sometimes
a one-to-many relationship is enough. For example, consider Figure 3.4. There, we have shown
how to drill-across from the daily sales per country to the daily stock per
country. Clearly, these two Cells are related by means of a one-to-one relationship. However,
if they are not materialized, they give rise to a hidden many-to-many relationship. Note that,
prior to performing this drill-across, we have dropped the product dimension and this is why
this query that, at first sight seems correct, gives rise to a many-to-many relationship.

As enounced in [LS97], the aggregation of data must be disjoint, and in this case, it is not.
In fact, what should be a one-to-one relationship turns into a many-to-many one calling up a
fan-shaped matching. Thus, we should use a nested query performing first one roll-up and later,
the other one, being the “join” last performed. This problem could be solved if SQL allowed to
state a priority between “joins” and GROUP BY’s.

Finally, also note that when carrying out a drill-across to a non materialized Cell, a ROLAP
tool will need to perform internal roll-ups to obtain the appropriate aggregation level from where
drill-across. Internal roll-ups followed by an explicit roll-up may cause the conflict stated in
Section 3.2.2.1.

3.2.2.3 The Selection Granularity Problem

This problem is closely tied to selection and raises when completeness is not guaranteed. Se-
lection allows to reduce the current multidimensional space by means of a logic clause over a
certain descriptor. For example, selecting those cells of monthly sales per city related
to Barcelona. Now, if we decide to materialize this Cell in the data warehouse, we cannot
take advantage of it in those navigation paths not considering this selection. In the general case,
ROLAP tools use materialized Cells to speed up the query processing, but note that a navigation
path not preserving the Cell data granularity would not benefit from it, as data completeness is
not guaranteed.

For example, if we roll-up from daily sales per city to monthly sales per
city we cannot take advantage of the monthly sales in Barcelona to answer this
query. Simply, we do not dispose of data for the rest of cities in this materialized Cell (i.e.,
completeness is not preserved). In this case, using the appropriate data granularity (in the worst
case, the atomic Cell) and performing internal roll-ups is mandatory.

In short, this conflict invalidates pre-aggregated data (i.e., materialized Cells) not containing
the same (or a finer) data granularity level with regard to the current navigation path.

3.2.3 Discussion: The Multidimensional Integrity Constraints
In this section we have analyzed how the multidimensional algebra must be translated into SQL.
As result, we have been able to identify the constraints a SQL query must satisfy to make multi-
dimensional sense: it must follow the cube-query pattern (i.e., it must retrieve a data cube) and
it must be free of summarizability problems. Formally, we say that a SQL query is a correct
cube-query if it retrieves data that can be analyzed from a multidimensional perspective. I.e.,:

• Factual data is arranged in a multidimensional space (i.e., it forms a data cube). Thus, each

70

instance of factual data is identified (i.e., placed in the multidimensional space) by a point
in each of its analysis dimensions.

– As consequence, we must be able to identify a minimal set of levels identifying the
cells placed in the multidimensional space. According to our terminology, we denote
by base to this minimal set of levels determining the factual data.

• Data summarization must be correct, which is ensured by guaranteeing three necessary
conditions (which, intuitively, are also sufficient) [LS97]: (1) Disjointness (the sets of
objects to be aggregated must be disjoint); (2) Completeness (the union of subsets must
constitute the entire set); and (3) Compatibility of the dimension, the type of measure
being aggregated and the aggregation function.

3.3 Problem Context
The main aim of our approach is to support the data warehouse design process. It consists of two
steps: requirement formalization and the MDBE method (as shown in Figure 3.1). Furthermore,
as in any classical design process, a requirement elicitation pre-process is needed. Although this
pre-process falls outside the scope of this work, some relevant features should be noted here. Data
warehousing systems differ in various aspects from conventional operational systems (since they
are designed to support decision-making) and need specialized requirement elicitation processes
[MTL07, WS03]. However, this issue has been studied in depth, and there are several methods
that can be used in preliminary step (for example, [GRG05, MTL07, PSG04, SLB02, WS03]).
Nevertheless, note that we gather information requirements in this step. Information require-
ments [WS03] are designed to meet end-user information necessities, which is the objective of
a data warehouse [MTL07]. Unlike in other systems, end-users can easily determine their infor-
mation necessities because they consist of business queries posed in their daily decision-making
processes. Consequently, information requirements can be stated in the end-users’ own words
and closely reflect their reality. For example, ”examine stocks provided by suppliers” or ”ana-
lyze customer purchases with regard to region, product and time” would be typical information
requirements.

The next step in our approach formalizes the requirements gathered. As discussed previously,
we aim to automate the manipulation of requirements (i.e., integrate them in a fully-automated
method), so they must be translated into a computer understandable language. In our approach,
end-user requirements are expressed as SQL queries over the relational data sources (i.e., at the
logical level over the data sources). This step must be carried out by a database expert capable
of lower the level of abstraction of the input requirements to the logical level (see Section 3.1.1
for a detailed discussion of the advantages and disadvantages of this step).

As shown in Figure 3.1, the next step in our approach is to apply the MDBE method, which
has two inputs: the end-user information requirements (expressed as SQL queries) and the logical
model of the data sources. As output, MDBE presents a multidimensional schema derived from
the data sources, which allows the user to retrieve data demanded in the input requirements. In
this step, MDBE determines whether each input SQL query represents a valid multidimensional
query, i.e., if the query retrieves data that can be analyzed from a multidimensional perspective;

71

this is the case if the input SQL query represents a valid set of multidimensional operators over
a multidimensional schema (i.e., if the query represents data retrieved from a multidimensional
schema after performing valid data manipulations according to the multidimensional model).
For this purpose, we carried out a study to identify which constraints should be guaranteed by
a query in order to represent a combination of multidimensional operators (see Section 3.3.1
for further information). These constraints can be summarized as follows: data retrieved should
be (1) free of data summarizability anomalies, and (2) placeable in a multidimensional space.
If these constraints are satisfied, we may find a set of multidimensional operators which would
retrieve that data from the proposed multidimensional schema. Finally, note that each query (i.e.,
each multidimensional requirement) produces a potential multidimensional schema. The last
step in the MDBE method would allow the user to conciliate those results into a minimal set of
conceptual schemas that meet all of the requirements (i.e., a constellation of multidimensional
schemas).

3.3.1 Foundations
In this section we identify and refresh all the concepts introduced up to now in this thesis, that
conform the foundations of the MDBE approach.

[Notation]: In this document, we use the multidimensional notation introduced in Section
1.5. Briefly, multidimensionality is based on the fact / dimension dichotomy. Dimensional
concepts produce the multidimensional space in which the fact is placed. Dimensional concepts
are those concepts likely to be used as a new analytical perspective, which have traditionally been
classified as dimensions, levels and descriptors. Thus, we consider that a dimension consists
of a hierarchy of levels representing different granularities (or levels of detail) for studying data,
and a level containing descriptors (i.e., level attributes). In contrast, a fact contains Cells which,
in turn, contain measures. We consider that a fact may contain not just one but several different
levels of data granularity. Therefore, one Cell represents a class of individual cells of the same
granularity that contain data relating to the same fact. Specifically, a Cell of data is related to one
level for each of its associated dimensions of analysis. Finally, one fact and several dimensions
for its analysis produce a star schema.

Next, we present the multidimensional constraints upon which the study is based, namely
those used to validate the input SQL query (i.e., the information requirement) as a suitable mul-
tidimensional requirement. As discussed in Section 3.2, we found that multidimensional data
manipulation (i.e., multidimensionality) focuses on two aspects: (i) the placement of data in a
multidimensional space; and (ii) the correct summarizability of the data. If the data retrieved sat-
isfy both constraints they can be depicted as a data cube (i.e., orthogonal dimensions fully func-
tionally determining the fact) free of summarizability problems. In other words, this query would
represent the translation of a set of multidimensional operators into SQL. Below, we provide for-
mal definitions of the basic axioms identified in our study (for the sake of understandability, the
multidimensional concepts are bolded):

[Definition 1] The cube-query template: The standard SQL’92 query template to retrieve a
Cell of data from the relational database management system was introduced and discussed
in Section 3.2:

72

SELECT l1.ID, ..., ln.ID, [F(]c.Measure1[)], ...
FROM Cell c, Level1 l1, ..., Leveln ln

WHERE c.key1=l1.ID AND ... AND c.keyn=ln.ID [AND li.attr Op. K]
[GROUP BY l1.ID, ..., ln.ID]
[ORDER BY l1.ID, ..., ln.ID]

The FROM clause contains the ”Cell table” and the ”Level tables”. These tables are prop-
erly linked in the WHERE clause by ”joins” that represent concept associations. The
WHERE clause also contains logical clauses restricting a specific level attribute (i.e., a
descriptor) to a constant using a comparison operator. The GROUP BY clause, if present,
shows the identifiers of the levels at which we want to aggregate data. Those columns
in the grouping must also be in the SELECT clause to identify the values in the result.
Finally, the optional ORDER BY clause is designed to sort the output of the query.

Note that we talk about Cells instead of facts. The reason is that every SQL query will
produce a single data cube (i.e., a specific level of data granularity) and in our method, we
will first identify Cells of interest and later, facts.

[Definition 2] The multidimensional space arrangement: Dimensions arrange the multidi-
mensional space in which the Cell under study is depicted. Each instance of factual data
is identified (i.e., placed in the multidimensional space) by a point in each of its analysis
dimensions. Conceptually, this means that a Cell must be related to each analysis level by
a to-one relationship; that is, every instance of the Cell (i.e., every cell) is related to exactly
one instance of an analysis dimension, and every dimension instance may be related to
many instances of the Cell.

[Definition 3] The Base concept: We use base to denote a minimal set of levels functionally
determining a Cell. This guarantees that two different instances of data cannot be placed in
the same point of the multidimensional space; in other words, given a point in each of these
dimensions, they determine only one instance of data. In addition, dimensions (and thus,
levels) that produce a base must be orthogonal (i.e., functionally independent) [ASS06].
Otherwise, we would use more dimensions than strictly needed to represent data, which
would generate empty meaningless zones in the space. In a relational implementation of
the data warehouse, the base concept would be implemented as the Cell primary key.

[Definition 4] The necessary conditions for correct summarizability: Data summarization
must be correct, which is ensured by applying three necessary conditions (which, intu-
itively, are also sufficient) [LS97]: (1) Disjointness (the sets of objects to be aggregated
must be disjoint); (2) Completeness (the union of subsets must constitute the entire set);
and (3) Compatibility of the dimension, the type of measure being aggregated and the
aggregation function. Compatibility must be satisfied, since certain functions are incom-
patible with some dimensions and types of measures. For example, we cannot aggregate
Stock over Time dimension by means of sum, as some repeated instances would be
counted. Unfortunately, compatibility cannot be automatically verified. Nevertheless, our
method keeps track of the compatibility information extracted from the requirements (see

73

Steps 1 and 3 of Section 3.4.1; there, data summarizability properties identified from the
query are considered and properly stored).

The MDBE validation process checks if each SQL query can produce a meaningful multi-
dimensional cube. Below, we present a set of criteria directly applied by MDBE, which can be
derived easily from the definitions presented above. For our purposes, an SQL query is consid-
ered to make multidimensional sense if it satisfies the following semantic constraints:

• [C1] Multidimensional compliance: The SQL query must follow the cube-query tem-
plate. Thus, any concept involved in the query must play either a dimensional or a factual
role. In other words, every concept must be labeled as one of the multidimensional con-
cepts described in our notation (see Def. 1).

• [C2] Star schema: Cells are related to levels by to-one relationships (see Def. 2).

• [C3] Uniqueness: Every two different data instances retrieved by the query must be placed
in different points of the multidimensional space (see Def. 1 and 3).

• [C4] Orthogonality: The set of concepts that produce the multidimensional space must
be orthogonal (see Def.3).

• [C5] Completeness: Data summarization performed in the query must be complete. Thus,
the conceptual relationships involved in the query must be complete (i.e., not allow zeros)
when relating factual to dimensional data (see Def. 2 and 4).

• [C6] Disjointness: Data summarization performed in the query must be disjoint. Thus,
the conceptual relationships involved in the query should avoid double-counting instances;
for example, cartesian products (see Def. 2 and 4).

• [C7] Restricted selection: Joins performed in the query cannot be used to select data.
In the multidimensional model, selections must be performed through comparisons in the
WHERE clause (see Def. 1).

These constraints are applied to identify the multidimensional role played by each relational
concept and to guarantee that the schemas proposed by our method will be able to retrieve (by
using multidimensional operators) data demanded in the requirements. Specifically, [C2], [C3]
and [C4] guarantee that the SQL query produces a valid multidimensional space; [C5] and [C6]
preserve data summarizability; and [C7] guarantees that data manipulation is restricted to the
multidimensional operators.

3.3.1.1 Additional Considerations

As stated above, the constraints are used to validate the final output. If they are not satisfied in
a given query, we can end the process and inform the user that the current requirement does not
make multidimensional sense. Otherwise, the final result forms a data cube and we can say that
the input query is a valid multidimensional requirement. However, even if [C5], [C6] and [C7]
are not satisfied, a valid data cube of interest to the end-user may still be retrieved.

74

Relaxing Completeness and Disjointness Our method can identify when disjointness and
completeness are not preserved in the logical schema of the data sources. However, end-user
requirements may include new concepts that have not been captured in the data sources but
which may still be derived from them. Specifically, (i) in the SQL query, the user may require a
concept specialization not preserving completeness in the logical schema or ii) a derived measure
not preserving disjointness. Consider Figure 3.2. The first case would apply if, for example, a
lineitem does not require a suppkey when inserting data (i.e., if suppkey allows NULL
values). Note that it would make sense, as we may assign the supplier later, by means of
another task that, for example, minimizes expenses. In this case, if we want to use supplier
as an analytical perspective of lineitem it would not preserve completeness regarding the data
sources. According to the criteria discussed in this section (see [C5]), NULL values should not
be allowed when relating factual data to dimensional data. However, this relationship (and thus,
this query) would make sense if we are interested in analyzing only those lineitem with
supplier (i.e., a specific specialization of lineitem not depicted in the sources). Thus, we
may relax [C5] and produce this result if the user is interested in this specialization. Nevertheless,
it is important to note that [C5] is relaxed regarding the data sources, but it is guaranteed by
considering the specialization.

In the second case, two values not satisfying the disjointness constraint may produce a mean-
ingful derived measure; for example, if the measure is properly weighted in the query. TPC-H
Q9 is an example of this case. See the graph in the right side of Figure 3.9 (see page 89). This
query selects factual data from two different nodes (lineitem and partsupp). However,
these nodes are related by means of a many-to-one relationship that, in principle, will produce
double-counting (factual data from partsupp may be considered several times when joining
it to factual data in lineitem). According to our criteria (see [C6]), double-counting must be
forbidden to preserve disjointness. However, double-counting may happen and yet make multidi-
mensional sense. Indeed, this is the case of Q9. This query, weights the l quantity attribute of
lineitem with the ps supplycost of partsupp (one ps supplycost may be related
to many l quantity values) and this value is taken away from the income obtained from the
sale. In other words, it is calculating the profit obtained on a given line of parts. Clearly, despite
not preserving disjointness, the semantics of Q9 does make multidimensional sense. In general,
our method produces results which satisfy [C5] and [C6]. However, in the MDBE method we
apply the following rule:

R1 : If we cannot produce an output by satisfying [C5] and [C6], our method tries to iden-
tify relevant derived measures or concept specializations (not captured in the data sources) by
relaxing these constraints.

In Section 3.4, we will clearly note those steps in which this assumption stands. Steps affected
by this assumption will try to guarantee both constraints, but if no result is produced the steps
have to be relaunched and [C5] and [C6] relaxed. In other words, if [C5] and [C6] are not
preserved regarding the data sources, we propose alternative solutions preserving them (i.e.,
considering specializations or derived measures not captured in the sources). In such cases,
MDBE may produce schemas that do not preserve the completeness or disjointness of the data
sources, and we inform the user that results are only correct if either a concept specialization or
a new derived measure is considered.

75

Allowing selections by means of joins In some cases, the input SQL query may use joins to
select data that, according to [C7], would not make multidimensional sense. However, this could
occur if the person creating the queries is not sufficiently skilled for the task. For example, by
means of alternative join paths between two concepts.

Consider Figure 3.2 and a query containing two different join paths between lineitem and
nation in the WHERE clause. For example, one path following the lineitem - orders
- customer - nation foreign key - primary key relationships, and another following the
lineitem - partsupp - supplier - nation foreign key - primary key relationships.
Clearly, these joins are used to select lineitems having as customer and supplier peo-
ple living in the same nation (i.e., we select factual data having the same value for both paths).
But this query would not make multidimensional sense: it does not exist any multidimensional
operator performing such operation and thus, there is no OLAP tool that could produce this query.
Consequently, MDBE should disregard this query. However, it may happen that both paths are
equivalent (i.e., both values of nation always coincide for each and every lineitem). For
example, it would be the case if the following integrity constraint holds within the organization:
every customer will be provided with items supplied by a supplier of his / her own country.
Indeed, such constraint would make sense in many organizations.

For this reason, if the query contains alternative join paths between two concepts we may
distinguish two cases: whether the user guarantees that both paths are equivalent (i.e., instances
selected through each path are exactly the same) then, we can rewrite it in such a way it preserves
[C7]. Otherwise, the query should be disregarded. In the first case, the query must be rewritten by
defining two different alias for nation (for example, nation n1 and nation n2) and use
each in one of the paths. The resulting query would be semantically equivalent to the previous
one and it will make multidimensional sense (i.e., this query could be generated by OLAP tools).

In the implementation of our method, the user is responsible for relaxing this constraint (the
MDBE tool has a check-box for activating or deactivating the constraint).

3.3.2 Internals
In this section we show how multidimensional concepts are identified from the relational con-
cepts involved in each SQL query. MDBE aims to analyze the knowledge available from the
SQL query and the relational schema to infer the multidimensional role played by each relational
concept. For this purpose, it uses a graph to store information elicited from the overall process,
which we will refer to as the multidimensional graph.

Briefly, the multidimensional graph represents the relational schema fragment captured in
the SQL query (and not the whole relational sources). It is composed of nodes, which represent
relational tables involved in the query, and edges, which relate nodes joined in the query (i.e.,
keep track of concept associations). Furthermore, each node contains information about the
relational attributes involved in the query. Importantly, note that a node does not fully represent
a relational table. Nodes capture those table attributes of relevance for the query analyzed (i.e.,
the table fragment of interest). Similarly, edges represent the relationships between graph nodes
(and not between relational tables).

In our approach, MDBE aims to validate the multidimensional graph (i.e., the input query)
as a suitable multidimensional requirement. It labels each graph node and its attributes as mul-

76

tidimensional concepts, in such a way that the whole labeling satisfies the multidimensional
constraints described in Section 3.3.1. Thus, MDBE tries to find a multidimensional meaning
for the relational schema fragment captured in the graph (roughly speaking, we may say that it
looks for a multidimensional interpretation of the graph).

This section discusses how each relational concept may be labeled. Here, we present the
criteria used to identify the multidimensional role of attributes, nodes and edges according to our
foundations (see Section 3.3.1). Later, Section 3.4.1 introduces an algorithm that applies these
criteria. The algorithm analyzes the SQL query and the relational schema to look for the labeling
criteria introduced in this section and accordingly, labels the graph.

3.3.2.1 Attribute Labeling

A given relational attribute of multidimensional interest may play a dimensional or a factual
role. If it has a useful analytical value it will be labeled as a measure (i.e., factual data) and if it
represents an interesting analytical perspective for the multidimensional data it will be labeled as
a dimensional concept (i.e., dimensional data). When an attribute is labeled as a dimensional
concept, depending on its semantics, it may be identified as a level or a descriptor.

We use the 7 criteria introduced in Section 3.3.1 to identify the multidimensional role played
by an attribute in the SQL query. Section 3.4.1 introduces an algorithm for analyzing the SQL
query and the data source schema according to each criterion and label attributes. Steps 2, 3, 4
and 6 show how MDBE determines the multidimensional role an attribute plays.

Note that a given attribute may be labeled as both a dimensional concept and a measure.
In their multidimensional model, Agrawal et al. [AGS97] proposed handling measures and
dimensions uniformly (they presented two multidimensional operators to transform measures
into dimensions and vice versa). This idea was also incorporated into later multidimensional
models (see [RA07b]). MDBE allows multiple labeling of a relational attribute (which we will
refer to as dual attributes), so the final multidimensional schema will contain a measure and
a dimensional concept derived from the same attribute. It will happen if a given attribute is
labeled as factual data according to any of our criterion, and as dimensional data by another.

3.3.2.2 Node Labeling

At this point, it is important to remark the subtle difference between relational tables and graph
nodes. Nodes do not represent the whole relational table but the set of table attributes involved
in the query and, according to the kind of attributes they contain, can be labeled as either dimen-
sional data or factual data:

• Dimensional data (L): If the node contains attributes representing a useful analytical per-
spective for the multidimensional data, it will be labeled as a level (i.e., as L).

• Factual data (CM or C): If the node contains factual data, we label it as a Cell. However,
we distinguish between two different types of Cells:

– Cell With Measures (CM): These nodes represent Cells that contain measures. Ac-
cording to [C3], these nodes will also contain dimensional concepts that determine

77

Figure 3.5: MDBE: decision diagram for labeling nodes representing factual data

the multidimensional space in which to place the data. There are three possible cases:
the Cell directly contains (i) the multidimensional base, (ii) a candidate base (i.e., a
set of attributes preserving a one-to-one relationship with the multidimensional base)
or (iii) a set of attributes fully determining the multidimensional base.
To preserve [C3], in the (i) and (ii) cases, it means that either the multidimensional
base (candidate base) corresponds to a table CK (also represented in the node) or,
if performing data aggregation in the query, the GROUP BY clause is compound
of attributes of the node. For the (iii) case, consider the TPC-H business query #5
previously introduced, and the TPC-H relational schema shown in Figure 3.2. In this
query, the name attribute (from the nation node) forms the multidimensional base
and lineitem plays a Cell role. To preserve [C3], lineitem is properly linked to
name in such a way that every instance of factual data is related to just one nation
name value. In other words, lineitem functionally determines the nation of the
supplier (indeed, this dependency is properly captured in the relational schema by
means of FKs). We use link attributes to denote the dimensional concepts contained
in a Cell placing factual data in the multidimensional space (i.e., the (i), (ii) or (iii)
cases discussed).

– Cell (C): These nodes represent ”factless facts” [KRTR98]. This definition is equiv-
alent to the previous one, but this type of Cell does not contain measures. These
facts are very useful for describing events and coverage and can be used to formulate
many interesting questions [KRTR98].

To determine the factual label of a node, we follow the decision diagram shown in Figure
3.5, which generates questions about the query and the table metadata. These questions derive
directly from constraints introduced in Section 3.3.1, and we distinguish between two possible
scenarios: one in which the current input query performs data grouping (i.e., it contains a GROUP
BY clause) and another in which it does not. In the first case, and according to [C1], if the
SELECT clause contains an aggregated attribute (i.e., summarized by an aggregation function),
that attribute will play a measure role. Consequently, the node is labeled as CM. Otherwise, if
no aggregated attribute is selected, it is labeled as a factless fact C (i.e., the Cell does not contain
measures).

Similarly, if no data grouping is performed in the query but we are able to produce a multidi-
mensional space (i.e., a table CK is selected), the node will be labeled as a Cell: CM if attributes

78

other than the key are selected (i.e., if it contains measures); otherwise, C. According to [C6],
any other alternative would not make multidimensional sense as a Cell (depicted in the figure by
the X mark).

When checking if any measure other than a table key is selected, we do not only consider
numerical attributes. Traditionally, numerical attributes produce measures because they are per-
fectly additive but, as discussed in [KRTR98], semi-additive or non-additive values could be of
interest to the end-user. Moreover, there are some areas in which non-numerical values are ad-
ditive. For example, the spatial databases area contains algorithms for the aggregation of text
values representing geographical information (see [CMTV00]).

Note the multidimensional semantics involving each alternative in the decision diagram dis-
cussed above. Cells identified without grouping will represent ”atomic factual data” [ASS06]
(i.e., the finest granularity of data in the data warehouse), whereas those Cells identified by data
aggregation will represent ”aggregated factual data” (i.e., coarser data granularities of interest).

Similarly, to determine the dimensional role of a node we follow the decision diagram shown
in Figure 3.6. Again, it generates questions about the query and the table metadata. First, we
check if the input query performs data grouping, and according to [C3], attributes in the GROUP
BY (i.e., contains attributes being part of the multidimensional base) will play a level role. Con-
sequently, the nodes containing these attributes are labeled as L. If no data grouping is performed
or none of the node attributes are used to group data, we check the WHERE clause. We distin-
guish between two possible scenarios: if any of the node attributes are involved in a comparison
clause or in a join. In the first case, according to [C7], selections are performed over dimensional
data and thus, that attribute will be identified as dimensional data. In the second case, according
to [C1], joins in the WHERE clause represent conceptual associations. Thus, if a node contains
an attribute joined to a dimensional attribute (i.e., an attribute already identified as dimensional
data) then, both attributes represent dimensional data. Any other scenario would not make sense
as dimensional data and the node is not labeled (see the the X mark in the figure).

Supporting Denormalization: As discussed in Section 3.1, our method can handle denormal-
ized input schemas, which means that a given node may play a factual and dimensional role
simultaneously. This scenario occurs when a graph node is labeled as factual data by the deci-
sion diagram shown in Figure 3.5, and as dimensional data by the decision diagram shown in

Figure 3.6: MDBE: decision diagram for labeling nodes representing dimensional data

79

Figure 3.7: MDBE: state diagram showing the transition between node labels

Figure 3.6.
In this case, we introduce two new labels to identify hybrid nodes containing factual and

dimensional data. Note, however, that a factual node (i.e., those labeled as CM or C) always
contains dimensional data forming the multidimensional space (i.e., the link attributes). How-
ever, hybrid nodes contain additional dimensional data: either attributes playing a degenerated
dimension [KRTR98] role and / or attributes playing the role of denormalized dimensional data
(i.e., partial or whole denormalized dimension hierarchies):

• Cell With Measures and Additional Dimensional Data (CDM): This label is equivalent to
the CM label (this node therefore contains the link attributes as well as measures) with
additional dimensional data. The additional dimensional data represent other analytical
levels and descriptors that form other analytical perspectives.

• Cell with Additional Dimensional Data (CD): Similarly, nodes representing factless facts
with additional dimensional data are labeled as CD.

For example, consider the TPC-H business query Q5 previously introduced. If this query
contained an additional comparison clause such as l shipdate = ’12-02-2009’ in the
WHERE clause, MDBE would identify lineitem as a hybrid node: according to the deci-
sion diagram shown in Figure 3.5, lineitem is labeled as CM (because the query contains
grouping and lineitem contains two aggregated attributes -i.e., l extendedprice and
l discount- in the SELECT clause) and, according to the decision diagram shown in Figure
3.6, it will also identify lineitem as dimensional data (because lineitem does not contain
any attribute in the GROUP BY clause, but it contains l shipdate, which is involved in a
comparison clause in the WHERE). As result, MDBE labels this node as a hybrid node (CDM)
since it contains measures, the link attributes and also an additional dimensional attribute.

Once we know how to label attributes (by means of the 7 criteria introduced in section 3.3.1)
and nodes (by means of the decision diagrams previously introduced in this section), the node
labeling state diagram can be produced, as shown in Figure 3.7. The transitions between possible
labels are shown. Every node is unlabeled in its initial state (i.e., at the beginning of the labeling

80

CKn1 CKn2 FKn1 FKn2 NNn1 NNn2 Relationship Multiplicity

× × × × ? ? Attr. → Attr. N −M

X × × X X X CK → FK + NN 1 -o N
X × × ? X ? CK → Attr. 1 o-o N

× X X × X X FK + NN → CK N o- 1
× X ? × ? X Attr. → CK N o-o 1

X X X X X X CK + FK → FK + CK 1− 1
X X X × X X CK + FK → CK 1 o- 1
X X × X X X CK → CK + FK 1 -o 1
X X × × X X CK → CK 1 o-o 1

Table 3.3: Summary of rules used to infer the relationship multiplicities from relational sources

process) and the label is then updated according to the explicit knowledge extracted from the
query. For example, from the initial state, we can label each node as either CM (if one of its
attributes is identified as a measure) or L (if one of its attributes is identified as a dimensional
concept). From the CM state, we can keep the same label if any other measure is identified or
update it to CDM if an attribute playing a dimensional role and not part of the link attributes is
identified (i.e., if this node contains factual and dimensional data).

Some transitions shown in the state diagram are labeled with the NKD (New Knowledge
Discovery) tag. In MDBE, a state transition can take place due to either the explicit knowledge
extracted from the query or the implicit knowledge derived both from the input query and the
data source metadata. The latter case represents a scenario in which either the query does not
explicitly establish a node role (thus, the node is not yet labeled) or the implicit knowledge
available suggests an alternative labeling. In these cases we analyze every labeling alternative
for the node in question. As discussed in Section 3.1 and presented in detail in Section 3.4.1 (see
Step 6), this process is used to derive new multidimensional knowledge that is not stated in the
requirements.

3.3.2.3 Edge Labeling

Edges relate nodes and keep track of joins in the WHERE clause of the query. They provide
information about how relational concepts are related in the relational schema fragment captured
in the query. For our purpose, a given edge is labeled according to the multidimensional concep-
tual relationship it may represent (i.e., the multidimensional interpretation we may infer). We
consider four potential labels: Cell - Cell, Cell - Level, Level - Cell and Level - Level. For ex-
ample, a Cell - Level edge label would mean that the relationship could relate factual data (i.e., a
node playing a Cell role) to dimensional data (i.e., a level). Note that edge labels only depict the
conceptual role that each node may play relative to a given edge. Therefore, these labels show
how factual and dimensional data may be related but, as previously discussed, MDBE has differ-
ent labels to identify factual and dimensional nodes. Specifically, a node playing a factual role
may be labeled as CM, C, CDM or CD whereas a node playing a dimensional role can only be
labeled as L. In other words, regarding edges, hybrid nodes can only play a Cell role, as justified
later in this section.

81

Next, we introduce the edge labeling process:

• First, for each join between tables in the WHERE clause, we first infer the relationship
multiplicity with regard to the schema constraints of the join attributes (i.e., FKs, CKs or
not NULL values). In the relational model, the multiplicity of a relationship depends on
how attributes involved are defined in the schema: Whether they (as a whole, since we
consider multi-attribute joins) play the role of a relation CK and / or if they are defined
as a FK to the other attribute(s) and / or if they allow NULL values. Joining to a CK
guarantees to match at most one instance of the relation3. Otherwise it may match many of
them. Similarly, an attribute not allowing NULL values and being defined as FK will surely
match one and just one instance. Otherwise, it may introduce zeros. Table 3.3 summarizes
all those relationship multiplicities that we may find in the relational model with regard
to the attributes metadata. There, each row represents an specific relationship between
nodes (i.e., a kind of join). Notation used is the following: first six columns represent all
possible combinations with regard to the constraints of join attributes (the subscripts n1
and n2 refer to each one of the attribute sets joined): As CK, as a FK pointing to the other
attribute(s) or as NN (not NULL) attribute(s). If an specific cell is ticked (i.e., X), it means
that that attribute is constrained according to that column. Otherwise, it is marked with a
×mark. Notice that not all the combinations are allowed and some columns determine the
following ones. For instance, CK attribute(s) can not accept NULL values. Moreover, a
cell is marked with a ? mark if previous columns already determine a certain multiplicity,
meaning that this constraint does not affect the obtained multiplicity. Finally, last two
columns inform about the specific join depicted as well as the multiplicity inferred. There,
an Attr. represents unconstrained attribute(s); that is, not defined neither CK nor FK
and allowing NULL values.

• Next, according to the semantics of the multiplicity inferred, we label each edge with those
multidimensional relationships it could represent (i.e., the multidimensional concepts it
could relate). Potential edge labels are shown in Table 3.4, and those combinations making

3We assume, as all systems do, that a FK can only point to a CK set of attributes.

Multiplicity Level - Level Cell - Cell Level - Cell Cell - Level

1 - 1 X X X X
1 o- 1 X X Xc X
1 o-o 1 X X Xc Xc

N - 1 X X × X
N o- 1 X X × X
N o-o 1 X X × Xc

N -o 1 X X × Xc

N - M × Xd × ×
N -o M × Xdc × ×
N o- M × Xdc × ×
N o-o M × Xdc × ×

Table 3.4: Valid multidimensional relationships in a relational schema

82

multidimensional sense (according to [C2], [C5] and [C6]) are marked with a X. For
example, a many-to-one relationship, depending on zeros, could represent a Cell - Level,
Cell - Cell or a Level - Level relationship but not a Level - Cell relationship, since it would
not satisfy [C2]. However, completeness could eventually be relaxed to identify concept
specializations, as explained in Section 3.3.1.1. These cases, in which completeness would
be relaxed a posteriori, are shown in Table 3.4 as Xc.

It can also be seen that many-to-many relationships would not generally produce valid
labeling. According to the constraints presented in Section 3.3.1, a many-to-many rela-
tionship is meaningless in the multidimensional model. Nevertheless, there is one case
in which we may consider many-to-many relationships, since we could eventually relax
disjointness to identify derived measures, as explained in Section 3.3.1.1; this exception,
in which disjointness would be relaxed a posteriori, is shown in Table 3.4 as Xd.

Finally, and as previously stated, we would like to remark that a node required to play a
dimensional role by an edge label, can only be labeled as L and not as CDM or CD. Although
these two labels represent hybrid nodes (and thus, they also contain dimensional data), their
semantics are different from those of the L label. Importantly, edges relate nodes, and they
determine the role that the related nodes may play according to the join conditions. Consider
again Table 3.4. A node may play a level role whether: (i) it is placed in the to-one end of a
relationship (see second, fourth and fifth column) or (ii) it is placed in the to-many end of a Level
- Level one-to-many relationship (see second column).

By definition, the cardinality of factual data within a hybrid node is greater than (or in a
degenerate case, equal to) that of the dimensional data it contains. Thus, in the (i) case, when
an edge relates a node n to a hybrid node h by means of a to-one relationship, the link relates
n to the factual data in h. Otherwise, if the link were relating n to the dimensional data in h, it
would not raise the to-one multiplicity. For this reason, hybrid labels cannot be used in this case.
In the (ii) case the reason is subtler. According to Table 3.4, the node in the to-many end may
represent a level (see second column) or a Cell (see third and fifth column). However, labeling
it as a hybrid node entails that this node contains factual and dimensional data and, by the same
reasoning as in the previous case, we are relating the factual data in h (i.e., the hybrid node) to
the data in n (i.e., its counterpart node) by means of a many-to-one relationship. For this reason,
the semantics of this edge would capture a Cell - Level or a Cell - Cell relationship (depending
on the role of n), but never a Level - Level relationship. Indeed, a Level - Level relationship can
only be obtained by considering h to play a strict dimensional role (i.e., labeling it as L).

Summing up, from the perspective of the edge labeling process and concerning hybrid nodes,
factual data is of more relevance than dimensional data. Note that this is sound with the hybrid
node definition: they contain factual data (and thus, like any other Cell, the link attributes) and
additional dimensional data (that in the general case will introduce redundancy).

3.4 MDBE: Multidimensional Design Based on Examples
The MDBE method has two inputs: the end-user information requirements (expressed as SQL
queries) and the logical model of the data sources. As output, our method produces a constel-

83

Figure 3.8: Summary of the MDBE process

lation schema from the data sources, which allows the user to retrieve the data requested in the
input requirements. In this scenario, each query is analyzed to derive a multidimensional schema
that meets the information requirements. This automatic process is depicted in Figure 3.8 and
can be divided into four different stages:

• For each input query, the first stage (see Section 3.4.1) extracts the multidimensional
knowledge contained in the query (i.e., the multidimensional role played by each con-
cept in the query and the conceptual relationships between concepts), which is properly
stored in the multidimensional graph. For this purpose, we apply the labeling methods
discussed in Section 3.3.2. In this stage, the role played by the data sources will be crucial
in inferring the conceptual relationships between concepts.

• The second stage (see Section 3.4.2) validates the multidimensional graph created in the
first stage according to the constraints introduced in Section 3.3.1. The aim is to check
whether the concepts and relationships stated in the graph collectively produce a data cube.
From the graph building perspective, the first stage of the MDBE method is designed to
derive a multidimensional labeling (i.e., label attributes, nodes and edges) to be validated
in the second stage (i.e., checking the overall soundness of the graph). Therefore, this stage
determines whether we would be able to use a set of multidimensional operators to retrieve
data requested in the input query from the multidimensional schema represented by the
multidimensional graph. If the validation process fails our method ends, since the required
data cannot be analyzed from a multidimensional perspective (i.e., we are not be able to
retrieve the requested data simply by using multidimensional operators). Otherwise, the
resulting multidimensional schema is directly derived from the multidimensional graph.

• The third stage (see Section 3.4.3) finds the most representative results among those ob-
tained. The step in which new multidimensional concepts are discovered may introduce
new results (i.e., labelings) of potential interest, and we introduce a rule for determining
which results should be presented to the user.

• Finally, the fourth stage (see Section 3.4.4) conciliates the multidimensional schemas ob-
tained for each query. The result is a minimal constellation schema subsuming each of the
schemas obtained for the input queries.

84

Importantly, MDBE establishes a framework that can be used incrementally: by launching
queries we can see the impact on the final conceptual schema. This feature facilitates the
maintenance of the multidimensional conceptual schema.

