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Goals of talk 

• State of the art in large-scale analytics, including 

big data 

• Contrast SQL/UDFs and MapReduce 

• Collaboration on new projects 
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Global Outline 

1. Data mining models and algorithms 
1.1 Analytics: statistics, cubes, statistical models 

1.2 Data set 

1.3 Models and Algorithms 

1.4 Big data 

2.Processing alternatives 
2.1 Inside DBMS: SQL and UDFs 

2.2 Outside DBMS: MapReduce, C++ 

2.3 Optimizations 

3. Research Directions 
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Analytics 

• Simple: 

– Ad-hoc Queries 

– Cubes: OLAP, MOLAP, includes descriptive 

statistics: histograms, means, plots, statistical 

tests 

• Complex: 

– Models 

– Patterns 
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Data set 

• Data set F : n records, d dimensions , e measures 

• Dimensions: discrete, measures: numeric 

• Focus of the talk, d dimensions 

• I/O bottleneck:  

• Cube: the lattice of d dimensions 

• High d makes problem computionally more 

difficult 
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Cube computations 

• Large n: F cannot fit in RAM, minimize I/O 

• Multidimensional 

– d: tens (hundreds?) of dimensions 

• Computed with data structures 
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Algorithms 

• Behavior with respect to data set X: 

– Level-wise: k passes 

• Time complexity: O(n2d)  

• Research issues: 

– Parallel processing 

– different time complexity in SQL/MapReduce 

– Incremental and online learning 
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Analytics 

1. Prepare and clean data 

2. Explore data set: cubes and descriptive statistics 

3. Model computation 

4. Scoring and model deployment 
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Analytics Process: big data? 

Data Profiling 
• Data Exploration; univariate stats 

• Data Preparation 

•  Multivariate Statistics 

•  Machine Learning Algorithms 

Analytic Modeling 

• Scoring 

• Lifecycle Maintenance 

 

Model Deployment 



Some overlooked aspects 

• Preparing and cleaning data takes a lot of time.: 

ETL 

• Lots of SQL written to prepare data sets for 

statistical analysis 

• Data quality was hot; worth revisiting w/big data 

• Strong emphasis on large n in data mining 

• Cube computation is the most researched topic; 

cube result analysis/interpretation 2nd priority 

• Big data different? 
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SQL to ER 

• Goal: creating a data set X with d dimensions 

D(K,A), K commonly a single id 

• Lots of SQL queries, many temporary tables 

• Decoupled from ER model, not reused 

• Many transformations: cubes, variable creation 
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SQL to ER 
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SQL transformations in ER 

Example with TPC-H 
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Horizontal aggregations 

• Create cross-tabular tables from cube 

• PIVOT requires knowing values 

• Aggregations in horizontal layout 
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Horizontal aggregations on cube 
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Prepare Data Set  

Horizontal aggregations 



Metaoptimizer 
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Cube visualization 

• Lattice exploration 

• Projection into 2D 

• Comparing cuboids 
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Cube interpretation & visualization 

statistical tests on cubes 



Big data 

• Finer granularity than transactions 

• In general big data cannot be directly analyzed: 

pre-processing needed 

• Diverse data sources, non-relational, beyond 

alphanumeric 

• Web logs, user interactions, social networks, 

streams 
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Issues about big data 

• NoSQL, no DDL 

• Transaction processing 

• Web-scale data is not universal 

• Many (most?) practical problems are smaller 

• Database integration and cleaning much harder 

• Parallel processing is becoming a standard 

• SQL remains query alternative 
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Big data 

IR: Keyword search, ranking 



2. Processing alternatives 

 

2.1 Inside DBMS (SQL) 

2.2 Outside DBMS (MapReduce,brief review of 

processing in C, external packages) 

2.3 Optimizations 
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Why mining inside the DBMS? 
l l l l l l l l 

Teradata  
 

Your PC with Warehouse Miner 
 

ODBC  
 

• Huge data volumes: potentially better results with 

larger amounts of data; less process. time 

• Minimizes data redundancy; Eliminate proprietary 

data structures; simplifies data management; security 

• Caveats: SQL, limited statistical functionality, 

complex DBMS architecture 



2.1 Inside DBMS 

• Assumption: 

– data records are in the DBMS; exporting slow 

– row-based storage (not column-based) 

• Programming alternatives: 

