
On the use of quantitative models for

open-world software

Carlo Ghezzi

Politecnico di Milano

Deep-SE Group @ DEI

1

Our journey

• What is “open-world” software?

• What makes it hard?

• Non-functional quantitative requirements: why are they

crucial?

• Adaptation and evolution

• Modelling and verification: why should they extend to run

time?

• Zoom into a current research effort

• Challenges and future work

2

The machine and the world

3

Goals
Requirements

Domain
properties
(assumptions)

SpecificationGoals
Requirements

A world of change

4

• Changes in goals/requirements

– Business level

– User: skills, profiles (preferences, role, …)

• Changes in domain

– Technology

– Computational context

• external components

– Physical context

• space, time, …

Multiple ownership

• Systems increasingly built out of parts that are

developed, maintained, and even operated by

independent parties

• No single stakeholder oversees and controls all

parts

• Parts may change over time in an unannounced

manner

• Yet by assembling the whole we commit to

achieving a certain goal

– We may even subscribe a contract (SLA)

5

Is this really happening?

--business world

• Networked enterprises

– Business integration infrastructures via Web

services are becoming common

• A marketplace for Web services is being created

– New services created (and possibly exposed) by

composing other services

• Networks must be reconfigured to respond to
rapidly changing requirements (and changes in
business world)

6

Is this really happening?

--ubiquitous computing

• Situational change mainly due to mobility

– New devices/components

encountered/discovered dynamically

– Interactions/collaborations established

dynamically

• Further adaptations due to resource constraints

– E.g., power consumption

– Physical conditions (heat, humidity, light, …)

7

Abstract run time view

8

Environment Machine

Sources of change

Input/output
shared phenomena

The BIG challenge

• Can we support continuous change and

evolution without compromising

dependability?

• Focus on non functional and quantitative

requirements

– Performance, reliability

9

What do we need?

Flexible composition schemes

10

B

A

Context xxx
Context yyy

What do we need?

Ability to detect change

• We need to get real data from the world

through (abstract) sensors; e.g., by

activating suitable probes

– MONITOR

• We need to transform data into information

– LEARN

11

What do we need?

Ability to react to change
• How can detected changes be used to react by generating

a feedback loop to “development” activities?

• Different timescales require different strategies

– Off-line, with human intervention

• Re-design/re-deploy/re-run

– On-line, self-managed

• A must for perpetual applications

12

evolution

adaptation

Development-time/run-time

boundary vanishes

13

development

operation
Real-world
data

Uncertain/i
ncomplete
information

ENVIRONMENT

Zoom-in
We explore a seamless development time

(DT)/run time (RT) environment, where

adaptation is a consequence of

uncertainty/changes in the domain

– Input distributions/usage profiles

– External services

14

?

System under
development

?
?
?

?

??

Our approach

We build on three key pillars • Markovian models

– DTMCs

– CTMCs

• Model checking

– PRISM

• On going work on using

Queuing Networks

• Open environment

should allow adding

tools to the workbench

15

ModelsLearningMonitoring

Further side remarks on

models

• Why focus on models in an ephemeral world? Isn’t

this a contradiction?

– see anti-model attitude of “agile” methods

• Dependability

– Models are needed to support systematic

reasoning in presence of uncertainty

• Rapid development

– Implementations may be derived by

transformation

16

Situational adaptive software

17

the world

Models

Code

Goals
Requirements
Assumptions

Model-driven
development

Reasoner
Adapter

Components
Services

Monitor

“Real” parameters

Probes

Learner

Offline
evolution

Changes
User profiles
External services

Reasoner

The KAMI system

• KAMI: Keep Alive Models with Implementations

• Model adaptation @ run time by learning from

monitored data

• Models @ run time for

– Early discovery/prediction of violations of

assumptions made at development time

– Implementation adaptation

18

Overall view

19

KAMI in action: e-commerce

service composition

20

3 probabilistic requirements:
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

FACT: Users
classified as
BigSpender or
SmallSpender (SS),
based on their usage
profile.

Assumptions

21

User profile domain knowledge

External service assumptions (reliability

DTMC model

22

Property check via model checking
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

0.084

0.056
0.031

What happens at run time?

• We monitor the actual behavior

• A statistical (Bayesian) approach estimates the updated

DTMC matrix (posterior) given run time traces and prior

transitions

• Boils down to the following updating rule

23

A-priori Knowledge A-posteriori Knowledge

Why is this useful?

• Fault

– Machine or environment do not behave as expected

• Failure

– Experienced violation of requirement

• Assume that a fault is detected (due to environment).

3 cases are possible

– All Reqs still valid

• OK, but contract violated

– Some Req violated + violation experienced in real world

• Failure detection

– Some Req violated, but violation not experience yet

• Failure prediction

24

In our example

25

0.067

R2: “Probability of an ExpShipping failure for a user recognized as

BigSpender < 0.035”

violated!

Monitored data fed to Bayesian estimator estimate higher
Failure probability

In our example

26

0.633

Similarly, suppose we detect a change in user profile

R2 violated!

In our example

27

0.067

R2: “Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035”

Failure
predicted
by model

Suppose that execution traces that lead to updating the failure probability
of ExpShipping are those involving small spenders

Conclusions

• Modern software systems increasingly live in highly

dynamic environments and behave in a situational manner

• Design decision are based on quantitative data and are

subject to uncertainty

• Boundary between development time and run time

vanishes

• Models should be kept alive at run time and should be

adapted to changes in the environment

• Detected changes may trigger model-driven adaptation of

the implementation

– Human-driven, off-line

– Self managed

28

On-going and future work

We just scratched the surface, much remains to be done

1. Where do requirements come from? How are they elicited?

How do we move from requirements to models?

2. How can a change-point be detected?

3. How can we devise strategies for self-adaptation?

4. Which architectures, middleware, languages are supportive

of dynamic change and adaptation?

5. Can we find common realistic case-studies and empirical

assessments?

6. How can analysis be done in real time? Incremental analysis

techniques?

7. Analysis of partial systems? Inference of specifications?

…
29

Thanks to the group:

these and many others…..

30

Acknowledgement

• This work is supported by and Advanced Grant of the

European Research Council, Programme IDEAS-ERC,

Project 227977---SMScom.

31

The end

32

questions?