3.4.1 First Stage: Concept Labeling
The first stage is designed to build the multidimensional graph in 6 steps by applying the la-
beling standards introduced in Section 3.3.2. In this section, we introduce a detailed algorithm
in pseudo-code (the MDBE algorithm) for implementing the first MDBE stage. This algorithm
is followed by a brief explanation and an example of the execution of each step (based on the
TPC-H schema). For the purposes of the study, the comprehensibility of the pseudo-code took
priority over its performance (nevertheless, some optimizations have already been applied for its
implementation in the MDBE tool):

declare MDBE ALGORITHM as

1. For each table in the FROM clause do

(a) Create a node and Initialize node properties;

2. For each attribute in the GROUP BY clause do

(a) Label attribute as Level;

(b) node = get node(attribute); Label node as Level;

(c) For each attr2 in follow conceptual relationships(attribute, WHERE clause) do

i. Label attr2 as Level;
ii. node = get node(attr2); Label node as Level;

3. For each attribute in the SELECT clause not in the GROUP BY clause do

(a) Label attribute as Measure;

(b) node = get node(attribute); Label node as Cell with Measures selected;

4. For each comparison in the WHERE clause do

(a) attribute = extract attribute(comparison);

(b) if !(attribute labeled as Level) then

i. Label attribute as Descriptor;
ii. node = get node(attribute); Label node as Level;

(c) For each attr2 in follow conceptual relationships(attribute, WHERE clause) do

i. if !(attribute labeled as Level) then
A. Label attribute as Descriptor;
B. node = get node(attribute); Label node as Level;

5. For each join in the WHERE clause do

(a) /* Notice a conceptual relationship between tables may be modeled by several equality clauses in the WHERE */

(b) set of joins = look for related joins(join);

(c) multiplicity = get multiplicity(set of joins); relationships fitting = {};
(d) For each relationship in get allowed relationships(multiplicity) do

i. if !(contradiction with graph(relationship)) then

85

A. relationships fitting = relationships fitting + {relationship};
(e) if !(sizeof(relationshipsfitting)) then return notify fail(”Node relationship not allowed”);

(f) Create an edge(get join attributes(set of joins)); Label edge to relationships fitting;

(g) if (unequivocal knowledge inferred(relationships fitting)) then propagate knowledge;

6. for each g in New Knowledge Discovery(graph) do

(a) output += validation process(g); //A detailed pseudo-code of this function can be found in section 3.4.2

return output;

The algorithm analyzes each query clause according to Def. 1:

Step 1: Each table in the FROM clause is represented as a node in the multidimensional graph.
As presented in Section 3.3.2, MDBE will try to label every node, attribute and edge
depicted in the query. Each node will keep track of relevant metadata inferred during
the process. Specifically, we retain relevant metadata related to the query and referring
to the data cube retrieved (if it makes multidimensional sense): the data cube base and
compatibility information.

Example: Consider the TPC-H business question #5 (Q5) that ”lists the revenue volume
done through local suppliers”. We will present, a detailed view of each step for Q5.
In this first step, the graph initially has six nodes: customer, orders, lineitem,
supplier, nation and region.

Step 2: This step is designed to find explicit dimensional data used to arrange the multidimen-
sional space. According to [C3], the GROUP BY clause (see [C1]) must fully functionally
determine data. Thus, fields in this clause represent interesting perspectives from which to
base data analyses. In addition, fields joined to these attributes in the WHERE clause will
also be labeled as dimensional data (since joins represent conceptual associations stated in
the end-user requirements [C1]).

Current methods has thus far relief on foreign keys to identify dimensional data, so results
depend on the degree of normalization of the data sources (see Section 3.1 for further in-
formation). In our approach we are not tied to design decisions affecting the data source
logical schemas and can identify them from the requirements. For example, that the user
state relationships not depicted in the logical schemas of the data sources (for instance,
data grouping). Consequently, every attribute identified in this step is labeled in the multi-
dimensional graph as an interesting level of analysis.

In these steps, each time an attribute is labeled, the label of the node to which it belongs
will be properly updated according to the decision diagram shown in Figure 3.7. Finally,
we add the identified data cube base to the graph metadata.

Example: Attribute n name from node nation is labeled as a level and accordingly
(see Figure 3.7), nation is labeled as a node containing dimensional data (i.e., L). Fur-
thermore, to propagate that knowledge, we verify any concept association in the WHERE
clause in which n name is involved. However, there is no join involving that attribute. If
c nationkey had been used in the GROUP BY clause instead of n name, s nationkey

86

and n nationkey would have been identified as dimensional concepts as well since
there are two joins in the WHERE clause relating all of the attributes (i.e., c nationkey =
s nationkey and s nationkey = n nationkey). Finally, we store the n name as the data cube
base in the graph metadata.

Step 3: This step is designed to find explicit factual data. Aggregated attributes in the SELECT
clause (see [C1]) play a measure role. However, if the input query does not contain a
GROUP BY clause we do not have to aggregate measures in the SELECT clause, and this
step cannot identify them (these types of Cells and those not containing measures will be
identified in Step 6). If the query does not perform a GROUP BY, we store the primary
key used as the data cube base in the graph metadata (see Figure 3.5 for further details).
Finally, we also track the compatibility information identified in the node metadata.

Example: In this step, l extendedprice and l discount are identified as mea-
sures, and accordingly, table lineitem is labeled as a Cell with measures (CM). We
also add to the graph metadata the compatibility information stated in the query: the
(l extendedprice * (1 - l discount)) can be summarized by using sum function
for all the dimensions in the data cube base (i.e., n name; see previous step).

Step 4: This step is designed to find explicit dimensional data used to restrict the multidimen-
sional space. Since a selection (i.e., a comparison between an attribute and a constant
value) must be carried out over dimensional data (see [C1] and [C7]), this step labels
attributes as dimensional concepts looking for comparisons in the WHERE clause, fol-
lowing the concept association criteria presented in step 2. Attributes identified in this step
are labeled as descriptors unless they have been used to arrange the multidimensional
space (in this case they would have been labeled as levels in Step 2).

Example: The SQL query #5 contains three comparison clauses between attributes and
constants in the WHERE clause (r name = ’[REGION]’, o orderdate >= ’[DATE]’ and
o orderdate < ’[DATE]’ + ’1’ year). Consequently, r name and o orderdate are la-
beled as descriptors. Accordingly, orders and region are labeled as dimensional data
(L). In this step, we again verify joins in the WHERE clause involving any of these at-
tributes to propagate the multidimensional knowledge through concept associations. How-
ever, none of the attributes, in our example, are involved in a join.

Step 5: The previous steps are aimed at creating and labeling nodes and their attributes whereas
this step creates and labels edges (i.e., concept associations). Conceptual relationships
are depicted in an SQL query by joins in the WHERE clause (see [C1]). In the multi-
dimensional graph joins are represented as edges, and this step is designed to label them
following the process described in section 3.3.2.3.

A list of potential edge labels is inferred according to the multiplicity inferred for a con-
ceptual association in the WHERE clause (see Table 3.4). These alternatives are checked
prior to labeling the edge, and a label is overlooked if it contradicts current knowledge
depicted in the graph. For example, this may occur if a node has already been labeled and
the edge label requires it to be relabeled in an incompatible way. An incompatible labeling

87

happens when a node labeled as C, CM, CD or CDM is required to play a dimensional
role.

Once every alternative has been validated there are two potential scenarios: we will either
have been able to label that edge with at least one alternative, or we will not. In the first
case the algorithm continues, and if we have been able to infer unequivocal knowledge for
a given edge (i.e., if a unique edge label stands) this knowledge is propagated in cascade
to the rest of the graph. However, in the second case the algorithm stops since we have
identified a conceptual relationship that does not make multidimensional sense.

Example: First, we infer the relationship multiplicity for each conceptual relationship
in the WHERE clause. In this example, each conceptual relationship is defined by a
single-attribute join, although in practice they might be depicted by multi-attribute joins;
for example, l orderkey = o orderkey represents a relationship between lineitem and
orders. According to Table 3.3 (second row), this join produces a many-to-one relation-
ship between lineitem and orders that allows zeros in the to-many side of the rela-
tionship (since o orderkey is defined as the primary key of orders and l orderkey
is defined as a foreign key to o orderkey).

Next, according to Table 3.4, this one-to-many relationship may represent a Level - Level,
a Cell - Cell or a Level - Cell relationship. However, the Level - Level relationship contra-
dicts current knowledge in the graph since lineitem has been labeled as CM and this
edge label requires it to be labeled as dimensional data. In contrast, the Cell - Cell relation-
ship is consistent with current knowledge depicted in the graph. Although orders has
already been labeled as dimensional data in Step 4, according to Figure 3.7 it could also
be considered a hybrid node (see the NKD transition), which means that it could also be
labeled as either CDM or CD. In this case, according to Figure 3.5 it should be labeled as
CD (since the query performs data grouping but there is no orders attribute aggregated
in the SELECT clause). Finally, the Level - Cell relationship is allowed, so the current edge
is labeled with both possibilities (Level - Cell and Cell - Cell). A graphical representation
of the multidimensional graph after step 5 can be seen in Figure 3.9.

Once these steps have been completed the multidimensional graph has been deployed. Tables
(i.e., nodes), attributes (i.e., node attributes) and their conceptual relationships (i.e., edges) are
depicted in the graph, and every edge has been labeled. However, some nodes (if none of their
attributes have been labeled) may have not been labeled. Specifically, explicit concepts requested
by the user (and nodes to which they belong) will be labeled after Step 5. This is because when
writing the SQL query of a given requirement we may need to introduce intermediate concepts
to relate explicit concepts stated by the user. In general, nodes containing intermediate concepts
remain unlabeled after Step 5 (unless they have been labeled by the propagation rule of Steps
2 and 4). In addition, some nodes already labeled after Step 5 may have potentially interesting
alternatives, which can occur if the query structure does not clearly identify measures (see Step
3) or if we are looking for interesting factless facts. We will refer to intermediate nodes and
nodes with interesting alternative labels as implicit nodes.

88

Figure 3.9: MDBE: left, the graph for Q5 after Step 5; right, the graph for Q9 after Step 12

As discussed in Section 3.1.2, demand-driven approaches rely on exhaustive requirements
(and thus, they do not rely on the data sources to infer alternative analysis capabilities), whereas
supply-driven approaches perform an exhaustive analysis of the data sources and produce too
many results. In our approach, we propose a middle ground solution (i.e., we do not fully rely
on requirements, but we do perform an exhaustive analysis of the data sources) for automatically
derive new multidimensional knowledge not considered by the user. In our approach, we focus
on the implicit concepts of the query, and analyze the available labeling alternatives. The aim
of this step is to determine how these alternatives would affect the output schema, deriving (in
some cases) interesting analytical alternatives that may have been overlooked by the user.

Step 6: This step is designed to derive new multidimensional knowledge from unlabeled nodes
or, according to the NKD transitions in Figure 3.5, to test alternative labels for nodes al-
ready labeled. Each unlabeled node can be considered to play a dimensional role (i.e.,
labeled as L) or a factual role (labeled as C or CM, according to Figure 3.5). However,
nodes with potential alternatives of interest will introduce an alternative label. For each
possible combination of new labels, an alternative graph is created if the labels do not
contradict knowledge already depicted in the graph. Subsequently, each of these graphs
will be validated as explained in Section 3.4.2, and only those that make multidimensional
sense will finally be considered. Therefore, a query could produce several valid multidi-
mensional graphs. In that case, MDBE would be able to derive multiple multidimensional
schemas for a single query.

Essentially, this step guarantees that all of the possible multidimensional labelings for the
input requirements will be generated (each one represented as an alternative multidimen-
sional graph). As such, it is possible for all of the nodes in a given graph to be labeled
as dimensional data. However, this type of graph is directly disregarded by our method
because a multidimensional graph must contain at least one Cell [C1].

Example: We have two unlabeled nodes (i.e., customer and supplier, labeled as ?

89

Id Lineitem Customer Orders Supplier Nation Region Step

1 CM C CD C CD CD 10
2 CM C CD C CD L 10
3 CM C CD C L L 9
4 CM C CD L L L 9
5 CM L CD C L L 9
6 CM L CD L L L OK
7 CM L L C L L OK
8 CM L L L L L 8b

Table 3.5: MDBE: graph labelings generated after the first stage of MDBE

in Figure 3.9) and three nodes that, according to Figure 3.7, may play a factual role in
addition to their current dimensional role (i.e., orders, nation and region, marked
with a * in Figure 3.9). For each combination that does not contradict knowledge depicted
in the current graph, an alternative graph is generated.

After Step 6, we have 5 nodes with two potential labeling alternatives that produce 8 dif-
ferent multidimensional graphs. Note that we do not generate 32 graphs (i.e., 25 com-
binations) because many of them are meaningless in the multidimensional model. From
Step 5, a given labeling is overlooked if it contradicts knowledge depicted in the graph.
For example, consider the following labeling alternative in which customer, orders,
supplier and region are labeled as C, whereas nation is labeled as L. According to
the edge between region and nation, if region is labeled as C then nation should
also be labeled as C; otherwise, it would not make multidimensional sense (see Table 3.4).
This type of contradiction removes 24 of 32 possible combinations. The remaining 8 com-
binations (shown in Table 3.5) will then be validated in the second stage of MDBE. As we
will see, most of these will be invalidated, and only two will eventually be found to make
multidimensional sense (the last column of Table 3.5 shows which step invalidates which
combination).

3.4.2 Second Stage: Multidimensional Graph Validation
In this stage we validate each of the multidimensional graphs generated in the previous stage. The
validation process also guarantees the multidimensional normal forms presented in [LAW98] for
validating the output multidimensional schema, and the summarizability constraints discussed in
[MLT09]. Again, we use a detailed algorithm in pseudo code (the validation process algorithm)
to implement our method, followed by a brief explanation and an example of each one of its
steps. This algorithm is called once for each alternative graph generated in Step 6 (see Step 6a
of the MDBE algorithm in the previous section):

declare VALIDATION PROCESS as

7. If !connected(graph) then return notify fail(”Aggregation problems because of cartesian product.”);

8. For each subgraph of Levels in the multidimensional graph do

90

(a) if contains cycles(subgraph) then

i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */
ii. if contradiction about paths multiplicities(subgraph) then return notify fail(”Cycles can not

be used to select data.”);
iii. else ask user for semantic validation;

(b) if exists two Levels related same Cell(subgraph) then return notify fail(”Non-orthogonal Analysis
Levels”);

(c) For each relationship in get 1 to N Level Level relationships(subgraph) do

i. if left related to a Cell with Measures(relationship) then return notify fail(”Aggregation
Problems.”);

9. For each Cell pair in the multidimensional graph do

(a) For each 1 1 correspondence(Cellpair) do Create context edge between Cell pair;

(b) For each 1 N correspondence(Cellpair) do Create directed context edge between Cell pair;

(c) If exists other correspondence(Cellpair) then return notify fail(”Invalid correspondence between
Cells.”);

10. if contains cycles(Cells path) then

(a) if contradiction about paths multiplicities(Cells path) then return notify fail(”Cycles can not be
used to select data.”);

(b) else ask user for semantic validation; Create context nodes(Cells path);

11. For each element in get 1 to N context edges and nodes(Cells path) do

(a) If CM at left(element) then return notify fail(”Aggregation problems between Measures.”);

12. If exists two 1 to N alternative branches(Cells path) then return notify fail(”Aggregation problems
between Cells.”);

Step 7: The multidimensional graph must be connected to avoid the “Cartesian Product” ([C6]).
Furthermore, the multidimensional graph should be composed of valid edges that produce
a path between Cells (factual data) and connected subgraphs of levels (dimensional data)
surrounding it - these constraints will be properly checked in the following steps.

Example: In our example, the 8 multidimensional graphs to be validated (see Table 3.5)
are connected.

Step 8: This step validates levels subgraphs (i.e., subgraphs only containing level nodes) with
regard to Cells placement: According to [C4], two different levels in a subgraph can not
be related to the same Cell (Step 8b); to satisfy [C5] and [C6], level - level edges raising
aggregation problems in Cells with selected measures must be forbidden (Step 8c). Fi-
nally, every subgraph must represent a valid dimension hierarchy (i.e., not being used to
select data) [C7]. Thus, we must be able to identify two nodes in the level subgraph which
represent the top and bottom levels of the hierarchy, and if there is more than one alterna-
tive path between these nodes, they must be semantically equivalent (8a). As discussed in
Section 3.3.1.1, this step may eventually relax [C5] and [C6] (i.e., disjointness) if required
in Step 8c.

Example: i) Step 8a: In our example, none of the graphs contain a cycle within a level
subgraph so that all of them satisfy this step. ii) Step 8b: Consider the alternative graph

91

depicted in row 8 of Table 3.5. All of the nodes except for lineitem are labeled as
levels. Therefore, this alternative does not preserve 8b, since orders and supplier
belong to the same level subgraph and both are related to lineitem. Consequently, the
validation process fails and this alternative is discarded because the Cell is related to two
different points of the same analysis perspective (which does not make multidimensional
sense). iii) Step 8c: In our example, lineitem is the only node labeled as Cell with
measures, but it does not raise any aggregation anomalies in any of the graphs.

Step 9: Cells determine multidimensional data and must be related in the graph to produce a sin-
gle Cell path. If this is not the case, they cannot retrieve a single data cube [C1]. For every
pair of Cells in the graph, we aim to validate the paths between them as a whole, inferring
and validating the multiplicity raised as follows: (i) if a one-to-one correspondence be-
tween two Cells exists, we replace all of the relationships involved in that correspondence
with a one-to-one context edge between the two Cells (i.e., a context edge replaces the sub-
graph representing the one-to-one correspondence). As shown in Figure 3.10.1, this means
that a whole Cell CK is linked by one-to-one paths to the whole CK of the other Cell. (ii)
Alternatively, if both CKs are related by one-to-many paths or the first CK matches the
second one partially, we replace the relationships involved with a one-to-many directed
context edge (see Figure 3.10.1). (iii) From a data source perspective, many-to-many re-
lationships between Cells should be invalidated because they do not preserve disjointness
[C6]. Nevertheless, this step may eventually relax disjointness, as discussed in Section
3.3.1.1.
Example: In our example 3 of the 7 remaining labeling alternatives produce incoher-
ent context graphs that do not satisfy the multidimensional constraints. For example, the
labeling alternative shown in the third row of Table 3.5 would produce a forbidden many-
to-many relationship between customer and supplier in the context graph. There are
only four viable alternatives for this step: if every node in the graph cycle is considered as
factual data (rows 1 and 2 of Table 3.5) or if orders (row 6) or supplier (row 7) are
considered to play a factual role. Any other alternative would produce an invalid context
graph.

Figure 3.10: MDBE: examples of Cells paths in a context graph

Steps 10, 11 and 12: The previous step validated the correspondences between Cells, whereas
these steps validate the Cell path (multidimensional data retrieved) as a whole: According

92

to [C7], Step 10 validates cycles in the path of Cells to ensure that they are not used
to select data, similarly to the validation of levels cycles (see 8a). Once the cycle has
been validated, the Cells involved are clustered in a context node labeled with the cycle
multiplicity, as shown in Figure 3.10.2. According to [C5] and [C6], Steps 11 and 12
look for potential aggregation problems; the first looks for Cells with measures selected
at the left side of a one-to-many context edge or node, and the second looks for alternative
branches with one-to-many context edges or nodes each, which would produce a forbidden
many-to-many relationship between the Cells involved (as depicted in the right side of
Figure 3.10.2). Finally, as in any step involving [C5] and [C6], this step may eventually
relax disjointness as discussed in Section 3.3.1.1.

Example: i) Step 10: In our example, this would be the case if every node in the graph
cycle was considered to play a factual role (row 1 of Table 3.5) or if all of them except
region played a factual role (row 2 of Table 3.5). In both cases, identified cycles would
not make multidimensional sense because they do not preserve disjointness of lineitem
(which contains measures). Consequently, both alternatives are discarded. ii) Steps 11 and
12: At this point, we only have two valid alternatives (rows 6 and 7), but neither produces
aggregation problems with lineitem.

Another interesting example is the graph obtained from Q9 (see Figure 3.9), in which
a one-to-many relationship is shown between two Cells (lineitem and partsupp).
According to Table 3.4 this edge is allowed between Cells but Step 11 invalidates it. This
query does not preserve disjointness [C6] between both Cells with measures (a Cell with
measures is selected at the left side of a one-to-many context edge). In this case, no result
would be produced and, according to R1 (see Section 3.3.1.1 for a detailed definition of
this rule) we relax [C6]. Now, we obtain a valid multidimensional graph, but the user
is informed of the situation and asked to validate the result obtained. In this example,
according to the query semantics, we are calculating a derived measure (weighting the
l quantity with the ps supplycost), which determines the profit made on a given
line of parts (see [Tra09]). Clearly, this derived measure (and thus, this query) makes sense
and must be considered a valid multidimensional data cube.

The second MDBE stage would eventually have validated each graph as corresponding to
a data cube, and only those guaranteeing every step discussed above would be presented to the
user.

Example: At the end of the validation process, two of the eight initial labeling alternatives
(see rows 6 and 7 of Table 3.5) are sound and make multidimensional sense. Therefore, MDBE
would produce two different multidimensional schemas that would satisfy Q5 (these can be de-
termined from Figure 3.9 and rows 6 and 7 of Table 3.5).

3.4.3 Third Stage: Finding Representative Results
Step 6 in the first stage of the MDBE method may produce several alternative graphs for the
same query. Unlabeled nodes (and those with interesting alternatives, according to Figure 3.7)
are proved to be factual and dimensional data in alternative graphs, which are validated in the sec-
ond MDBE stage. Eventually, those graphs that make multidimensional sense will be considered

93

in the conciliation process (see next section). Consequently, more than one multidimensional
schema can be produced for a given query. However, an alternative graph could make mul-
tidimensional sense but not represent a new and potentially interesting analytical perspective.
Indeed, dimensional data could always be considered as an alternative factless fact, although in
most cases it will not be relevant to the end-user. Therefore, this step is designed to determine
the representativeness of new alternatives produced by Step 6, according to the following rule:

R2: If, for a given query, we obtain two sibling graphs that suggest analyzing a given dimen-
sional node as a factless fact, we disregard the potential factual role of that node.

Two sibling graphs differ only in the labeling of one node. Therefore, they have exactly the
same labels except for one node, which is considered to play a factless fact role in one graph and
a strict dimensional role in the other. As an example, consider the following table, which depicts
the alternative graphs obtained after the validation step for a given query:

Id Node A Node B Node C Node D

1 CM CD C L
2 CM L C L
3 CM L C CD

According to the previous definition, alternative Graphs 1 and 2 (which only differ in the label
of B), and Graphs 2 and 3 (differing in the label of D) are siblings. In this case, and according to
R2, for the first sibling relationship we disregard the first graph and choose Graph 2 as the most
representative; for the second pair we disregard Graph 3 and choose Graph 2 again. Eventually,
this query will produce a single multidimensional schema. In short, sibling graphs do not provide
new interesting analytical perspectives. MDBE uses them to analyze the potential factual data
that a dimension may contain. However, in most cases, the end-user would not be interested in
this type of analysis. Knowledge inferred from Step 6 is therefore disregarded when it produces
sibling graphs and is only considered and presented to the user in one of the following two cases:
(i) Firstly, if we identify a dimensional node that may also play a factual role with measures. This
scenario can only arise in a query without data grouping, in which case Step 6 would identify an
atomic Cell with measures (see Section 3.3.2.2 for further details). Note that this type of node is
relabeled in Step 6 as CDM and, as such, does not fit the sibling definition (since the alternative
sibling graph labeling that node as L will be missing) and will not be pruned in this step. (ii) In
the second possible case, we have a factless fact that cannot play a dimensional role (i.e., there is
no sibling graph for this labeling).

Example: The latter case (ii) occurs in the Q5 validation process. Consider Table 3.5. The
two valid labels are shown in rows 6 and 7; since they do not have sibling graphs, none will be
pruned in this step. Essentially, MDBE highlights that Q5 will make multidimensional sense if
either supplier or orders plays a factless fact role (the query semantics can be checked to
confirm that this is consistent with the query definition).

3.4.4 Fourth Stage: Conciliation

MDBE validates each input requirement and obtains a potential set of multidimensional schemas
for each query (see the three previous stages presented above). In this section we present an

94

algorithm that conciliates the results for the input queries into a minimal set of schemas covering
all of the queries.

Before proceeding to the conciliation, a pre-process must be carried out to normalize the
multidimensional graphs; each hybrid node in every multidimensional graph is normalized. This
means that any node labeled as CDM or CD will produce two different nodes: according to the
discussion introduced at the end of Section 3.3.2.3, hybrid nodes contain factual data (and thus,
like any other Cell, the link attributes) and additional dimensional data (that in the general case
will introduce redundancy of data). In fact, hybrid nodes could be represented as factual data
(i.e., a node labeled as CM or C) related by a many-to-one (or in a degenerate case, a one-to-one)
relationship to dimensional data (i.e., a node labeled as L); in other words, we could normalize
them. We then apply the following algorithm (for clarity, the comprehensibility of the algorithm
took priority over its performance):

• (1) MDBE looks for all the facts identified in the multidimensional graphs, and creates a
new factual class4 for each one (every class will eventually produce a multidimensional
schema at the end of the conciliation process). Two other tasks are performed in this step:
i) we enrich each class by adding the measures identified in the graphs as attributes of the
factual class; and ii) we draw the conceptual relationships between facts depicted in the
graphs by semantic relationships between classes.

Example: Consider a simplified scenario of the TPC-H case study in which we only need
to conciliate the multidimensional graphs created for Q5 and Q9 (see Figure 3.9). First,
we create four factual classes (lineitem, orders, supplier and partsupp) for
each node labeled as either CM or C. Then, we add the measures identified in these graphs
to each class. Consequently, l extendedprice, l discount (from Q5 and Q9) and
l quantity (from Q9) are added to the lineitem class and ps supplycost (from
Q9) is added to partsupp. The remaining classes will not contain measures as they were
identified as factless facts (see Q5).

In addition, since partsupp is related to lineitem in Q9, we keep track of this con-
ceptual relationship by drawing a semantic relationship between the two classes. The same
is done with lineitem and order, and lineitem and supplier (Q5).

• (2) Next, we conciliate the dimension hierarchies identified by the input queries. We first
look for compatible hierarchies. Two hierarchies are compatible if they share their atomic
level5. Every set of compatible hierarchies must be conciliated (i.e., produce a single di-
mension subsuming all of them). This process is carried out by checking the hierarchies
graphs. From the perspective of the multidimensional graph, a hierarchy is represented by
the subgraph containing the nodes that form the dimension. For example, the customer
→ nation → region hierarchy identified in Q5 (see Figure 3.9 and Table 3.5) is di-
rectly derived from the subgraph formed by these three nodes.

Therefore, a hierarchy h subsumes a hierarchy h’ if the subgraph representing h’ is con-
tained (except for the descriptors) in the subgraph representing h. At this point, it should

4In this step we are devising the multidimensional conceptual schema. We therefore talk about classes and attributes
in this section, but we could use the notation from any conceptual multidimensional model. For example, [ASS06].

5An atomic level is the finest granularity level within a dimension hierarchy and is directly related to the fact [ASS06].

95

be noted that a one-to-one relationship is contained in a one-to-many or a many-to-one
relationship. Having said that, we conciliate a set of compatible dimensions by applying
the following properties iteratively:

– (2.1) If a given hierarchy h subsumes a hierarchy h’ and h’ also subsumes h, both
hierarchies are equivalent and we only need to keep one of them aligning all of the
descriptors of both dimensions. The other hierarchy must be removed from the set of
compatible hierarchies.

– (2.2) Alternatively, if h subsumes h’ and h’ does not subsume h, the descriptors of h’
are mapped to h, and h’ is removed from the set.

– (2.3) Finally, if h does not subsume h’ and h’ does not subsume h, they are conciliated
as follows: i) first, we conciliate (by keeping the common structure and aligning their
descriptors) the overlapping part shared by the hierarchies (note that, by definition,
they will share at least their atomic levels; -see the compatible hierarchies definition
above-); second, ii) we draw two alternative branches in the resulting hierarchy, one
branch for each disjoint part of the subgraphs.

Example: In our example, Q5 and Q9 provide two sets of compatible dimensions (i.e.,
the first set is a compound of the supplier → nation → region from Q5 and
supplier → nation from Q9, and the second set is compound of orders dim
from Q9 and Q5, and orders dim → customer → nation → region from
Q5). In this scenario, conciliation of the two sets corresponds to the second case presented
above: one hierarchy is contained in the other but the reverse is not true. Therefore, we
keep the richest hierarchy and enrich it with the descriptors of the discarded one.

The conciliated dimension hierarchies and those that are not compatible with any other
are depicted in the multidimensional schema. For example, consider the orders dim
→ customer → nation → region dimension; its atomic level was related to
lineitem and orders. Consequently, we relate this new conciliated dimension to these
two factual classes. By carrying out this process, we will obtain a star schema for each
factual class identified. Note that conciliated dimensions enrich the conceptual schema:
they provide other factual classes with new analytical perspectives considered in other star
schemas. For example, orders only considered the orders dim level, whereas it now
has a detailed conciliated hierarchy.

• (3) Finally, a pruning step is carried out. MDBE identifies those star schemas that are
semantically poor. We can also introduce a non-representative requirement, which would
produce an unneeded star, for example: every star schema composed of just one dimension
is proposed to be disregarded (note that we could use any other criterion introduced in the
literature [SKD07, RA07a], if desired). However, the final decision is taken by the user,
since the star schema is derived from the end-user requirements and he/she must decide if
it really makes sense or it was an error.

Example: In the TPC-H case study, this would be the case of supplier and customer.
Both have been identified as factless facts during the process, but their star schemas are
rather simple (one dimension each). After considering the requirements from which they

96

were derived, we may decide to eliminate them (as was the case in the final schema shown
in Figure 3.3).

Two main points should be made about this process. First, it does not introduce a summariz-
ability problem, because we are only merging compatible labels (i.e., factual data and only fully
compatible dimensional data). It is also very important to note the relevance of semantics in the
conciliation process. In a data warehousing design task, semantic relationships must be carefully
considered. For example, two different relationships between the same concepts A and B must
produce two different perspectives. The reason is clear: each relationship relates a different set
of instances from the two classes and, therefore, produces two different analytical perspectives.
This explains why two dimension hierarchies such as A →r1 B (where r1 identifies the rela-
tionship between A and B) and A →r2 C →r3 B cannot be conciliated as A →r2 C →r3 B.
Had we proceeded like this, we would have lost semantics. It should be considered that we are
working with relational sources, so if we travel from A to B along two different paths there must
necessarily be two different conceptual paths between them. As explained in Step 2.3 of the
conciliation process, the hierarchies should be conciliated as: B ←r1 A →r2 C →r3 B; i.e.,
with two alternative branches starting from A (the common part).

The second point is that the orthogonality of the multidimensional spaces that may be pro-
duced is not lost, since we keep track of the metadata inferred from each query at the constella-
tion level (see section 3.4.1; steps 2 and 3). Note that each input query represents a data cube of
interest. Consequently, our output schema retains the metadata about these datacubes: the mul-
tidimensional space depicted (i.e., the cube base) and the information about the compatibility of
the data summarization performed (i.e., which function may be used for their measures and in
which dimensions). This type of information will be relevant for the OLAP tool once it has been
implemented.

Finally, this stage, like the three previous stages, is fully automatic and we therefore obtain a
star schema for each fact identified; this, as a whole, produces a constellation schema (see Figure
3.3). Note that this figure only shows facts, measures and dimension hierarchies identified
in the process, whereas descriptors have been overlooked to avoid disrupting the final result.
Nevertheless, it should be stressed that MDBE works at the attribute level and keeps track of the
role assigned to each attribute when deriving partial schemas from each query. Consequently,
we are able to split some tables (for example, orders produced two different concepts in the
multidimensional schema, since the dimensional attributes contained in the relational orders
table are represented explicitly in orders dim).

3.5 A Practical Case: The TPC-H
In this section we discuss several issues about the overall TPC-H case study. MDBE was carried
out for the 22 TPC-H queries that together produced the constellation schema shown in Table
3.3. Below, we focus on five interesting aspects of this case study: the specificity of require-
ments needed, the expressiveness and quality required in the sources, the degree of automation
achieved, the computational complexity of the algorithm and the quality of results obtained (i.e.,
the output correctness and the extra knowledge obtained in the output thanks to the novel contri-
butions of MDBE). Note that our study is exhaustive regarding the four axis discussed in Section

97

1.7, and we also provide a study of the performance (and thus, feasibility, of our proposal).
Later, we will also use this case study to provide a comprehensive framework in which compare
the MDBE and AMDO methods.

3.5.1 Requirements Specificity

MDBE requires to gather the end-user informational requirements and formalize them into SQL
queries. Thus, one interesting aspect deserving further study is the number of queries needed
to produce the resulting conceptual schema. In the output schema we identify 3 factual classes
(containing 9 measures) and 9 dimension hierarchies (containing a total of 18 level classes and
39 descriptors):

• In the worst case, we would need 11 queries to identify all of the factual classes and
dimension hierarchies in the multidimensional model. In other words, some queries are
redundant and are not relevant to the final result. Had we executed them in the worst
possible order, we would have identified all the multidimensional classes and most of the
attributes even with 11 queries (8 out of 9 measures and 17 out of 39 descriptors).

• In contrast, in the best case, we would have been able to identify all of the factual classes
and dimension hierarchies with just 4 queries (and 6 out of 9 measures and 10 out of 39 de-
scriptors -it would also be possible to give more relevance to descriptors and then identify
16 out of 39 descriptors but 5 out of 9 measures, also with 4 queries-). For example, Q5 is
a key requirement as it identifies 4 dimension hierarchies and 2 factual classes. Indeed, Q5
and Q9 identify all three factual classes and 4 measures of the resulting multidimensional
schema.

If we considered a random order of input queries (i.e., without any consideration other than
choosing the order of the query execution at random) we would need an average of 8 queries
(i.e., the average of the worst case -i.e., 11 queries- and the best case -i.e., 4) to identify the main
structure of the schema (i.e., facts, measures and dimension hierarchies). This result is sound as
it is relatively easy to identify the multidimensional classes with only a small number of queries.
Indeed, the multidimensional design task proposed in this chapter is incremental, and it is up to
the user to decide when to stop adding new queries. Once most of the structure has been defined,
it can be customized as in traditional approaches.

For example, consider a case in which we are satisfied with the number of facts, measures and
dimension hierarchies identified by MDBE. Suppose that we have identified the 3 factual classes,
the whole dimension hierarchies and the 9 measures. In an average case, these concepts can be
defined with 8 queries and we would have approximately 14-19 descriptors (depending on the
input queries used). To proceed further, it would be easier to identify the rest of the descriptors
among the dimensional data table attributes than by launching new queries. Note that MDBE can
easily support this last step: we can browse the attributes of each level identified and let users
add those that are of interest to them.

To continue with our example, at this point the region level class would contain r regionkey
and r name but the r comment attribute in the relational table would not have been selected

98

yet. However, it would be easier to browse the region attributes and add r comment to the
output schema than to launch a new query specifically for the purpose.

3.5.2 Data Source Expressiveness

The TPC-H relational schema is well-formed and captures a fair picture of the business domain.
For example, foreign keys are used to identify semantic relationships between attributes in dif-
ferent tables, and the schema is in 3NF.

Importantly, note that MDBE is an interleaved hybrid approach, which analyzes the end-user
and the data sources simultaneously, but the requirement analysis leads the process. Conse-
quently, the quality of the sources required in our approach is considerably lower than in pre-
vious approaches working from relational sources. Indeed, as discussed in Section 2.1, current
approaches demand that the source relational schemas capture the functional dependencies (i.e.,
to-one relationships) existing in the domain. This kind of relationships, typically represented at
the logical level by means of foreign and candidate key constraints, are crucial to identify the
multidimensional concepts and specially, the dimensional concepts. For this reason, the quality
of the output obtained by current approaches decreases drastically for relational sources between
a denormalized schema and a logical schema in 3NF. On the contrary, MDBE is able to produce
high-quality results, even from denormalized sources, by means of two key features:

• MDBE exploits the candidate - foreign key knowledge captured in the data sources. Nev-
ertheless, if this information is missing, we are able to extract it from the requirements
(in case it is relevant for the final result). For example, consider the TPC-H relational
schema introduced in Figure 3.2, and the TCP-H #5 query used as example all over the
chapter. In Q5, the c custkey = o custkey logic clause involves two concepts re-
lated by means of a primary - foreign key relationship and thus, it can be exploited by
most of the current methods. However, if we discard the candidate - foreign key relation-
ships in the schema, none of these approaches would be able to exploit it anymore. Rel-
evantly, this does not affect MDBE, since we consider requirements. Indeed, SQL query
joins represent concept associations explicitly stated by the user and thus, we are able to
exploit them even if the attributes joined are not explicitly related in the sources. Con-
sequently, the multidimensional knowledge inferred for attribute involved in joins in the
WHERE clause is automatically propagated to its counterpart (see Section 3.1.2 for further
details). Specifically, the orders node is initially labeled as a level in Step 4 (see Section
3.4.1) and therefore, its attributes involved in the query are identified as dimensional con-
cepts (i.e., o orderdate, o custkey and o orderkey). Thus, by means of the
c custkey = o custkey join, we propagate the knowledge inferred for o custkey
to c custkey: i.e., it is also identified as a dimensional concept. Interestingly, later,
Step 6 proposed orders to play a Cell role as well. This alternative is not prune in the
third stage of the algorithm (see Section 3.4.3) and eventually, MDBE produces two re-
sults for the Q5 query (see Section 3.4.2). However, even in this case, o custkey and
c custkey will still play a dimensional role: in this scenario, o custkey would have
not been identified as a dimensional concept, but customer is labeled as level and ac-
cordingly, c custkey as dimensional concept. Consequently, o custkey is identified

99

as a dimensional concept by means of the association in the WHERE clause. This is sound,
since MDBE is identifying o custkey as orders link attribute (see Section 3.3.2) and
thus, it is part of the dimensional concepts forming the multidimensional space.

