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Our journey

• What is “open-world” software?

• What makes it hard?

• Non-functional quantitative requirements: why are they 

crucial?

• Adaptation and evolution

• Modelling and verification: why should they extend to run 

time?

• Zoom into a current research effort

• Challenges and future work
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The machine and the world
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A world of change
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• Changes in goals/requirements

– Business level

– User: skills, profiles (preferences, role, …)

• Changes in domain

– Technology

– Computational context

• external components

– Physical context

• space, time, …



Multiple ownership

• Systems increasingly built out of parts that are 

developed, maintained, and even operated by 

independent parties

• No single stakeholder oversees and controls all 

parts

• Parts may change over time in an unannounced 

manner

• Yet by assembling the whole we commit to 

achieving a certain goal

– We may even subscribe a contract (SLA)
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Is this really happening?

--business world

• Networked enterprises

– Business integration infrastructures via Web 

services are becoming common

• A marketplace for Web services is being created

– New services created (and possibly exposed) by 

composing other services

• Networks must be reconfigured to respond to 
rapidly changing requirements (and changes in 
business world)
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Is this really happening?

--ubiquitous computing

• Situational change mainly due to mobility

– New devices/components 

encountered/discovered dynamically

– Interactions/collaborations established 

dynamically

• Further adaptations due to resource constraints

– E.g., power consumption

– Physical conditions (heat, humidity, light, …)
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Abstract run time view
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The BIG challenge

• Can we support continuous change and 

evolution without compromising  

dependability?

• Focus on non functional and quantitative 

requirements

– Performance, reliability
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What do we need?

Flexible composition schemes
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What do we need?

Ability to detect change

• We need to get real data from the world 

through (abstract) sensors; e.g.,  by 

activating suitable probes

– MONITOR

• We need to transform data into information

– LEARN
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What do we need?

Ability to react to change
• How can detected changes be used to react  by generating 

a feedback loop to “development” activities?

• Different timescales require different strategies

– Off-line, with human intervention

• Re-design/re-deploy/re-run

– On-line, self-managed

• A must for perpetual applications
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evolution

adaptation



Development-time/run-time 

boundary vanishes
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Zoom-in
We explore a seamless development time 

(DT)/run time (RT) environment, where 

adaptation is a consequence of 

uncertainty/changes in the domain

– Input distributions/usage profiles

– External services
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Our approach

We build on three key pillars • Markovian models

– DTMCs

– CTMCs

• Model checking

– PRISM

• On going work on using 

Queuing Networks

• Open environment 

should allow adding 

tools to the workbench
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ModelsLearningMonitoring

Further side remarks on 

models

• Why focus on models in an ephemeral world? Isn’t 

this a contradiction? 

– see anti-model attitude of “agile” methods

• Dependability

– Models are needed to support systematic 

reasoning in presence of uncertainty

• Rapid development

– Implementations may be derived by 

transformation
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Situational adaptive software
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The KAMI system

• KAMI: Keep Alive Models with Implementations

• Model adaptation @ run time by learning from 

monitored data

• Models @ run time for

– Early discovery/prediction of violations of 

assumptions made at development time

– Implementation adaptation
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Overall view
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KAMI in action: e-commerce 

service composition
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3 probabilistic requirements:
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as   

BigSpender <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

FACT: Users 
classified as 
BigSpender or 
SmallSpender (SS), 
based on their usage 
profile.



Assumptions
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User profile domain knowledge

External service assumptions (reliability

DTMC model
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Property check via model checking
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as   

BigSpender <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

0.084

0.056
0.031



What happens at run time?

• We monitor the actual behavior

• A statistical (Bayesian) approach estimates the  updated 

DTMC matrix (posterior) given run time traces and prior 

transitions

• Boils down to the following updating rule
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A-priori Knowledge A-posteriori Knowledge

Why is this useful?

• Fault

– Machine or environment do not behave as expected

• Failure

– Experienced violation of requirement

• Assume that a fault is detected (due to environment).          

3 cases are possible 

– All Reqs still valid

• OK, but contract violated

– Some Req violated + violation experienced in real world

• Failure detection

– Some Req violated, but violation not experience yet

• Failure prediction
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In our example

25

0.067

R2: “Probability of an ExpShipping failure for a user recognized as  

BigSpender <  0.035”

violated!

Monitored data  fed to Bayesian estimator estimate higher
Failure probability

In our example
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0.633

Similarly, suppose we detect a change in user profile

R2 violated!



In our example
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0.067

R2: “Probability of a ExpShipping failure for a user recognized as   

BigSpender <  0.035”

Failure
predicted
by model

Suppose that execution traces that lead to updating the failure probability
of ExpShipping are those involving small spenders

Conclusions

• Modern software systems increasingly live in highly 

dynamic environments and behave in a situational manner

• Design decision are based on quantitative data and are 

subject to uncertainty

• Boundary between development time and run time 

vanishes

• Models should be kept alive at run time and should be 

adapted to changes in the environment

• Detected changes may trigger model-driven adaptation of 

the implementation

– Human-driven, off-line

– Self managed
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On-going and future work

We just scratched the surface, much remains to be done

1. Where do requirements come from? How are they elicited? 

How do we move from requirements to models?

2. How can a change-point be detected?

3. How can we devise strategies for self-adaptation?

4. Which architectures, middleware, languages are supportive 

of dynamic change and adaptation?

5. Can we find common realistic case-studies and empirical 

assessments?

6. How can analysis be done in real time? Incremental analysis 

techniques?

7. Analysis of partial systems? Inference of specifications?

…
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Thanks to the group:

these and many others…..
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The end
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questions?


