## **Quality of models and modeling languages**

John Krogstie Professor, IDI, NTNU

UPC, Barcelona, 12/4-2012



#### Short background on me

- Master and PhD in Information Systems (1991, 1995), modeling techniques, quality of modeling in particular
- Employed 9 years in Andersen Consulting (Accenture)
- 2000-2005 SINTEF ICT (Oslo)
- Professor at IDI, NTNU, Trondheim, Norway 1.August 2005.
- Leader of Strategic Area ICT at NTNU, coordinate cross-disciplinary ICT research at the university (health informatics, eGovernment etc)
- Leader of IFIP WG 8.1 on Design and Evaluation of Information Systems (EMMSAD, POEM, BPMDS, ME...)





#### **Overview of presentation**

- What is quality ?
- Overview presentation of semiotic model quality framework (SEQUAL)
  - Quality of models
  - Quality of modelling languages (briefly)
- Based on Krogstie, J: Model-based Development and Evolution of Information Systems: A Quality Approach. Springer 2012





## **Different views on quality**

- According to requirements (ISO 9000 support stated or implied needs)
- The user is satisfied (Denning)
- Properties of the product (-ilities) (ISO/IEC 9126)
- Properties of a requirements specification or model (Davis/Pohl)
- Quality related to different semiotic levels (Lindland, Stamper, Price/Shanks, Nelson/Poels..)
- Product vs. Process quality (e.g. CMM)



# SEQUAL – A framework for understanding and assessing quality of models based on semiotics

- For models as a knowledge representation in general
- Can be extended and specialised towards specific types of model and modelling languages
- Differentiate between quality of different levels based on semiotic theory
- Differentiate between goals of modelling (quality characteristics) and means to achieve these goals
- Set-oriented definition to enable a formal discussion of the different quality levels
- Takes into account that models are socially constructed



#### Main elements of a modelling activity



**Example of goal:** 

**Create a requirements** 

specification for a travel

agency on the net



## Sets in the quality framework

- A: Actors that develops or has to relate to (parts of) the model. Can be persons or tools (technical actors).
- L: What can be expressed in the modelling language
- M: What is expressed in the model
- D: What can be expressed about the domain (area of interest)
- K: The explicit knowledge of the participating persons
- I: What the persons in the audience interpret the model to express
- T: What relevant tools interpret the model to say
- G: The goals of the modelling

All of these sets evolves as part of modelling



#### Usage of modeling and models



#### SEQUAL



## **Overall structure of framework**

#### Quality type (physical, empirical...)

- One or more quality characteristics per quality type
  - Means to achieve the quality characteristics
    - Beneficial existing quality
    - Model properties
    - Language properties
    - Modeling activities
    - Tool-support



# Model example to illustrate the different quality levels



■Language: ER

Domain: Conference organizing

Goal: Design of database solution to support conference organizing



# **Physical Quality**

#### Internalizability

- Model persistence
- Model availability
- Currency
- -> Database functionality (model repository)



# **Empirical quality**

- Look on aspects related to
  - Ergonomics
  - Graph and document layout
  - Readability
- The model must be externalised
- Language properties
  - Comprehensibility appropriateness
- Modelling and tool activities
  - (Automatic) graph-layout, readability index calculation, grammar checking, evaluation of use of colour.



#### **Example of poor graph-layout**





# Syntactic quality

- Syntactic correctness : M\L = Ø
- Two types of errors
  - Syntactic invalidity
  - Syntactic incompleteness
- The model must be externalised
- Language properties
  - Formal syntax
- Activities
  - Error prevention
  - Error detection
  - Error correction (automatically or by suggestion ("spellcheck"))



#### **Example of syntactic invalidity**





#### **Example of syntactic incompleteness**





# **Semantic quality**

- Quality characteristics
  - Validity: M\D =Ø
  - Completeness:  $D M = \emptyset$
- Necessary/useful that the model is externalised and is syntactically correct
- Language properties: Formal semantics, domain appropriateness, modeller appropriateness
- Activities: Model testing (consistency checking), reuse of models, 'driving questions', meta-model adaptation



#### Example of semantic invalidity (and incompleteness)





# **Pragmatic quality**

- Quality characteristics
  - Comprehension, do the audience understand what the model express ? (I=M)
- Useful that the model have high physical, empirical, and syntactic quality before evaluating pragmatic quality.
- Language properties:
  - Operational semantics
  - Executability
  - Explicit modelling of intention
  - Participant appropriateness
- Activities: Inspection, visualization, filtering/views, explanation generation, simulation, animation, reporting, execution/prototyping, model-generated solutions



# **Perceived semantic quality**

- Quality characteristics
  - Perceived validity  $I \setminus K = \emptyset$
  - Perceived completeness:  $K \mid I = \emptyset$
- Useful that the model has high physical, empirical, syntactic, and pragmatic quality before investigating perceived semantic quality
- Same means and activities as for semantic quality.



# **Social quality**

- Quality characteristics: Agreement
  - Agreement in knowledge/interpretation/model
  - Relative vs. absolute agreement
- Important first to address physical, pragmatic and perceived semantic quality
- Language properties: Possibility to explicitly express inconsistencies based on disagreement.
- Activities: Model integration and conflict resolution



# **Deontic quality**

- The deontic quality of the model relates to
  - that all statements in the model contribute to fulfilling the goals of modelling (goal validity)
  - that all the goals of modelling are addressed through the model (goal completeness)
- Language properties: Organizational appropriateness
- Deontic quality introduce a context that relax wanted quality for a model on the other levels (e.g. trade-of between completeness of the model relative to cost).
- Expressed with the notion of feasible quality (particularly on the levels of semantic, pragmatic, perceived semantic and social quality)
- Goals include also aspects relative to participant learning and domain improvement



#### **SEQUAL – language quality**



#### **SEQUAL specializations**



## Usage of the SEQUAL

#### • E.g. in ATHENA (EU project)

- Evaluation of a modeling language under development
- Evaluation of the model of the modeling language (metamodel)
- Evaluation of a modeling tool/environment
- Evaluation of a modeling methodology
  - The methodology as a model
  - The way the methodology support development of models of high quality
- Evaluation and choice of modeling languages (UML, BPMN, EEML, others)
- Evaluation of models
- Methodology guidelines for developing good models
- Guidelines for developing new modeling languages (Domain specific models)
- Variants for other types of visual representations (MAPQUAL)



## Quality of models and modelling languages

John Krogstie Professor, IDI, NTNU