• Furthermore, MDBE smooths the impact of denormalization on the output produced. Con-
sider now a unique relation capturing the whole TPC-H relational schema (i.e., the TPC-H
universal relation); i.e.:

TPC-H(lineitem attrs, orders attrs, partsupp attrs, part attrs, supplier attrs,

customer attrs, nation attrs, region attrs)

where lineitem attrs refers to the whole set of attributes in the lineitem relation,
and similarly for the rest. Functional dependencies would not be extracted from such a
relation, and current approaches (i) would not be able to identify any dimensional concept
or (ii) they would produce loads of meaningless results. On the contrary, MDBE is able to
identify dimensional concepts from such a relation by means of the end-user requirements
(see Section 3.1.2 for further details). For example, consider the TPC-H Q5 business query
over the universal relation introduced above:

Select nation name, sum(lineitem extendedprice * (1 - lineitem discount) as revenue
FROM TPC-H
WHERE region name = ’[REGION]’ and orders orderdate >= ’[DATE]’ and
orders orderdate < ’[DATE]’ + ’1’ year
GROUP BY nation name
ORDER BY revenue desc;

In this case, the multidimensional graph would be compound of just one node (i.e., TPC-H),
which would be labeled as CDM, since nation name, region name and orders-
orderdate would be identified as dimensional concepts (see Steps 2 and 4 in Section

3.4.1), and lineitem extendedprice and lineitem discount as measures (see
Step 3 in Section 3.4.2). However, regarding dimensional data identified from this kind of
relations, MDBE cannot automatically generate the dimension hierarchies, since require-
ments provide additional knowledge about the role played by each attribute but, under no
circumstances, knowledge about the missing to-one relationships (i.e., functional depen-
dencies) is provided. For example, considering just the dimensional concepts identified
for Q5, and according to the requirements stated in the TPC-H benchmark, we should
manually form the place dimension (in which nation name can be aggregated into
region name) and the order date dimension. We can only overcome this draw-
back by mining the instances, but mining the instances is computationally expensive (see
[JHP04], which already proposes to mine the instances to identify functional dependen-
cies) and can be unfeasible for large databases. Finally, note that, although MDBE does
not generate the dimension hierarchies from denormalized sources, it does identify the di-
mensional concepts and therefore, they do not have to be derived from scratch, but from
the set of dimensional concepts identified for the fact (i.e., we do not shape dimensions
by exploiting all the to-one relationships in the schema, but only those between concepts
identified as dimensional concepts).

100

3.5.3 Automation

The automation degree obtained in our approach is, in the worst case, as good as in equivalent
approaches. Importantly, the whole process is automated once the requirements are expressed
into SQL queries (the reader will note that there is no approach automating the end-user require-
ment elicitation process and thus, no automated counterpart can be used for this pre-process),
and the user is only needed in the following cases:

• According to rule R1, introduced in Section 3.3.1.1, if, for a given query, MDBE cannot
produce any output, our approach tries to identify relevant derived measures or concept
specializations by relaxing [C5] and [C6] respectively. In this case, if any result is gen-
erated, the user must validate the derived measures or concept specializations generated.
In the TPC-H case study, only two queries (TPC-H #9 and #12 queries) required to relax
these criteria and thus, the user is only asked to validate two queries out of the 22 used as
input.

• If [C7] is relaxed, we may allow selections by means of joins. In an OLAP tool, this sce-
nario can only be considered if the selection done through the join paths are equivalent.
Otherwise, the selection would not make multidimensional sense (see Section 3.3.1.1 for
further details). Thus, if [C7] is relaxed, the user is responsible for validating the join paths
stated in the query as equivalent. For example, following the example introduced in Section
3.3.1.1, MDBE would ask the user to validate if the lineitem - orders - customer -
nation join path is equivalent to the lineitem - partsupp - supplier - nation
one. If the end-user guarantees that they are equivalent (for example, if a business con-
straint guarantee that customers are only supplied with supplier from their own
country) then, MDBE automatically rewrites the query to make multidimensional sense
(by using two different alias for the nation table). Otherwise, it is discarded.

• In case of dealing with denormalized data sources, the user is asked to shape the dimension
hierarchies, by arranging the dimensional concepts identified. In the TPC-H case study
this does not hold, and dimension hierarchies are automatically derived. Regarding the
universal relation example introduced in previous section, it would embrace shaping the
place and order date dimensions manually.

In the first case, note that MDBE relaxes [C5] and [C6] regarding the data sources, and
proposes derived measures or concept specializations, which guarantee the completeness and
disjointness of the result proposed. However, since these new measures or specializations are not
explicitly captured in the sources, only the user can validate them, and his / her participation is
compulsory. Similarly, the second case can only be guaranteed by the user, since the semantics
of each path are not captured in the data sources. Finally, in the latter case, there is no alternative
to infer this knowledge from the logical schema. Indeed, this is inherent to relational schemas
that, in the general case, are semantically poorer than conceptual schemas and therefore, relevant
knowledge about the domain may be missing. Consequently, all the approaches working at the
logical level suffer from this drawback.

101

Id Implicit Edges Alternative Validation Siblings #Results Factless New Dim.
Nodes Contradict. Graphs Process Facts Attrs.

Q1 0 0 1 0 0 1 0 3
Q2 5(3) 23(4) 9(4) 1(1) 7(2) 1(1) 0 0(1)
Q3 2 1 3 0 2 1 0 (1)
Q4 1(1) 0 2(2) 1(1) 0 1(1) 0 2(1)
Q5 5 24 8 6 0 2 2 0
Q6 0 0 1 0 0 1 0 3
Q7 5(6) 20(51) 12(13) 0(1) 11(11) 1(1) 0 1(1)
Q8 7(8) 98(225) 30(31) 0(1) 29(29) 1(1) 0 0
Q9 4(4) 4(4) 12(12) 0 11(11) 1(1) † 1(1) 0
Q10 3 4 4 0 3 1 0 1
Q11 2(2) 1(1) 3(3) 0 2(2) 1(1) 0 2(0)
Q12 2(2) 1(1) 3(3) 1(1) 1(1) 1(1) † 5(5) 0
Q13 2 1 3 1 1 1 1 0
Q14 1(2) 0(1) 2(3) 0(1) 1(1) 1(1) 0(1) 1(0)
Q15 1(2) 0(1) 2(3) 0(1) 1(1) 1(1) 0(1) 1(0)
Q16 2(1) 1(0) 3(2) 2(1) 0 1(1) 1(1) 0
Q17 1(1) 0 2(2) 0 1(0) 1(1) 0 1(1)
Q18 2(1) 1(0) 3(2) 0(1) 2(0) 1(1) 0 0(1)
Q19 1(1)(1) 0 2(2)(2) 0 1(1)(1) 1(1)(1) 0 3(3)(3)
Q20 2(1)(0) 1(0)(0) 3(2)(1) (1)(1)(0) 1(0)(0) 1(1)(1) 1(1)(0) 0(0)(3)
Q21 4(1)(1) 9(0)(0) 7(2)(2) 1(1)(1) 5(0)(0) 1(1)(1) 0(1)(1) 0
Q22 0(0)(1) 0 0(0)(2) 0(0)(1) 0 1(1)(1) 0(0)(1) 2(2)(0)

Table 3.6: MDBE statistics for the TPC-H case study

3.5.4 Computational Complexity & Performance

Finally, we discuss our approach feasibility by presenting an in in-depth analysis of the 22 busi-
ness queries in the TPC-H benchmark, and use the findings as the basis for discussing the com-
plexity and performance of the MDBE algorithm. Table 3.6 summarizes some of the relevant
statistics for each query. Statistics for their subqueries, if any, are shown in brackets (briefly,
subqueries must be validated by their own, as they can be considered a materialized factual ta-
ble and must therefore make multidimensional sense as well). The first column represents the
query id and the other columns should be read as follows: the second column shows the num-
ber of implicit nodes we have for the query (i.e., nodes that remain unlabeled up to Step 6 or
which are relabeled at that point). According to the number of implicit nodes, we can pro-
duce 2#implicit nodes label combinations (note that Step 6 only tries two label alternatives for
unlabeled nodes). However, as discussed previously, many of these combinations are not even
generated, since they raise contradictions with knowledge already depicted in the graph and,
therefore, do not satisfy the multidimensional constraints. Ungenerated combinations are shown
in the third column, and the fourth column shows the number of many alternative graphs (to be
validated) generated for each query. The fifth column shows the number of multidimensional
graphs that are discarded in the MDBE validation stage, and the sixth column shows the number
of graphs that are are collapsed, according to the sibling rule introduced in Section 3.4.3.

102

The MDBE tool execution time for the TPC-H benchmark is negligible (∼ 1 second6). Our
approach only has a potential combinatorial explosion in Step 6 (note that the conciliation pro-
cess carried out - see Section 3.4.4- is linear regarding the number of schemas obtained and,
therefore, it does not raise the computational complexity of the MDBE process). However, most
combinations of labels generated by Step 6 are discarded on the basis of edge semantics (see
the third column), which produces a tractable algorithm. In all queries, the final set of graphs
to be validated is considerably smaller than 2#implicit nodes (see the fourth column). This state-
ment is based on the empirical results provided, but we can intuitively identify why Step 6 will
never generate an exponential number of combinations: the whole multidimensional graph must
be semantically valid, which means that several nodes and edge labelings will not be allowed.
For example, Table 3.4 shows 25 forbidden combinations (we count those allowed by relaxing
[C5] and [C6], as they will only be considered if no result is generated. Thus, if considered,
we obtain just one result at most). Consequently, many combinations of labels will fail to make
multidimensional sense. Furthermore, the first five steps of the MDBE process always label most
of the nodes/edges for multidimensional requirements. Only implicit nodes (see the discussion
prior to Step 6 in Section 3.4.1 for further details) can produce unlabeled nodes. Consequently,
the exponent value in the 2#implicit nodes expression will be typically a small number. For ex-
ample, in the statistics shown, only two queries (Q7 and Q8) have more than 6 implicit nodes.
However, Q7 invalidates 51 of 64 alternative graphs (and is computed in ∼0,1 s) according to
edge semantics, and 225 of 256 in Q8 (computed in ∼0,12 s). Let us consider a query with a
large number of implicit nodes. In this case, we will only generate all possible combinations
of labels (i.e. exponential computational complexity) if these tables are related by one-to-one
relationships with a double FK pointing between each pair (see Tables 3.3 and 3.4). However,
this would be an unlikely real-world scenario and, in any case, an SQL query is unlikely to have
a large number of tables in its FROM clause. The MDBE validation process takes an average of
0.007 s, so in the worst-case scenario discussed above a query with 10 unlabeled tables in the
FROM clause would generate 1024 label combinations, which would be processed in 7.168 secs.

3.5.5 Output Quality
In this section we measure the quality of the output produced by MDBE. We do so by means
of the result correctness (by comparing the output obtained with the multidimensional schema
proposed in the Star Schema Benchmark), and the additional output inferred regarding both, the
Star Schema Benchmark and previous approaches.

3.5.5.1 Output Correctness

The Star Schema Benchmark (or SSB) [P. 09] presents a multidimensional logical schema that
is derived manually from the TPC-H schema. This schema was devised to improve the querying
performance of the data warehouse by denormalization. Data denormalization, achieved by im-
plementing a logical star schema [KRTR98], is fairly common in data warehouse systems and is
used to speed up certain queries [KRTR98]. Unlike SSB, the MDBE method produces a concep-
tual schema, but the SSB logical schema can be obtained by applying the same design decision

6The computer used in these test was equipped with an Intel Core 2 Duo 2.16 GHz processor, 3 GB of RAM.

103

taken by the SSB authors: to implement the output schema as a logical star schema (i.e., denor-
malize dimensional data as much as possible). Therefore, we can obtain the SSB logical schema
from the MDBE output as follows:

• By denormalizing the dimensions of analysis as much as possible. Therefore, nation
and region data will be denormalized within supplier, partsupp and customer.
Dimensional attributes that produced new level classes (i.e., orders dim, lineitem dim
and partsupp dim) must also be denormalized.

• By merging the three schemas that form our constellation (since we have three factual
classes) into a single schema. Therefore, lineitem, orders and partsupp will pro-
duce a single table. This decision is consistent with our conceptual schema, which relates
these three facts (therefore, our conceptual schema allows us to “drill-across” [RA07b]
between them, obtaining the same results as if they were merged in a single table).

To summarize, the MDBE method can derive the same multidimensional schema as SSB but,
in contrast to the SSB, it does so in an automated way.

3.5.5.2 Additional Output Inferred

In this section we measure the impact of the main contributions of MDBE on the output. The
first six columns of Table 3.6 show statistics about the MDBE process, whereas the last three
show statistics about the results for each query. The seventh column shows the number of final
star schemas retrieved by MDBE for the corresponding query (i.e., the number of alternative
graphs that have been completely validated). The next column shows the number of factless facts
identified for the query, and the final column shows the number of new dimensional attributes
identified in the process (if any). These attributes are those identified as dimensional data in
a hybrid node (i.e., dimensional attributes in CD and CDM nodes). The † symbol denotes that
[C5] or [C6] have been relaxed to produce the output result for that query. These results highlight
some interesting features of our method:

• First, the MDBE validation process. In this stage, 14 of 22 queries invalidate alternative
graphs that may initially appear to be correct. Consequently, simply labeling nodes is not
sufficient and it is necessary to consider the semantics of the results proposed as a whole.

• Our process for obtaining new knowledge from implicit nodes is carried out in most of the
queries. In the TPC-H case study, the sixth step of our method labels (or relabels) nodes
in 20 of 22 queries (see the second column), which reveals the importance of this step in
retrieving additional information to that explicitly requested by the user.

• Denormalization is very important in our approach. Although the TPC-H logical schema
is normalized and well-formed, from a multidimensional perspective some of its tables
contain degenerated dimensions, as a result of which many nodes have been labeled as CD
or CDM during the labeling process. For example, in one of the solutions proposed for Q5,
orders is labeled as a factless fact CD with o orderdate as a degenerated dimension
[KRTR98]. This result is sound, since time and date are typical analysis dimensions

104

in any data warehouse and, in fact, some current methods always complement their results
with these two dimensions (e.g., [PD02]). Therefore, in our final result these concepts are
explicitly stated according to their multidimensional role. In our example, 15 of 22 queries
identify at least one new dimensional attribute (i.e., not identified in the other queries) for
the corresponding query (see the final column); for example, shipdate, returnflag
and shipmode from lineitem. In addition, we may also identify dual attributes (see
Section 3.3.2.1); for example, ps supplycost from partsupp. Consequently, the
resulting conceptual schema contains a dimensional attribute and a measure derived
from this relational attribute.

• Our process can identify interesting additional information that is traditionally overlooked
by other methods. Our method supports factless facts (see column 8) and new derived
measures (see †) and specializations (none identified for the TPC-H case study) that are
not captured in the relational sources but which can be derived from them.

3.6 The MDBE Tool

As depicted in Figure 3.11, the tool main menu has three options: new schema (to upload data
sources logical schemas in the tool), modify schema (for maintenance purposes) and new query
(to upload SQL queries representing the end-user information requirements).

Using the MDBE tool is quite easy. First, we need to upload the data sources logical schema
in the tool. To do so, we must choose the new schema option in the main menu. There, the user
is supposed to upload the SQL script (i.e. the logical schema) of the data sources. This script
would be checked to see if it is syntactically correct. If it is not correct, an error is prompted
and the user will be asked again to introduce a valid SQL script. Otherwise, the schema is stored
within the tool and it is presented to the user in a friendly way (the user will be able to modify /
delete that schema from the modify schema option of the main menu).

Next, we need to upload the SQL queries one by one by means of the New Query option
in the main menu. Every time a query is uploaded the tool asks to choose a schema (among
those uploaded in the tool) to validate that query against it. The user may directly upload the
query as shown in figure 3.11 (in this case we are uploading Q5 of the TPC-H benchmark) or
use the MDBE wizard developed to assist the user in the query formulation process. Once we
have introduced the query and an identifier, the check button checks if the query is syntactically
correct. If any problem is found, a message is shown, otherwise, we will launch the MDBE
method. If we do so, MDBE presents a multidimensional schema (up to now, in text mode)
derived from the TPC-H one, that may retrieve data asked in the information requirement. Figure
3.12 shows results retrieved by the MDBE tool for query Q5 of the TPC-H benchmark.

Nowadays, the MDBE tool does not support the whole SQL syntax (e.g. some key words
such as “case” or “extract”) neither it is able to detect all semantics of the model (e.g. transitivity
of foreign keys). However, any of these SQL queries can be rewritten into semantically equiv-
alent queries supported by MDBE (i.e. using the SQL subset supported by our tool) and obtain
the same final result. For this reason, some queries of the TPC-H benchmark may need to be
manually rewritten into equivalent ones prior to be handled by the MDBE tool.

105

Figure 3.11: The MDBE tool: uploading the TPC-H Q5 query

3.7 Conclusions
In this chapter we presented a novel approach for supporting the data warehouse design process.
The MDBE method is a hybrid approach for automatically generating multidimensional schemas
from end-user requirements and relational data sources. This method differs from previous ap-
proaches by combining the best features of each design paradigm: (i) it considers requirements
as first-class citizens within a largely automated approach; (ii) it improves the quality of the fi-
nal output by improving communication between the supply-driven and demand-driven stages
- in fact, the two stages are merged in MDBE and depend on each other to produce the output
schema; (iii) it constitutes a novel approach that helps users to discover the analytical potential
of the data sources; and (iv) it can identify new concepts such as specializations or new measures
derived from the data sources. Importantly, the conceptual schemas produced by MDBE are de-
rived from a validation process of the input requirements, which ensures that they are sound and
meaningful. Consequently, this process can be used to validate multidimensional requirements
and to determine whether a multidimensional system is required. For example, we can validate
our information needs, and if they are multidimensional it would be sound to use an OLAP tool
in the organization in question.

We also demonstrated the practical application of our method, using the TPC Benchmark H
case study to illustrate the potential of the approach and to provide a detailed example of how
the method is executed. The MDBE method opens up a range of new research opportunities. For
example, our approach is incremental and provides a solid foundation for the maintainability and
evolution of the conceptual schema, which is a topic that has gained importance in recent years
[RALT06].

106

Figure 3.12: The MDBE tool: results retrieved for the TPC-H Q5 query

107

108

Chapter 4

Multidimensional Design from
Ontologies

“ There is nothing like looking, if you want to find something. You certainly
usually find something, if you look, but it is not always quite the something you
were after.”

J.R.R. Tolkien

Some research efforts have proposed the automation of the data warehouse design in order
to free this task of being (completely) performed by an expert, and facilitate the whole process.
Mostly, these approaches carry out this process from relational OLTP (On-Line Transaction Pro-
cessing) systems, assuming that a relational database management system is the most common
kind of data source we may find, and taking as starting point a relational schema (i.e., a logical
schema).

Starting from a logical schema, however, may present some inconveniences. A logical
schema is tied to the design decisions made when devising the system and these decisions either
made to fulfill the system requirements (for example, improve query answering, avoid insertion
/ deletion anomalies, preserve features inherited from legacy systems, etc.) or naively made by
non-expert users, have a big impact on the quality of the multidimensional schemas got by cur-
rent automatable approaches. In fact, these approaches require a certain degree of normalization
in the input logical schema to guarantee that it captures as much as possible the to-one relation-
ships (i.e., a specific case of functional dependency, as discussed later) existing in the domain.
As shown in Section 2.1.4, discovering this kind of relationships is crucial in the design of the
data warehouse, and the most common way to represent them at the logical level is by means of
“foreign” (FK) and “candidate key” (CK) constraints. This scenario can be clearly seen in the
example shown in Figure 4.1.

109

Figure 4.1: A fully denormalized relational schema of a car rental agreement

There, a single relation (namely, rental agreement) models data related to a car
rental agreement in a relational database management system (RDBMS). Each row rep-
resents an attribute of the relation (in italics its data type). The relation primary key is identified
by the PK label and the capital letters in brackets next to each attribute represent the multidi-
mensional role that attribute should play according to its semantics (M stands for measure; i.e.,
interesting business measures of our fact of study, and DC for dimensional concept; i.e., interest-
ing perspectives of view of our fact -a detailed definition of the multidimensional concepts may
be found in Section 1.5-). Only those concepts that would play a meaningful role in the multidi-
mensional schema are shown in the figure, but additional attributes could be found in the relation
(depicted by the ellipsis at the end). In this case, current methods would either i) overlook all the
dimensional concepts (since they are not involved in any CK or FK), or ii) identify all the non-
numerical attributes as dimensional concepts (i.e., even those not making multidimensional sense
and not shown in the figure). Furthermore, even if they were able to identify any dimensional
concept they would not be able to identify potential aggregation paths (or roll-up relationships)
that would give rise to dimension hierarchies. Thus, they are not able to answer the following
questions: is each dimensional concept conforming a dimension by itself? which of them would
form the same dimension hierarchy (i.e., which are levels and which descriptors within the same
dimension)? which belong to the same dimension and which to dimensions semantically related?

In this sense, note that MDBE (see Chapter 3) partially overcomes this major drawback by
considering end-user requirements as first-class citizens. Indeed, the analysis of requirements
allows MDBE to identify dimensional or factual attributes that the other approaches would over-
look. However, regarding dimensional data identified from denormalized relations, MDBE can-
not automatically generate the dimension hierarchies as the domain FDs needed to shape hier-
archies are missing in the source schema (see Section 3.1.2). In short, requirements provide
additional relevant knowledge, but the relationships between these attributes cannot be extracted
from denormalized data sources.

Dimension hierarchies are crucial in the multidimensional model which is based on two main
features: (i) placement of data in the multidimensional space and (ii) summarizability of data
(see Section 3.2.3 for further details). A bad design of the dimension hierarchies would directly
impact on the aggregation paths we may have. Modify data granularity when showing data to
the user is a key feature of OLAP tools (performed through the roll-up and drill-down operators;
see Section 2.2.1). Thus, overlooking aggregation paths in the design task would impact on the

110

success of the whole system. Indeed, any intermediate situation between a denormalized schema
and a logical schema in 3NF would affect the output quality of current multidimensional design
methods.

This scenario can be avoided by modeling the data warehouse from a conceptual formaliza-
tion of the domain. The role of a conceptual layer on top of information systems has been dis-
cussed in depth in the literature (see, for example, [Oli04]). In case of reengineering processes,
like the data warehouse conceptual design, the benefits are clear: the conceptual layer provides
more and better knowledge about the domain to carry out this task. For example, consider now
the ontology represented in Figure 4.21. This ontology plays a conceptual role regarding the
logical implementation depicted in Figure 4.1. The piece of ontology depicted in the figure
(that will be used as example in this chapter) refers to a car rental agreement between
a branch and a costumer. For a given rental agreement (which can still be ongoing
-i.e., an opened rental- or already closed -i.e., a closed rental- and / or be booked by
reservation with or without guaranteed canceled), a car is assigned. Several
information about the branch is captured, such as pendant car models to be assigned
to rental agreements, the demand for a given kind of car group or the service
depot associated to a branch. Moreover, a car belongs to a branch and it is assigned to
a service depot when maintenance needed. There, each relevant concept of the do-
main is clearly stated as well as its relationships with the other concepts, and for example we
will be able to propose a car to be summarizable into two different aggregation paths (into car
model and car group but also through the branch path up to the country, branch
type or service depot it belongs to), that would form, as a whole, the car dimension.

In this chapter we introduce AMDO (Automating Multidimensional Design from Ontologies),
our approach for automatically deriving the multidimensional schema from a domain ontology.
Our goals are mainly two: i) we want to improve the quality of the output got (by working over a
conceptual formalization of the domain instead of a logical one) and ii) we want to automate the
process. This second goal is the main reason for choosing ontologies instead of other conceptual
formalizations, as ontology languages provide reasoning services that will facilitate the automa-
tion of our task. Our work, however, is not tight to a specific ontology language. In general, we
assume OWL DL [W3C], a W3C recommendation, as our input ontology language, but we show
later that any Description Logics (DL) language providing the necessary expressiveness can be
considered in our framework (indeed, less expressible DL are enough, as discussed in Section
4.4.2.5).

Nowadays ontology languages are widely used in different areas like data integration [Len02]
and the Semantic Web [BLHL01], but in other areas, like software engineering, UML [Grob]
and Entity-Relationship (ER) [Che76] are the most common choices. In these cases, our ap-
proach requires a pre-process to generate a DL ontology from the UML or ER diagram. This
process can be automated nowadays [ACK+07, BCG05, CCDGL02, GDD07] and the expres-
sivity needed in DL to capture UML / ER diagrams has already been addressed in the literature
[ACK+07, BCG05, CCDGL02]. At this point it is important to note that when a conceptual
formalization of the domain is not available then, by means of reverse engineering we may ex-
tract the ontology from the logical schema. However, the output obtained by AMDO in this case

1This schema captures a piece of the EU-Car Rental introduced in Appendix B.

111

Figure 4.2: Diagrammatic representation (based on UML notation) of a piece of a car renting
ontology

would be equivalent to results obtained by those approaches automating the design from logical
schemas. The reason is that the ontology derived would reflect the logical design decisions made
and thus, its potential lack of semantics would entail the problems described previously.

4.1 Contributions
Our proposal is a reengineering process to derive the multidimensional schema from a conceptual
formalization of the domain. Working from conceptual formalizations improves the quality of
the output, as earlier discussed. Although other approaches already proposed to work at the
conceptual level, AMDO is the first method presented in the literature automating the whole
process: i.e., identifying facts, measures and dimension hierarchies. Relevantly, AMDO also
introduces a fully automated method to identify bases of interest by using and exploiting the
ontological knowledge.

Previous approaches working at the conceptual level mainly rely on their requirement elici-
tation stages to discover the multidimensional concepts rather on an accurate analysis of the data
sources (see, for example, [BvE99, BCC+01, CT98a, GRG05, GR09, HLV00, MK00, PACW06,
MTL07, WS03], which are discussed in detail in Section 2.1.2). AMDO follows a completely
different framework based on a thorough and fully automatic analysis of the sources and then,
carrying out a guided requirement elicitation stage a posteriori, as discussed in Section 4.3.
Therefore, unlike previous approaches, the automatic analysis of the sources leads the process.

112

AMDO considers all the multidimensional concepts in depth by analyzing their semantics
and how they should be identified from the sources. As result we propose new and original
design patterns. For example, a more accurate heuristic to discover facts, based on the ontology
topology (see Section 4.3 for further details), is provided; we handle measures and dimensional
concepts uniformly in an automatic way (see Section 4.3.1); we are able to identify aggregate
measures (see Section 4.3.2), which have been completely overlooked in the literature and we
introduce formal rules to distinguish between descriptors and levels in a dimension hierarchy as
well as identify semantic relationships between dimensions (see Section 4.3.5).

A possible reason why previous approaches that work at the conceptual level have overlooked
the automation of the process could be that ER (or UML) are conceptual formalizations thought
to graphically represent the domain, and unlike ontologies, not thought for querying and rea-
soning. To our knowledge, our approach is the first one considering the data warehouse design
from ontologies. Hence, we do believe that this work opens new interesting perspectives. For
example, we can extend the data warehouse and OLAP concepts to other areas like the Semantic
Web, where ontologies play a key role providing a common vocabulary. One consequence would
be that despite the data warehouse design has been typically guided by data available within the
organization, we would be able to integrate external data from the web into our data warehouse
to provide additional up-to-date information about our business domain (this novel concept of
data warehousing is known in the literature as Web-Warehousing [RALT06]).

As an additional and relevant contribution, we also propose a novel approach for discovering
bases of interest by exploiting the ontological knowledge. Bases are, indeed, the multidimen-
sional keys. Currently, we may find several works for computing functional dependencies (note
that the traditional key concept is a specific case of functional dependencies; see, for example
[AHV95]) and / or keys (e.g., [DT95, DKM08, FS99, Lim97, M. 92, SBHR06] among others),
but they work either at the logical or data level, and they share some inherent constraints. Similar
to the discussion earlier presented in this chapter, approaches working over the logical schema
are tied to the design decisions made when devising the system (for example, denormalization
of data) and these decisions have a big impact on the data semantics captured in the schema.
Therefore, to avoid missing some important data dependencies, these approaches make some
unrealistic assumptions such as completeness of the data structures (i.e., all the constraints of the
domain of interest are captured at the logical level). For this reason, most automated approaches
for identifying keys require to address this task at the instance level. However, these methods
have various drawbacks: they tend to overlook composite keys (essential when dealing with
bases), propose solutions that are computationally expensive, and register drops in performance
when a large number of attributes or instances are processed.

Importantly, in our approach, we guide the process at the conceptual level and we introduce
a set of pruning rules for improving the performance by reducing the number of key (i.e., bases)
hypotheses generated, and to be verified with data. Our algorithm is relevant because, despite the
importance of object identification, most DL do not provide identification mechanisms, and only
very expressive DL (that are not suitable for real world applications due to their computational
complexity) incorporate them [CDGL+08].

113

4.2 Method Foundations

Our goal is to generate multidimensional schemas in an automated way and this section aims to
concisely define the criteria our proposal will be based on; i.e., criteria allowing us to identify
ontology concepts making multidimensional sense. Similar to the MDBE foundations introduced
in Section 3.3.1, these criteria derive from the study introduced in Section 2.2.4 and discussed
and formalized in Section 3.2.3. However, unlike MDBE, we do not need to consider how
these criteria apply for SQL queries. Concisely, multidimensionality pays attention to two main
aspects; placement of data in a multidimensional space and correct summarizability of data:

• [Notation]: AMDO produces conceptual schemas structured according to the multidimen-
sional model. Nowadays, it is widely accepted that data warehouses must be exploited by
OLAP tools and thus, structured according to multidimensionality. As detailed in Section
1.5, multidimensionality is based on the fact / dimension dichotomy (see bolded terms).
Dimensional concepts give rise to the multidimensional space where the fact is placed.
By dimensional concepts we refer to any concept likely to be used as a new perspective of
analysis. Traditionally, they have been classified as dimensions, levels and descriptors.
Thus, we consider a dimension to contain a hierarchy of levels representing different
granularities (or levels of detail) to study data, and a level to contain descriptors (i.e.,
level attributes). On the other hand, a fact contains measures of analysis, and one fact and
several dimensions to analyze it give rise to a multidimensional schema.

• [C1] The multidimensional space arrangement constraint: Dimensions arrange the
multidimensional space where the fact of study is depicted. Each instance of data is iden-
tified (i.e., placed in the multidimensional space) by a point in each of its analysis dimen-
sions. Conceptually, it entails that a fact must be related to each analysis dimension (and
by extension, to dimensional concepts) by a many-to-one conceptual relationship. That
is, every instance of the fact is related to, at least and at most, one instance of an analysis
dimension, and every dimension instance may be related to many instances of the fact.
Importantly, note that this is a specific case of functional dependency. The fact determines
the dimension; but unlike traditional functional dependency theory, we enforce that the
fact is related to the dimensional concept by means of a mandatory relationship (in terms
of mathematical relations, it would entail that the relation is complete). For the sake of
understandability, from here on we force the notation and denote this kind of relationships
by complete functional dependencies, or simply, complete fds.

• [C2] The base integrity constraint: We denote by base a minimal set of dimensions
functionally determining a fact. Thus, two different instances of data cannot be placed in
the same point of the multidimensional space. In other words, given a point in each of the
analysis dimensions forming the base, it only determines one, and just one, instance of
data. Dimensions giving rise to a base must be orthogonal (i.e., functionally independent)
[ASS06]. Otherwise, we would use more dimensions than strictly needed to represent
data, and it would generate empty meaningless zones in the space. According to our
current framework, note that the base is the multidimensional object identifier.

114

Figure 4.3: AMDO: method overview

• [C3] The summarization integrity constraint: Data summarization performed must be
correct, and we warrant this by means of the three necessary conditions (intuitively also
sufficient) [LS97]: (1) disjointness (the sets of objects to be aggregated must be disjoint),
(2) completeness (the union of subsets must constitute the entire set), and (3) compat-
ibility of the dimension, kind of measure being aggregated and the aggregation func-
tion. Compatibility must be satisfied since certain functions are incompatible with some
dimensions and kind of measures. For example, we cannot aggregate stock over the
time dimension by means of sum, as some repeated values would be counted. However,
compatibility will not be automatically checked in our method unless additional metadata
was provided (for example, a list of compatibilities could be asked to the user for each
measure identified).

4.3 AMDO: Automatic Multidimensional Design from Ontolo-
gies

This section presents a detailed view of AMDO and how it applies the criteria exposed in Section
4.2. Figure 4.3 depicts a schematic overview of AMDO. There are three well-differentiated tasks:

• The first task looks for potential subjects of analysis (i.e., facts). In the literature we can
find different approaches to discover facts but most of them are hardly automatable. Iden-
tifying facts automatically is a difficult task [PD02], and most methods rely on heuristics
such as table cardinalities or numerical attributes that may easily identify false facts or
overlook real ones. The rest of approaches demand to identify facts manually. According
to the multidimensional paradigm, the analysis of data must facilitate the decision making
within organizations and in this sense, the better knowledge you have, the better decisions
you make. We say, thus, that an ontology concept is likely to play a fact role if it has as
many measures as possible and it can be analyzed from as many different perspectives as

115

possible. Eventually, this fact may not be of interest for the user (this will be considered
later in our approach), but objectively, it will provide many different measures to analyze
from many different perspectives.

This task, therefore, is divided in two main subtasks; (1) discover potential dimensional
concepts and (2) point out potential measures. Note that we do not talk about dimensions
but about dimensional concepts. This step will find potential points of view to analyze the
subject of analysis but, at this point, we are not able to distinguish their dimensional role
(i.e., a dimension, a level or even a descriptor). This job is carried out in the third task of
the algorithm, where dimension hierarchies will be shaped.

Now, for each ontology concept we can estimate its likeliness of being a fact. In general,
concepts with the most potential dimensional concepts and measures are good candidates,
but we may weight each input according to our preferences. In our approach we define f
as a function that, given the number of dimensional concepts and measures of a concept
c, it evaluates c as a promising fact. The quality function will prune those concepts below
a given threshold. This threshold will depend on the quality function provided (AMDO
is not tied to a specific function). In fact, we can use any function we would like to,
like the “Connection Topology Value” (CTV) [SKD07] introduced in the literature that
only gives weight to dimensional concepts found, or develop our ad hoc formula. For
example, it would also be possible to rate facts according to the relevance of a concept in
the application domain. Finally, potential facts not pruned are ranked according to its f
value, and presented to the user. From each fact selected by the user, the second and third
tasks are launched once, and eventually producing a multidimensional schema for each
fact. Thus, as a whole, our approach produces constellation schema [KRTR98].

• The second task discovers sets of concepts likely to be used as a base (see [C2]) for each
fact identified. Bases are compound of concepts identified as dimensional concepts in
previous step. In short, we look for concepts being able to univocally identify objects of
analysis (i.e., factual data) and produce interesting data cubes. Bases identified are pruned
according to the sparsity of the multidimensional space generated. Similar to the previous
step, too sparse data cubes are filtered and not presented to the user. Eventually, the user
will choose, among the bases proposed, those of his /her interest.

• Finally, the third task gives rise to dimension hierarchies. Previous step filters the dimen-
sional concepts of interest: among the whole set of dimensional concepts identified in the
first step, the end-user selects those cubes of his / her interest. However, the user selects
data cubes of interest (i.e., a specific data granularity level), but we need to propose inter-
esting aggregation paths to navigate and analyze the cubes. Thus, for each dimensional
concept in a base selected, we produce its own dimension hierarchy. Consequently, we
aim to identify relevant aggregation paths looking for typical part-whole relationships for
each interesting dimensional concept. In this step, AMDO builds graphs giving shape to
each dimension hierarchy that the user may tune up to his / her necessities.

AMDO carries out an exhaustive search of potential facts among all the concepts of the
domain, like supply-driven methods do. This paradigm has a main benefit with regard to those

116

approaches which derive the schema from requirements and later, map them onto the data sources
(i.e., demand-driven approaches): in many real scenarios, the user may not be aware of all the
potential analysis contained in the data sources and, therefore, overlook relevant knowledge.
Demand-driven stages do not consider this fact, and assume that requirements are exhaustive.
Thus, knowledge derived from the sources not depicted in the requirements is not considered and
disregarded. In our approach, we claim to derive all the multidimensional knowledge contained
in the ontology, filter results according to quality evidences and eventually, let the user select
results of his / her interest (i.e., according to the end-user requirements) among those produced
by AMDO. On the one hand, we are conciliating requirements with data available as hybrid
approaches do. On the other hand, we believe that, in many scenarios, it is easier to carry out the
requirement elicitation process from knowledge proposed by AMDO than carrying out it from
scratch.

As counterpart, supply driven approaches tend to generate too many results and mislead the
user. In this sense, our approach overcomes this problem by minimizing the amount of data
shown to the user (i.e., by means of the concepts of quality function, threshold and the base
concept). Specifically, after computing the likeliness of each concept as a fact, AMDO presents a
ranked list of potential facts to the user (according to the quality function and threshold selected).
For each concept, a value estimating its likeliness is provided. Moreover, if the user would like
to, AMDO can show the list of potential measures and dimensional concepts computed for this
fact. In the end, the user must select those relevant facts for his / her decision making. Similarly,
among dimensional concepts identified for a fact of interest, we filter them according to the
base concept. We propose to the user sets of concepts producing data cubes at different data
granularity levels. Then, the user selects those cubes that better fulfill his / her necessities and
accordingly, we filter the dimensional concepts. Finally, for each fact, AMDO provides (i) a
list of (filtered) measures, (ii) a list of (filtered) dimensions (with their corresponding dimension
hierarchies shown as a directed graph), and (iii) a list of relevant bases (i.e., potential data cubes
of interest derivable from the set of dimensional concepts shown). For further details, an example
over a realistic case is discussed while presenting our approach.

