......

Research Center

An Initial Ontology for System Qualities

Barry Boehm, USC

Universitat Politecnica de Catalunya Talk
April 29, 2015

4-29-2015

L]
SYSTEMS ENGINEERING Outllne

Research Center

m) Critical nature of system qualities (SQs)
— Or non-functional requirements; ilities
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management

* Need for SQs ontology
— Nature of an ontology; choice of IDEF5 structure
— Stakeholder value-based, means-ends hierarchy

— Synergies and Conflicts matrix and expansions
 Example means-ends hierarchy: Affordability

Importance of SQ Tradeoffs

Major source of DoD system overruns

SYSTEMS ENGINEERING
Research Center

e SQs have systemwide impact
— System elements generally just have local impact
e SQs often exhibit asymptotic behavior
— Watch out for the knee of the curve
e Best architecture is a discontinuous function of SQ level
— “Build it quickly, tune or fix it later” highly risky
— Large system example below

$100M
Required
Architecture:
| Custom; many
$50M cache processors
Original
Original Cost Architecture:
Origigigh Spec | Modified |
| | CIHCTTTOCT VI Prototyping |
1 2 3 4 5
Response Time (sec)

4-29-2015

wemveoneenne - EXaMple of SQ Value Conflicts: Security IPT

e Single-agent key distribution; single data copy
— Reliability: single points of failure

 Elaborate multilayer defense
— Performance: 50% overhead; real-time deadline problems

e Elaborate authentication
— Usability: delays, delegation problems; GUI complexity

e Everything at highest level
— Modifiability: overly complex changes, recertification

4-29-2015 4

wssmacene — Proliferation of Definitions: Resilience

Research Center

 Wikipedia Resilience variants: Climate, Ecology, Energy Development,
Engineering and Construction, Network, Organizational, Psychological, Soil

* Ecology and Society Organization Resilience variants: Original-ecological,
Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic,
Operational, Sociological, Ecological-economic, Social-ecological system,
Metaphoric, Sustainabilty-related

e Variants in resilience outcomes

— Returning to original state; Restoring or improving original state;
Maintaining same relationships among state variables; Maintaining
desired services; Maintaining an acceptable level of service; Retaining
essentially the same function, structure, and feedbacks; Absorbing
disturbances; Coping with disturbances; Self-organizing; Learning and
adaptation; Creating lasting value

— Source of serious cross-discipline collaboration problems

ssmenavene EXample of Current Practice

Research Center

“The system shall have a Mean Time Between Failures of
10,000 hours”

e Whatis a “failure?”

— 10,000 hours on liveness

— But several dropped or garbled messages per hour?
e What is the operational context?

— Base operations? Field operations? Conflict operations?
e Most management practices focused on functions

— Requirements, design reviews; traceability matrices; work
breakdown structures; data item descriptions; earned value
management

What are the effects on other SQs?
— Cost, schedule, performance, maintainability?

4-29-2015

L]
SYSTEMS ENGINEERING Outllne

Research Center

e Critical nature of system qualities (SQs)
— Or non-functional requirements; ilities
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management

= Need for system SQs ontology
— Nature of an ontology; choice of IDEF5 structure
— Stakeholder value-based, means-ends hierarchy

— Synergies and Conflicts matrix and expansions
 Example means-ends hierarchy: Affordability

Need for SQs Ontology

Research Center

 Oversimplified one-size-fits all definitions

— ISO/IEC 25010, Reliability: the degree to which a system,
product, or component performs specified functions under
specified conditions for a specified period of time

— OK if specifications are precise, but increasingly “specified
conditions” are informal, sunny-day user stories.