– SQL and UDFs: SQL code generation (JDBC), 

precompiled UDFs. Extra: SP, embedded SQL, cursors 

– Internal C Code (direct access to file system and mem) 

• DBMS advantages: 

– important: storage, queries, security 

– maybe: recovery, concurrency control, integrity, 

transactions 
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Inside DBMS 
Physical Operators 

 [DG1992,CACM] [SMAHHH2007,VLDB] [WH2009,SIGMOD]  

• Serial DBMS (one CPU, RAID): 

– table Scan 

– join: hash join, sort merge join, nested loop 

– external merge sort 

• Parallel DBMS (shared-nothing): 

– even row distribution, hashing 

– parallel table scan 

– parallel joins: large/large (sort-merge, hash); 

large/short (replicate short) 

– distributed sort 
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Inside DBMS 

 User-Defined Function (UDF) 

• Classification: 

– Scalar UDF 

– Aggregate UDF 

– Table UDF 

• Programming: 

– Called in a SELECT statement 

– C code or similar language  

– API provided by DBMS, in C/C++ 

– Data type mapping 
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Inside DBMS 
UDF pros and cons 

• Advantages: 

– arrays and flow control 

– Flexibility in code writing and no side effects 

– No need to modify DBMS internal code 

– In general, simple data types 

• Limitations: 

– OS and DBMS architecture dependent, not portable 

– No I/O capability, no side effects 

– Null handling and fixed memory allocation 

– Memory leaks with arrays (matrices): fenced/protected mode 
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Inside DBMS 
Aggregate UDF (skipped scalar UDF)  

[JM1998,SIGMOD]  

• Table scan 

• Memory allocation in the heap 

• GROUP BY extend their power 

• Also require handling nulls 

• Advantage: parallel & multithreaded processing 

• Drawback: returns a single value, not a table 

• DBMSs: SQL Server, PostgreSQL,Teradata, 

Oracle, DB2, among others 

• Useful for model computations 

29/60 



Inside DBMS 
Table UDF 

• Main difference with aggregate UDF: returns a 

table (instead of single value) 

• Also, it can take several input values  

• Called in the FROM clause in a SELECT 

• Stream: no parallel processing, external file 

• Computation power same as aggregate UDF 

• Suitable for complex math operations and 

algorithms 

• Since result is a table it can be joined 
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Cube computation with UDF (table 

function) 

• Data structure in RAM; maybe one pass 

• It requires maximal cuboid or choosing k 

dimensions  
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Cube in UDF 

Lattice manipulated with hash table 
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Inside DBMS 
Internal C code (if code available); not popular 

• Advantages: 

– access to file system (table record blocks), 

– physical operators (scan, join, sort, search) 

– main memory, data structures, libraries 

– hardware: multithreading, multicore CPU, RAM, 

caching LI/L2 

– LAPACK 

• Disadvantages: 

– requires careful integration with rest of system 

– not available to end users and practitioners 

– may require exposing functionality with DM language 
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Outside DBMS 
MapReduce 

 [DG2008,CACM] 

• Parallel processing; simple; shared-nothing 

• Commodity diverse hardware (big cluster) 

• Functions are programmed in a high-level programming 

language (e.g. Java, Python); flexible. 

• <key,value> pairs processed in two phases:  

– map():  computation is distributed and evaluated in 

parallel; independent mappers 

– reduce(): partial results are combined/summarized 

• Can be categorized as inside/outside DBMS, depending on 

level of integration with DBMS 

 

34/60 



Outside DBMS: alternatives 
Packages, libraries, Java/C++ 

 [ZHY2009,CIDR] [ZZY2010,ICDE] 

• MOLAP tools:  

– Push aggregations with SQL 

– Memory-based lattice traversal 

– Interaction with spreadsheets 

• Programming languages: 

– Arrays  

– flexibility of control statements 

• Packages: Microstrategy, Business Objects 
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Optimization: Data Set Storage 

layout: Horizontal/Vertical 
 

 Horizontal Vertical 

Limitation with high d (max columns). No problems with high d. 

Default layout for most algorithms. Requires clustered index. 

SQL arithmetic expressions and UDFs. SQL aggregations, joins, UDFs. 

Easy to interpret. Difficult to interpret. 

Suitable for dense matrices. Suitable for sparse matrices. 