4.3.1 Discovering Dimensional Concepts

This section introduces the multidimensional pattern to identify dimensional concepts from DL
ontologies. Note that, in this chapter, we propose two different algorithms to compute this pattern
(i.e., an ad hoc reasoning algorithm, and another using generic DL reasoners). Both are properly
described in Section 4.4.

According to [C1], a dimensional concept is related to a fact by a one-to-many relationship
(i.e., a complete fd); that is, every instance of factual data is related to one, and just one, of its
instances. Hence, we can express our pattern to look for dimensional concepts as follows:

F v = 1r.D, where r ≡ (r1 ◦ . . . ◦ rn)

Note that this pattern is expressed in Description Logic (DL) [BCM+03], where r and D are
variables, and F the ontology concept we are trying to identify as a potential fact. As discussed
in the introduction, in the general case, we assume OWL DL (a W3C recommendation) as our

117

input ontology language. Accordingly, we use OWL notation and thus, we consider a class to
be a unary predicate (i.e., D and F), and a property (i.e., r) as a binary predicate expressing
a relationship between two classes . Briefly, the v symbol stands for subsumption, the basic
inference in DL. Subsumption is the problem of checking if the subsumer (in our assertion, F)
is considered more general than the subsumee (= 1r.D). That is, if the subsumee can always be
considered a subset of the subsumer. ≡ stands for a logic equivalence and can be defined as a
specific kind of subsumption, that is: subsumer v subsumee and subsumee v subsumer. ◦
stands for property composition (i.e., {a, c} ∈ r ◦ s iff ∃b such that {a, b} ∈ r and {b, c} ∈ s).
Finally, = 1 stands for a specific number restriction where, in our case, the number of individuals
belonging to class D related to a given individual of the class F, through the property r, must be
exactly one. Thus, we are looking for classes (D) such that every instance of a given fact (F)
is related, directly or by property composition (r), to, at least and at most, one of its instances.
For each ontology class F we look for classes that may play the dimensional concept role by
evaluating the pattern presented above; where the dimensional concept is defined by the class D
(from here on, the ending concept) and a composite property r (from here on, the property path
or simply, the path).

For example, consider the conceptual schema in Figure 4.2. Branch is a dimensional con-
cept of rental agreement, as every instance of rental agreement is related, to at
least and at most, one instance of branch. Thus, rental agreement would play the F
role; branch the D role and dropOffBranch the r role. Note, however, that r can be a com-
posite property and thus, country is a dimensional concept of rental agreement as well,
because every instance of rental agreement is related, at least and at most, to one instance
of country by means of dropOffBranch ◦ locatedAt.

In our approach, we not only consider classes to play a dimensional concept role (i.e., the role
of D), but also datatypes. Hence, a datatype may play a measure role (as it would seem more
natural to think and we will discuss later), but also the role of an analysis dimensional concept.
Handling facts and dimensions uniformly is not new. In fact, it was introduced by Agrawal et
al. [AGS97] and since then, it has also been considered in many other design methods. Conse-
quently, in our example, basicPrice and bestPrice will be considered potential dimen-
sional concepts of rental agreement. Importantly, note that a dimensional concept and
a measure derived from the same datatype must be semantically related in the output multidi-
mensional schema (for example, by the “equivalence” construct in OWL or by an “association”
relationship in UML).

Definition 1. A dimensional concept is defined by an ending concept and a path of properties
(i.e., a composite property). From a multidimensional point of view, the path must be considered
because it adds relevant semantics. Two classes related by means of n different to-one paths
(i.e., a complete fd) must give rise to n different perspectives of analysis, as all these paths will
potentially identify different sets of instances in the ending concept.

For example, consider Figure 4.2. There, rental agreement has two to-one relation-
ships to branch (i.e., pickUpBranch and dropOffBranch). Thus, {branch, pickUpBranch}
and {branch, dropOffBranch} must be considered as two different points of view from
where analyze a rental agreement, and the semantics of each dimensional concept identi-
fied is provided by the combined semantics of the path and the ending concept.

118

4.3.1.1 Practical Consideration

Several current design methods consider a dimensional concept to be a functional dependency
(see, for example, [GR09, BvE99, HLV00, MK00, JHP04, GRG05]). Thus, they do not require
the dimensional concept to be a complete functional dependency. From our point of view, we
strongly recommend to enforce the theoretical pattern presented as much as possible. Relaxing
them, indeed, may entail the identification of meaningless dimensions or give rise to sparser
multidimensional spaces, which may mislead the user.

Nevertheless, we could consider this practical consideration (i.e., fact instances not related
to any instance of a dimensional concept) and, like current approaches do, automatically create
a dummy instance (for example, named others) related to fact instances not related to the
dimensional concept. Then, our pattern to look for dimensional concepts would look like as
follows:

F v ≤ 1r.D, where r ≡ (r1 ◦ . . . ◦ rn)

This multidimensional pattern, however, cannot be used over arbitrary OWL DL ontolo-
gies. Indeed, the mandatory participation is needed in arbitrary ontologies to avoid discovering
meaningless functional dependencies. Importantly, in an ontology, properties are not necessarily
typed, i.e., they do not necessarily have a specified class as domain and a specified class as range.
Therefore, we cannot establish, in the general case, that a property relates one class to another
class. As a consequence, considering the pattern introduced in this section, every functional
untyped property would potentially allow to infer that two arbitrary classes are functionally de-
pendent on each other, provided that the property relates one instance to, at most, a single other
instance (i.e., that it is functional).

Note, however, that this general assumption does not hold for conceptual schemas. Consider
Figure 4.2. In a UML conceptual schema, every property is strictly typed. Therefore, OWL
DL ontologies derived from conceptual schemas are also strictly typed. Thus, when working
from OWL DL ontologies assuming strict property-typing (for example, ontologies derived from
conceptual schemas) we may relax and successfully compute the alternative pattern presented in
this section.

In the AMDO tool we introduced a check-box to allow the user enforce this restriction, or
relax it, according to the designer own considerations.

4.3.2 Discovering Measures
We now introduce the multidimensional patterns to identify measures from DL ontologies, and
in Section 4.4.2.3 we describe how to compute them.

In this step we look for measures (i.e., factual data). Typically, measures are numerical
attributes allowing data aggregation. AMDO considers any summarizable datatype (i.e., those
allowing data aggregation by its own nature) to be a measure of a given fact F if, according to
[C3], it preserves a correct data aggregation from F; i.e., if they are conceptually related by a
one-to-one relationship or according to our notation, by a complete fd whose inverse property
is also a complete fd). (1) The to-one multiplicity in the measure end enforces that each fact
instance is related to just one measure value, and by the mandatory participation we preserve

119

Figure 4.4: AMDO: multidimensional patterns to discover measures

completeness, (2) whereas the to-one multiplicity in the fact end preserves disjointness (i.e., a
measure is related to one and just one fact). Similar to Def. 1, we must take into account the
semantics of the paths between the fact and the datatype when producing measures. Thus:

Definition 2. A measure is defined by a datatype and a path of properties (i.e., a composite
property). From a multidimensional point of view, the path must be considered because it adds
relevant semantics. A fact related to a datatype by means of n different to-one paths must give
rise to n different measures, as all these paths will potentially relate each fact instance with
different datatype values.

It is important to note that our definition of measure is wider than the definition used by
previous approaches. Previous approaches identify them among class / entity (in case of working
over ER or UML diagrams) numerical attributes or among numerical attributes of relations (in
case of working over relational schemas). In our framework (i.e., from an ontology) the measure
definition, according to previous approaches, would be equivalent to only consider datatypes
directly related to classes. Oppositely, our definition is not restricted to direct datatypes but to
any (i.e., any reachable by means of property composition) preserving the one-to-one relationship
required. This kind of measures (from here on, aggregate measures) have been overlooked in the
literature, but identifying them is important to discover meaningful and additional factual data.

Figure 4.4 shows the two type of patterns we look for. The first pattern (see 1) depicts a
measure directly related to the fact. This pattern is the equivalent one in DL to those used by pre-
vious approaches in the relational model or UML / ER diagrams. Roughly speaking, a datatype
does not have an object identifier (i.e., an oid) and we allow any multiplicity in the fact end
without violating disjointness. Consider now our example depicted in Figure 4.2. There, the
bestPrice and basicPrice datatypes related to rental agreement would be identi-
fied by this pattern as potential measures for rental agreement. As a particular scenario
(see 1.a), we may accept mandatory multivalued datatypes (i.e., each class instance must be re-
lated to at least one value and at most, to many of them). In this case, the many values related
to each fact instance should be aggregated by means of a compatible aggregation function (see
[C3]) prior to be inserted in the data warehouse once built. AMDO provides the designers with
this information to be taken into account during the ETL process (for example, as an appendix
of the multidimensional schema produced).

Next pattern (see 2) is used to discover aggregate measures. It depicts a class (from here on,
a bridge-class) that is both directly related to a datatype, and, by means of a one-to-one path, to
a fact. This datatype is also a potential measure for the fact since disjointness and completeness
are guaranteed. In this case, similar to the scenario discussed in the previous pattern, in the
path between the fact and the bridge-class, it is enough to ask for a mandatory relationship (see

120

2.a). Again, all the (many) measure values related to each fact instance must be aggregated by a
compatible aggregation function, prior to be inserted in the data warehouse. Therefore, [C1] is
also guaranteed in this pattern.

In our example (see Figure 4.2) and according to this pattern, the bestPrice and basicPrice
of a rental agreement per branchwould be identified as aggregate measures of branch.
In this case, branch play the fact role, rental agreement is the bridge-class and bestPrice
(or basicPrice) the datatype related to the bridge-class. Depending on the aggregation
function used, we can derive different aggregate measures. For example, if we use the MIN
operator we would get the best bestPrice (or basicPrice) offered in a given rental
agreement per branch; using the AVG operator we would get the average bestPrice (or
basicPrice) offered in a rental agreement per branch and so on. The patterns dis-
cussed in this section may be formally captured as follows:

• (Pattern 1) For each class C, we look for summarizable datatypes directly related to it.
In DL it is equivalent to look for mandatory to-one properties such that their domain is C
and their range are datatypes. We can take advantage of basic reasoning to compute this
pattern (see Section 4.4.2.5 for further details):

C v = 1r.dt,

Where r is a single property and dt any datatype allowing aggregation of data (for example,
the OWL int).

– (Pattern 1a) For considering mandatory multivalued datatypes we must consider any
mandatory property such that its domain is C and its range is a datatype:

C v ∃r.dt, where analogously, r is a single property and dt a summarizable
datatype.

• (Pattern 2) A datatype dt, directly related to a class B is a potential measure for a class F
iff B is a bridge-class for F. Note that, similar to Def. 1, each path between F and dt will
produce a different measure:

F v = 1r.B ∧ B v = 1r−.F, where r is a composite property and B fulfills Pattern 1.

If so, it means that, by transitivity, we have been able to identify B as a dimensional concept
of F (i.e., B is a complete fd of F) and viceversa.

– (Pattern 2a) For considering mandatory multivalued datatypes we must consider any
mandatory path such that its domain is F and its range is a bridge-class:

F v ∃r.B ∧ B v = 1r−.F, where r is a composite property and B fulfills
Pattern 1.a).

In this case, it means that F is a dimensional concept of B, and B is related to the
bridge-class by means of a mandatory path. Thus, by aggregating data we obtain the
needed one-to-one relationship.

121

4.3.2.1 Practical Consideration

Multidimensional patterns to discovering measures can also benefit from the practical considera-
tions discussed in in Section 4.3.1.1. In this case, if we want to emulate previous approaches, the
multidimensional patterns could be relaxed by not requiring the bridge-class (or the datatype) to
be a complete functional dependency of the fact but just a functional dependency. In other words,
relax the mandatory participation in the bridge-class end / datatype of the conceptual relationship
(i.e., not forcing each fact to have a numerical value for that measure). In this case, if the user
selects this fact as of his / her interest, we need to introduce a specialization of that measure in
the data warehouse conceptual schema to preserve completeness. Thus, our new patterns would
look like, respectively, as follows:

• (Pattern 1): This pattern now, looks for functional dependencies:

C v ≤ 1r.dt, where r is a single property.

– (Pattern 1.a): Note that, now, Pattern 1.a does not have to be considered anymore,
since any multiplicity would be allowed in the datatype end of the relationship.

• (Pattern 2): This pattern consider as bridge-class those concepts being a functional de-
pendency of F :

F v ≤ 1r.B ∧ B v = 1r−.F, where r is a composite property and B fulfills Pattern 1.

– (Pattern 2.a): Similar to Pattern 2, it considers any functional dependency of F to
play the role of a bridge-class. Furthermore, since Pattern 1.a does not hold anymore,
we just ask the bridge-class to be related to a datatype:

B v = 1r−.F, where r is a composite property.

Importantly, like in Section 4.3.1.1, these alternative patterns can only be consider when
working over OWL DL ontologies considering strict property-typing.

4.3.3 Discovering Facts
Once potential dimensional concepts and measures of analysis have been computed for each
class, AMDO computes the likeliness of each ontology class as a fact. Results obtained are
ordered according to a function f that evaluates how good candidate each class is. Those values
not reaching a pre-defined quality threshold are directly pruned and not presented to the user.

Table below summarizes the information presented to the user at the end of this step. There,
each class is followed by its number of potential dimensional concepts and measures identified
during the process. In our case, results are ordered according to the FactEstimation func-
tion, which is defined as follows:

FactEstimation(M, DC) :=

{
M ∗ 2 + DC, if M > 0;
0, otherwise.

122

Concept #Dimensional #Potential FactEstimation
Concepts Measures

LateReturn 78 5 88
DamageCost 81 3 87
Prepared 81 3 87

AssignedCar 80 3 86
PaidWithPointsRental 74 4 82

ClosedRental 74 4 82
EarlyReturn 74 4 82

Table 4.1: AMDO: ranked facts proposed for the EU-Car Rental case study

where M is the number of potential measures, and DC the number of potential dimensional
concepts of a given ontology class. As discussed in Section 4.3, AMDO is completely flexible
and tuneable regarding the quality function f, and designers are able to provide any function
which meets his / her requirements better.

Consider now the EU-Car Rental case study shown in Appendix B (and from where Figure
4.2 is extracted). Next table summarizes the classes that AMDO would propose as facts if our
threshold regarding the FactEstimation function was 80 (note that, according to our quality
function semantics, in average, we are asking for facts having two measures and, at least, 5
dimensions with an average of 15 dimensional concepts; i.e., levels and descriptors):

Taking a look at results provided, in general, the classes in the rental agreement tax-
onomy (i.e., early or late rental, closed rental and club member rental)
are the best candidates to play a fact role, and subclasses are better rated than superclasses.
This result is sound, as we should expect the rental agreement to be the keystone concept
of a rental service. Moreover, subclasses inherit all the multidimensional knowledge inferred
for their superclasses and in the worst case, they will be rated as high as their superclasses.
Classes in the list which do not belong to the rental agreement taxonomy are just three:
damage cost (2nd place), prepared (3rd place) and assigned car (4th place). How-
ever, they represent events, which traditionally have been good candidates as facts (see, for ex-
ample, [BvE99, MK00]). Damage cost captures information about cars damaged during the
rental agreement; prepared captures information of when the car assigned to a rental agree-
ment is prepared and finally, assigned car (which is prepared superclass) tells us about
which car has been assigned to which rental agreement. Objectively, three interesting events to
analyze.

At this point, among facts proposed, the user should select those facts of interest to him / her
(normally, more than one). Importantly, AMDO can provide additional information to help the
user in this process. For example, it can show the measures and dimensional concepts computed
for a given fact, or arrange the multidimensional concepts to propose dimension aggregation
hierarchies (by pre-computing the patterns introduced in Section 4.3.5).

4.3.4 Discovering Bases

We now discuss the multidimensional pattern to discovering bases, whereas Section 4.5 intro-
duces an algorithm to compute bases by exploiting the ontological knowledge available. Ac-

123

cording to the base definition in Section 4.2, we denote by base a minimal set of dimensional
concepts determining a fact. Furthermore, dimensions giving rise to a base must be orthogonal
(i.e., functionally independent). Thus, the base concept provides necessary identification mech-
anisms for multidimensional objects (i.e., instances). Indeed, its definition is equivalent to the
relational minimal key concept. Unfortunately, this pattern cannot be expressed by means of
DL notation. Indeed, despite the importance of object identification, most DL do not provide
identification mechanisms, and only very expressive DL (that are not suitable for real world ap-
plications due to their computational complexity) incorporate them [CDGL+08]. For example,
the only way to specify identification in OWL DL is by means of one-to-one properties, which
are clearly not enough. Furthermore, the fact that most description logics do not consider n-ary
relationships makes impossible to assert composite keys for ontologies. In short, there is no way
to express that A ∪ B → C holds (where A, B and C are concepts) because in most ontology
languages, roles are binary predicates relating one class to another class.

In our approach, we do not present just another algorithm for computing keys. Importantly,
AMDO guides the process at the conceptual level and introduces a set of pruning rules for im-
proving the performance by reducing the number of key (i.e., bases) hypotheses generated, and
to be verified with data.

Once the bases algorithm has finished, verified bases obtained are presented to the user ac-
cording to their sparsity level. This quality rule works on the same principle as [C2], which asks
dimensions forming a base to be orthogonal. Sparse multidimensional spaces can mislead the
user and thus, among the bases obtained, we rank better those less sparse. Similar to the quality
rule for ranking facts, we introduce the concept of sparsity threshold and accordingly, verified
bases below this threshold are discarded and not even presented to the user.

4.3.5 Shaping Dimension Hierarchies
Previous steps have identified, for each fact, the measures and dimensional concepts of interest.
However, we still need to shape the dimension hierarchies in order to allow summarizability of
data; one of the multidimensionality principles. In this step we present the multidimensional
patterns used to shape dimension hierarchies, whereas Section 4.4.2.4 describes how to compute
them. Dimension hierarchies must guarantee a correct summarizability of data (see [C3]). In
this step we look for to-one relationships (also known as roll-up or whole-part relationships, or
according to our notation, complete fds) giving rise to hierarchies allowing a correct data aggre-
gation: the to-one multiplicity preserves disjointness of aggregated data, and by the mandatory
participation we also preserve its completeness.

From the set of dimensional concepts filtered by previous section, a directed graph follow-
ing all the to-one relationship paths is depicted. At this point, two important remarks must be
done. On the one hand, note that some graphs will overlap. Consider two concepts A, B such
that B is a dimensional concept of A. Clearly, the graph created from B will be subsumed by the
graph created from A. In these cases were a graph is subsumed by another one (i.e., it is com-
pletely overlapped), the subsumee graph is disregarded and not considered during the process.
Intuitively, we only work with maximal graphs, as the rest can be derived from them straight-
forward. On the other hand, note that, at this moment, we cannot differentiate the role played
by each graph node (either as a level or as a descriptor) within the dimension hierarchy. Two

124

specific patterns are introduced to distinguish levels from descriptors:

• (Levels): If a class (C3) is placed in more than one graph, we consider it to be a level (since
it seems interesting to show data at this granularity level). Following with DL notation we
could formalize this pattern as:

∃C1, C2, ∃r1, r2 | (∃r1 v C1) ∧ (∃r−1 v C3) ∧ (∃r2 v C2) ∧ (∃r−2 v C3) ∧ C1 6= C2 ∧ r1 6= r2

Where C1 and C2 are classes and r1 and r2 are disjoint paths formed by graph edges.
Intuitively, we are looking for classes in two different graphs. These classes will give rise
to two different levels in each graph. Nevertheless, as they refer to the same concept, it is
mandatory to semantically relate both levels by means of a conceptual relationship in the
output schema.

• (Descriptors): If two classes C1 and C2 are related by means of a one-to-one relationship
(i.e., two inverse complete fds) in a graph:

∃r1 | (C1 v= 1r1.C2) u (C2 v= 1r−1 .C1)

This relationship can represent a (i) semantic relationship between two different dimen-
sions if the ending class (note that the graph is directed) was identified as a level by the
previous pattern, or (ii) as an attribute level (i.e., a descriptor) otherwise. In the first case,
it means that the ending class provides a relevant data granularity (i.e., it was identified
as a level) and thus, we also consider its counterpart to be of interest. Since a one-to-
one relationship does not make much sense within the same dimension hierarchy, they are
considered to represent the same granularity level in two different dimensions that, conse-
quently, must be related semantically. In the second case, we consider it to be a descriptor
of the initial concept, since they have not been identified as interesting analysis levels.
Similar to previous pattern, semantic relationships identified must be explicitly asserted in
the output schema.

Directed graphs built in this step are presented to the user as dimension hierarchies, altogether
with those semantic relationships between dimensions identified. Note, however, that these two
patterns are not exhaustive and, in some cases, we have not been able to identify each graph node
as a level or a descriptor. Nevertheless, this is sound, as it is up to a design decision to spot
each class as an attribute of an existing level or as a new level; giving rise to implicit or explicit
dimension hierarchies in the resulting schema. Consequently, this differentiation should be made
by the user, if she / he is interested in aggregating data at this level, when stating his/her require-
ments. Finally, the user may also be interested in reshaping the analysis dimensions derived from
datatypes. AMDO does not propose any hierarchy for these dimensions automatically, but we
allow the user to use predefined functions (for example, get day, get month or get year in case
of dates) or aggregate data to generate value ranges in case of numerical datatypes (for example,
from 0 to 20, 21 to 50, 51 to 99 in case of ages), to create ad hoc dimension hierarchies.

For example, suppose that the user chooses rental agreement as a fact of his / her
interest (see Section 4.3.3). For this subject of analysis, AMDO would generate the dimension

125

Figure 4.5: AMDO: multidimensional schema proposed for the rental agreement fact

hierarchies shown in Figure 4.5. There, each arrow starting from rental agreement de-
picts a dimension hierarchy. Concepts identified as levels by AMDO are depicted as a class,
whereas concepts identified as descriptors are depicted in italics in the level they belong to.
In total we generate nine maximal directed graphs (from customer, lastModification,
assigment, dropOffBranch, pickUpBranch, rentalDuration, car, bestPrice
and basicPrice). Next, the user must tune up dimension hierarchies obtained up to his neces-
sities. For example, by considering some descriptors as interesting aggregation levels (it is the
case of minimumDuration and maximumDuration that were identified as descriptors but
we have considered to be interesting levels of aggregation in Figure 4.5) or by dropping dimen-
sions of no interest (in our example, we have disregarded the (single-node) graphs produced for
bestPrice and basicPrice). It is important to remark that levels derived from the same
class but placed in different graphs would be related by semantic relationships. For example,
country or branch type, which appear in different hierarchies.

4.4 Computing Functional Dependencies
After presenting the patterns used by AMDO to identify the multidimensional concepts from
a domain ontology, we know discuss how to compute them. Importantly, note that patterns
presented to discover dimensional concepts, measures and dimension hierarchies are based on
discovering complete fds. For example, dimensional concepts (see Section 4.3.1) and dimension
hierarchies (see Section 4.3.5) patterns directly ask for complete fds between classes. About the
patterns for discovering measures, Pattern 1 (see Section 4.3.2) looks for complete fds between
classes and datatype. Pattern 2 looks for a bridge-concept B fulfilling Pattern 1 such that, the fact
is a dimensional concept of B and viceversa (i.e., B is a complete fd of F by means of a path p,
whose inverse, namely p−, also depicts a complete fd between F and B). Consequently, in this
section we propose two different algorithms to compute complete fds. First, according to our
general assumption, we consider the input ontology to be expressed in OWL DL. As discussed

126

in Section 4.4.2, this algorithm only benefits partially from generic reasoning algorithms. For this
reason, and to take advantage of the well-known reasoning services provided by DL languages,
we propose a second algorithm fully computable by a generic DL reasoner. To do so, we restrict
the expressivity of the input DL, as discussed in Section 4.4.3.

As an exception, note that measure patterns (namely, Pattern 1 and Pattern 2) can be relaxed
and just ask for a mandatory (i.e., complete relation) in the bridge-class / datatype end. However,
we will discuss later how to compute them.

4.4.1 Computing Functional Dependencies Over DL Ontologies
In this section, we discuss how the functional dependency concept maps onto ontologies. Specif-
ically, we discuss how to discover functional dependencies by relying on the assertions in a DL
ontology. First, we recall some basic definitions regarding functional dependencies in the stan-
dard relational model (see, e.g., [AHV95]). Consider a relation schema R, i.e., a relation symbol
with an associated set of attributes, each denoting one component of R. A functional depen-
dency (fd) over R has the form R :X→Y , where X and Y are sets of attributes of R. We say
that a relation r for R satisfies such a dependency if for each pair t1, t2 of tuples in r such that
πX(t1) = πX(t2), we have πY (t1) = πY (t2) (where, as usual, πX(t) denotes the projection of
tuple t on the attributes in X).

It is well known (for example, see [AHV95]) that the following set of inference rules is sound
and complete for implication of fds over a relation schema R (below, X , Y , and Z are sets of
attributes of R, and juxtaposition of two sets stands for their union):

• If Y ⊆ X , then R : X→Y (reflexivity).
• If R : X→Y , then R :XZ→Y Z (augmentation).
• If R : X→Y and R :Y →Z, then R : X→Z (transitivity).

In other words, all fds derived from a set F of fds over R, i.e., the F-closure, can be computed
by starting from F and exhaustively applying the above inference rules.

We would like now to carry over the conceptual level the standard notion of fd defined at the
logical level. To this aim, we introduce the formal notion of fd over an ontology. We observe
that previous work has already considered fds in the context of ontologies, see e.g., [CDGL01,
TW05, TW08]. In these works, mimicking the notion in the relational model, a fd ensures that,
if two objects that are instances of some concept share the same values for a set of attributes (or
of attribute chains), then they share also the value of an additional attribute (or attribute chain),
namely the attribute (chain) that functionally depends on the former attributes (chains). Instead,
for our purposes, a fd should capture the intuition that the instances of one concept functionally
depend on the instances of another concept. In other words, given two concepts C1 and C2,
we are interested in establishing whether each instance of C1 allows one to determine a unique
instance of C2. We will denote this by C1→C2. Several observations are in order:

(i) The dependency between the two concepts C1 and C2 needs to be established explicitly,
and this can be done by means of some role that relates C1 to C2

2.

2Note that in the relational model, attributes that functionally depend on other attributes are implicitly related through
the relation schema to which the attributes belong.

127

(ii) Since each instance of C1 should determine a unique instance of C2, and such a depen-
dency is established through a role, we need to require such a role to be functional.

(iii) If we want to ensure a property analogous to transitivity (i.e., if C1→C2 and C2→C3,
then also C1→C3), we need to allow the dependency to be established not only by atomic roles,
but also by composite roles (i.e., role chains).

(iv) In an ontology, roles are not necessarily typed, i.e., they do not necessarily have a spec-
ified concept as domain and a specified concept as range. Therefore, one cannot establish in
general that a role relates one concept to another concept. As a consequence, every untyped role
would potentially allow one to establish that two arbitrary concepts are functionally dependent
on each other, provided that the role relates one object to a single other object, i.e., that it is func-
tional. This is clearly unsatisfactory, and therefore we need to enforce some stricter condition for
a functional dependency C1→C2 to hold. Specifically, we will require not only that the role is
functional, but also that the instances of C1 mandatorily participate to the role, and that the role
necessarily relates them to an instance of C2.

Importantly, note that the fd notion over DL ontologies is equivalent to that of complete
functional dependency introduced in Section 4.2.

4.4.2 Using Specific Reasoning Algorithms
In this section we consider that AMDO’s input ontology is expressed in OWL DL. Unfortunately,
we may not take advantage of generic DL reasoning algorithms for directly computing patterns
introduced at once, as most common reasoning services are not decidable when considering
composite properties [BCM+03]. Indeed, composite properties are not even expressible in OWL
DL. For this reason, in this section we discuss each pattern separately. We start discussing how
to compute the pattern to discover dimensional concepts (see Section 4.3.2):

• First, for a given class F , we look for its direct dimensional concepts.

• Next, we compute the transitive closure of dimensional concepts according to the following
transitive rule:

Definition 3. If {A, r} (being A a class and r a property) is a dimensional concept of B,
and {C, r1} is a dimensional concept of A, then {C, r ◦ r1} is a dimensional concept of B
as well.

The first step can be completely computed using generic algorithms provided by DL reason-
ers and the second step requires an ad hoc algorithm that will also partially benefit from these
algorithms.

4.4.2.1 Computing Direct Dimensional Concepts

Computing direct dimensional concepts (i.e, complete fds) is equivalent to consider r as a single
property instead of a composite property in the pattern introduced in previous section:

F v = 1r.D,

128

Where r is a single property. This pattern can be computed by basic reasoning (see Section
4.4.2.5 for further details about basic reasoning in DL) and for each class F we keep track of
pairs {D, {r1, ..., rn}} (where every ri is a property between F and D), which define its potential
dimensional concepts. According to Def. 1, every ri identified between F and D will give
rise to a different multidimensional concept. Using generic reasoning means that any assertion
stated in the ontology (by using OWL DL constructs) is automatically considered. For example,
subsumption of classes, subsumption of properties, cardinality restrictions, functional (or inverse
functional) properties, etc.

Finally, note that if the practical consideration introduced in Section 4.3.1.1 must be consid-
ered then, the pattern to look for in this step would be:

F v ≤ 1r.D,

Where r is a single property, which can be also computed by basic reasoning.

4.4.2.2 Computing the Transitivity Closure of Dimensional Concepts

In this section we present an ad hoc algorithm to compute the transitive closure of dimensional
concepts. Despite this algorithm cannot be fully computed by using generic reasoning services,
we can take advantage of subsumption to propagate this knowledge through class taxonomies, as
we will show later.
Our algorithm aims to compute the transitive closure of the asserted complete fds. With this aim,
we build a matrix M of N×N elements (where N is the number of classes in the ontology) such
that each row depicts a class and its potential dimensional concepts:

∀{D, {r, ..., rn}} ∈ M < F >:

F v= 1r.D,
· · ·
F v= 1rn.D

Where M is the N×N matrix, F and D are classes, r, ..., rn are composite properties.
M < F > is an operator over M that retrieves a list of classes related to F by, at least, a complete
fd (i.e., its list of dimensional concepts). Each class in this list is represented as {D, {r, ..., rn}}
where D is the class (or datatype) itself and each ri is a to-one path (i.e., a complete fds) depicted
as a composite property. Therefore, we may derive as many dimensional concepts from D as
different paths it has. Roughly speaking, each cell C(F,D) of M contains a list of composite
properties ({r, ..., rn}) such that each instance of F is related at least and at most to one instance
of D.

In this section we aim to build the final state of this matrix, and we achieve it by means of the
next algorithm:

Since M is a sparse matrix, the function create matrix implements it as a vector of lists (see
Figure 4.6, step 1). Thus, every position in the vector represents a class and its list of potential
dimensional concepts (see the to−one rels typedef declaration). Lists are created and initialized
to the empty list in step 2. Step 3 finds and breaks trivial deadlocks. The need of this step will be
justified later in this section.

Step 4 corresponds to the pattern presented in Section 4.4.2.1. Each potential dimensional
concept identified is added to the proper list in the vector. Figure 4.7.1 (which represents ma-

129

typedef list <properties> path

typedef tuple < concept, list<path> > paths to concept

typedef tuple < concept, list<paths to concept> > to-one rels

functioncreate matrix returns Matrix

1. vector< list<to-one rels> > M;

2. initialize(M);

3. compute trivial deadlocks(M, ontology);

4. first iteration(M, ontology);

5. propagate path(M, converge);

6. return M;

Figure 4.6: AMDO: an algorithm to compute matrix M

Figure 4.7: AMDO: exemplification of to-one paths propagation by transitivity

trix M) shows results obtained after step 4 for some of the concepts in Figure 4.2. For ex-
ample, the maintenance scheduled class has a to-one relationship to date (through the
dateScheduled, acquisitionDate and lastMaintenanceDate properties), service
depot (through the In property), branch (through the isAvailable and isResponsibleFor
properties), car model (through the isOf property), boolean (through the available
property) and double (through the currentMilleage and milleageFromLastService
properties). Note that, according to Def. 1, those classes (or datatypes) related to maintenance
schedule by several different paths (e.g., date) will generate as many dimensional concepts
as different paths between both classes. For example, date will produce three different di-
mensional concepts: {date, dateScheduled}, {date, acquisitionDate} and {date,
lastMaintenanceDate}.

Step 5 propagates the dimensional concepts identified in the previous step according to the

130

transitive rule (see Def. 3). We use the propagate path function (see Figure 4.8) for this purpose.

void propagate path (Matrix lM)

7. list <paths to concept> ending concepts;

8. foreach C in M do

(a) if Mc < C > =∅ then

i. C.closed := true;

9. do {

10. bool conceptsClosed := false;

11. foreach C not closed in M do

(a) reachable concepts := Mc < C >;

(b) foreach D in reachable concepts such that !(M < C, D >).treated do

i. if D.closed then
A. foreach r in Mp < C, D > do
B. listEls := listEls ∪ (r ◦M < D >);
C. M < C > := M < C > ∪ listEls;
D. M < C, D >.treated := true;

(c) if all closed(reachable concepts) then

i. list <concept> parents := compute direct superconcepts(C, M);
ii. if all closed(parents) then

A. foreach P in parents do
B. M < C > := M < C > ∪M < P >;
C. C.closed := true;
D. conceptsClosed := true;

12. if(!conceptsClosed)

(a) break deadlocks(M);

13. } while concepts not closed(M) > 0

Figure 4.8: AMDO: an algorithm to compute the transitive closure of dimensional concepts

This function implements a smart algorithm to compute the transitive closure of the asserted
complete fds (i.e., the final state of M). Essentially, the list of dimensional concepts of each
class is propagated only once during this process, when we know that it cannot vary. To do so,
dimensional concepts are propagated from the end of the complete fd paths (from here on, leaf
classes) to the beginning, according to the definition of closed class:

Definition 4. We say a class C is closed or that a given class C closes in the ith iteration of
our algorithm Closed(C,i), if all its dimensional concepts have been computed in i or a previous
iteration. In other words, if a class C closes in a certain iteration i, no other dimensional concept
will be identified for C in any iteration j such that i < j. In our notation, we define Closed(C,i)
as a recursive function:

Closed(C,i) := ∀{D, {r, ..., rn}} ∈ M < C >: Closed(D, j) ∧ j < i,

131

Our algorithm only propagates closed classes (see the closed method in the algorithm). If
a given class C closes in the ith iteration of the algorithm, we propagate its dimensional con-
cepts in the i+1th iteration. Once propagated, it is never considered again thanks to the treated
method. Note that this method does not hold at a class level but at dimensional concept level
(i.e., regarding C: M < C, D >.treated). Thus, our algorithm aims to identify closed classes
and propagate them just once. Propagating knowledge is done in two different ways:

• Let C and D be two classes such that D is in the dimensional concepts list of C (see step
11b). Then, the dimensional concepts list of D is propagated to C by transitivity according
to Def. 3 (see step 11(b)iA):

∀D ∈ Mc < C >, ∀Di ∈ Mc < D >: {Di, {Mp < C, D > ◦Mp < D, Di >}} ∈ Mp < C, Di >,

Where Mc < C > and Mp < C, D > are two operators over matrix M . The first one
retrieves the list of classes in the dimensional concept list of a given class C (i.e., it is
equivalent to the operator M < C > but overlooking the path lists), and the second one
retrieves the list of paths between two classes C and D such that D is in the dimensional
concept list of C (i.e., it retrieves the path information between C and D in M < C >).
Di are the set of classes in the dimensional concepts list of a concept D (i.e., ∀Di, Di ∈
Mc < D >) and {M < C, D > ◦ M < D, Di >} represents the concatenation of each
path in M < C, D > with each path in M < D, Di > (for the sake of readability, this
formalization is depicted with an slight abuse of notation in step 11(b)iB of the algorithm).
Roughly speaking, we are concatenating each to-one path from C to D, with each to-one
path from D to Di (see step 11(b)i).

• Let P be a class such that P is a parent (i.e., a direct superclass) of C. Then, all the dimen-
sional concepts of P must be inherited by C (i.e., M < C > := M < C > ∪ M < P >,
see step 11(c)iiB). In our algorithm, this kind of propagation is done when all the dimen-
sional concepts of C have closed (see step 11c). Then, we can take advantage of DL basic
reasoning (see Section 4.4.2.5 for further details) to compute the list of superclasses to
propagate. Moreover, we do not propagate them until they have closed to avoid propagat-
ing more than once (see step 11(c)ii).

Finally, closed classes are detected as follows:

• First iteration: Leaf classes and datatypes (as discussed in Section 4.4.2.1, our algorithm
considers the datatypes as potential dimensional concepts and in this sense, they can be
considered leaf classes) close in this iteration (see step 8).

• Second iteration: Classes that were closed in the previous iteration are now propagated. In
this case, propagating them is immediate, as their lists of dimensional concepts are empty.
Now, according to our definition of closed class, any class whose dimensional concepts
have closed (and therefore, already propagated), closes in this step.

• N th Iteration: A given class C will close in this iteration if the last class to close in its list of
dimensional concepts has already closed in the (n-1)th iteration (see step 11c). Therefore,
all the dimensional concepts of C have already been computed and we can now propagate
C in the next iteration (see step 11(c)iiC).

