
Algorithms and Optimizations for Big

Data Analytics: Cubes

Carlos Ordonez
 University of Houston

USA

Goals of talk

• State of the art in large-scale analytics, including

big data

• Contrast SQL/UDFs and MapReduce

• Collaboration on new projects

2/79

Global Outline

1. Data mining models and algorithms
1.1 Analytics: statistics, cubes, statistical models

1.2 Data set

1.3 Models and Algorithms

1.4 Big data

2.Processing alternatives
2.1 Inside DBMS: SQL and UDFs

2.2 Outside DBMS: MapReduce, C++

2.3 Optimizations

3. Research Directions

3/60

Analytics

• Simple:

– Ad-hoc Queries

– Cubes: OLAP, MOLAP, includes descriptive

statistics: histograms, means, plots, statistical

tests

• Complex:

– Models

– Patterns

4/60

Data set

• Data set F : n records, d dimensions , e measures

• Dimensions: discrete, measures: numeric

• Focus of the talk, d dimensions

• I/O bottleneck:

• Cube: the lattice of d dimensions

• High d makes problem computionally more

difficult

5/60

Cube computations

• Large n: F cannot fit in RAM, minimize I/O

• Multidimensional

– d: tens (hundreds?) of dimensions

• Computed with data structures

6/60

Algorithms

• Behavior with respect to data set X:

– Level-wise: k passes

• Time complexity: O(n2d)

• Research issues:

– Parallel processing

– different time complexity in SQL/MapReduce

– Incremental and online learning

7/60

Analytics

1. Prepare and clean data

2. Explore data set: cubes and descriptive statistics

3. Model computation

4. Scoring and model deployment

8/79

Analytics Process: big data?

Data Profiling
• Data Exploration; univariate stats

• Data Preparation

• Multivariate Statistics

• Machine Learning Algorithms

Analytic Modeling

• Scoring

• Lifecycle Maintenance

Model Deployment

Some overlooked aspects

• Preparing and cleaning data takes a lot of time.:

ETL

• Lots of SQL written to prepare data sets for

statistical analysis

• Data quality was hot; worth revisiting w/big data

• Strong emphasis on large n in data mining

• Cube computation is the most researched topic;

cube result analysis/interpretation 2nd priority

• Big data different?

10/79

SQL to ER

• Goal: creating a data set X with d dimensions

D(K,A), K commonly a single id

• Lots of SQL queries, many temporary tables

• Decoupled from ER model, not reused

• Many transformations: cubes, variable creation

11/79

SQL to ER

12/79

SQL transformations in ER

Example with TPC-H

13/79

Horizontal aggregations

• Create cross-tabular tables from cube

• PIVOT requires knowing values

• Aggregations in horizontal layout

14/79

Horizontal aggregations on cube

15/79

Prepare Data Set

Horizontal aggregations

Metaoptimizer

17/79

Cube visualization

• Lattice exploration

• Projection into 2D

• Comparing cuboids

18/79

Cube interpretation & visualization

statistical tests on cubes

Big data

• Finer granularity than transactions

• In general big data cannot be directly analyzed:

pre-processing needed

• Diverse data sources, non-relational, beyond

alphanumeric

• Web logs, user interactions, social networks,

streams

20/79

Issues about big data

• NoSQL, no DDL

• Transaction processing

• Web-scale data is not universal

• Many (most?) practical problems are smaller

• Database integration and cleaning much harder

• Parallel processing is becoming a standard

• SQL remains query alternative

21/79

Big data

IR: Keyword search, ranking

2. Processing alternatives

2.1 Inside DBMS (SQL)

2.2 Outside DBMS (MapReduce,brief review of

processing in C, external packages)

2.3 Optimizations

23/60

Why mining inside the DBMS?
l l l l l l l l

Teradata

Your PC with Warehouse Miner

ODBC

• Huge data volumes: potentially better results with

larger amounts of data; less process. time

• Minimizes data redundancy; Eliminate proprietary

data structures; simplifies data management; security

• Caveats: SQL, limited statistical functionality,

complex DBMS architecture

2.1 Inside DBMS

• Assumption:

– data records are in the DBMS; exporting slow

– row-based storage (not column-based)

• Programming alternatives:

– SQL and UDFs: SQL code generation (JDBC),

precompiled UDFs. Extra: SP, embedded SQL, cursors

– Internal C Code (direct access to file system and mem)

• DBMS advantages:

– important: storage, queries, security

– maybe: recovery, concurrency control, integrity,

transactions

25/60

Inside DBMS
Physical Operators

 [DG1992,CACM] [SMAHHH2007,VLDB] [WH2009,SIGMOD]

• Serial DBMS (one CPU, RAID):

– table Scan

– join: hash join, sort merge join, nested loop

– external merge sort

• Parallel DBMS (shared-nothing):

– even row distribution, hashing

– parallel table scan

– parallel joins: large/large (sort-merge, hash);

large/short (replicate short)

– distributed sort

26/60

Inside DBMS

 User-Defined Function (UDF)

• Classification:

– Scalar UDF

– Aggregate UDF

– Table UDF

• Programming:

– Called in a SELECT statement

– C code or similar language

– API provided by DBMS, in C/C++

– Data type mapping

27/60

Inside DBMS
UDF pros and cons

• Advantages:

– arrays and flow control

– Flexibility in code writing and no side effects

– No need to modify DBMS internal code

– In general, simple data types

• Limitations:

– OS and DBMS architecture dependent, not portable

– No I/O capability, no side effects

– Null handling and fixed memory allocation

– Memory leaks with arrays (matrices): fenced/protected mode

 28/60

Inside DBMS
Aggregate UDF (skipped scalar UDF)

[JM1998,SIGMOD]

• Table scan

• Memory allocation in the heap

• GROUP BY extend their power

• Also require handling nulls

• Advantage: parallel & multithreaded processing

• Drawback: returns a single value, not a table

• DBMSs: SQL Server, PostgreSQL,Teradata,

Oracle, DB2, among others

• Useful for model computations

29/60

Inside DBMS
Table UDF

• Main difference with aggregate UDF: returns a

table (instead of single value)

• Also, it can take several input values

• Called in the FROM clause in a SELECT

• Stream: no parallel processing, external file

• Computation power same as aggregate UDF

• Suitable for complex math operations and

algorithms

• Since result is a table it can be joined

30/60

Cube computation with UDF (table

function)

• Data structure in RAM; maybe one pass

• It requires maximal cuboid or choosing k

dimensions

31/79

Cube in UDF

Lattice manipulated with hash table

32/79

Inside DBMS
Internal C code (if code available); not popular

• Advantages:

– access to file system (table record blocks),

– physical operators (scan, join, sort, search)

– main memory, data structures, libraries

– hardware: multithreading, multicore CPU, RAM,

caching LI/L2

– LAPACK

• Disadvantages:

– requires careful integration with rest of system

– not available to end users and practitioners

– may require exposing functionality with DM language

or SQL 33/60

Outside DBMS
MapReduce

 [DG2008,CACM]

• Parallel processing; simple; shared-nothing

• Commodity diverse hardware (big cluster)

• Functions are programmed in a high-level programming

language (e.g. Java, Python); flexible.

• <key,value> pairs processed in two phases:

– map(): computation is distributed and evaluated in

parallel; independent mappers

– reduce(): partial results are combined/summarized

• Can be categorized as inside/outside DBMS, depending on

level of integration with DBMS

34/60

Outside DBMS: alternatives
Packages, libraries, Java/C++

 [ZHY2009,CIDR] [ZZY2010,ICDE]

• MOLAP tools:

– Push aggregations with SQL

– Memory-based lattice traversal

– Interaction with spreadsheets

• Programming languages:

– Arrays

– flexibility of control statements

• Packages: Microstrategy, Business Objects

35/60

Optimization: Data Set Storage

layout: Horizontal/Vertical

 Horizontal Vertical

Limitation with high d (max columns). No problems with high d.

Default layout for most algorithms. Requires clustered index.

SQL arithmetic expressions and UDFs. SQL aggregations, joins, UDFs.

Easy to interpret. Difficult to interpret.

Suitable for dense matrices. Suitable for sparse matrices.