Complete record processing UDF: detect point boundaries 

n rows, d columns     dn rows, few  (3 or 4) columns 

Fast n I/Os Slow dn I/Os  (n I/Os clustered) 
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Optimizations 
Algorithmic & Systems 

• Algorithmic 

– 90% research, many efficient algorithms 

– accelerate/reduce cube computations 

– database systems focus: reduce I/O passes 

– approximate solutions 

– parallel 

• Systems (SQL, MapReduce) 

– Platform: parallel DBMS server vs cluster of 

computers vs multicore CPUs 

– Programming: SQL/C++ versus Java 
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Algorithmic 

• Programming: man times binary file required for 

random access 

• data structures working in main memory and disk 

• Programming not in SQL: C/C++ are preferred 

languages 
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Algorithmic Optmization: 

summary matrices 

 

 



Link Statistical Models and Patterns: Cubes? 



DBMS SQL Optimizations 

• SQL query optimization 

– mathematical equations as queries 

– Turing-complete: SQL code generation and 

programming language 

• UDFs as optimization 

– substitute difficult/slow math computations 

– push processing into RAM memory 
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DBMS Query Optimizations 
 

• Split queries; query optimizer falls short 

• Join: 

– denormalized storage: model, intermediate tables 

– favor hash joins over sort-merge for data set 

– secondary indexing for join: sort-merge join 

• Aggregation (create statistical variables): 

– push group-by before join: watch out nulls and high cardinality 

columns  

– Outer joins 

• synchronized table scans: share I/O 

• Sampling O(s) access, truly random; error 
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Systems Optimization  
DBMS UDF 

 [HLS2005,TODS] [O2007,TKDE]  

• UDFs can substitute SQL code 

– UDFs can express complex matrix 

computations 

– Scalar UDFs: vector operations 

• Aggregate UDFs: compute data set summaries in 

parallel, especially sufficient statistics n,L,Q 

• Table UDFs: streaming model; external temporary 

file; get close to array functionality 
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MapReduce Optimizations 
 [ABASR2009,VLDB] [CDDHW2009,VLDB] [SADMPPR2010,CACM]  

• Data set 

– keys as input, partition data set 

– text versus sequential file 

– loading into file system may be required 

• Parallel processing 

– high cardinality keys: i 

– handle skewed distributions 

– reduce row redistribution in Map(  ) 

• Main memory processing 
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MapReduce 
Common Optimizations 

[DG2008,CACM] [FPC2009,PVLDB]  [PHBB2009,PVLDB] 

• Modify Block Size; Disable Block Replication 

• Delay reduce(), chain Map() 

• Tune M and R (memory allocation and number) 

• Several M use the same R 

• Avoid full table scans by using subfiles (requires 

naming convention) 

• combine() in map() to shrink intermediate files 

• SequenceFiles as input with custom data types. 

 

45/60 



MapReduce 
Issues 

• Loading, converting to binary may be necessary 

• Not every analytic task is efficiently computed 

with MapReduce 

• Input key generally OK if high cardinality 

• Skewed map key distribution 

• Key redistribution (lot of message passing) 
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Systems optimizations 
SQL vs MR (optimized versions, run same hardware) 

Task  SQL UDF MR 

Speed: compute model 1 2 3 

Speed: score data set 1 3 2 

Programming flexibility 3 2 1 

Process non-tabular data 3 2 1 

Loading speed 1 1 2 

Ability to add optimizations 2 1 3 

Manipulating data key distribution 1 2 3 

Immediate processing 

(push=SQL,pull=MR) 

2 1 3 
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SQL versus MapReduce 

Task  SQL MR 

Sequential open-source y y 

Parallel  open source n y 

Fault tolerant on long jobs n Y 

Libraries limited Many 

Arrays and matrices limited good 

Massive parallelism, large N n y 
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Research Issues  
SQL and MapReduce  

 

• Fast data mining algorithms solved? Yes, but not 

considering data sets are stored in a DBMS 

• Big data is a rebirth of data mining 

• SQL and MR have many similarities: shared-nothing 

• New analytic languages 

• Fast load/unload interfaces between both systems; 

tighter integration 

• General tradeoffs in speed and programming: 

horizontal vs vertical layout 

• Incremental algorithms: one pass (streams) versus 

parallel processing; reduce passes/iterations 
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