132

Following our example, Figure 4.7.1 shows direct dimensional concepts identified for each
ontology class and Figure 4.7.2 depicts how we propagate them by transitivity. For example,
rental agreement is related by two to-one relationships to branch (bolded in the fig-
ure), and branch is related by to-one relationships to country, string, branch type
and service depot. Hence, the latter are also considered dimensional concepts of rental
agreement according to the transitivity rule (see the arrow in Figure 4.7.2). Moreover, note
that the path list of these newly identified dimensional concepts have been properly updated
when adding them to the list of rental agreement. For example, we can get from rental
agreement to branch by two different paths (i.e., pickUpBranch and dropOffBranch)
and from branch to country by the locatedAt property. Therefore, from rental agre-
ementwe can get to country through the composition of pickUpBranch and locatedAt,
and dropOffBranch and locatedAt. Analogously for the rest of dimensional concepts.

At a given iteration, when detecting closed classes, it is important to detect potential dead-
locks due to complete fd cycles between classes. When a cycle is detected (in our algorithm,
when no class closes in the current iteration; see step 12) it is broken propagating just once
among them (and therefore, sharing all their potential dimensional concepts). Moreover, this
situation will be notified to the user to let him / her know that each recurrent propagation within
the cycle may add new interesting semantics (i.e., new analysis dimensional concepts) that could
be considered. The most common and also easiest case to detect are one-to-one and reflexive
relationships. To facilitate the process, AMDO treats these two basic cases immediately after be-
ing identified (see step 3 of Figure 4.6). Detecting trivial deadlocks can be computed by generic
reasoning (see Section 4.4.2.5 for further details) and we may use any of the current algorithms
presented in the graph theory to detect general cycles. For example, a depth-first-search (DFS)
remembering previous visited nodes would fit properly. For example, customer and driving
license through the one-to-one has property is computed in the first iteration. At this point,
we are able to compute its list of dimensional concepts breaking up the deadlock (i.e., do not
apply the transitive rule over it) and notifying to the user that, in case s/he would be interested, it
is possible to derive new dimensional concepts just following the cycle semantics.

Complexity of the Algorithm The computational cost of this algorithm has Θ(N × cl) as
an upper bound; where N is the number of classes in the ontology; c the maximum to-one
connectivity (i.e., direct to-one relationships from a class) and l the maximum chain of to-one
properties. However, this upper bound is theoretical and hardly achievable in practice since real
ontologies neither have all classes with maximum to-one connectivity nor all to-one paths are of
maximum length. Moreover, along the process, classes computed in previous iterations are not
considered in the forthcoming ones.

In practice, the computational complexity raised by AMDO is polynomial for most ontolo-
gies. For example, consider the EU-Car Rental ontology (see Figure 4.2). The whole EU-Car
Rental ontology has 65 classes and 170 properties (or relationships) of which 94 properties are
between classes (30 of them are subsumption assertions) and 76 are properties among classes
and datatypes. The maximum to-one connectivity (i.e., c) is 21 (raised by LateReturn). In the
worst case (i.e., assuming the practical consideration introduced in Section 4.4.3.4), the longest
to-one path has length 5. Consequently, the theoretical upper bound for this simulation would be

133

Θ(65× 215).
However, using the AMDO tool, the execution of the algorithm was immediate (less than

one second in a regular desktop computer). The algorithm converges in just 5 iterations: closing
2 classes before starting (i.e., besides datatypes, there are two classes with empty list of dimen-
sional concepts), 12 classes in the first iteration, 13 in the second one, 19 in the third one, 15 in
the fourth one and 4 in the last one. In each iteration, only some classes are propagated and those
previously propagated are not computed again, so, a better estimation of the answer time would
be:

l∑

i=1

Ni × ci

Where Ni is the number of classes not yet closed (i.e., that still have to be considered) in that
iteration, ci the maximum functional connectivity in that iteration and l the number of iterations
(i.e., the size of the bigger to-one path in the ontology). In our example, it would raise:

5∑

i=1

Ni × ci = (63× 21) + (51× 24) + (38× 54) + (19× 87) + (4× 109)

Result got, drastically smaller than the theoretical upper bound, is still an upper bound of the
answer time of AMDO. Notice that we are considering the maximum connectivity for each class
in each iteration, something completely false. However, we want to underline some important
things depicted in this formula: on the one hand, we may appreciate that the value of Ni is
strictly decreasing and, on the other hand, the value of ci is never exponential. In fact, in the last
iteration, its value is 109, far away from 215. All in all, despite the EU-Car Rental ontology size,
AMDO behaves well and the answer time is good enough to develop an interactive tool.

Soundness and Completeness of the Algorithm Our algorithm is clearly sound, since it com-
putes direct to-one relationships and propagates them according to the transitivity rule presented
in Section 4.4.2.2.

Our algorithm is complete if we can assure that it converges; that is, if it would fully explore
each to-one path (starting from the end, by identifying leaf classes, and going through the paths
up to the beginning). We can say so if we can assure that if in a given iteration the vector M is not
updated then, in any of the following iterations it will not be updated either. It can be guaranteed
because:

• We detect and break deadlocks and,

• in the worst case, if P is the maximum number of to-one properties chained in the ontology,
in each iteration the propagate path function (see step 5 of Figure 4.6) will propagate, at
least, one property. Indeed, the invariant of the main loop of the algorithm (see step 9 of
Figure 4.8) guarantees that the length of each to-one path explored up to current iteration
is strictly increasing and at most, in P iterations we would have explored (and propagated)
all chained to-one properties in the ontology. Thus, step 5 will not be able to propagate
any other property in next iterations.

134

– Note, however, that we need to show that, in OWL DL, a to-one path (i.e., a compos-
ite property) is compound of to-one properties. In other words, that a path compound
of, at least, a to-many property cannot be asserted to raise a to-one relationship as a
whole. This holds because of the DL tree model property [Var96], which most DL
languages, such as SHOIQ(D) upon which OWL DL is based, guarantee.

4.4.2.3 Computing Measures

In Section 4.3.2 we introduced 2 different patterns with two variants. Pattern 1 and Pattern 1.a,
can be computed by generic reasoning (see Section 4.4.2.5 for further details). Similar to the idea
introduced in Section 4.4.2.1, for each class F we keep track of pairs {dt, {r1, ..., rn}} (where
every ri is a property between F and dt). According to Def. 2, every ri identified will give rise
to a different measure.

Pattern 2 can be directly computed by matrix M (see Section 4.4.2.2):

Measure(F ,{dt, r1, ..., rn}):= ∃B, ∃r1, ..., rn | ∀ri, 1 ≤ i ≤ n, B v ∃ri.dt ∧ (F ∈ Mc < B > ∧B ∈ Mc < F >)

Note that it is expressed using matrix M notation, and it means that, by transitivity, we have
been able to identify B as a dimensional concept of F (i.e., as a complete fd) and viceversa.

Finally, note that Pattern 2.a does not look for complete fds, and therefore, it is not com-
putable from matrix M . Thus, to compute Pattern 2.a, we need to introduce a new matrix,
namely matrix M1 (of N×N elements), where N is the number of classes in the ontology. This
matrix represents, for each class F, the list of classes we may get to by means of mandatory
paths. Thus, analogously to the definition of matrix M , each row of M1 can be defined as fol-
lows:

∀{D, {r, ..., rn}} ∈ M1 < F >:

F v ∃r.D,
· · ·
F v ∃rn.D

Where M1 is the N×N matrix, F and D are classes, r and rn are composite properties and
M1 < F > an operator over M1 that retrieves a list of classes related to F by, at least, a manda-
tory (i.e., 1..N) path. Like in the definition of matrix M , each class in this list is represented as
{D, {r, ..., rn}} where D is the class (or datatype) itself and each ri is a mandatory path depicted
as a composite property. Now, we can compute this pattern as follows:

Measure(F ,{dt, r1, ..., rn}):= ∃B, ∃r1, ..., rn | ∀ri, 1 ≤ i ≤ n, B v ∃ri.dt ∧ (F∈ Mc < B > ∧B ∈ M1c < F >)

Where M1c < B > is the equivalent operator to Mc < B > of M1. Matrix M1 can be
computed with an algorithm analogous to the one presented in Section 4.4.2.2 (see Figure 4.6)
to compute M , but instead of looking for direct to-one relationships in step 4, we will look for
direct mandatory relationships:

F v ∃r.D,

Where r is a single property. The rest of the algorithm (i.e., propagating this knowledge) remains
the same. The addition of matrix M1 do not modify the overall computation complexity. Indeed,

135

the computational cost of M1 is analogous to that of M and it has Θ(N × cl) as an upper bound;
where N is the number of classes in the ontology; c the maximum mandatory connectivity (i.e.,
mandatory relationships of a class) and l the maximum chain of mandatory properties in the
ontology. Similarly, the same practical considerations discussed in Section 4.4.2.2, as well as
considerations about the soundness and completeness apply for this algorithm.

Importantly, note that, if the practical consideration introduced in Section 4.3.2.1 is assumed,
it would entail that we do not need to compute matrix M1. By using matrix M we will be able to
compute if a class F can use a given class B as bridge-class (i.e., F ∈ Mc < B >), and it would
be enough to compute the pattern, as any multiplicity would be allowed in the bridge-class end of
the relationship. Once computed, we know data must be aggregated by a compatible aggregation
function, prior to be inserted in the data warehouse, if B /∈ Mc < F >.

4.4.2.4 Computing Dimension Hierarchies

The maximal directed graphs needed to shape the dimension hierarchies (see Section 4.3.5) are
built by means of complete fds and thus, they can be created by navigating matrix M (see Section
4.3.1).

For every class identified as a dimensional concept, we create (and link) a graph node for each
dimensional concept in its list, and we repeat the process for each node created. For example,
consider Figure 4.7. If branch is identified as a dimensional concept, we create a graph node
for each one of its four dimensional concepts (i.e., country, string, branchType and
servideDepot). Every directed arch between branch and these nodes must be labeled with
the property relating them. For example, the branch (the root node) is related to the country
node by an edge labeled locatedAt. Next, we repeat the process for each of these nodes.
Note that a smart implementation to build the graphs would directly produce maximal graphs.
From every path of complete fds in matrix M , we apply the algorithm described above from the
selected dimensional concept that is closer to the beginning of the path. Note that we follow an
approach similar to that in Section 4.4.2.2. Fds entail a certain order in the path (i.e., A determines
B and B determines C; we say, thus, that A is placed at the beginning of the path and C at the
end) and we exploit this feature to directly compute maximal graphs.

Importantly, the properties of the algorithm used to compute matrix M guarantee that this
process will eventually end (we identified deadlocks and then, we know when a loop may arise,
and we can guarantee that eventually, we will reach leaf classes and stop the process). Further-
more, the computational cost of this step is negligible since matrix M is already calculated and
we only need to navigate and explore it.

4.4.2.5 Discussion

The specific reasoning algorithm presented in this section computes AMDO’s multidimensional
patterns by partially benefiting from generic DL reasoning techniques provided by DL reasoners.

Although we need to compute the fd closure by an ad hoc algorithm, most of our patterns
can still be reduced to basic reasoning tasks that any commercial reasoner available in the market
could answer by its querying services. In our implementation we have used FaCT++ [Hor98].
This reasoner supports OWL DL except for nomimals, but nominals fall out of our needs and do

136

not affect our reasoning tasks. FaCT++ provides basic tasks such as discover class taxonomies
(i.e., given a class find all its subclasses, superclasses, ancestors or successors), property tax-
onomies (analogous to class taxonomies reasoning but over properties) and subsumption3 (given
two OWL DL assertions say if one is subsumed by the other). Any of the reasoning tasks men-
tioned in this chapter can be reduced to this three query services. Using DL reasoning have
considerably reduced the complexity of our task and have facilitated the whole automation of
AMDO. Indeed, most of the work done in AMDO have been reduced to reasoning over FaCT++.
For example, consider the EU-Car Rental ontology used as example in this chapter (see Figure
4.2). With AMDO we have been able to identify 2069 dimensional concepts (note that it does not
mean that the produced multidimensional schema contains 2069 dimensional concepts but that
the number of dimensional concepts identified regarding all the ontology classes is 2069 -most
of them disregarded when choosing facts of interest and filtered by selecting bases of interest;
see Section 4.3-). 1375 out of this 2069 dimensional concepts were identified using reasoning
(i.e., querying the EU-Car Rental TBox using FaCT++) while 694 out of 2069 were identified by
our ad hoc algorithm.

4.4.3 Using Generic Reasoning Algorithms

To match our approach to traditional reasoning over ontology languages and better exploit their
reasoning capabilities, in this section we introduce an approach for discovering functional depen-
dencies from a domain ontology. Unlike our previous algorithm, we do use generic reasoning
algorithms so that no ad hoc techniques and tools are needed but just a generic reasoner such as
FaCT++ [Hor98] or Racer [HM01]. In this section, we make use of DL-LiteA, a DL of the DL-
Lite family [CDGL+07, CDGL+06], which is particularly well suited for conceptual modeling
due its ideal trade-off between expressive power and computational properties. The reader may
find DL-LiteA in Appendix A.

Importantly, this section uses DL-Lite notation and thus, we do not talk about OWL DL
classes, properties and datatypes but about DL-Lite concepts, roles and attributes. Briefly, DL-
LiteA distinguishes concepts, denoting sets of objects, from value-domains, denoting sets of
values, and roles, denoting binary relations between objects, from attributes, denoting binary
relations between objects and values. More precisely, concepts, roles, value-domains, and at-
tributes in DL-LiteA are formed starting from atomic elements (where the distinction between
basic and arbitrary elements is relevant). For a detailed view of how basic and arbitrary con-
cepts are formed, we address the reader to appendix A.

4.4.3.1 DL-LiteA Expressivity

In this section we show that, although DL-LiteA is less expressible than OWL DL, the expres-
sivity provided is enough in many real scenarios. Indeed, its ideal trade-off between expressive
power and computational properties make DL-LiteA a promising ontology language to be used in
practice. DL-LiteA is specifically tailored to capture basic ontology languages, conceptual data

3Note, however, that class taxonomies and properties taxonomies are computed by a specific case of subsumption
(the third reasoning task enumerated), but they are typically differentiated in commercial products.

137

models (e.g., ER), and object-oriented formalisms (e.g., basic UML class diagrams) while keep-
ing the complexity of reasoning low. In particular, all forms of inference over a DL-Lite ontology
(e.g., satisfiability, logical implication, and CQ answering) can be done in polynomial time in the
size of the TBox, whereas ontology satisfiability, instance checking, and answering conjunctive
queries can all be done in LogSpace with respect to data complexity [CDGL+07, PLC+08]. To
illustrate its expressivity power, in this section we show how a DL-LiteA TBox can capture a
UML conceptual diagram (in short, UML-CD).

Consider the UML-CD in Figure 4.2. Intuitively, each UML class in the diagram is repre-
sented by an atomic concept in the TBox, each UML (binary)4 association by an atomic role, and
each UML attribute by an atomic attribute (we assume here that the name of the class is part of
the attribute name). We describe how suitable TBox assertions capture the constraints imposed
on the domain by the UML-CD:

• A generalization between two classes is represented by means of an inclusion assertion
between the corresponding concepts, e.g., Reservation v RentalAgreement.

• To represent the domain (i.e., first component) and range (i.e., second component) of an
association P , we use ∃P and ∃P−, respectively. E.g., to represent that the domain of
the LocatedAt association is contained in Branch we use ∃LocatedAt v Branch, and to
represent that the range is contained in Country, we use ∃LocatedAt− v Country.

• To represent domain and range of an attribute U , we use δ(U) and ρ(U), respectively.
E.g., to represent that bestPrice is an attribute with domain RentalAgreement and range
Money, we use δ(bestPrice) v RentalAgreement and ρ(bestPrice) v Money.

• To capture mandatory participation in an association (i.e., a min. multiplicity 1), we use
e.g., Branch v ∃IsOfType or Customer v ∃Makes−.

• To capture functionality of an association (i.e., a max. multiplicity 1), we use e.g., (funct LocatedAt)
or (funct Makes−).

• Finally, to capture disjointness between classes, we use negation on concepts, as e.g., in
Car v ¬Branch.

4.4.3.2 Functional Dependencies over DL-LiteA Ontologies

The observations introduced in Section 4.4.1, lead us to the following definition of when a fd
between two DL-LiteA concepts holds in a given interpretation. We make use of the notion of
role chain Q1 ◦ · · · ◦ Qn of basic roles, interpreted as the composition of the binary relations
corresponding to the roles. Formally, for an interpretation I, we have that

(Q1 ◦ · · · ◦Qn)I = QI1 ◦ · · · ◦QI
n.

We can then apply concept and role constructs to role chains (instead of basic roles), and the
semantics naturally extends the one for the case of basic roles. When we talk about a role chain

4Associations of arity greater than 2 can be handled through reification [CLN98, CDGL+09].

138

Q1◦· · ·◦Qn over a TBox T , we intend that for each i ∈ {1, . . . , n}, at least one of Qi or Inv(Qi)
appears in T . Similarly, a basic concept over T is any basic concept that can be constructed from
atomic concepts and roles in T .

Definition 5. Given a DL-LiteA TBox T and two concepts C1 and C2 over T , the expression
C1→C2 is called a functional dependency (over T). Given an interpretation I of T , we say
that C1→C2 is satisfied in I, denoted I |= C1→C2, if there is a role chain S = Q1 ◦ · · · ◦Qn

over T , with n > 0 and such that for each object o1 ∈ CI1 there is exactly one object o2 ∈ CI2
such that (o1, o2) ∈ SI .

Intuitively, the definition requires that each instance of C1 determines a unique instance of
C2 by means of some chain of roles in T . Note that the inverse of such a role chain corresponds
to a path in the path-based identification constraints in [CDGL+08]. Importantly, note that the
notion of fd in an arbitrary DL-LiteA ontology corresponds to the complete fd concept introduced
previously in Section 4.2, upon which most AMDO multidimensional patterns are based on.

From the above definition, it is immediate to verify that the following properties hold for fds
over T involving concepts C1, C2, C3, and for every interpretation I:

Asserted: If I |= (funct Q), then I |= ∃Q→∃Inv(Q). (4.1)

Transitivity: If I |= C1→C2 and I |= C2→C3, then I |= C1→C3. (4.2)

Left-inclusion: If I |= C1→C2 and CI3 ⊆ CI1 , then I |= C3→C2. (4.3)

Right-inclusion: If I |= C1→C2 and CI2 ⊆ CI3 , then I |= C1→C3. (4.4)

We are now interested in determining when an fd is logically implied by the assertions in the
TBox, i.e., the fd is necessarily satisfied in all models of the TBox.

Definition 6. Given a DL-LiteA TBox T , we say that a fd C1→C2 over T is logically implied
by T , denoted T |= C1→C2, if C1→C2 is satisfied in every model of T .

In the following, we will restrict the attention to functional dependencies between basic con-
cepts only, since in DL-LiteA negation is used only to assert disjointness. Exploiting the restric-
tions in the expressive power of DL-LiteA, we can show the following property.

Proposition 1. Given a DL-LiteA TBox T and two basic concepts B1, B2 over T , we have that
T |= B1→B2 if and only if there is a role chain S = Q1 ◦ · · · ◦Qn over T , where n > 0, such
that (i) T |= (funct Qi), for i ∈ {1, . . . , n}, (ii) T |= B1 v ∃S, and (iii) T |= ∃S− v B2.

Proof. The “if” direction is a direct consequence of Definitions 5 and 6.
For the “only-if” direction, we observe that properties (ii) and (iii) follow from the canonical

model property of the DL of the DL-Lite family [CDGL+07], and in particular of DL-LiteA
[PLC+08]. Instead, for property (i), we exploit the tree-model property of DL-LiteA. This
property is shared by most DL [BCM+03], and states that if a TBox admits a model, then it
admits one that has the structure of a tree (where the nodes of the tree are the elements of the
interpretation domain, and the edges are determined by the role instances). In a tree-model, it is
ruled out that from a given object o1 there are two different paths labeled with the same roles that
lead to the same object o2. Hence, a chain of roles is forced to be functional in the TBox T only
if also all of the component roles are forced to be functional.

139

We can now exploit Proposition 1 to obtain a simple technique that derives pairs of concepts
B1, B2 such that T |= B1→B2. The technique is based on turning the properties (4.1)–(4.4)
above into the following inference rules, which derive new fds from existing ones for a given
TBox T and for basic concepts B1, B2, and B3 over T :

Asserted: If T |= (funct Q), then T |= ∃Q→∃Inv(Q). (4.5)

Transitivity: If T |= B1→B2 and T |= B2→B3, then T |= B1→B3. (4.6)

Left-inclusion: If T |= B1→B2 and T |= B3 v B1, then T |= B3→B2. (4.7)

Right-inclusion: If T |= B1→B2 and T |= B2 v B3, then T |= B1→B3. (4.8)

We consider these rules to be applied exhaustively to all basic concepts over T . Soundness
of the rules follows directly from the corresponding properties above, while completeness is a
consequence of Proposition 1. Moreover, since the number of basic concepts over T is finite,
rule application clearly terminates.

We observe that the “left-inclusion” and “right-inclusion” rules propagate fds according to
the TBox inclusion assertions, and as such they provide an interaction between functional and
inclusion dependencies. In general, implication is undecidable when combining functional and
inclusion dependencies [AHV95], our setting is much simpler, since we only consider unary
inclusion5 and functional dependencies [CKV90]. Note also that there is no counterpart of the
augmentation rule for fd implication in the relational setting, since we deal only with unary
functional dependencies.

Functional Dependencies Considering Datatypes In AMDO, we also need to discover func-
tional dependencies involving datatypes at the right-hand side (i.e., which datatypes are func-
tionally identified by an ontology concept). In DL-Lite datatypes are represented by means of
value-domains and attribute expressions (see Section A for further details). Accordingly, we
extend the functional dependency definition as follows:

Definition 7. In DL-Lite, a functional dependency: C→ F (where C is either an atomic or basic
concept and F a general value-domain) holds if exists an atomic or basic concept D and a general
concept attribute UD such that C functionally determines D and D functionally determines F by
means of UD.

Intuitively, C will functionally determine F if C functionally determines the concept (i.e., D)
such that F is a mono-valued attribute of D. The semantics of this definition can be defined as
follows. An interpretation I is a model of a functional dependency C→ F if ∃D, ∃UD, such that
C → D and UD is a function and δ(UD) v D and ρ(UD) v F.

4.4.3.3 Discovering FDs in DL-LiteA
In this section, we propose an algorithm to discover all the fd’s logically implied by a DL-LiteA
TBox T , and which exploits the reasoning capabilities of a DL-LiteA reasoner. Our algorithm

5Note that, in DL-Lite, role inclusions are restricted so as not to interact with functionality.

140

starts from the asserted fds (see inference rule (4.5)), and then computes the closure of the as-
serted fds w.r.t. the remaining rules. We recall that the asserted fds are simply ∃Q→∃Inv(Q),
for each functional role Q in the TBox.

The closure of the asserted fd’s is computed as follows. First, we identify the sets Bd and Br

of all basic concepts that appear respectively in the domain and range of a functional basic role.
To do so, we scan all functional basic roles, and for each such role Q and each basic concept B
over T , if T |= B v ∃Q then we add B to Bd, and if T |= B v ∃Inv(Q) then we add B to Br.

Then, for each pair of basic concepts Bd ∈ Bd and Br ∈ Br, we need to check whether
T |= Bd v ∃S.Br, for some chain S of functional basic roles6. To perform such a check, we
have to face the difficulty that in principle we have to try all possible lengths n of the chain S,
and all the possible ways of composing it by means of functional basic roles. To tackle the latter
issue, we introduce a new atomic role U in T , and for each basic role Q such that (funct Q) is in
T , we add to T the assertion Q v U 7. Hence, U acts as a super-role of all functional basic roles
in T and it is sufficient to consider S as a chain of U n times with itself, for suitable values of n.
We then iterate over n until we have tried a sufficiently large value (see below).

In DL-LiteA we cannot directly check the logical implication T |= Bd v ∃S.Br, with
S = U ◦ · · · ◦ U (for some fixed length n of the chain). However, we can easily encode such a
check into the problem of computing the certain answers to the CQ

Qn
Bd,Br

() ← Bd(a), U(a, x1), U(x1, x2), . . . , U(xn−1, xn), Br(xn)

over the ABox constituted only by the assertion Bd(a). Indeed, since the only fact in the ABox
is one involving Bd, it is not possible to satisfy the atoms U(x, x′) and Br(xn) with facts in
the ABox. Hence, the only case in which the answer to the query could anyway be positive,
is when the whole body of Qn

Bd,Br
can be rewritten to just Bd(a) [CDGL+07]. And this is

precisely the case when T |= Bd v ∃S.Br. Notice that we are taking advantage of the query
rewriting technique for DL-LiteA, which exploits the knowledge contained in the TBox of the
ontology to actually compute the right-inclusion and left-inclusion inference rules with the DL-
LiteA reasoner.

The question that we still need to address is which is the maximum bound for the length n
of the role chain S. If the ontology does not contain functional cycles, we should stop when
no new answer is retrieved. However, it is not uncommon to find functional cycles in a real
world ontology. In this case, we should stop looking for functional dependencies originating at
a concept Bd when (i) for a given length no results are provided, or (ii) no new concepts are
proposed with regard to previous iterations. Intuitively, the reason is that in DL-Lite all the roles
involved in a functional path must be functional as well, and hence at each step we must get, at
least, one new concept of the longest path. Otherwise we are looping in a cycle.

More precisely, let Bd be the concept from where we start looking for functional dependen-
cies and Di the set of concepts that we have already identified up to iteration i. Let Br be a
concept functionally dependent on Bd and not yet identified.

• If Bd functionally identifies Br, then there must be a role chain S′ that connects Di and

6The concept ∃S.Br is called a qualified existential and is interpreted as {o | ∃o′.(o, o′) ∈ SI ∧ o′ ∈ BIr }. It is
not a DL-LiteA concept.

7Note that this is compatible with the conditions in the DL-LiteA ontology definition introduced in Appendix A.

141

Br. Let D? be the concepts along S′. Note that Di and D? are disjoint, since the Di

contains concepts already visited, while D? does not.

• At least, one concept ofDi and one concept ofD? must be directly related. Let’s call them
Bi and B?, respectively.

• If along the i + 1-th iteration we do not identify any new concept, then, B? ∈ Di, which
contradicts our initial assumption that Di and D? are disjoint.

Computational Complexity An upper bound for the maximum number of queries we will
have to pose is Θ(n · |Bd| · |Br|), where n is the length of the maximum chain of functional
roles. However, this is an upper bound not reachable in practice because those concepts that do
not get any new solution for paths of length i, are not queried in the next iterations. In most
cases (considering ontologies in real applications), most of the concepts will end with n being
rather small (indeed, the longest functional path in the EU-Car Rental ontology has size 5).
Furthermore, if in a previous iteration we have shown that T |= Bd→Br, then, this pair will not
be checked again in next iterations.

We note that the computational complexity of the rewriting algorithm of DL-LiteA is expo-
nential in the size of the query. However, this turns out to be manageable for real ontologies,
given that the number of times we have to concatenate role U is relatively small.

4.4.3.4 Practical Consideration

The fds as introduced in Section 4.4.3.2 are conceived for arbitrary DL-LiteA ontologies. But
similar to the discussions introduced in Sections 4.3.1.1 and 4.3.2.1, we can compute functional
dependencies without a mandatory participation.

Nevertheless, there are some interesting additional considerations to be made regarding DL-
LiteA ontologies derived from conceptual schemas. Consider the UML diagram depicted in
Figure 4.2 and let Teu be the corresponding DL-LiteA TBox. Specifically, the hasAssigned
association results in the following assertions:

∃hasAssigned v RentalAgreement
∃hasAssigned− v Assignment

Assigment v ∃hasAssigned−
(funct hasAssigned)
(funct hasAssigned−)

According to Definition 6, we have that Teu |= Assignment → RentalAgreement, (but
Teu 6|= RentalAgreement → Assignment), since RentalAgreement does not have a manda-
tory participation in hasAssertion. As discussed in Section 4.4.3.2, the mandatory participation
is needed in arbitrary DL-LiteA ontologies to avoid discovering meaningless functional depen-
dencies. For example, consider the following TBox T :

∃P1 v A1, ∃P−1 v A2, (funct P1), ∃P2 v A3 ∃P−2 v A4 (funct P2)

Without requiring the mandatory participation we would have that T |= A1→A4. Indeed, both
P1 and P2 are functional, and therefore, in every model of T , every instance of A1 is connected
to at most one instance of A4 via the role chain P1 ◦ P2.

142

However this scenario cannot happen in ontologies derived from conceptual schemas. In an
UML-CD (or ER schema) two classes are supposed to be disjoint unless they are related by a
generalization relationship and furthermore, strict role-typing is assumed (i.e., exactly the oppo-
site assumptions to those in arbitrary DL-LiteA ontologies). Hence, when translating UML-CDs
to DL-LiteA it makes sense to identify functional dependencies from non mandatory relation-
ships. With this aim, we redefine the functional property definition presented in Section 4.4.3.2
for DL-LiteA ontologies derived from conceptual schemas:

Definition 8. Given a DL-LiteA TBox T , an atomic role P in T is strict role-typed in T if there
is a single atomic concept A1 such that ∃P v A1 is in T , and a single atomic concept A2 such
∃P− v A2 is in T . The concepts A1 and A2 are called respectively the domain and range of
P . A DL-LiteA TBox Tc is called DL-LiteA conceptual schema if each atomic role P is strict
role-typed in T and for each pair of atomic concepts A1, A2, either A1 and A2 are disjoint (i.e.,
Tc |= A1 v ¬A2) or A1 and A2 participate in the same concept taxonomy (i.e., there is an
atomic concept A such that Tc |= A1 v A and Tc |= A2 v A).8

Definition 9. Given a DL-LiteA conceptual schema Tc, two basic concepts B1 and B2 over Tc,
and an interpretation I of T , we say that I |= B1→B2 if there is a chain S = Q1 ◦ · · · ◦ Qn,
with n > 0, of roles that are strict role-typed in T , where B1 is the domain of Q1, B2 is the
range of Qn, and such that for each object o1 ∈ ∃QI1 there is exactly one object o2 ∈ CI2 such
that (o1, o2) ∈ SI .

Roughly speaking, we may relax the mandatory participation of B1 in S thanks to the implicit
constraints we may find in a DL-Lite conceptual schema.

The semantics of Definition 9 can be defined as follows. An interpretation I is a model of a
functional dependency C → D if ∃C0, ..., Cn, ∃R where R ≡ (R1 ◦ . . . ◦ Rn) with n ≥ 1,
such that RI is a function and (∃R)I v CI and (∃R−)I v DI and ∀Ri (∃Ri)I v CIi−1 and
(∃Ri−)I v CIi with 1 ≤ i ≤ n-1.

We can take advantage of the algorithm presented in Section 4.4.3.3 to discover functional
dependencies over DL-LiteA conceptual schemas by adding the following two assertions for each
functional role P with domain A1 and range A2:

A1 v ∃P A2 v ∃P−

Indeed, we are adding a mandatory participation for the role to its domain and range. In terms
of UML-CDs, we are modifying the cardinality of the relationship and making it mandatory.
With this trick we fulfill Definition 5 of fd and despite this change, the semantics with regard to
fd’s will not change and the results we get are sound. Notice that these assertions are only needed
while discovering functional dependencies and they have to be retracted once the algorithm has
finished.

This trick cannot be applied for arbitrary DL-Lite ontologies. In an arbitrary DL-LiteA on-
tology disjointness of concepts cannot be assumed and therefore, adding the domain and range
assertion we would modify the semantics of the model also with respect to fds. As a consequence,
we could identify false fds.

8Note that the concept A may coincide with A1 or A2.

143

4.4.3.5 Computing AMDO Multidimensional Patterns

In previous sections we have shown how to compute complete fds from a DL-LiteA ontology.
Now, we discuss how this knowledge must be applied to compute the multidimensional patterns
presented in Section 4.3.

Computing Dimensional Concepts In our current framework, it is immediate to compute
the list of dimensional concepts for each ontology concept. According to Section 4.3.1, B is a
dimensional concept of A if B is a complete fd of A.

In an arbitrary DL-LiteA ontology, note that the fd notion is equivalent to that of complete
fd and therefore, this pattern is computed by the algorithm presented in Section 4.4.3.3. In case
of a DL-LiteA conceptual schema (see Section 4.4.3.4), we have two possible scenarios. If the
practical consideration discussed in Section 4.3.1.1 is assumed then, the output of the algorithm
introduced in Section 4.4.3.4 must be considered; otherwise, the pattern must be computed by
the algorithm presented in Section 4.4.3.3.

Finally, note that these considerations also hold for computing the dimensional hierarchies
(see Section 4.3.5).

Computing Measures We introduced two different patterns, with a slightly variant each, to
compute measures. Similar to our previous algorithm. Pattern 1 and 1a may be computed by
querying a generic reasoner.

Consider now an arbitrary DL-LiteA ontology. Pattern 2 must be computed by the algorithm
introduced in Section 4.4.3.3. Once the functional dependencies have been computed, we iden-
tify concepts that may play the bridge-concept role (i.e., those fulfilling Pattern 1). Then, an
attribute a, directly related to a concept B is a potential measure of a given concept F if F → B
and B → F . Note, however, that Pattern 2a cannot be fully computed by any of the algorithms
introduced. We can compute if B → F (where B and F are concepts and B fulfills Pattern 1a)
by the algorithm introduced in Section 4.4.3.3, but the first assertion (i.e., F v ∃r.B) does not
express a functional dependency and thus, not computable by our algorithms. Nevertheless, note
that we can still compute it by an analogous algorithm to that presented in Section 4.4.3.3:

First, we identify the sets Bd and Br of all basic concepts that appear respectively in the
domain and range of all the ontology roles. Then, we introduce a new atomic role U in T , and
for each basic role Q in T , we add to T the assertion Q v U . Finally, we need to compute the
certain answers to the CQ

Qn
Bd,Br

() ← Bd(a),∃U(a, x1),∃U(x1, x2), . . . , ∃U(xn−1, xn), Br(xn)

over the ABox constituted only by the assertion Bd(a). Where the rest of considerations made in
Section 4.4.3.3 still hold. Importantly, note that the number of roles tried in the query rewriting
technique of DL-LiteA is considerably bigger for this case.

If we consider a DL-LiteA conceptual schema (see Section 4.4.3.4) and the practical consid-
eration made in Section 4.3.2.1, Pattern 2 is computed by the algorithm introduced in Section
4.4.3.4. Then, an attribute a, directly related to a concept B is a potential measure of a given
concept F if F →B (by considering roles enforced to be mandatory) and B→ F (by not consid-
ering them). Finally, in this case, Pattern 2a can be easily computed by the algorithm in Section

144

4.4.3.3. Thus, an attribute a, directly related to a concept B is a potential measure of a given
concept F if B → F .

4.4.3.6 Discussion

We consider now the full EU Car-Rental case study (see Appendix B) of which we computed
the closure of functional dependencies by applying the algorithm presented in Section 4.4.3.3.
This case study has 65 concepts and 170 relationships (30 of which are subsumption assertions
between classes).

A total of 2069 functional dependencies were found. The total computation time was 2.332
seconds9 from which, 0.080 seconds were used by the reasoner to classify the ontology, 0.006
seconds were required to query for candidate domains and ranges for the functional paths (i.e.,
the Bd and Br sets presented in Section 4.4.3.3), and the remaining time (2.246 seconds) was
used to compute the functional dependencies.

To run these tests we used the FaCT++ reasoner. We note that FaCT++ doesn’t support an-
swering conjunctive queries, As a workaround, we had to devise a subsumption verification query
which was true if and only if the CQ of Section 4.4.3.3 is non-empty, and false otherwise. The
query which complies with this specification is (B1 v ∃U .∃U . · · · .B2)? were B1 corresponds to
the current domain to be tested, the number of nested U ’s corresponds to the number of U atoms
in the original CQ and B2 corresponds to the range of the functional path to be tested.

According to Def. 1 and Def. 2, we also computed the functional paths (i.e., the composition
of roles) that verified the query shown above. In order to do this, we sent additional queries to
the reasoner, whenever we had verified the existence of a path of length n. In these queries we
replaced the n’th occurrence of role U in the qualified existential chain with each of the sub-roles
of U . In this case, 41.039 seconds were spent pinning-down the specific roles which triggered
the existence of these paths.

4.5 Computing Bases

In this section we propose an approach for discovering meaningful bases (i.e., minimal keys)
from domain ontologies. Currently, several works for discovering (minimal) keys from relational
sources10 are available. These approaches could be used, for example, to discover bases in the
MDBE approach introduced in Chapter 3. In this section, we discuss a novel approach benefiting
from the conceptual knowledge available. Previous experiences show that working at the data
level is computationally expensive in the general case. Surprisingly, despite this fact, none of the
current approaches consider (and exploit) the conceptual knowledge available for this purpose.
Thus, following with the spirit of this thesis, we propose to guide the key discovering process at
the conceptual level. Furthermore, we also introduce a set of pruning rules for improving this
task performance by reducing the number of key hypotheses generated and to be verified with
data. To our knowledge, this is the first approach introduced in the literature proposing to lead

9The computer used in this test was equipped with an Intel Core 2 Duo 1.33 GHz processor and 1’99 GB of RAM.
10Note that the key concept has been traditionally linked to the database theory.

145

Figure 4.9: AMDO: the FD-tree computed for the EndDurationPrice concept

this task at the conceptual level. As result, it is able to generate less hypotheses to be validated
with data and therefore, it performs better than current approaches.

4.5.1 Foundations
Importantly, our approach discovers bases guided by the domain knowledge captured in the on-
tology. First, we formally discuss the implications of the key (i.e., base) concept at the conceptual
level. In this section we make use of a generic conceptual notation, but by concepts we refer to an
ontology concept (classes in OWL notation) or a datatype, and by relationships to ontology roles
(or properties in OWL notation). We denote concepts by uppercase letters from the beginning
of the alphabet (such as A and B) and sets of concepts by uppercase letters from the end of the
alphabet (such as Y and Z).