Complete record processing UDF: detect point boundaries

n rows, d columns dn rows, few (3 or 4) columns

Fast n I/Os Slow dn I/Os (n I/Os clustered)

36/60

Optimizations
Algorithmic & Systems

• Algorithmic

– 90% research, many efficient algorithms

– accelerate/reduce cube computations

– database systems focus: reduce I/O passes

– approximate solutions

– parallel

• Systems (SQL, MapReduce)

– Platform: parallel DBMS server vs cluster of

computers vs multicore CPUs

– Programming: SQL/C++ versus Java
37/60

Algorithmic

• Programming: man times binary file required for

random access

• data structures working in main memory and disk

• Programming not in SQL: C/C++ are preferred

languages

38/60

Algorithmic Optmization:

summary matrices

Link Statistical Models and Patterns: Cubes?

DBMS SQL Optimizations

• SQL query optimization

– mathematical equations as queries

– Turing-complete: SQL code generation and

programming language

• UDFs as optimization

– substitute difficult/slow math computations

– push processing into RAM memory

41/60

DBMS Query Optimizations

• Split queries; query optimizer falls short

• Join:

– denormalized storage: model, intermediate tables

– favor hash joins over sort-merge for data set

– secondary indexing for join: sort-merge join

• Aggregation (create statistical variables):

– push group-by before join: watch out nulls and high cardinality

columns

– Outer joins

• synchronized table scans: share I/O

• Sampling O(s) access, truly random; error

42/60

Systems Optimization
DBMS UDF

 [HLS2005,TODS] [O2007,TKDE]

• UDFs can substitute SQL code

– UDFs can express complex matrix

computations

– Scalar UDFs: vector operations

• Aggregate UDFs: compute data set summaries in

parallel, especially sufficient statistics n,L,Q

• Table UDFs: streaming model; external temporary

file; get close to array functionality

43/60

MapReduce Optimizations
 [ABASR2009,VLDB] [CDDHW2009,VLDB] [SADMPPR2010,CACM]

• Data set

– keys as input, partition data set

– text versus sequential file

– loading into file system may be required

• Parallel processing

– high cardinality keys: i

– handle skewed distributions

– reduce row redistribution in Map()

• Main memory processing

44/60

MapReduce
Common Optimizations

[DG2008,CACM] [FPC2009,PVLDB] [PHBB2009,PVLDB]

• Modify Block Size; Disable Block Replication

• Delay reduce(), chain Map()

• Tune M and R (memory allocation and number)

• Several M use the same R

• Avoid full table scans by using subfiles (requires

naming convention)

• combine() in map() to shrink intermediate files

• SequenceFiles as input with custom data types.

45/60

MapReduce
Issues

• Loading, converting to binary may be necessary

• Not every analytic task is efficiently computed

with MapReduce

• Input key generally OK if high cardinality

• Skewed map key distribution

• Key redistribution (lot of message passing)

46/60

Systems optimizations
SQL vs MR (optimized versions, run same hardware)

Task SQL UDF MR

Speed: compute model 1 2 3

Speed: score data set 1 3 2

Programming flexibility 3 2 1

Process non-tabular data 3 2 1

Loading speed 1 1 2

Ability to add optimizations 2 1 3

Manipulating data key distribution 1 2 3

Immediate processing

(push=SQL,pull=MR)

2 1 3

47/60

SQL versus MapReduce

Task SQL MR

Sequential open-source y y

Parallel open source n y

Fault tolerant on long jobs n Y

Libraries limited Many

Arrays and matrices limited good

Massive parallelism, large N n y

48/60

Research Issues
SQL and MapReduce

• Fast data mining algorithms solved? Yes, but not

considering data sets are stored in a DBMS

• Big data is a rebirth of data mining

• SQL and MR have many similarities: shared-nothing

• New analytic languages

• Fast load/unload interfaces between both systems;

tighter integration

• General tradeoffs in speed and programming:

horizontal vs vertical layout

• Incremental algorithms: one pass (streams) versus

parallel processing; reduce passes/iterations

49/60

Acknowledgments

• My PhD students

• NSF

• UH Department of Computer Science

– Systems group

– Analytics group

• Collaborators:

– UH: PT Tosic, AI;

– Mexico: J Garcia UNAM, Mexico

– MDACC: VB Baladandayuthapani, MD Anderson,Statistics

– J Hellerstein, UC Berkeley; D Srivastava, ATT Labs; C Jermaine, Rice U;

O Frieder Georgetown U

50/79