Definition 10. We say that a set of concepts Z is a base of a concept A, if there is an injective
function from A to Z (i.e., a mandatory one-to-one relationship).

Note that we do not ask for a mandatory participation of Z in A (i.e., a bijective function),
since some values of the base could not have a correspondence into the identified concept. This
definition is equivalent to other concepts previously introduced that we could consider equivalent.
For example, the one-to-one relationships introduced in [Che76] or the reference mode (manda-
tory one-to-one relationships) in ORM [HM08]. Note that this is sound, since, as previously
discussed in Section 4.3.4, the multidimensional base concept is equivalent to the traditional
concept of key and, indeed, these two concepts play the key role in the ER and ORM languages,
respectively.

Def. 10 entails that both, the concept identified functionally depends on the base, and the
base functionally depends on the concept, giving rise to the following proposition:

Proposition 2. A set of concepts Z is a base of a given concept A if and only if Z uniquely or
functionally determines the values of A (i.e., Z → A) and A functionally determines the values
of Z (i.e., A → Z).

This is sound with previous work presented in the literature to discover keys. Previous ap-
proaches work at the data level and a key is defined as a specific kind of functional dependency
(i.e., a minimal set of attributes that uniquely identify the whole tuple). Moreover, according to
the relational model assumptions, each relation row is supposed to represent a different instance

146

[Cod90], giving rise as a whole to a one-to-one relationship (furthermore, since a candidate key
does not allow NULL values, it is also mandatory).

The first step in our approach requires to compute the asserted functional dependencies
(in short, fd’s) in the domain ontology. To do so, we may take advantage of any of the al-
gorithms introduced in Section 4.4. Eventually, for each domain concept we get a directed
tree of functional dependencies like the one shown in Figure 4.9. This example refers to the
endDurationPrice concept of the EU-Car Rental ontology (see appendix B). It represents
the final price charged for the car renting to the customer. As shown in the figure, it has 10
fd’s: the car group (i.e., kind of car rented) and the car group name, the beginning
and ending date of the rental agreement, the final price (i.e., money) and the rental agreement
duration (which consists of the rental duration name and a time unit used to ex-
press the minimum and maximum duration allowed for that rental). From here on, we use
FD-tree to denote this tree; root concepts to denote those concepts in the first level of the tree
(in our example: car group, beginning and ending date, duration and money), and
FD-concepts to denote the rest of concepts in the tree. We also make use of typical tree notation,
and we talk about depth levels, ancestors and descendants.

Next, once fd’s asserted in the ontology have been computed, for every ontology concept A,
we aim to find the set of concepts Z such that Z is a key of A. According to Prop. 2, Z is a key of
A if and only if A → Z. Thus, we only need to generate combinations of concepts among those
functionally identified by A. For instance, in our example, it means that all the possible keys of
endDurationPrice are combinations of concepts between its fd’s (i.e., those represented
in the figure). Note the benefits of this proposition. Traditionally, when looking for keys, the
searching space is formed by all the attribute combinations up to size N, where N is the number
of attributes in the database (i.e., 2N combinations), but by using ontological knowledge we
reduce the searching space to 2P , where P is the number of concepts functionally dependent on
A.

4.5.1.1 Necessary Conditions

A naive approach for discovering bases would entail generating all the combinations in our
searching space (i.e., 2P combinations) and sample data to verify them. However, despite we
have reduced considerably the searching space, we may have computational problems for con-
cepts having many fd’s, since the searching space is still exponential. For example, in a middle-
sized ontology like the EU-Car Rental we obtained concepts with more than 80 functional depen-
dencies (see the second column of Table 4.1 discussed in Section 4.3.3). Furthermore, querying
the data may be expensive for large tables. For this reason, we further exploit the conceptual
knowledge we have before verifying key hypotheses with data. Specifically, we take advantage
of the well-known fd theory.

Given a set of fd’s F, a minimal cover [AHV95] of F is a set F’ of fd’s such that:

• (i) Each dependency in F’ has the form Z → C, where C is a concept,

• (ii) F’ ≡ F,

• (iii) no proper subset of F’ implies F and

• (iv) for each dependency Z → C in F’ there is no W ⊂ Z such that F |= W → C.

147

In our approach, for every ontology concept A, we define F as the set of fd’s of the kind Z
→ A, (where Z is compound of concepts in the FD-tree of A). Essentially, we look for a minimal
cover of F, because we aim to minimize the number of queries posed to the database (i.e., it is
the minimum set of fd’s to be verified as bases with data). The rest of fd’s in F can be generated
and verified from F’ in polynomial time by the Armstrong axioms [RG03] (i.e., a fd of the kind
Z → A holds if and only if fd ∈ F’+). Nevertheless, as discussed later, we will not be interested
in this kind of fd’s either, since they are not minimal and thus, they are not bases.

In our approach, (i) is guaranteed by Prop. 2. As discussed in previous section, the fd’s
we may find in an ontology are of the kind A → B, (where A and B are concepts), and in our
algorithm we generate combinations of concepts in the left-end of the fd (i.e., left-end multi-
attribute fd’s). Regarding (ii), F will be equivalent to the set of fd’s determining A that we can
infer from knowledge contained in the ontology (from where we compute the initial knowledge
that guides the search) and data (from where verify combinations proposed). Thus, if a key
cannot be inferred from the ontology and verified with data, we will not be able to identify it.
Section 4.5.3 guarantees that our algorithm is complete with regard to knowledge captured in the
ontology and data. Finally, (iii) and (iv) guarantee that the set of fd’s in F’ is minimal. Note
that these two conditions are desirable for our purpose, as they enforce the minimality property
of bases. Consequently, fd’s in the minimal cover are the only base candidates to be considered.
In our approach, these two items lead to two necessary conditions a fd must fulfill prior to be
verified as a base with data. Before introducing them, we recall the Armstrong axioms, introduced
in Section 4.4.1, used to infer all the fd’s that can be computed from a given set F of fd’s (i.e.,
the F closure or F+) [AHV95], since we will need them to proof our propositions:

• (reflexivity) If Y ⊆ X, then X → Y,

• (augmentation) If X → Y, then X ∪ Z → Y ∪ Z

• (transitivity) If X → Y and Y → Z, then X → Z.

Here, we also introduce the pseudo-transitivity rule [AHV95] (that can be easily derived from
the three inference rules discussed above), since we will need it later:

• (pseudo-transitivity) If X → Y and YW → Z, then XW → Z.

Proposition 3. Let Z and W be sets of concepts functionally dependent on a given concept A.
If Z ⊆ W , and Z is a key of A then, W, despite functionally determining A, it is not minimal
and then, it does not belong to the minimal cover; there exists a subset of W (i.e., Z) functionally
determining A.

We will not present a proof for this proposition since it is directly formulated from item
(iv) in the minimal cover definition. Intuitively, this proposition enforces the minimality prop-
erty of a base. Said in other words we must look for fd’s (Z → A) such that every concept
in the left-end (i.e., in Z) is necessary (i.e., if we drop any concept, Z does not functionally
determine A anymore). For example, according to the example introduced in Figure 4.9, if
{rentalDuration, beginningDate} is known to be a base then, despite {rental-
Duration, beginningDate, money} determines endDurationPrice, it is not a base,
since it is not minimal.

Proposition 4. Let Z and W be two sets of concepts functionally dependent on a given concept
A. If ZW is a minimal key of A then, Z and W are orthogonal. That is, it does not exist two sets
of concepts Z1 and W1 such that Z1 ⊆ Z and W1 ⊆ W and (Z1 → W1 or W1 → Z1).

148

Proof. Let use W2 to denote W - W1 (respectively Z2 = Z - Z1). If WZ → A and Z1 → W1 (resp.
W1 → Z1) then ZW2 → A (resp. WZ2 → A) holds (by the pseudo-transitivity rule). Thus, given
a set of fd’s F’ such that {ZW → A, ZW2 → A (resp. WZ2 → A)} ∈ F’, F’ is not a minimal
cover, since Z1 → W1 (resp. W1 → Z1) holds. We can show it by contradiction.

Let F’ be a minimal cover of F and {ZW → A, ZW2 → A (resp. WZ2 → A)} ∈ F’. If Z1 →
W1 (resp. W1 → Z1) holds, then, there is a proper subset F ′′ of F’ (i.e., F ′′ = F’ - {ZW → A})
such that F ′′ implies F, which violates item (iii) in the minimal cover definition. Indeed, we can
get ZW → A from ZW2 → A (resp. WZ2 → A) by the augmentation rule (i.e., adding W1 (resp.
Z1) to both sides), and then by the reflexivity and transitivity rules.

Intuitively, this property says that the combination ZW must not be considered if Z and W
are not orthogonal. Otherwise, this set of fd’s will not be minimal as demanded in the minimal
cover definition. In our example, it means that {rentalDuration, minimumDuration}
must not be considered as a potential base, since rentalDuration→ minimumDuration.
Finally, we introduce a third necessary condition derived from the fd’s theory:

Proposition 5. Let W be a set of concepts functionally dependent on a concept A, and C a
concept such that C ∈W. Let I be the set of intermediate concepts giving rise to the many-to-one
path between A and C. If W functionally determines A, for each {Ci} ∈ I , (W − {C}) ∪ {Ci},
namely the intermediate sets of W, functionally determines A.

Proof. It can be seen by means of the pseudo-transitivity rule. Since each intermediate concept
determines C then, if W → A, for each {Ci} ∈ I, (W − {C}) ∪ {Ci} → A.

Intuitively, we are taking advantage of the pseudo-transitivity rule to foresee if a given combi-
nation can functionally determine A. For example, if {endingDate, minimumDuration}
is known to be a base then, {endingDate, rentalDuration} must be a base as well,
since rentalDuration→ minimumDuration.

In our approach, we only generate and verify with data those combinations that fulfill the
three necessary conditions introduced above. In short, let A be a concept and Z a set of concepts.
We check whether Z → A if and only if A → Z (i.e., for generating Z we only consider combi-
nations of concepts in the FD-tree of A). Furthermore, among all the potential combinations we
may generate to verify Z → A, we only look for those that would belong to the minimal cover
of the fd’s determining A, by applying Props. 3 and 4 (note that these propositions guarantee
minimality; the first one regarding subsets, and the second one regarding fd’s). We also use Prop.
5 for pruning based on the pseudo-transitivity axiom. If a certain combination does not guaran-
tee any of these conditions we may foresee it will not be a base and thus, it does not have to be
generated and verified. Only those combinations satisfying all the conditions are feasible base
and have to be verified with data. In this way, we reduce drastically the searching space and the
number of combinations to be tested against the database (i.e., minimizing the number of queries
posed to the RDBMS).

149

4.5.1.2 Searching Space

Our searching space can be characterized as a directed graph like the one shown in the left-end
of figure 4.10. Two combinations of dimensional concepts in the searching space can be related
by two different kinds of edges:

Subset edges (SS-edges) link two nodes of size i and i+1 (where i is an integer between 1
and P), such that the first is a subset of the second one. For example, the edge be-
tween {rentalDuration} and {rentalDuration, carGroup}, and we say that
{rentalDuration, carGroup} is a SS-descendant of {rentalDuration} (de-
noted by {rentalDuration} ⊂ {rentalDuration, carGroup}). Note that these
arrows (in the figure, dashed arrows) link combinations in consecutive depth levels. There-
fore, if a 3-sized combination (in the third depth level), such as {minimumDuration,
rentalDuration, carGroup} were depicted in the figure, it would be related with a
dashed arrow to {minimumDuration, maximumDuration}, {minimumDuration,
carGroup}, and {maximumDuration, carGroup} but not to {minimumDuration},
{maximumDuration}, or {carGroup}, since they are not placed in consecutive depth
levels. Note, however, that they are related by transitivity.

Functional Dependency edges (FD-edges) are derived from the input FD-tree. They link two
nodes of the same size such that there is one concept in the first one functionally determin-
ing one concept in the second one. For example, {rentalDuration, carGroup} is
related to {rentalDuration, carGroupName}, since carGroup→ carGroup-
Name (denoted by {rentalDuration, carGroup} ≺ {rentalDuration, car-
GroupName}). Note that these (regular) edges relate combinations where only one con-
cept changes. For example, {rentalDuration, carGroup} is not related to {maximum-
Duration, carGroupName} despite carGroup→ carGroupName and rental-
Duration→ maximumDuration, since we must substitute two concepts of {rental-
Duration, carGroup} to obtain {maximumDuration, carGroupName}. Indeed,
{rentalDuration, carGroup} is related to {maximumDuration, carGroup-
Name} by pseudo-transitivity, since, following the nomenclature of Prop. 5, there are
two intermediate sets (i.e., {rentalDuration, carGroupName} and {maximum-
Duration, carGroup}; see Figure 4.10) between them.

In Figure 4.10, we show a piece of the searching space for endDurationPrice. It is
based on the FD-tree between its dimensional concepts. Note that, for the sake of simplicity, we
use a partial FD-tree of only five dimensional concepts (right-end of figure 4.10). Moreover, we
only draw the first two depth levels of the searching space (left-end of figure 4.10). Furthermore,
talking about depth levels is meaningless in most graphs, but we can still talk about graph depth
levels according to how we have defined the edges. On level i we depict those combinations of
size i. Between consecutive depth levels we find SS-edges, and FD-edges between combinations
in the same depth level. Moreover, SS and FD-edges introduce a partial order in the searching
space (i.e., ⊂ for subsets and ≺ for fd’s). Finally, note that SS-edges will be those explored (and
pruned if needed) by Prop. 4, whereas FD-edges will be explored (and pruned) by Props. 5 and
6.

150

Figure 4.10: AMDO: the searching space for the endDurationPrice concept, and a piece
of its FD-tree

4.5.2 An Algorithm for Discovering Bases
Our algorithm for discovering bases takes advantage of previous generated and tested combi-
nations to decide which alternatives must be explored, according to the necessary conditions
introduced in Section 4.5.1. This algorithm is devised according to three sets:

• Feasible bases: In the ith iteration, this set represents those combinations of size i, satis-
fying the three necessary conditions introduced in Section 4.5.1.

• Candidate sets: In the ith iteration, this set contains those feasible bases refuted as bases
with data.

• Bases: In the ith iteration, this set contains those feasible bases, up to size i, verified as
bases with data.

Our algorithm has two inputs: the concept we are looking bases for (for example, the end-
DurationPrice), and its FD-tree (see Figure 4.9). The algorithm starts considering each root
concept as a feasible base (see Figure 4.11, step 3). This is sound, since root concepts are unary
sets fulfilling the necessary conditions by definition (and thus, we can directly consider them
feasible bases). Every combination in the feasible bases is verified (see step 4ci and Section
4.5.2.1) to see if, according to data, it is indeed a base (if it is, this combination is added to the
base sets; see step 4ciA) or, if it is not (then, it is added to the candidate sets; see step 4ciiA).

Note that we only explore the FD-descendants of a combination Z if Z determines A (see
step 4ci and Section 4.5.2.1). It is a direct application of Prop. 5: the FD-descendants of a
given combination Z cannot determine A if Z does not determine A. From here on, we denote
by the Intermediate Set Rule (ISR) this application of Prop. 5 in our algorithm. A combination
is generated by ISR, in the gen comb by FD function, if its direct FD-ancestors are known to
determine A (the reason why this function needs the base sets as parameter). Importantly, ISR
only needs to check the direct FD-ancestors to decide if a given FD-descendant must be generated
or not. This holds because FD-ancestors are generated either in the gen comb by FD function
(by ISR) or in gen comb by SS, and both functions guarantee that new combinations generated

151

function seek bases (Concept A, Fd-Tree M) returns Set<Base>

1. Set<Concept> Comb; Ordered Set<Comb> Candidates Sets, Feasible Bases;

2. int i:=1; Set<Comb> Bases := {};

3. Feasible Bases := Get Root Concepts(A,M);

4. while(Feasible Bases != ∅)

(a) Candidates Sets := {};

(b) Comb := Get First Combination(Feasible Bases);

(c) while(Comb != ∅)

i. if(Determines(Comb,A)) then
A. Bases += Comb;
B. if (Has fd-Descendants(Comb,M)) then

Feasible Bases += Gen Comb by FD(Comb, Bases, M);
ii. else

A. Candidates Sets += Comb;
iii. Feasible Bases -= Comb;
iv. Comb := Get Next Combination(Feasible Bases);

(d) i++;

(e) Feasible Bases := Gen Comb by SS(i, Bases, Candidates Sets, M);

5. return Bases;

Figure 4.11: AMDO: an algorithm for discovering bases

do fulfill the three necessary conditions (see Section 4.5.3 for further details on the former, and
Section 4.5.2.2 for further details on the latter).

For example, if {beginningDate, endingDate, rentalDuration} is a base,
then by means of ISR we must add {beginningDate, endingDate, rentalDuration-
Name}, {beginningDate, endingDate, minimumDuration}, {beginningDate,
endingDate, maximumDuration} and {beginningDate, endingDate, time-
Period} to the feasible bases. Given a verified base, the number of new combinations added
to the feasible bases by applying ISR, is, in the worst case, linear regarding the number of direct
FD-descendants the base has (see the properties of FD-edges in Section 4.5.1.2).

Since combinations generated fulfill the necessary conditions, we directly add them to the
feasible bases set. Thus, each new combination is eventually verified as a base. If it is a base
then, we iteratively apply ISR, and we continue exploring its FD-descendants. Interestingly, note
that a ISR-generated combination, which is refuted as a base (i.e., the determines function re-
turns false and therefore, it is queued in the candidate sets), may give rise to bases of bigger size
than i when combined with other SS-descendants in step 4e. Following our example, suppose
that {beginningDate, endingDate, rentalDurationName} happens to be a base,
but not the rest of FD-descendants generated. In this case, according to ISR, this combination
could generate new FD-descendants, which would be queued in the feasible bases set (how-
ever, this is not the case, as none of the concepts in this combinations have FD-descendants).

152

function Gen Comb by SS (int i, Set<Comb> Bases, Ordered Set<Comb> Candidates Sets, FdTree M) returns Set<Comb>

1. Set<Comb> Combinations := {};

2. For(int j = 0; j < sizeof(Candidates Sets); j++)

(a) CS1 := get candidate set(Candidates Sets, j);

(b) For(int z = j+1; z < sizeof(Candidates Sets); z++)

i. CS2 := get candidate set(Candidates Sets, z);
ii. if (Have (i-1) Concepts In Common(CS1,CS2) AND (i != 2 OR orthogonal(CS1,CS2)))

A. if(Find Subsets(CS1,CS2, Bases, Candidates Sets, z)) then
B. Combinations += Eliminate Duplicates(CS1 ∪ CS2);

3. return Combinations;

Figure 4.12: AMDO: an algorithm to compute SS-descendants

Regarding the rest of combinations, they would be queued in the candidate sets and eventu-
ally, they could generate (i+1)-sized sets (for example, {beginningDate, endingDate,
minimumDuration, carGroup} from {beginningDate, endingDate, minimum-
Duration}).

When the current algorithm iteration is done (i.e., all the i-sized combinations have been
treated; see step 4c), function gen comb by SS generates feasible bases of size i+1 from the i-
sized candidate sets (see step 4e and Section 4.5.2.2 for further details). The algorithm iterates
until we are not able to generate feasible bases of size i+1.

4.5.2.1 The determines Function

This function is called when the three necessary conditions are guaranteed (i.e., we have identi-
fied a feasible base). Then, we verify if this combination determines A by querying data. Prior
to query the instances, we first introduce a final pruning rule:

Proposition 6. Let Z be a feasible base. We say that Z is yet a feasible base, if it is able to
identify all instances of A. In other words, if the cardinality of A is lesser (or equal to) than the
product of the cardinalities of the concepts in Z (i.e.,

∏

Zi∈Z

|Zi| ≥ |A|)

Note that this pruning rule discards combinations by just querying the RDBMS catalog, as
follows (expressed in Oracle syntax):
SELECT NUM ROWS FROM USER TABLES WHERE TABLE NAME = t;

SELECT NUM DISTINCT FROM USER TABS COLS WHERE TABLE NAME = t AND COLUMN NAME = c;

Where t is the name of a table and c of a column. If the ontology concept maps to a relational
table then by means of the first query we get the cardinality of t, and if the ontology concept
maps to a relational attribute by means of the second query we get the number of different values
it has. Those combinations satisfying this rule are still candidates to be a base, and we verify it
by the following query (in Oracle syntax):

153

function Find Subsets (Comb CS1, Comb CS2, Set<Comb> Bases, Ordered Set<Comb> Candidates Sets, int z) returns Boolean

1. Set<Comb> SubSets := Generate Subsets(CS1, CS2);

2. For(int i = 0; i < sizeof(Bases); i++)

(a) BaseAux := get base(Bases, i);

(b) if(BaseAux in SubSets) then

i. return false;

3. For(int w = z+1; w < sizeof(Candidates Sets); w++)

(a) CSAux := get candidate set(Candidates Sets, w);

(b) if(CSAux in SubSets) then

i. SubSets -= {CSAux};

4. foreach(SubSet in SubSets) do

(a) if(all root concepts(Subset))

i. return false;

5. return true;

Figure 4.13: AMDO: an algorithm for generating (i+1)-sized combinations

SELECT "base" FROM DUAL WHERE NOT EXISTS(SELECT attrSet FROM tables WHERE joinConds GROUP
BY

attrSet HAVING COUNT(*) > 1)

Where DUAL is the dummy table in Oracle and attrSet are the attributes forming the feasible
base to be verified, tables the list of tables containing that attributes and joinConds the join
clauses needed to join tables involved in the query. If we are able to find two rows with the same
values for the base hypothesis then, this combination, according to data, is not a base. Notice
that we use a NOT EXISTS expression so that if we find a counter example for this combination
then, the RDMBS engine could stop the query.

4.5.2.2 Generating Combinations of Size (i+1): The gen comb by SS Function

Once the i-sized combinations have been verified (i.e., either proved to be bases, and thus added
to the bases set, or refuted, and thus, added to the candidate sets), the gen comb by SS function
(see Figure 4.12) generates (i+1)-sized combinations from the i-sized candidate sets obtained in
the previous iteration of the algorithm. This function looks for pairs of sets having (i-1) concepts
in common (see Figure 4.12, step 2bii). To do so, it scans the candidate sets in such an order that
it does not generate twice the same pair (see the configuration of the two main loops; steps 2 and
2b). From every pair identified, it produces a i+1-sized combination (note that the combinations
paired share i-1 concepts and thus, produce a (i+1)-sized combination).

Importantly, this function only generates combinations fulfilling the three necessary condi-
tions, as follows:

154

• Prop. 4 is guaranteed in step 2(b)ii. A 2-sized set is generated if concepts combined are
orthogonal (i.e., if they are not present in the FD-tree of each other). As shown in Section
4.5.3, if 2-sized sets are orthogonal then, Props. 3 and 4 guarantee that no orthogonal sets
of size greater than 2 are generated. Thus, it is enough to check this proposition for 2-
sized sets. In our example, after the algorithm first iteration, the gen comb by SS function
is called for i = 2 (note that we first increase i and then, call this function; see step 4d).
If the candidate sets contain {rentalDuration} and {minimumDuration} they
would not be combined to form {rentalDuration, minimumDuration}, since
since rentalDuration→ minimumDuration.

• Prop. 3 is guaranteed in step 2(b)iiA by the find subsets function (described in Figure
4.13). This function generates all the i-sized subsets of the current (i+1)-sized set treated
(note that it can be done in linear time: for a i+1-sized combination, we must generate i+1
subsets overlooking each one of the concept in the i+1 combination), and verify them not
to be bases as follows:

– (1) If any of the subsets of the (i+1)-sized set is in the base sets then, it must not be
considered a (i+1)-sized feasible base (see step 2), since it is not minimal.

– (2) If all the i-sized subsets are in the candidate sets then, we guarantee that the
(i+1)-sized set is minimal (see Figure 4.13, step 3) and thus, a feasible base.

– (3) Alternatively, due to our pruning rules, it may happen that a subset is neither in
the candidate sets nor in the base sets. In this case, we have two possible scenarios:
on the one hand, (3.1) if the subset is only compound of root concepts, the (i+1)-
sized combination must be refuted, since our algorithm is exhaustive regarding root
concepts. Thus, we can assure that this subset is a SS-descendant of a base (see step
4a). On the other hand, (3.2) in any other case, this subset is a FD-descendant of a
i-sized feasible base refuted with data (see step 5) and therefore, fulfilling the three
necessary conditions. We justify this decision in Section 4.5.3.

• Finally, Prop. 5 is guaranteed by the candidate sets definition, since they have been refuted
as bases.

For example, suppose that the gen comb by SS function combines {beginningDate,
minimumDuration} and {beginningDate, money} to produce {beginningDate,
minimumDuration, money}. This scenario could happen in the second iteration of the
algorithm, when i = 3, and we combine 2-sized sets having in common one concept to even-
tually produce 3-sized sets. Since i != 2, Prop. 4 does not apply, and we just need to focus on
function find subsets, which generates the 2-sized subsets of {beginningDate, minimum-
Duration, money}: {beginningDate, minimumDuration}, {minimumDuration,
money} and {beginningDate, money}. According to (1), if any of them is a base then,
the 3-sized set is not generated (since it is not minimal). Oppositely, according to (2), if all
of them are in the candidate sets, we can guarantee that the 3-sized set is minimal and it
is generated. Consider now that, according to (3), the {beginningDate, money} and
{beginningDate, minimumDuration} subsets are neither in the candidate sets nor in

155

the base sets. In the first case, since it is compound of root concepts, it denotes that the 3-sized
set is not minimal (since our algorithm is exhaustive for root concepts and thus, it means that
either beginningDate or money is a base). In the second case, since {beginningDate,
minimumDuration} is a FD-descendant of {beginningDate, rentalDuration} it
does not invalidate the 3-sized set. The reason is that {beginningDate, minimumDuration}
has been compulsory generated by the gen comb by FD function (had it been generated by the
gen comb by SS function, this subset would have been included in the base sets or candidate sets
and thus, considered by either (1) or (2)). Thus, it means that {beginningDate, rental-
Duration} is a feasible base refuted with data. Consequently, since it was refuted as a base, ac-
cording to Prop. 5, we could foresee that {beginningDate, minimumDuration} would
not be a base and then, it was not even generated. However, this set fulfills the three necessary
conditions and therefore, it does not invalidate the 3-sized set.

4.5.3 Algorithm Correctness
Our algorithm is sound and complete with regard to the domain ontology and data, as it generates
sets from knowledge captured in the ontology and verifies them with the data. In this section we
show that we generate all the sets of the searching space that fulfill the three necessary conditions,
and that we do not generate any set that do not fulfill them. Thus, our proofs of soundness and
completeness rely on the three necessary conditions discussed and justified in Section 4.5.1.
Note that, without considering our prune rules, our algorithm would generate all the possible
combinations of the searching space. For this reason, we just need to show that our pruning
rules do not miss any base nor generate combinations not being base. In other words, in our
algorithm we generate all the combinations of the searching space that (i) all its subsets are not
bases (i.e., all its SS-ancestors are not bases), (ii) its subsets are orthogonal (i.e., we cannot find
two SS-ancestors such that one is a FD-descendant of the other) and (iii) its intermediate sets are,
indeed, bases (i.e., all its FD-ancestors are bases). If we are able to generate all the sets meeting
the necessary conditions and no other sets, it is easy to see that by verifying them with data (see
Section 4.5.2.1) our algorithm is still sound and complete.

For the sake of understandability, we divide our proof in two parts. The first part shows that
our algorithm is sound and complete for root combinations (i.e., those only consisting of root
concepts). Then, we show that it is also sound and complete for FD-combinations (i.e., those
that contain, at least one FD-concept).

4.5.3.1 Soundness & Completeness for Root Combinations

In this section we show that we generate all the root combinations satisfying the three necessary
conditions (completeness) and no other combination (soundness). We show it by induction on
the size of the sets:

• First Iteration:

completeness In the first iteration of the algorithm, every root concept is considered
a feasible base, as they are the smaller set to be verified as a base (see Figure 4.11,
step 3).

156

soundness Since all of them are 1-sized sets, they trivially satisfy Props. 3, 4.

• Second Iteration:

soundness 2-sized root combinations are generated by combining all the 1-sized can-
didate sets found in the previous iteration. By definition, those 1-sized sets in the
candidate sets have been refuted as bases (i.e., fulfilling Prop. 3), and only those
2-sized sets consisting of orthogonal concepts are generated (i.e., fulfilling Prop. 4.
See Figure 4.12, step 2(b)ii).

completeness We generate all the 2-sized combinations between root concepts except
for (i) those consisting of a root concept being a base, and (ii) those consisting of two
root concepts such that one is a FD-descendant of the other.

• Induction Step:
If we generate all the n-sized root combinations fulfilling the three necessary con-
ditions and only these combinations (induction hypothesis), we will generate all the
(n+1)-sized root combinations that fulfill the three necessary conditions and no other
sets.

soundness If all the n-sized feasible bases are generated, those verified as bases were
added to the base sets and those refuted as bases to the candidate sets. According
to Figure 4.13 (steps 3 and 4), Prop. 3 is fulfilled because root combinations are
generated if all their subsets are in the candidate sets (according to the induction hy-
pothesis all the n-sized candidate sets are generated) and discarded otherwise. Prop.
4 is guaranteed because 2-sized sets consisting of non-orthogonal concepts were not
generated. It can be shown by contradiction. Supposed that a (n+1)-sized set Z, that
contains two concepts A and B such that A → B is generated by our algorithm. Thus,
all the n-sized subsets of Z are in the n-sized candidate sets (i.e., there is at least one
n-sized set W such that W ⊂ Z and A, B ⊂ W). But this contradicts the induction
hypothesis, as W is not a n-sized feasible base and it is not present in the n-sized can-
didate sets. Intuitively, since {A, B} was not generated, all its SS-descendants were
not generated either (i.e., {A, B} will not be in the 2-sized candidate sets and accord-
ing to Prop. 3, every 3-sized set containing it will not be generated, neither those
4-sized sets containing the 3-sized sets and so on up to W that will not be generated
and thus neither Z).

completeness All the (n+1)-sized root combinations are generated except for those
that, at least, one of their n-sized subsets is not in the candidate sets. It may happen
because (i) this subset is a base (all the n-sized bases are found by hypothesis) or (ii)
it contains a subset that is a base (i.e., it is not a n-sized feasible base) and thus not
generated by hypothesis.

Finally, note that we have not justified Prop. 5. This is because root combinations do not
have intermediate sets by definition.

157

4.5.3.2 Soundness & Completeness for FD-combinations

In this section we show that we generate all the FD-combinations satisfying the three necessary
conditions (completeness) and no other combination (soundness). Like in previous section, we
show it by induction:

• First Iteration:

soundness 1-sized FD-combinations are generated applying ISR to combinations ver-
ified as bases and thus, fulfilling Prop. 5. This new generated combinations are of
size 1 and they also fulfill Props. 3 and 4.

completeness All the 1-sized FD-combinations are generated because ISR is itera-
tively applied (i.e., it follows the FD-edges until it finds FD-descendants that are not
a base). Therefore, those FD-descendants not explored will not be a feasible base
since they do not fulfill Prop. 5.

• Second Iteration:

soundness 2-sized FD-combinations can be generated from the gen comb by SS func-
tion or by applying ISR over 2-sized combinations verified as bases. In the first case,
they fulfill the necessary conditions by the same proof introduced for 2-sized root
combinations. In the second case, ISR guarantees Prop. 5, as explained in the first
iteration. Furthermore, combinations generated by ISR also guarantee Props. 3 and
4. Let W, Z be two 2-sized sets of concepts such that W ≺ Z, and Z was generated
by ISR. By definition of the FD-edges (see Section 4.5.1.2) there is a concept B such
that B ⊂ Z and B ⊂ W, and two concepts A, A1 such that A → A1, and A ⊂ W, and
A1 ⊂ Z. Z satisfies Prop.3 because if W is generated, B is not a base (since it is in the
candidate sets), and if A1 is a base, then A is a base as well. Thus, A would have been
verified as a base in the first iteration, and, by ISR, A1 as well (so that, A1 would be
in the base sets and Z would not be generated). Prop. 4 is guaranteed because 2-sized
sets are generated if concepts on it are orthogonal (see Figure 4.12; step 2bii).

completeness We show that our algorithm finds all the 2-sized FD-combinations by
contradiction. Let Z be a 2-sized FD-combination not found by our algorithm. If we
have not been able to generate Z, at least one of its concepts (i.e., A1) must not be in
the 1-sized candidate sets. Therefore, A1 is a FD-concept (as every root concept will
be present in the candidate sets or in the base sets; see second iteration in previous
section). By definition of our searching space, there exists a 2-sized combination W
such that W is an intermediate set of Z and it consists of root concepts (see Section
4.5.1.2). In other words, W ≺ Z by pseudo-transitivity. Thus, by Prop. 5, if Z is a
base then W is also a base. Since our algorithm is complete for root combinations, W
would have been generated, and Z as well by ISR.

• Induction Step: If we generate all the n-sized FD-combinations fulfilling the three neces-
sary conditions and only these combinations (induction hypotheses), we will generate all
the (n+1)-sized FD-combinations that fulfill the three necessary conditions and no other
sets.

158

soundness If all the n-sized feasible bases are generated, those verified as bases were
added to the base sets and those refuted as bases to the candidate sets. (N+1)-sized
FD-combinations can be generated by applying ISR over (n+1)-sized combinations
verified as bases, or from the gen comb by SS function. In the first case, we can
show that the necessary conditions are preserved by a proof analogous to the one
introduced for 2-sized sets generated by ISR. In the second case, Prop. 3 is guaran-
teed because the subsets of the (n+1)-sized feasible bases are minimal (see Figure
4.13; steps 3 and 5): either we can find them on the n-sized candidate sets or they
are neither in the candidate sets nor in the base sets. The latter raises when two n-
sized combinations (where n≥ 2) generated by ISR have been refuted as bases (thus,
added to the candidate sets) and combined for generating a (n+1)-sized set. Let W
and Z be the two n-sized sets generated by ISR from W’ and Z’ (i.e., W’ ≺ W and Z’
≺ Z). Let A, B, A1 and B1 concepts such that A → A1, B → B1, A ⊂ W, A1 ⊂ W’, B
⊂ Z and B1 ⊂ Z’. If W, Z can be combined (i.e., Y = W ∪ Z), they share n-1 concepts
in common (i.e., there exists a subset X s.t. W = X ∪ A1, Z = X ∪ B1 and Y = X ∪ B1

∪ A1), and the n-sized subsets of Y where B1 and A1 are combined will be missing.
These sets, however, can be shown to be minimal because they are of the kind X’ ∪
B1 ∪ A1, (where X’ ⊂ X). By hypothesis, X is not a base (otherwise, W and Z would
have not been minimal sets). Prop. 5 is guaranteed because the FD-ancestors of Y
are of the kind: X ∪ A ∪ B1 (i.e., W ∪ B1) and X ∪ A1 ∪ B (i.e., Z ∪ A1). Since W and
Z are bases, they fulfill Prop. 5 (note that, in this case, the FD-ancestors are not min-
imal, but it is sound since they are not generated as feasible bases in our algorithm).
Finally, Prop. 4 can be shown by contradiction. Let X be a (n+1)-sized combination
containing two concepts A, A1 such that A → A1 and Y = X - {A} - {A1}. Thus,
either A is a base (and then A1 was generated by ISR) or A ∪ Y’ (where Y’ ⊂ Y) is a
base (and then A1 ∪ Y’ was generated by ISR). Thus, the set being a base would be
missing and according to Prop. 3, X would have not been generated (since it is not
minimal).

completeness We can easily show that our algorithm is complete for (n+1)-sized FD-
combinations by means of the completeness proof for root-concepts. If our algorithm
is complete for(n+1)-sized root-combinations then, ISR guarantees that it is also
exhaustive for (n+1)-sized FD-combinations.

4.5.4 Discussion

In this section we introduce results obtained after carrying out our algorithm over the EU-Car
Rental case study (see appendix B). This ontology has 65 concepts and 170 relationships. For
each concept, we computed its FD-tree (see Section 4.4) and later, by means of the algorithm
introduced in section 4.5.2, its feasible bases. It is important to remark that, in this simulation,
we have not verified the bases with data. The reason is that the EU-Car Rental case study just
provides a conceptualization of the domain, but not sample data. Nevertheless, we simulated
the cardinalities we could expect for each ontology concept and consequently, the determines
function can apply Prop. 6 (note that we have simulated the catalog by providing each concept

159

cardinality), but it does not query the sources.
As result, each concept has an average of 31’83 concepts in the FD-tree (i.e., in our algorithm

we have an average searching space of ∼ 232 combinations). About the FD-tree generated, an
average of 6’67 are root concepts (i.e., the average value of combinations we start with, in the
first iteration of our algorithm). After launching our algorithm, we obtained an average of 156’53
feasible bases per concept (i.e., we will query the database ∼157 times, in average; in front of
the 3.817.550.246 times, if we would have generated all the combinations in the searching space
(i.e., a naive approach). In general, considering all the queries posed to the database for all
the concepts, we have a total of 10.018 queries, of which a 15% are answered by querying the
catalog (see section 4.5.2.1) and the rest, by querying data (note that, as previously explained,
in our simulation we did not queried data). Importantly, this is the minimum number of queries
we must pose in order to find all the bases of the domain (see section 3.3.1). Furthermore,
note that about the 30% of n-sized feasible bases generated, are generated by combining (n-1)-
sized candidate sets whereas the rest are generated by ISR. The execution time of our algorithm
is insignificant in front of the cost of querying data. Indeed, all the feasible bases for all the
concepts were generated in less than 10 seconds11 and in general, our algorithm behaves much
better than traditional approaches.

For example, consider again the endDurationPrice concept discussed in this section.
This concept produces 29 feasible bases, verified up to Prop. 6, with the catalog we simulated:

{EndingTime, BeginningDate}
{EndingTime, Money}
{BeginningDate, Money}
{Money, RentalDuration}
{Money, RD-MaximumDuration}
{Money, RD-MinimumDuration}
{Money, RD-Name}
{EndingTime, CarGroup, RentalDuration}
{BeginningDate, CarGroup, RentalDuration}
{Money, CarGroup, RD-TimeUnit}
{EndingTime, CG-Name, RentalDuration}
{EndingTime, CarGroup, RD-Name}
{BeginningDate, CG-Name, RentalDuration}
{BeginningDate, CarGroup, RD-Name}
{Money, CG-Name, RD-TimeUnit}
{EndingTime, CG-Name, RD-Name}
{BeginningDate, CG-Name, RD-Name}
{EndingTime, CarGroup, RD-MaximumDuration, RD-MinimumDuration}
{EndingTime, CarGroup, RD-MaximumDuration, RD-TimeUnit}
{EndingTime, CarGroup, RD-MinimumDuration, RD-TimeUnit}
{BeginningDate, CarGroup, RD-MaximumDuration, RD-MinimumDuration}
{BeginningDate, CarGroup, RD-MaximumDuration, RD-TimeUnit}

11The computer used in this test was equipped with an Intel Core 2 Duo 1.33 GHz processor, 1’99 GB of RAM.

160

{BeginningDate, CarGroup, RD-MinimumDuration, RD-TimeUnit}
{EndingTime, CG-Name, RD-MaximumDuration, RD-MinimumDuration}
{EndingTime, CG-Name, RD-MaximumDuration, RD-TimeUnit}
{EndingTime, CG-Name, RD-MinimumDuration, RD-TimeUnit}
{BeginningDate, CG-Name, RD-MaximumDuration, RD-MinimumDuration}
{BeginningDate, CG-Name, RD-MaximumDuration, RD-TimeUnit}
{BeginningDate, CG-Name, RD-MinimumDuration, RD-TimeUnit}

In an arbitrary database, it seems clear that most of these proposals would be discarded when
querying data. For example, given that most rental agreements span over a fixed number of
days, and that many customers tend to benefit from predefined offers (such as: rent a familiar
car for two days and save up to 20%), {Money, RentalDuration} and the likes do not
seem good candidates. Oppositely, proposals based on dates seem rather accurate. For example,
{EndingTime, BeginningDate} or {BeginningDate, Money} could be interesting
bases, depending on how the dates were stored. Interestingly, had we queried data, the refuted
combinations would have been placed in the candidate sets and therefore, they could have pro-
duced bases of bigger size.

As a remark, alternative key concepts (such as rentalDuration and rentalDuration-
Name for a rentalDuration, or carGroup and carGroupName for a carGroup) pro-
duce exactly the same bases (e.g., {Money, RentalDuration} and {Money, RD-Name}),
and it would be up to the user to decide which is the most interesting for him / her. Indeed, the
user selects those data cubes of interest, by selecting which bases are relevant for him / her.
For example, the endDurationPrice concept has 10 dimensional concepts (see Figure 4.9).
However, if for this fact we are only interested in the {EndingTime, BeginningDate}
base, AMDO discards the rest of dimensional concepts and produce a conceptual schema with
just these two dimensions. Later, as explained in Section 4.3.5, AMDO proposes aggregation
hierarchies for each dimension identified. Relevantly, this is the way AMDO filters dimensional
concepts, not to disturb the end-user with too many results and, unlike current supply-driven
approaches, filter the results proposed by means of the base concept.

4.6 A Practical Case: The TPC-H
The TPC-H [Tra09] is a decision support benchmark, which have been used in Chapter 3 to ex-
emplify how our first approach, i.e., MDBE, works. Although in this section we just focus on
how AMDO applies for TPC-H, our final objective is clear; as shown in Chapter 5, these studies
over the TPC-H lead to a comprehensive framework for analyzing and discussing the differences
between both approaches. Thus, we adapt the TPC-H schema to AMDO. This benchmark intro-
duces a (logical) relational schema and, in principle, it would not fit the assumptions of AMDO,
which works at the conceptual level. However, the TPC-H relational schema introduced is well-
formed and, for this reason, it makes sense to derive an OWL DL ontology from it, by means of
reengineering12.

12The OWL DL ontology derived from the TPC-H relational schema can be downloaded from www.lsi.upc.edu/∼
oromero/TPC-H.owl

161

Concept #Dimensional #Potential FactEstimation
Concepts Measures

Lineitem 77 8 93
Orders 27 13 53

Customer 17 17 51
Partsupp 32 4 40
Supplier 16 8 32

Part 9 8 25
Nation 8 4 12
Region 3 4 11

Table 4.2: AMDO: ranked facts proposed for the TPC-H case study

Analogous to the MDBE analysis over the TPC-H case study, we focus on five interesting
aspects: the specificity of requirements needed, the expressiveness and quality required in the
sources, the degree of automation achieved, the computational complexity of the algorithm and
the quality of results obtained (i.e., the output correctness and the extra knowledge obtained in the
output thanks to the novel contributions of AMDO). Note that our study is exhaustive regarding
the four axis discussed in Section 1.7, and we also provide a study of the performance (and thus,
feasibility, of our proposal).

4.6.1 Requirements Specificity

AMDO is a sequential hybrid approach for deriving the multidimensional schema and there-
fore, it considers both requirements and data sources as first-class citizens. In this approach,
the analysis of the data sources leads the process. Thus, it means that the process starts without
considering the end-user requirements (in the TPC-H case study, represented by the 22 business
queries introduced in the benchmark). After a full supply-driven approach, AMDO filters the
results obtained according to objective evidences, and presents them to the user. In this moment,
the user states his / her requirements by selecting the multidimensional concepts of interest.
Specifically, AMDO starts by analyzing potential facts (see Section 4.3.3). In the supply-driven
stage for the TPC-H case study, AMDO identifies 8 possible facts (we address the reader to Fig-
ure 3.2 in page 57 to recall the TPC-H relational schema): lineitem, orders, partsupp,
part, customer, supplier, nation and region.

We estimate a concept to be a fact by means of the factEstimation quality function (see
Section 4.3.3 for further details), which is defined as:

FactEstimation(M, DC) := M ∗ 2 + DC

where M is the number of potential measures, and DC the number of potential dimensional
concepts of a given ontology concept. Since we consider the TPC-H business queries as the end-
user requirements, at this point, we should expect that the end-user chose lineitem, orders
and supplier as facts of interest. In other words, the end-user would choose 3 out of the 4
better ranked fact candidates proposed by AMDO.

162

Next step in AMDO produces bases of interest for each fact identified. Like in the EU-Car
Rental case study (see Section 4.5.4), in this simulation, we have not verified the base hypotheses
generated with data, since the TPC-H case study does not provide sample data. Although the
TPC-H benchmark provides rules for populating an arbitrary TPC-H relational database, these
rules are oriented to estimate each concept cardinality, but not to simulate a real set of data (i.e.,
with a set of implicit constraints or business rules, which held in data and could be exploited
by the base algorithm). For example, consider the p mfgr attribute. According to the TPC-H
definition, it must be populated with text appended with a digit, like in the [”Manufacturer”,M]
pattern, where M is a random value in [1,5]. Similarly, p brand must be populated with text
appended with a digit, like the [”Brand”,MN] pattern, where N is a random value in [1,5], and M
is defined while generating p mfgr13. Clearly, this kind of rules are not enough for our purpose.
On the contrary, constraints of the kind a customer cannot place two orders during the
same day, or a given supplier only supplies customers of his own country, would be
of our interest. Roughly speaking, by means of populating rules such as the ones introduced in
the TPC-H benchmark, we mostly generate a random set of values, which will not capture the
potential business rules of our domain. Indeed, meaningful candidate keys are hardly generated
by chance, but they are a consequence of implicit or explicit business rules that hold in our
domain and, consequently, in data.

Nevertheless, since we can estimate each attribute cardinality by means of the populating
rules introduced, we have simulated the catalog of an arbitrary TPC-H database. Thus, the de-
termines function does not verify the hypotheses with data, but can apply Prop. 6. Considering
the orders fact, AMDO generates 289 feasible bases for it (the biggest ones compound of 4
concepts). Then, among the bases proposed, the user should choose those of his / her interest,
but browsing 289 bases could be a tough task. Importantly, note that in this simulation we are
just considering hypotheses and not verified bases. Indeed, some of the hypotheses generated
(intuitively, most of them, since they are mostly of 2 or 3-sized combinations), would be re-
jected by the determines function if they were verified with data. In this case, they could have
given rise to other combinations of bigger size (see Prop. 3). Having a look to the semantics
involved in the orders table (see Figure 3.2 in page 57), it is rather intuitive to see that most
(if not all) of the 2 or 3-sized hypotheses will be refuted as bases (for example, {o custkey,
o comment}, {o custkey, o orderstatus, o shippriority} or {o comment,
o orderpriority, o clerk}). Oppositely, we may just expect a bunch of verified bases
compound of, at least, 5 or 6 attributes (note that, by virtue of Prop. 5, if an intermediate set
is not a potential base then, its FD-descendants are not considered and thus, until a combina-
tion of orders attributes are not verified as a base, orders FD-descendants -i.e., customer,
nation and region- will not be considered and combined). For this reason, in a execution
of our algorithm over real-world data, our algorithm would produce a significantly smaller set of
bases among which the user must choose those of his / her interest. .

In the last step, for every concept involved in a selected base, we shape its own dimension
hierarchy by means of part-whole relationships. Note that this step takes advantage of the func-
tional dependencies computed in the first step and, for example, the o custkey concept (one of
the dimensional concepts that we could expect to appear in at least, one selected orders base)

13We address the reader to [Tra09] for further details.

163

Figure 4.14: AMDO: an exemplification of of a directed graph

would produce the graph depicted in Figure 4.14. At this point, it is up to the end-user to tune-up
the hierarchy according to his / her necessities. For example, according to the TPC-H business
queries, the clerk attribute from orders, and n comment and r comment from nation
and region should be discarded, since they are not used in any of the TPC-H queries.

All in all, AMDO minimizes the user interaction, and we just demand his / her participation
to select the multidimensional concepts of interest among those not filtered by AMDO. Interest-
ingly, AMDO does not generate large chunks of results, but filters them according to objective
evidences. Furthermore, AMDO can provide additional knowledge to the user when selecting
knowledge of his / her interest. For example, for every fact we can show the dimensional con-
cepts and measures identified, or even pre-calculate bases or dimension hierarchies to facilitate
his / her decision.

4.6.2 Data Source Expressiveness
AMDO works at the conceptual level and therefore, it requires semantically rich inputs. Indeed,
the supply-driven stage performed in AMDO relies on the quality of the domain picture captured
in the input ontology. Specifically, AMDO asks for:

• A ontology language expressive enough to capture all the domain assertions of interest.
The expressivity needed may vary depending on the organization domain, since some con-
ceptualizations require more expressive ontology languages to capture their concepts and
relationships. In any case, assertions regarding the relationship multiplicities are crucial for
computing AMDO multidimensional patterns. In our example, although the TPC-H con-
ceptualization can be captured using DL-LiteA (and therefore, benefiting from our generic
reasoning algorithm for computing functional dependencies -see Section 4.4.3-), we have
created an ontology in OWL DL notation. The reason is that AMDO disposes of a tool to
automatically generate OWL DL ontologies, which facilitated this pre-process.

• For computing bases, AMDO requires a mapping among the ontology concepts and the
data sources. For instance, preserving the concept names in the implementation would be

164

enough. Anyway, if this information is not available, we can infer this mapping through
any of the approaches presented in the literature for automatic schema matching. As pre-
sented in [RB01], there are plenty of possibilities to choose from. For example, linguistic
approaches such as name matching, may be used as a pre-process in our method. In sys-
tems following the Ontology-Based Data Access (OBDA) paradigm [PLC+08] or from the
Semantic Web area, this mapping is supposed to exist. For the TPC-H case study, we have
developed our own OWL DL ontology from the relational schema provided in [Tra09].
Therefore, this mapping is available since we preserved the relational names.

• Tightly linked to the previous item, we also need to access the data sources to eventually
verify the base hypotheses generated by AMDO with data. In the TPC-H case study,
sample data with which to verify the feasible bases proposed is missing. To overcome
partially this drawback, we have simulated a database catalog by following the TPC-H
populating constraints.

4.6.3 Automation

AMDO’s automation degree is rather high. Indeed, the end-user is only involved in the design
task to state his / her multidimensional requirements:

• After the first stage, AMDO ranks ontology concepts likely to play a factual role, according
to a quality function. It is up to the user to choose the factEstimation function provided or
introduce an ad hoc formula. Next, the user must set a threshold upon which the filtering
task is based on. Finally, he / she must select the facts of his / her interest. In the TPC-H
case study, if we had set the factEstimation threshold at 30, AMDO would have proposed
5 potential facts (see Table 4.2). Eventually, the user would choose the three facts of his /
her interest, as discussed in Section 4.6.1.

• At the end of the second step, verified bases would be ranked according to their sparsity
level and then, presented to the user. Thus, the end-user is responsible for modifying the
threshold provided up to his / her needs. In the TPC-H case study, this threshold does
not apply, since we have not been able to verify base hypotheses with data. Nevertheless,
according to the discussion introduced in Section 4.6.1 and considering the TPC-H queries,
the end-user would not need to choose more than a ten of bases for the three facts of
interest.

• Finally, the third step generates the dimension hierarchies, which are presented to the user
and eventually, tuned-up to meet the end-user requirements. In the TPC-H simulation, the
user just needs to discard those attributes in the directed graphs that are not used in any of
the queries. Specifically, 21 out of the 61 attributes in the ontology should be discarded.

Summing up, AMDO only asks for two input parameters: the quality functions (if we want
to modify them) and the thresholds. Besides this, it does not require any other interaction from
the user but to state the requirements, which are demanded in a guided and comprehensive way.

165

4.6.4 Computational Complexity & Performance
We discuss AMDO’s feasibility by analyzing the computational complexity of the underlying
algorithms. In this section we first discuss of the algorithm for discovering functional dependen-
cies (used to compute the dimensional concepts, measures and dimension hierarchies), and later,
we discuss of the algorithm for computing bases. The execution times presented in this section
refer to a regular desktop computer14:

Computing Functional Dependencies: Since we generated an OWL DL ontology for the TPC-
H case study, we computed the functional dependencies by means of our specific reasoning
algorithm (see Section 4.4.2). As shown in Table 4.2, AMDO discovers, in overall, 189
dimensional concepts (the sum of the second column in the table) and 66 measures (the
sum of the third column). The time needed to compute them is negligible: i.e., less than a
second.

Computing Bases: The TPC-H case study identifies three facts: lineitem, orders and
partsupp. First, note that the results shown in this section refer to feasible bases and
thus, to base hypotheses in the minimal cover not yet verified with data. In overall, AMDO
discovers 289 feasible bases for orders, 728 for partsupp and 1026 for lineitem,
and the time needed to compute them was 15 seconds.

4.6.5 Output Quality
In this section we measure the quality of the output produced by AMDO. We do so by means
of the result correctness (by comparing the output obtained with the multidimensional schema
proposed in the Star Schema Benchmark), and the additional output inferred regarding both, the
Star Schema Benchmark and previous approaches.

4.6.5.1 Output Correctness

We may derive the Star Schema Benchmark from the AMDO output by producing the same
conceptual schema as MDBE and then, generating a logical star schema by means of the design
decisions discussed in Section 3.5.5.1. To produce the same conceptual schema as MDBE, we
just need to select, among results provided by AMDO, those producing the schema depicted in
Figure 3.3 (see page 3.3). It can be achieved as follows:

• At the end of the first stage, choosing lineitem, orders and partsupp as our
facts of interest. Consider the results provided in Table 4.2. Clearly, lineitem is the
most interesting event to analyze in the TPC-H schema and, consequently, it is ranked
in first position. Objectively, it provides 77 dimensional concepts from which a subject
of analysis, containing 8 different measures, can be analyzed from. Similarly, orders
and partsupp provide plenty of multidimensional knowledge, and it is rather logical
that they were ranked in the first positions. However, it is surprising the position of
customer. Objectively, it provides 17 dimensional concepts and 17 different measures

14The computer used in this test was equipped with an Intel Core 2 Duo 1.33 GHz processor and 1’99 GB of RAM.

166

(most of them aggregate measures; see Section 4.3.2 for further details). Indeed, it pro-
vides as many measures as dimensional concepts. On the one hand, this is interesting,
since we have plenty of relevant indicators to analyze customers from. On the other hand,
the amount of dimensional concepts is not that high, and the dimension hierarchies ob-
tained span over three deep levels (customer, nation and region) at most. To some
degree, supplier and part portray a similar scenario, whereas nation and region
are clearly of no interest.

• At the end of the second stage, choosing the bases forming the multidimensional spaces
required for each TPC-H query. For example, considering the TPC-H business queries,
we must select the minimal set of bases containing all the dimensional concepts of inter-
est; i.e., o custkey, o orderstatus, o totalprice, o orderdate, o-
shippriority and o comment. Importantly, note that bases produced by AMDO

are atomic bases regarding the data sources. Thus, aggregated bases (i.e., those implying
aggregation of data to be considered a base) at coarser level are not computed by AMDO,
since they are not keys at the data granularity level provided by the relational sources.
For example, according to the TPC-H queries, the n nationkey attribute by itself is an
interesting base for orders. However, it will only be a base by aggregating data. To con-
sider it, we should choose any atomic base involving o custkey, from which we would
be able to derive, by means of aggregations, this aggregated base.

• Finally, among the graphs produced for each dimensional concept involved in a selected
base, we must choose the attributes considered in any of the queries. Specifically, we must
discard 21 out of the 61 depicted in the TPC-H schema. For example, the p mfgr and
r comment attributes are not demanded by any of the TPC-H queries.

4.6.5.2 Additional Output Inferred

In this section we measure the impact of the main contributions of AMDO on the output. AMDO
leads the whole task from a thorough analysis of the data sources. Consequently, its main con-
tribution is its capability to derive objective analysis evidences that, at first sight, could not be
immediate to identify. This feature can be exploited to derive a whole multidimensional schema
without providing, beforehand, the end-user requirements. Specifically, this feature provides a
novel contribution regarding bases. Consider again the orders fact. As discussed in Section
4.6.4, AMDO generates 289 feasible bases. For our current purpose, let us suppose that they
are, indeed, verified bases. Thus, they would be ranked and presented to the user, according to
its sparsity level. Having a look to the bases proposed, we note that some of them are rather
interesting, despite they are not immediate to see, and likely to be verified with data. Indeed,
this is the novel contribution of discovering bases: on the one hand, they help to filter dimen-
sional concepts of no interest; on the other hand, they provide an insightful evidence to decide
what can be interesting for us. For example, {o orderdate, o shippriority, c mkt-
segment, n nationkey}, which analyzes orders from the perspective of the ordering
data, the shipment priority chosen, the market segment the customer belongs to, and the cus-
tomer nationality. Indeed, note that this base is similar to {o custkey, o orderdate} but,
interestingly, it suggests to identify the customer by the segment market, the shipment

167

priority required and his / her nation, and it is more likely to be verified with data than
{o custkey, o orderdate}. A similar case would be {o orderstatus, o order-
priority, c address, c comment}, which analyzes a shipment from the perspective
of its current status (e.g., delivered, lost, on the way, etc.), its order priority (e.g., urgent, high,
medium, low, etc.), the address it was sent to and comments regarding the whole process. Thus,
bases provide plenty of additional knowledge for a supply-driven stage, which AMDO exploits
to filter the dimensional concepts and facilitate the user task of selecting analysis perspectives of
his / her interest. Similarly, last step shapes dimension hierarchies from directed graphs. Again,
the user may identify relevant data granularity levels or descriptors of interest from the output
proposed by AMDO and eventually, discover unknown analysis perspectives.

Finally, we would like to remark three other relevant features regarding AMDO outputs:

• AMDO is able to derive meaningful aggregation paths to shape the dimension hierarchies.
In the TPC-H case study, this feature does not make the difference, since the relational
schema is well-formed. But, in the general case, AMDO produces hierarchies exploiting
all the conceptual knowledge captured in the input ontology, which is semantically richer
than the domain knowledge captured at the logical level.

• The multidimensional patterns introduced for discovering measures consider the novel
concept of aggregated measures. For example, in the TPC-H case study, by means of Pat-
terns 2 and 2.a introduced in Section 4.3.2, AMDO discovers up to 15 aggregated measures
for the customer concept. Note that orders, lineitem, partsupp and part are
considered bridge-classes for customer, when computing the above mentioned patterns.

• AMDO consider the path semantics when discovering dimensional concepts and measures.
Thus, two concepts related by means of n different paths satisfying the multidimensional
patterns would produce, respectively, n different dimensional concept or measures. For
example, in the TPC-H case study, this is the case of nation and region regarding the
lineitem. Specifically, we can navigate from lineitem to nation (or region)
through orders and customer or by means of partsupp and supplier. Each path
combined with the ending concept semantics produce a different dimensional concept (i.e.,
the supplier nation or the customer nation).

4.7 The AMDO Tool
The AMDO tool was devised by using the Java SKD v1.4.2 for implementing the algorithm
described in this section, and the Protégé-OWL API for manipulating the input ontology. For
this reason, as depicted in Fig. 4.15, the AMDO tool has been integrated with Protégé [fBIR] as
a plug-in. This feature facilitates the use of the tool: we can take advantage of Protégé to loading
and handle an ontology and then, by using the AMDO tab, launch our approach by a single click.

Using the AMDO tool is easy. As shown in Fig. 4.15, we first need to adapt the algorithm
to our needs. As discussed in Section 4.3.1.1 and Section 4.3.2.1, we may relax the multidimen-
sional patterns in the properties frame. There, the user can state the multiplicity looked in each
pattern. Currently, AMDO is still under development, and it is not yet ready to query databases.

168

Figure 4.15: The AMDO App. integrated in Protégé

Thus, by now, we provide the create instance file, which allows to simulate a database catalog
and exploit Prop. 6 in the determines function, when discovering bases for a fact.

Next, by clicking on the create schemes button, we launch AMDO. The interface works as
follows. First, it shows a list of fact candidates (ranked according to the FactEstimation function;
see Section 4.3.3). The user can select a fact to see which dimensions and measures AMDO
proposes for it. Furthermore, AMDO also generates the feasible bases for that fact, so the user
can see which multidimensional spaces can be formed. When a fact is selected, the showing base
frame is intended to show the fact, the dimensions and measures selected and the hierarchies
produced. However, despite the hierarchies are internally computed, this feature is not yet fully
available.

4.8 Conclusions
In this chapter we have presented AMDO: our approach to produce multidimensional schemas
from a domain ontology. First, we have presented a set of patterns to identify each multidimen-
sional concept. Importantly, for dimensional concepts, measures and dimension hierarchies, we
have introduced two different algorithms to compute these patterns: (i) an ad hoc algorithm ex-
ploiting the ontological knowledge contained in expressible DL ontologies, such as OWL DL on-
tologies, which partially benefits from generic DL reasoners; (ii) and a second algorithm based on
DL-LiteA, which can be computed by means of generic DL reasoners such as FaCT++. Whereas
the first algorithm copes with more expressible DL, the second one restricts the expressivity to
the DL-Lite family. In both cases, we have discussed the theoretical computational complexity
of our algorithms and thanks to the AMDO tool, we have also been able to discuss its behavior

169

with real world ontologies, in which turn to have a polynomial computational complexity.
Furthermore, we have proposed an algorithm for generating interesting bases (i.e., composite

keys) from domain ontologies. In our approach, we take advantage of knowledge captured in
the ontology to generate bases hypotheses that are later verified with data. Unlike previous
approaches that addressed this task at the data level, we take advantage of ontological knowledge
that allows to better depict and prune the searching space. As consequence, our approach does
not completely rely on data and it opens new perspectives for data quality processes. We have
shown that our algorithm is sound and complete with regard to knowledge captured in the domain
ontology and the data, and we have presented the feasibility of our method by means of the
statistics raised by the implementation of our algorithm over a case study.

We believe this work to be the first to address the issue of automating the multidimensional
design from ontologies. Up to now, traditional approaches were typically carried out manually or
were designed to work in an automatic way from relational sources. In our approach, AMDO car-
ries out the data warehouse design process from a domain ontology (i.e., at the conceptual level)
which improves the quality of the multidimensional schemas automatically generated. Further-
more, working from ontologies opens new interesting perspectives. For example, we can extend
the data warehouse and OLAP concepts to other areas like the Semantic Web. One consequence
would be that despite the data warehouse design has been typically guided by data available
within the organization, we would be able to integrate external data from the web into our data
warehouse to provide additional up-to-date information about our business domain.

170

Chapter 5

Conclusions and Further Work

“ Satisfaction lies in the effort, not in the attainment, full effort is full victory. ”

Mohandas Karamchand Gandhi

In this thesis dissertation we have introduced two novel approaches for supporting the data
warehouse design task. Previous experiences in this field have shown that the data warehouse
multidimensional conceptual schema must be derived from a hybrid approach: i.e., by consider-
ing both the end-user requirements and the data sources, as first-class citizens. Currently, several
methods (i.e., detailed design approaches) and dissertations (i.e., high level discussions high-
lighting the necessities in each real scenario) for supporting the data warehouse design task have
been introduced in the literature, but none of them provides an integrated and automated solu-
tion embracing both aspects. On the one hand, dissertations about how the design task must be
adapted to every real-world scenario provide an insightful idea of how to proceed in each case.
However, they fail to provide detailed algorithms to undertake this task. On the other hand, de-
tailed methods introduced tend to focus on a narrow-ranged set of scenarios. For example, today,
it is assumed that the approach to follow in a scenario where the end-user requirements are clear
and well-known is completely different from that in which the end-user requirements are not
evident or cannot be easily elicited (for example, this may happen when the users are not aware
of the analysis capabilities of their own sources). Similarly, the need to dispose of requirements
beforehand is smoothed by the fact of having semantically rich data sources. In lack of that,
requirements gain relevance to extract the multidimensional knowledge from the sources.

Importantly, our methods establish a combined and comprehensive framework to decide,
according to the inputs provided in each scenario, which is the best approach to follow. In other
words, we claim to provide two approaches that, combined, turn up to be exhaustive regarding
the scenarios discussed in the literature:

• MDBE follows a classical approach, in which the end-user requirements are well-known
beforehand. This approach benefits from the knowledge captured in the data sources, but

171

guides the design task according to requirements and consequently, it is able to work and
handle semantically poorer data sources. In other words, providing high-quality end-user
requirements, we can guide the process and overcome the fact of disposing of bad quality
(from a semantical point of view) data sources.

• AMDO, as a counterpart, assumes a scenario in which the data sources available are se-
mantically richer. Thus, the approach proposed is guided by a thorough analysis of the data
sources, which is properly adapted to shape the output result according to the end-user re-
quirements. In this context, disposing of high-quality data sources we can overcome the
fact of lacking of very expressive end-user requirements.

The opposite assumptions of each approach are clearly exemplified with the TPC-H case
study used in this document (see Sections 3.5 and 4.6 for a detailed discussion of how every
approach applies to this case study). Consider the two main axis of study discussed in Section
1.6:

Requirements Specificity: MDBE integrates the end-user requirements, which lead the whole
process, in an automated approach. Therefore, the quality and expressiveness of the input
requirements must be high. In the TPC-H case study, this fact is represented by the 22
TPC-H business query. On the contrary, at the beginning of the process, AMDO does not
need the end-user requirements to work. Indeed, results provided by the full supply-driven
approach (plus its filtering steps) carried out first, are eventually shaped by the end-user
decisions a posteriori. In this latter step, the end-user just state his / her requirements by
choosing his / her concepts of interest regarding the results provided. In the TPC-H case
study, it results in selecting 3 facts out of 5, some oout of tens, and shape the end-user
graphs provided for each dimensional concept involved in a selected base.

Data Source Expresiveness: In this case, MDBE is able to even handle denormalized sources
and produce high-quality results. In the TPC-H case study, MDBE has enough by querying
the logical schema, even if it is not well-formed. On the contrary, AMDO requires high-
quality input sources, and it needs to exploit the conceptual information captured in the
TPC-H ontology, a mapping between the conceptual schema and the sources (in our case,
provided by our reengineering task performed to create the TPC-H ontology) and access
the data sources at the instance level (to verify the bases with data).

In short, the requirements / data sources duality introduced in the literature is indeed, carried
over the MDBE / AMDO dichotomy. By means of Figures 1.3 and 1.4 (in pages 14 and 15
respectively), this duality means that each approach is placed in an opposite end of the space
formed by the analysis axis: MDBE at the end of the y axis and AMDO at the end of the x axis.
MDBE assumes high-quality requirements, whereas AMDO assumes high-quality data sources.
Roughly speaking and by means of a slightly language abuse, we say that MDBE is maximal
regarding requirements, and minimal regarding the data sources, whereas AMDO is maximal
regarding the data sources, and minimal regarding requirements.

Furthermore, both approaches are automated at their most, and they provide high-quality
outputs. We can exemplify these assertions with the TPC-H case study:

172

Automation: Although both approaches have opposite assumptions, the user interaction during
the automated processes is minimal. In MDBE, the end-user is responsible for verifying
the output produced in case of relaxing [C5], [C6] or [C7]. Furthermore, he / she may need
to shape the dimension hierarchies when identifying dimensional concepts from denor-
malized data sources. Note, however, that both assumptions cannot be automated working
from relational sources and thus, it is compulsory that the user validates the results pro-
vided. About AMDO, the user is only responsible for providing the quality functions and
thresholds for filtering results obtained in the supply-driven stage.

Quality Output: By means of the TPC-H case study, we have shown that both approaches, de-
spite working from opposite assumptions, are able to produce the same multidimensional
schema: On the one hand, MDBE directly focus on the requirements and, by analyzing the
data sources, it provides schemas that can give answer to the multidimensional queries used
as inputs. On the other hand, AMDO looks for all the multidimensional knowledge cap-
tured in the sources, filters it according to quality indicators and eventually, if we share the
same end-user requirements, it derives an equivalent schema to that produced by MDBE.
This is sound and relevant, since, for the same scenario (i.e., same data sources and same
end-user requirements) we expect to obtain the same result regardless of the approach
chosen. Indeed, the only difference between both approaches is how we want to obtain the
final result (i.e., which is our current scenario). Importantly, we must note that each ap-
proach is exhaustive regarding requirements (in case of working with MDBE) or the data
sources (when working with AMDO) provided. For example, MDBE can compute derived
measures or concept specializations not explicitly captured in the data sources, but present
in the end-user requirements. Similarly, this kind of measures and specializations can only
be identified by AMDO if they are captured in the input ontology. Analogously, this also
happens regarding semantic relationships between multidimensional concepts, aggregate
measures and aggregate bases. The case of the factless facts, however, is slightly differ-
ent. MDBE identifies them by means of requirements, but in AMDO, the quality function
used to identify facts would be crucial. Finally, there is just one matter of difference in
the output produced by both approaches. In any case, AMDO will always provide mean-
ingful aggregation paths (i.e., dimension hierarchies) regarding the knowledge captured in
the ontology. However, MDBE is not able to shape dimension hierarchies when facing
denormalized sources. In this case, the user is responsible for manually shape them.

Summing up, both approaches automate the design task as much as possible. Note that
only the stages devoted to gather / state the end-user requirements are not automated. This
is sound by the inherent nature of this task (i.e., gather high-level requirements and formalize
them). Furthermore, they can derive the same multidimensional schema by considering the same
end-user requirements (e.g., TPC-H business queries) and the same data sources (e.g., the TPC-
H relational schema / ontology). Regarding their feasibility, the computational complexity of
MDBE is considerably smaller than that of AMDO. However, this is sound. MDBE leads the
data source analysis by means of requirements and thus, it is feasible even for large databases.
On the contrary, AMDO starts with a supply-driven approach, which thoroughly analyzes the
data sources. For this reason, AMDO computational complexity is directly affected (specially

173

the base algorithm) by the size of the input ontology and the data sources. Nevertheless, the tests
carried out for AMDO raised good answer times.

Finally, note that the combination of our approaches establish a work framework covering
all the scenarios discussed in the literature: from cases in which the end-user requirements are
clear and available beforehand, to those in which they are not; and from cases providing se-
mantically rich data source conceptualizations, to those poorly capturing the domain semantics.
Thus, any intermediate scenario is covered by combining both approaches. Furthermore, AMDO
and MDBE denote the minimal set of assumptions allowing to fully automate the process. For
example, if we do not dispose of end-user requirements beforehand nor of a reliable domain
conceptualization, we will be forced to manually carry out some of the processes in the design
task. In other words, to automate the process and obtain high-quality results we need either a fair
picture of the business domain, a clear idea of the multidimensional requirements or an interme-
diate situation in which the lack of a rich domain conceptualization is (partially) replaced with
providing some of the multidimensional requirements, or viceversa.

5.1 Further Work
The two novel methods introduced in this thesis dissertation, provide a formal and comprehensive
framework from which extend our current work. Basically, we focus on four main scenarios:

The data warehouse evolution schema: One of the issues gaining more relevance in the liter-
ature, is the maintenance and evolution of the conceptual schema of the data warehouses
[RALT06]. In this sense, we do believe that both approaches can contribute to develop
conceptual schemas and keep track of their evolution. On the one hand, MDBE estab-
lishes a framework that can be used incrementally. By launching new queries, the user can
see the impact on the final conceptual schema. Thus, the MDBE tool may allow to easily
delete / add new queries and keep track of the conceptual schema at each point. On the
other hand, AMDO benefits from the reasoning services provided by DL languages and
thus, we can extend our approach to consider temporal Description Logics, which would
facilitate the data warehouse schema evolution.

Integrating the ETL process and the conceptual schema task designs: Automating the concep-
tual schema data warehouse design allows to identify many details relevant for the extrac-
tion, transformation and loading of data into the data warehouse. In this sense, notions like
aggregate measures or bases can help in the ETL design process. In case of using AMDO,
we may benefit from the reasoning services provided by DL.

In this work, we have identified different criteria to be considered when implementing the con-
ceptual schema derived at the logical level. One key question to answer when performing
this mapping is: which Cells we should materialize? OLAP functionality is based on fast
analysis and thus, views and data materialization providing a better performance are a
must. The framework established by MDBE provides relevant criteria to be considered for
automating this process. For example, according to the requirements provided for produc-
ing the conceptual schema, or by means of the criteria introduced in Section 3.2 to avoid
the potential translation problems when mapping the multidimensional algebra to SQL.

174

The analysis of the mapping between the multidimensional algebra and SQL queries also opens
new interesting perspectives. We say that a SQL sentence is a cube-query if it captures
a multidimensional navigation path (see Section 3.2). Therefore, once the conceptual
schema is generated, we can identify which navigation path produces each SQL query
used as input. Discovering these navigation paths provide a novel approach for query
recommendations for OLAP tools.

175

176

Appendices

177

Appendix A

A Tractable Description Logic: DL-LiteA

In Description Logics (DLs), objects with common properties are grouped into concepts, and the
properties are represented through roles, denoting binary relations over the domain of interest.
Complex concepts and roles are built inductively by starting from atomic ones (i.e., simple con-
cept and role names) and applying a set of constructs. Different from traditional DLs, and follow-
ing what is done in other conceptual modeling formalisms such as UML class diagrams [Grob],
DL-LiteA distinguishes between (abstract) objects and (data) values. Hence, it distinguishes con-
cepts, denoting sets of objects, from value-domains, denoting sets of values, and roles, denoting
binary relations between objects, from attributes, denoting binary relations between objects and
values. More precisely, concepts, roles, value-domains, and attributes in DL-LiteA are formed
starting from atomic elements according to the following syntax (where the distinction between
basic and arbitrary elements is relevant in what follows):

atomic basic arbitrary
concept

role
value-domain

attribute

A
P

U

B −→ A | ∃Q | δ(U)
Q −→ P | P−
E −→ ρ(U)
V −→ U

C −→ B | ¬B
R −→ Q | ¬Q
F −→ >D | T1 | · · · | Tn

W −→ V | ¬V

Above, δ(U) denotes the domain of U , i.e., the set of objects that U relates to values; ρ(U)
denotes the range of U , i.e., the set of values that U relates to objects; >D is the universal
value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-domains, corresponding to
data types, such as string, integer, etc. In the following, let Inv(Q) = P− when Q = P ,
and Inv(Q) = P when Q = P−. Impo

In DL-LiteA, knowledge about the domain is represented by means of an ontology (or knowl-
edge base), consisting of a TBox, encoding intensional knowledge, and an ABox, encoding
extensional knowledge on specific objects. Specifically, a DL-LiteA TBox is constituted by a set
of assertions of the form:

B v C, Q v R, E v F, V v W, (funct Q), (funct U),

which respectively denote an inclusion between a basic and an arbitrary concept, role, value-

179

domain, and attribute, and functionality on a role and on an attribute1. As for the ABox, we
introduce two disjoint alphabets, ΓO of object constants denoting objects, and ΓV of value con-
stants denoting data values. A DL-LiteA ABox is a finite set of membership assertions of the
form (where a, b ∈ ΓO and c ∈ ΓV):

A(a), P (a, b), U(a, c).

Definition. A DL-LiteA ontology O is a pair 〈T ,A〉, where T is a DL-LiteA TBox, A is a
DL-LiteA ABox, and the following conditions are satisfied:

(1) for each atomic role P , if either (funct P) or (funct P−) occur in T , then T does not
contain assertions of the form Q v P or Q v P− (for Q a basic role);

(2) for each atomic attribute U , if (funct U) occurs in T , then T does not contain assertions of
the form V v U (for V an atomic attribute).

Intuitively, these two conditions say that, in a DL-LiteA TBox, roles and attributes occurring
in functionality assertions cannot be specialized. These conditions are crucial for the tractability
of reasoning [PLC+08].

The semantics of DL-LiteA is given in terms of FOL interpretations. An interpretation I =
(∆I , ·I) consists of a first order structure over the interpretation domain ∆I that is the disjoint
union of ∆I

O and ∆I
V , and of an interpretation function ·I such that aI ∈ ∆I

O for all a ∈ ΓO,
cI ∈ ∆I

V for all c ∈ ΓV , and such that the following conditions are satisfied (below, o, o′ ∈ ∆I
O,

and v ∈ ∆I
V):

AI ⊆ ∆IO
(∃Q)I = {o | ∃o′. (o, o′) ∈ QI}

(δ(U))I = {o | ∃v. (o, v) ∈ UI}
(¬B)I = ∆IO \ BI

TIi ⊆ ∆IV
>ID = ∆IV

(ρ(U))I = {v | ∃o. (o, v) ∈ UI}

PI ⊆ ∆IO ×∆IO
(P−)I = {(o, o′) | (o′, o) ∈ PI}
(¬Q)I = (∆IO ×∆IO) \QI

UI ⊆ ∆IO ×∆IV
(¬V)I = (∆IO ×∆IV) \ V I

We assume that the unique name assumption holds, i.e., different (object and value) constants
are interpreted as different domain elements.

We define now when an interpretation I satisfies a TBox or ABox assertion. Specifically, I
satisfies:

• α1 v α2, if αI1 ⊆ αI2 ;

• (funct β), where β is either P , P−, or U , if (o, e1) ∈ βI and (o, e2) ∈ βI implies
e1 = e2, for each o ∈ ∆I

O, and e1, e2 in either ∆I
O or ∆I

V ;

• A(a) if aI ∈ AI , P (a, a′) if (aI , a′I) ∈ P I , and U(a, c) if (aI , cI) ∈ UI .

1Note that an arbitrary element cannot be placed at the left side of a subsumption assertion. This must be guaranteed
to preserve the complexity properties of DL-LiteA.

180

A model of an ontology O (resp., TBox T) is an interpretation I that satisfies all assertions in
O (resp., T). An ontology O (resp., TBox T) is satisfiable if it has at least one model, and O
(resp., T) logically implies an assertion α, denoted O |= α (resp., T |= α), if α is satisfied in all
models of O (resp., T).

A conjunctive query (CQ) q over an ontology O is an expression of the form q(~x) ←
body(~x, ~y), where ~x are the so-called distinguished variables, ~y are the non-distinguished vari-
ables, and body(~x, ~y) is a set of atoms of the form A(xo), P (xo, x

′
o), Ti(xv), or U(xo, xv), where

xo, x′o are variables in ~x or ~y or constants in ΓO, and xv is a variable in ~x or ~y or a constant in ΓV .
Notice that CQs corresponds to SELECT-PROJECT-JOIN SQL queries, and hence are the queries
most commonly posed to relational DBs. The query q(~x) ← body(~x, ~y) is interpreted in I as the
set qI of tuples ~e ∈ ∆I ×· · ·×∆I such that, when we assign ~e to the variables ~x, the first-order
logic formula ∃~y.ϕ(~x, ~y), where ϕ(~x, ~y) is the conjunction of atoms in body(~x, ~y), evaluates to
true in I. The reasoning service we are interested in is (conjunctive) query answering: given
an ontology O and a query q over O, return the certain answers to q over O, i.e., all tuples ~t of
elements of ΓV ∪ ΓO such that ~tI ∈ qI for every model I of K, denoted K |= q(~t).

As shown in [CDGL+07, PLC+08], all forms of inference over a DL-Lite ontology (e.g.,
satisfiability, logical implication, and CQ answering) can be done in polynomial time in the
size of the TBox, and in AC0

2 in the size of the ABox (i.e., w.r.t. data complexity [Var82]).
In particular, to compute the certain answers of a CQ q, we can: (i) by using the assertions in
the TBox, rewrite q to a union Q of CQs (which is directly translatable to an SQL query), and
(ii) evaluate Q over the database corresponding to the ABox assertions. In this way, all forms
of inference in DL-LiteA can be carried out by exploiting standard commercial relational DB
technology for manipulating the data (i.e., the ABox).

2AC0 is the complexity class that corresponds to the complexity in the size of the data of evaluating a first-order (i.e.,
SQL) query over a relational database (see, e.g., [AHV95]).

181

182

Appendix B

EU-Car Rentals

This appendix presents the EU-Car Rentals case study. For the sake of understandability, we
present here the UML class diagram, which is divided in thematic areas: Branch, Rental Agree-
ment, Rental Agreement subclasses and Cars, Discounts and Enumerations (a detailed discussion
about this case study can be found in [FQO03]). We also provide a OWL DL ontology capturing
the same conceptual domain in the http://www.lsi.upc.edu/∼ oromero/EUCarRental.owl URL
address.

183

Figure B.1: EU-Car Rentals class diagram: brand

184

Figure B.2: EU-Car Rentals class diagram: rental agreement

185

Figure B.3: EU-Car Rentals class diagram: rental agreement subclasses

186

Figure B.4: EU-Car Rentals class diagram: cars, discounts and enumerations

187

188

Appendix C

List of Publications

This appendix presents the list of publications concerning this thesis. It is divided in 3 sections,
each one referring to the related work (chapter 2), the MDBE (chapter 3) and AMDO (chapter 4)
chapters.

C.1 Related to Chapter 2

• Oscar Romero and Alberto Abelló. A Survey of Multidimensional Modeling Methodolo-
gies. International Journal of Data Warehousing and Mining (IJDWM). Volume 5(2). IGI
Publishing, April - June 2009. Pages 1-23.

Abstract: In the last years, data warehousing systems have gained relevance to support
decision making within organizations. The core component of these systems is the data
warehouse and nowadays it is widely assumed that the data warehouse design must follow
the multidimensional paradigm. Many methods have been presented to support the mul-
tidimensional design of the data warehouse. First methods introduced were requirement-
driven but the semantics of a data warehouse (since the data warehouse is the result of
homogenizing and integrating relevant data of the organization in a single and detailed
view of the organization business) require to also consider data sources along the design
process. Considering data sources gave rise to several data-driven methods that automate
the data warehouse design process from relational data sources. Currently, research on
multidimensional modeling is still a hot topic and we have two main research lines. On
the one hand, new hybrid automatic methods have been introduced proposing to combine
data-driven and requirement-driven approaches. These methods focus on automating the
whole process and improving the feedback retrieved by each approach to produce better
results. On the other hand, new approaches focus on considering other kind of structured
data sources that have gained relevance in the last years such as ontologies or XML. In this
paper we present a survey of multidimensional design methods. We present the most rele-

189

vant methods introduced in the literature and a detailed comparison showing main features
of each approach.

Scope: This publication maps to Section 2.1, as it discusses the current state of the art for
multidimensional modeling. It introduces the comparison between the methods (as well as
the criteria used for the comparison) and sets a discussion about the conclusions reached.

• Alberto Abelló and Oscar Romero. On-line Analytical Processing. In Ling Liu and M.
Tamer Özsu, editors, Encyclopedia of Database Systems, pages 19491954. Springer, 2009.

Abstract: The Encyclopedia of Databases provide a comprehensive reference to about
1,400 entries, covering key concepts and terms in the broad field of database systems.
Entries include in-depth essays and shorter descriptions of terms, definition, key words,
historical background, illustrations, key applications, and a bibliography. It provides a
simple-to-use alphabetical format and extensive cross references enable both user-friendly
and efficient searches.

The Encyclopedia of Databases, a comprehensive work, provides easy access to relevant
information on all aspects of very large databases. This encyclopedia features alphabetical
organization of concepts covering main areas of very large databases. These 1000 entries
offer convenient access to information in the field of databases with definitions and illus-
trations of basic terminology, concepts, methods, and algorithms, references to literature,
and cross-references to other entries and journal articles. Topics for the encyclopedia were
selected by a distinguished international advisory board, and written by world class experts
in the field.

The Encyclopedia of Databases is designed to meet the needs of research scientists, profes-
sors and graduate-level students in computer science and engineering. This encyclopedia
is also suitable for practitioners in industry.

Abstract: In this publication we properly define OLAP, and provide an insightful look
at the historical background and current state of the art concerning this concept. Part of
this publication maps to Section 2.2.

C.2 Related to Chapter 3

• Oscar Romero and Alberto Abelló. On the Need of a Reference Algebra for OLAP. In
proceedings of the 9th International Conference on Data Warehousing and Knowledge
Discovery (DaWaK’07). Lecture Notes of Computer Science. Volume 4654. Springer,
2007. Pages 99-110.

190

Abstract: Although multidimensionality has been widely accepted as the best solution
for conceptual modelling, there is not such agreement about the set of operators to handle
multidimensional data. This paper presents a comparison of the existing multidimensional
algebras trying to find a common backbone, as well as it discusses the necessity of a
reference multidimensional algebra and the current state of the art.

Scope: This paper maps to Sections 2.2 and 3.2.1.

• Oscar Romero and Alberto Abelló. Improving Automatic SQL Translation for ROLAP
Tools. In proceedings of the 9th Jornadas en Ingenierı́a del Software y Bases de Datos
(JISBD’05). Volume 284. Thomson-Paraninfo, 2005. Pages 123-130.

Abstract: In the last years, despite a vast amount of work have been devoted to model-
ing multidimensionality, the multidimensional algebra translation to SQL have been over-
looked. ROLAP tools automatically generate a cube-query according to the operations per-
formed by the user. The SQL translation does not represent a problem when considering
isolated multidimensional operations but when mixing up together modifications brought
about by a set of operations in the same cube-query, some conflicts could emerge depend-
ing on the operations involved. Therefore, if these problems are not detected and treated
appropriately, the automatic translation can retrieve unexpected results. In this paper, we
define and classify conflicts raised when automatically translating a multidimensional al-
gebra to SQL, and analyze how to solve or minimize their impact.

Scope: This paper maps to Section 3.2.2.

• Oscar Romero and Alberto Abelló. Multidimensional Design by Examples. In proceed-
ings of the 8th International Conference on Data Warehousing and Knowledge Discovery
(DaWaK’06). Lecture Notes of Computer Science. Volume 4081. Springer, 2006. Pages
85-94.

Abstract: In this paper we present a method to validate user multidimensional require-
ments expressed in terms of SQL queries. With this aim, our approach automatically gen-
erates and proposes the set of multidimensional schemas satisfying the user requirements,
from the organizational relational schemas. If no multidimensional schema is generated
for a query, we can state that this requirement is not multidimensional.

Scope: This paper is a preliminary version of Section 3.4.

• Oscar Romero and Alberto Abelló. Automatic Multidimensional Design of Data Ware-
houses from Requirements. Technical Report LSI-09-25-R. Departament de Llenguatges
i Sistemes Informàtics (Universitat Politècnica de Catalunya), 2009 (submitted for publi-
cation).

191

Abstract: The ideal scenario to derive the multidimensional conceptual schema of a data
warehouse would embrace a hybrid approach (i.e., a combined data-driven and requirement-
driven approach). Thus, the resulting multidimensional schema would satisfy the end-
user requirements and it would have been conciliated with the data sources. However,
current automatable methodologies follow a full data-driven approach whereas current
requirement-driven approaches are not automatable as they tend to work with requirements
at a high level of abstraction. In this paper we present a novel method that derives con-
ceptual multidimensional schemas from relational sources bearing in mind the end-user
requirements. The most relevant step within our methodology is the MDBE method that
introduces three main benefits with regard to previous approaches: (i) the MDBE method
is a fully automatic approach and therefore, it also handles requirements in an automatic
way. (ii) Unlike data-driven methods, we focus on data of interest for the end-user. How-
ever, the user may not know all the potential analysis contained in the data sources and,
unlike requirement-driven approaches, MDBE is able to propose new interesting multidi-
mensional knowledge related to concepts already queried by the user. (iii) Finally, MDBE
proposes meaningful multidimensional schemas derived from a validation process. There-
fore, schemas proposed are sound and meaningful.

Scope: This paper is an extended version of the previous paper and maps to the whole
Section 3.4. Furthermore, it is a revisited work including all the last advances we made in
the last two years that has been submitted to a journal. It also includes Sections 3.1, 3.3
and 3.5.

• Oscar Romero and Alberto Abelló. MDBE: Automatic Multidimensional Modeling. In
proceedings of the 27th International Conference on Conceptual Modeling (ER’08). Demo
Track. Lecture Notes of Computer Science. Volume 5231. Springer, 2008. Pages 534-535.

Abstract: The goal of this demonstration is to present MDBE, a tool implementing
our methodology for automatically deriving multidimensional schemas from relational
sources, bearing in mind the end-user requirements. Our approach starts gathering the
end-user information requirements that will be mapped over the data sources as SQL
queries. Based on the constraints that a query must preserve to make multidimensional
sense, MDBE automatically derives multidimensional schemas which agree with both the
input requirements and the data sources.

Scope: This paper maps to Section 3.6.

C.3 Related to Chapter 4
• Oscar Romero and Alberto Abelló. Generating Multidimensional Schemas from the Se-

mantic Web. In proceedings of the CAiSE’07 Forum at the 19th International Conference

192

on Advanced Information Systems Engineering (CAiSE Forum’07). Volume 247. CEUR-
WS.org, 2007. Pages 69-72.

Abstract: In this paper, we introduce a semi-automatable method aimed to find the busi-
ness multidimensional concepts from an ontology representing the organization domain.
With these premises, our approach falls into the Semantic Web research area, where ontolo-
gies play a key role to provide a common vocabulary describing the meaning of relevant
terms and relationships among them.

Scope: This poster presents a preliminary version of the ideas discussed in Chapter 4.

• Oscar Romero and Alberto Abelló. Automating Multidimensional Design from Ontolo-
gies. In proceedings of the ACM 10th International Workshop on Data Warehousing and
OLAP (DOLAP’07). ACM, 2007. Pages 1-8.

Abstract: This paper presents a new approach to automate the multidimensional design
of Data Warehouses. In our approach we propose a semi-automatable method aimed to find
the business multidimensional concepts from a domain ontology representing different and
potentially heterogeneous data sources of our business domain. In short, our method iden-
tifies business multidimensional concepts from heterogeneous data sources having nothing
in common but that they are all described by an ontology.

Scope: This paper maps to Section 4.3. It presents a preliminary version of AMDO’s
core, and a preliminary version of the algorithm for computing bases in Section 4.5.1.

• Oscar Romero and Alberto Abelló. A Framework for Multidimensional Design of Data
Warehouses from Ontologies. Technical Report LSI-09-26-R. Departament de Llenguat-
ges i Sistemes Informàtics (Universitat Politècnica de Catalunya), 2009 (submitted for
publication).

Abstract: Some research efforts have proposed the automation of the data warehouse
design in order to free this task of being (completely) performed by an expert, and fa-
cilitate the whole process. Most advanced approaches exclusively work over relational
sources and perform a detailed analysis of the data sources to identify the multidimen-
sional concepts in a reengineering process. Starting from a logical schema, however, may
present some inconveniences. A logical schema is tied to the design decisions made when
devising the system and these decisions either made to fulfill the system requirements (for
instance, improve query answering, avoid insertion / deletion anomalies, preserve features
inherited from legacy systems, etc.) or naively made by nonexpert users, have a big impact
on the quality of the multidimensional schemas got by current automatable approaches.
In this paper, we introduce our approach for automatically deriving the multidimensional
schema from a domain ontology. Our goals are mainly two: i) we want to improve the

193

quality of the output got (by working over a conceptual formalization of the domain in-
stead of a logical one) and ii) we want to automate the process. This second goal is the
main reason for choosing ontologies instead of other conceptual formalizations, as ontol-
ogy languages provide reasoning services that will facilitate the automation of our task.

Scope: This paper maps to Sections 4.1, 4.2, 4.3 and 4.4.2. It is an extended and im-
proved version of previous paper that has been submitted to a journal.

• Oscar Romero and Alberto Abelló. Discovering Meaningful Keys from Ontologies. Tech-
nical Report LSI-09-24-R. Departament de Llenguatges i Sistemes Informàtics (Universi-
tat Politècnica de Catalunya), 2009.

Abstract: Object identification is a crucial step in most information systems. Nowa-
days, we have many different ways to identify entities such as surrogates, keys and object
identifiers. However, not all of them guarantee the entity identity. Many works have been
introduced in the literature for discovering meaningful keys, but all of them work at the
logical or data level and they share some inherent constraints. Addressing it at the logical
level, we may miss some important data dependencies, while the cost to identify data de-
pendencies at the data level may not be affordable. In this paper we propose an approach
for discovering meaningful keys from domain ontologies. In our approach, we guide the
process at the conceptual level and we introduce a set of pruning rules for improving the
performance by reducing the number of key hypotheses generated and to be verified with
data. Finally, we also introduce a simulation over a real world case study to show the
feasibility of our method.

Scope: This paper maps to Section 4.5.1. It introduces a detailed and improved version
of our previous algorithm for discovering bases (i.e., keys).

• Oscar Romero, Diego Calvanese, Alberto Abelló and Mariano Rodrı́guez. Discovering
Functional Dependencies from Ontologies. In proceedings of the ACM 12th International
Workshop on Data Warehousing and OLAP (DOLAP’09). ACM, 2009. Pages 1-8.

Abstract: Discovering functional dependencies is a fundamental step in the design of
relational databases and in most system reengineering processes. Typically, this task has
been performed over relational databases, at the logical or physical level. Those works
addressing it at the logical level, often make some unrealistic assumptions (such as com-
pleteness of the data structures or similar names for semantically related attributes), while
those addressing it at the physical level propose solutions that are computationally expen-
sive, whose performance deteriorates with a large number of attributes or instances, and
which cannot tolerate erroneous data. To overcome these limitations, while also better cap-
turing data dependencies, we propose to rely instead on a conceptual representation of the
domain of interest, specified in ER and formalized through a domain ontology expressed

194

in the DL-Lite Description Logic.We propose an algorithm to discover functional depen-
dencies from the domain ontology that exploits the inference capabilities of DL-Lite, thus
fully taking into account the semantics of the domain. We also provide an evaluation of
our approach in a real-world scenario.

Scope: This paper focuses on using generic reasoning for computing the multidimen-
sional patterns over ontologies. Thus, it maps to Sections 4.4.3 and 4.4.

195

196

Bibliography

[ACK+07] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over Extended ER Models. In Proc. of 26th Int. Conf. on Conceptual
Modeling, volume 4801 of Lecture Notes in Computer Science, pages 277–292.
Springer, 2007.

[AGS97] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional Databases.
In Proc. of the 13th Int. Conf. on Data Engineering, pages 232–243. IEEE, 1997.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[ASS03] A. Abelló, J. Samos, and F. Saltor. Implementing Operations to Navigate Semantic
Star Schemas. In Proc. of 6th Int. Workshop on Data Warehousing and OLAP,
pages 56–62. ACM, 2003.

[ASS06] A. Abelló, J. Samos, and F. Saltor. YAM2 (Yet Another Multidimensional Model):
An Extension of UML. Information Systems, 31(6):541–567, 2006.

[BCC+01] A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and S. Paraboschi. Designing Data
Marts for Data Warehouses. ACM Trans. Softw. Eng. Methodol., 10(4):452–483,
2001.

[BCG05] G.D. Berardi, D. Calvanese, and D. Giacomo. Reasoning on UML Class Dia-
grams. Artificial Intelligence, 168(1-2):70–118, 2005.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[BL04] M. J. A. Berry and G. S. Linoff. Data Mining Techniques: For Marketing, Sales,
and Customer Relationship Management. John Wiley & Sons, Inc., 2004.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), 2001.

197

[BvE99] M. Böhnlein and A. Ulbrich vom Ende. Deriving Initial Data Warehouse Struc-
tures from the Conceptual Data Models of the Underlying Operational Information
Systems. In Proc. of 2nd Int. Workshop on Data Warehousing and OLAP, pages
15–21. ACM, 1999.

[CCDGL02] A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini. A Formal Framework
for Reasoning on UML Class Diagrams. In Proc. of 11th Int. Symposium on Foun-
dations of Intelligent Systems, volume 2366 of Lecture Notes of Computer Science,
pages 503–513. Springer, 2002.

[CCS93] E. F Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On Line Analytical
Processing) to Users-Analysts: an IT Mandate. E. F. Codd and Associates, 1993.

[CDGL01] D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification Constraints and
Functional Dependencies in Description Logics. In Proc. of IJCAI 2001, pages
155–160, 2001.

[CDGL+06] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
Complexity of Query Answering in Description Logics. In Proc. of Knowledge
Representation 2006, pages 260–270, 2006.

[CDGL+07] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite
Family. J. of Automated Reasoning, 39(3):385–429, 2007.

[CDGL+08] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Path-
Based Identification Constraints in Description Logics. In Proc. of 11th Int. Conf.
on Principles of Knowledge Representation and Reasoning, pages 231–241. AAAI
Press, 2008.

[CDGL+09] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Concep-
tual Modeling for Data Integration. In A. Borgida, V. Chaudhri, P. Giorgini, and
E. Yu, editors, Essays in Honour of John Mylopoulos, Lecture Notes in Computer
Science. Springer, 2009.

[Che76] P. P. S. Chen. The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CKV90] S. S. Cosmadakis, P. C. Kanellakis, and M. Vardi. Polynomial-Time Implication
Problems for Unary Inclusion Dependencies. J. of the ACM, 37(1):15–46, January
1990.

[CLN98] D. Calvanese, M. Lenzerini, and D. Nardi. Description Logics for Conceptual
Data Modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–264. Kluwer Academic Publishers, 1998.

[CMTV00] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest
Pair Queries in Spatial Databases. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, pages 189–200. ACM, 2000.

198

[Cod72] E. F. Codd. Relational Completeness of Data Base Sublanguages. Database Sys-
tems, pages 65–98, 1972.

[Cod90] E. F. Codd. The Relational Model for Database Management, Version 2. Addison-
Wesley, 1990.

[CT97] L. Cabibbo and R. Torlone. Querying Multidimensional Databases. In Proc. of the
6th International Workshop on Database Programming Languages, volume 1369
of LCNS, pages 319–335. Springer, 1997.

[CT98a] L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Databases.
In Proc. of 6th Int. Conf. on Extending Database Technology, volume 1377 of
Lecture Notes of Computer Science, pages 183–197. Springer, 1998.

[CT98b] L. Cabibbo and R. Torlone. From a Procedural to a Visual Query Language for
OLAP. In Proc. of the 10th Int. Conf. on Scientific and Statistical Database Man-
agement, pages 74–83. IEEE, 1998.

[DKM08] J. Demetrovics, G.O.H. Katona, and D. Miklós. Functional Dependencies Dis-
torted by Errors. Discrete Applied Mathematics, 156(6):862–869, 2008.

[DT95] J. Demetrovics and V. D. Thi. Some Remarks On Generating Armstrong And
Inferring Functional Dependencies Relation. Acta Cybern., 12(2):167–180, 1995.

[fBIR] Stanford Center for Biomedical Informatics Research. Protégé-OWL API.
http://protege.stanford.edu/plugins/owl/api/ (last access 17/12/2009).

[FBSV00] E. Franconi, F. Baader, U. Sattler, and P. Vassiliadis. Multidimensional Data Mod-
els and Aggregation. In Fundamentals of Data Warehousing. Springer, 2000. M.
Jarke, M. Lenzerini, Y. Vassilious and P. Vassiliadis editors.

[FK04] E. Franconi and A. Kamble. The GMD Data Model and Algebra for Multidi-
mensional Information. In Proc. of the 16th Int. Conf. on Advanced Information
Systems Engineering, volume 3084 of Lecture Notes of Computer Science, pages
446–462. Springer, 2004.

[FQO03] Leonor Frı́as, Anna Queralt, and Antoni Olivé. EU-Rent Car Rentals Specifi-
cation. Technical report, ”Departament de Llenguatges i Sistemes Informtics”,
2003. http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=690 (last acc-
cess 17/12/2009).

[FS99] P. A. Flach and I. Savnik. Database Dependency Discovery: A Machine Learning
Approach. AI Commun., 12(3):139–160, 1999.

[GDD07] D. Gaševic, D. Djuric, and V. Devedžic. MDA-based Automatic OWL Ontology
Development. Int. Journal on Software Tools for Technology Transfer, 9(2):103–
117, 2007.

199

[GL97] M. Gyssens and L. Lakshmanan. A Foundation for Multi-dimensional Databases.
In Proc. of 23rd Int. Conf. on Very Large Data Bases, pages 106–115. Morgan
Kaufmann, 1997.

[GMR98] M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. Int. Journal of Cooperative Information Systems,
7(2-3):215–247, 1998.

[Goo] Google. Google Scholar. http://scholar.google.com/ (last access 17/12/2009).

[GR98] M. Golfarelli and S. Rizzi. Methodological Framework for Data Warehouse De-
sign. In Proc. of 1st ACM Int. Workshop on Data Warehousing, pages 3–9. ACM,
1998.

[GR09] M. Golfarelli and S. Rizzi. Data Warehouse Design. Modern Principles and
Methodologies. McGraw-Hill, 2009.

[GRG05] P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented Requirement Analysis for
Data Warehouse Design. In Proc. of 8th Int. Workshop on Data Warehousing and
OLAP, pages 47–56. ACM Press, 2005.

[Groa] Object Management Group. Object Constraint Language (OCL), Version
2.0. http://www.omg.org/technology/documents/formal/ocl.htm (last access
17/12/09).

[Grob] Object Management Group. Unified Modeling Language (UML), Version
2.2. http://www.omg.org/technology/documents/formal/uml.htm (last access
17/12/09).

[Har] Harzing.com. Publish or Perish. www.harzing.com/pop.htm (last access
17/12/2009).

[HCTJ93] J.L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contribution to a Theory
of Database Reverse Engineering. In Proc. of the 1st Working Conf. on Reverse
Engineering, pages 161–170. IEEE, 1993.

[HLV00] B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual Data Warehouse
Modeling. In Proc. of 2nd Int. Workshop on Design and Management of Data
Warehouses, page 6. CEUR-WS.org, 2000.

[HM01] V. Haarslev and R. Möller. Description of the RACER System and its Applica-
tions. In Working Notes of the 2001 Int. Description Logics Workshop. CEUR-
WS.org, 2001.

[HM08] T. Halpin and T. Morgan. Information Modeling and Relational Databases. Mor-
gan Kauffman, 2008.

200

[Hor98] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc.
of 6th Conf. on Principles of Knowledge Representation and Reasoning, pages
636–649. Morgan Kaufmann, 1998.

[HS97] M-S. Hacid and U. Sattler. An Object-Centered Multi-dimensional Data Model
with Hierarchically Structured Dimensions. In Proc. of IEEE Knowledge and
Data Engineering Exchange Workshop. IEEE, 1997.

[HS98] M-S. Hacid and U. Sattler. Modeling Multidimensional Database: A formal
Object-Centered Approach. In Proc. of the 6th European Conference on Infor-
mation Systems, 1998.

[Inm92] W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc., 1992.

[JHP04] M. R. Jensen, T. Holmgren, and T. B. Pedersen. Discovering Multidimensional
Structure in Relational Data. In 6th Int. Conf. on Data Warehousing and Knowl-
edge Discovery, volume 3181 of Lecture Notes of Computer Science, pages 138–
148. Springer, 2004.

[Kim96] R. Kimball. The Data Warehouse Toolkit: Practical Techniques for Building Di-
mensional Data Warehouses. John Wiley & Sons, Inc., 1996.

[Klu82] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Lan-
guages Having Aggregate Functions. Journal of the Association for Computing
Machinery., 29(3):699–717, 1982.

[KRTR98] R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data
Warehouses. John Wiley & Sons, Inc., 1998.

[Lar99] K.S. Larsen. On Grouping in Relational Algebra. Int. Journal of Foundations of
Computer Science., 10(3):301–311, 1999.

[LAW98] W. Lehner, J. Albrecht, and H. Wedekind. Normal Forms for Multidimensional
Databases. In Proc. of 10th Int. Conf. on Statistical and Scientific Database Man-
agement, pages 63–72. IEEE, 1998.

[LBMS02] B. List, R. M. Bruckner, K. Machaczek, and J. Schiefer. A Comparison of Data
Warehouse Development Methodologies Case Study of the Process Warehouse.
In Proc. of 13th Int. Conf. on Database and Expert Systems Applications, volume
2453 of Lecture Notes of Computer Science, pages 203–215. Springer, 2002.

[Leh98] W. Lehner. Modelling Large Scale OLAP Scenarios. In Proc. of 6th Int. Conf.
on Extending Database Technology, volume 1377 of Lecture Notes of Computer
Science, pages 153–167. Springer, 1998.

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of 21th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
233–246. ACM, 2002.

201

[Lim97] W. M. Lim. Discovery of Constraints from Data for Information System Reverse
Engineering. In Proc. of the 2nd Australian Soft. Eng. Conf., pages 39–48. IEEE,
1997.

[LS97] H.J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data Bases.
In Proc. of 9th Int. Conf. on Scientific and Statistical Database Management, pages
132–143. IEEE, 1997.

[LW96] C. Li and X.S. Wang. A Data Model for Supporting On-Line Analytical Process-
ing. In Proc. of 5th Int. Conf. on Information and Knowledge Management, pages
81–88. ACM, 1996.

[M. 92] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola. Discovering Functional and
Inclusion Dependencies in Relational Databases. Int. J. of Intelligent Systems 7,
pages 591–607, 1992.

[Mic] Microsoft. MDX Specification. http://msdn.microsoft.com/en-
us/library/aa216767.aspx. Last access: 17/12/2009.

[MK00] D.L. Moody and M.A. Kortink. From Enterprise Models to Dimensional Models:
A Methodology for Data Warehouse and Data Mart Design. In Proc. of 2nd Int.
Workshop on Design and Management of Data Warehouses. CEUR-WS.org, 2000.

[MLT09] J.N. Mazón, J. Lechtenbörger, and Juan Trujillo. A Survey on Summarizabil-
ity Issues in Multidimensional Modeling. Data & Knowledge Engineering,
68(12):1452–1469, 2009.

[MR92] H. Mannila and K. Räihä. On the Complexity of Inferring Functional Dependen-
cies. Discrete Applied Mathematics, 40(2):237–243, 1992.

[MTL07] J.N. Mazón, J. Trujillo, and J. Lechtenborger. Reconciling Requirement-Driven
Data Warehouses with Data Sources Via Multidimensional Normal Forms. Data
& Knowledge Engineering, 23(3):725–751, 2007.

[Oli04] Antoni Olivé. On the Role of Conceptual Schemas in Information Systems Devel-
opment. In Proc. of 9th Int. Conf. on Reliable Software Technologies (Ada-Europe
2004), volume 3063 of Lecture Notes in Computer Science, pages 16–34. Springer,
2004.

[P. 09] P. O’Neil and E. O’Neil and X. Chen. The Star Schema Benchmark,
http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF (last access 17/12/2009).

[PACW06] N. Prat, J. Akoka, and I. Comyn-Wattiau. A UML-based Data Warehouse Design
Method. Decision Support Systems, 42(3):1449–1473, 2006.

[PD02] C. Phipps and K. C. Davis. Automating Data Warehouse Conceptual Schema
Design and Evaluation. In Proc. of 4th Int. Workshop on Design and Management
of Data Warehouses, volume 58, pages 23–32. CEUR-WS.org, 2002.

202

[Ped00] T.B. Pedersen. Aspects of Data Modeling and Query Processing for Complex
Multidimensional Data. PhD thesis, Faculty of Engineering and Science, 2000.

[Pen05] Nigel Pendse. Market Segment Analysis. OLAP Report, Last updated on February
11, 2005. http://www.olapreport.com/Segments.htm (Last access: July 2009).

[Pen08] Nigel Pendse. What is OLAP? OLAP Report, Last updated on March 3, 2008.
http://www.olapreport.com/fasmi.htm (Last access: July 2009).

[PJ01] T.B. Pedersen and C.S. Jensen. Multidimensional Database Technology. IEEE
Computer, 34(12):40–46, 2001.

[PLC+08] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking Data to Ontologies. Journal on Data Semantics, 10:133–173, 2008.

[PSG04] N. Prakash, Y. Singh, and A. Gosain. Informational Scenarios for Data Ware-
house Requirements Elicitation. In 23rd International Conference on Conceptual
Modeling, ER 2004, volume 3288 of Lecture Notes in Computer Science, pages
205–216. Springer, 2004.

[RA05] O. Romero and A. Abelló. Improving Automatic SQL Translation for RO-
LAP Tools. Proc. of 9th Jornadas en Ingeniera del Software y Bases de Datos,
284(5):123–130, 2005.

[RA06] O. Romero and A. Abelló. Multidimensional Design by Examples. In Proc. of
8th Int. Conf. on Data Warehousing and Knowledge Discovery, volume 4081 of
Lecture Notes of Computer Science, pages 85–94. Springer, 2006.

[RA07a] O. Romero and A. Abelló. Automating Multidimensional Design from Ontolo-
gies. In Proc. of ACM 10th Int. Workshop on Data Warehousing and OLAP, pages
1–8. ACM, 2007.

[RA07b] O. Romero and A. Abelló. On the Need of a Reference Algebra for OLAP. In
Proc. of 9th Int. Conf. on Data Warehousing and Knowledge Discovery, volume
4654 of Lecture Notes of Computer Science, pages 99–110. Springer, 2007.

[RALT06] S. Rizzi, A. Abelló, J. Lechtenbörger, and J. Trujillo. Research in Data Ware-
house Modeling and Design: Dead or Alive? In Proc. of ACM 9th International
Workshop on Data Warehousing and OLAP, pages 3–10. ACM, 2006.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

[RCARM09] O. Romero, D. Calvanese, A. Abelló, and M. Rodriguez-Muro. Discovering Func-
tional Dependencies for Multidimensional Design. In Proc. of ACM 12th Int. Conf.
on Data Warehousing and OLAP, pages 1–8. ACM, 2009.

[RG03] R. Ramakrishnan and J. Gehrke, editors. Database Management Systems. Mc-
Graw Hill, 2003.

203

[SBHR06] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. GORDIAN: Efficient and
Scalable Discovery of Composite Keys. In Proc. of the 32nd Int. Conf. on Very
Large Data Bases (VLDB 2006), pages 691–702. ACM, 2006.

[SKD07] I.Y. Song, R. Khare, and B. Dai. SAMSTAR: A Semi-Automated Lexical Method
for Generating STAR Schemas from an ER Diagram. In Proc. of the 10th Int
Workshop on Data Warehousing and OLAP, pages 9–16. ACM, 2007.

[SLB02] J. Schiefer, B. List, and R. M. Bruckner. A Holistic Approach For Managing
Requirements Of Data Warehouse Systems. In 8th Americas Conference on Infor-
mation Systems (AMCIS 2002), pages 77–87, 2002.

[TD97] H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line Analytical
Processing in Data Warehouses. In Proc. of the 7th Workshop on Information
Technologies and Systems, pages 91–100, 1997.

[TD01] H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line Analytical
Processing in Decision Support Databases. Information Systems, 12(1):83–102,
2001.

[Tra09] Transaction Processing Performance Council. TPC-H Version 2.9.0,
http://www.tpc.org/tpch/default.asp (last access 17/12/2009).

[TW05] D. Toman and G. E. Weddell. On the Interaction Between Inverse Features and
Path-functional Dependencies in Description Logics. In Proc. of IJCAI 2005,
pages 603–608, 2005.

[TW08] D. Toman and G. E. Weddell. On Keys and Functional Dependencies as First-
Class Citizens in Description Logics. J. of Automated Reasoning, 40(2–3):117–
132, 2008.

[TZ04] H. B. K. T. and Y. Zhao. Automated Elicitation of Functional Dependencies from
Source Codes of Database Transactions. Information & Software Technology,
46(2):109–117, 2004.

[Var82] M. Y. Vardi. The Complexity of Relational Query Languages. In Proc. of
STOC’82, pages 137–146, 1982.

[Var96] M. Y. Vardi. Why is Modal Logic So Robustly Decidable? In Descriptive Com-
plexity and Finite Models, volume 31 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 149–184. American Mathematical So-
ciety, 1996.

[Vas98] P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube operations.
In Proc. of the 10th Statistical and Scientific Database Management, pages 53–62.
IEEE, 1998.

204

[Vas00] P. Vassiliadis. Data Warehouse Modeling and Quality Issues. PhD thesis, Dept. of
Electrical and Computer Engineering (National Technical University of Athens),
2000.

[VBR03] B. Vrdoljak, M. Banek, and S. Rizzi. Designing Web Warehouses from XML
Schemas. In Proc. of 5th Int. Conf. on Data Warehousing and Knowledge Discov-
ery, volume 2737 of Lecture Notes of Computer Science, pages 89–98. Springer,
2003.

[VS99] P. Vassiliadis and T.K. Sellis. A Survey of Logical Models for OLAP Databases.
SIGMOD Record, 28(4):64–69, ACM, 1999.

[W3C] W3C. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-
features/ (last access 17/12/2009).

[WS03] R. Winter and B. Strauch. A Method for Demand-Driven Information Require-
ments Analysis in DW Projects. In Proc. of 36th Annual Hawaii Int. Conf. on
System Sciences, pages 231–239. IEEE, 2003.

[YP04] X. Yin and T.B. Pedersen. Evaluating XML-Extended OLAP Queries Based on a
Physical Algebra. In Proc. of 7th Int. Workshop on Data Warehousing and OLAP.
ACM, 2004.

[Yu97] E.S.K. Yu. Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. In Proc. of the 3rd IEEE Int. Symposium on Requirements
Engineering, pages 226–235. IEEE, 1997.

205