 Satisfying just these will pass “ISO/IEC Reliability,” even if system
fails on rainy-day user stories

— Need to reflect that different stakeholders rely on different
capabilities (functions, performance, flexibility, etc.) at
different times and in different environments

* Proliferation of definitions, as with Resilience

 Weak understanding of inter-SQ relationships
— Reliability Synergies and Conflicts with other qualities

wes o Nature of an ontology; choice of IDEF5 structure

Research Center

 An ontology for a collection of elements is a definition of
what it means to be a member of the collection

* For “system qualities,” this means that an SQ identifies an
aspect of “how well” the system performs

— The ontology also identifies the sources of variability in the
value of “how well” the system performs

e After investigating several ontology frameworks, the IDEF5
framework appeared to best address the nature and sources
of variability of system SQs

— Good fit so far

Initial SERC SQs Ontology

Research Center

 Modified version of IDEF5 ontology framework
— Classes, Subclasses, and Individuals
— Referents, States, Processes, and Relations

* Top classes cover stakeholder value propositions
— Mission Effectiveness, Resource Utilization, Dependability, Flexibiity

e Subclasses identify means for achieving higher-class ends
— Means-ends one-to-many for top classes
— ldeally mutually exclusive and exhaustive, but some exceptions
— Many-to-many for lower-level subclasses

 Referents, States, Processes, Relations cover SQ variation
* Referents: Sources of variation by context: Product Q.; Q. In Use
e States: Internal (beta-test); External (rural, temperate, sunny)
* Processes: Operational scenarios (normal vs. crisis; experts vs. novices)
e Relations: Impact of other SQs (security as above, synergies & conflicts)

Referents: Product Quality; Quality in Use

Research Center

e Product Quality: Anticipate future usage, build in added
capabilities
— Versatility: car with GPS, Bluetooth for mobile phone
— Endurability: Extra-strong tires for off-road use
e Quality in Use: Usage profile stimulates need for changes
— Modifiability: easy to add GPS, Bluetooth
— Resilience: easy to adapt car for reliable off-road use
— Or have a car with built-in Versatility, Endurability
e Both often called Changeability
— Even though Versatile, Endurable product doesn’t change

e MIT change-oriented semantic framework clarifies variations
in causes and effects of changes

4-29-2015 11

MIT 14-D Semantic Basis

Prescriptive Semantic Basis for Change-type llities

In response to in “context”, desire " to make some that is

Cause | Contest |F'hase| Agentl Impetus Change l System | Outcome Change System Valuable

Inresponse to t t in t" during | desire "agent” to make some impetus to the design with to have an "effect

outcome ter” with tinat inthe "aspect”ofthe that are valuable with respect to thresholds in

Impetus Outcome

Perturbation| Context Abstraction

Parameter | Destination

(N N N A N ¥ T I L St ||| Yeeshold" [tvesthals teshols] Wreshold

disturbance circumstantia pre-ops internal increase level one form increase level one form architecture sooner shorter less more
shift general ops external decrease set few function decrease set few function design later longer more less
none any inter-LC either not-same any many operations not-same any many operations system always same same same
any same any any any any any any any

Nature | Parameter |Destination| Aspect | Effect

any any none same any

any any any
-+t + r+r r {+ r {r +r +r { £ f{ [[[|

shift ops
disturbance ops

shift ops

shift ops not-same

shift ops same

shift ops none same form
distwbance ops

system

not=-same
not-same
not-same
not=same
not-same
not-sameé set
increase set
not-samé any
not-samé any sooner
not-samé “Link set” form

operations
fewlmany
fewlmany ~ function
fewlmany operations
fewimany ~ form

either not-same
not-same
internal not-same
external not-same
not-same
not-same
not-same
not-same
not-same
same 'Elementset’ one form
same ‘Elementset’ one operationsnot-same “Order set”
same one formlops not-same set
same one formlops not-same set
same one formifnct not-same set
same one frctlops not-same set

shift general inter-LC architecture

llity Label
Value Robustness
Value Survivability
Robustness
Active Robustness
Passive Robustness
Classical Passive Robustness
Survivability
Changeability
Evolvability
Adaptability
Flexibility
Scalability
Madifiability
Extensibility
Agility
Reactivity
Form Reconfigurability
Operational Reconfigurability
Versatility
Functional Versatility
Operational Versatility
Substitutability

Example: Reliability Revisited

Research Center

e Reliability is the probability that the system will deliver
stakeholder-satisfactory results for a given time period
(generally an hour), given specified ranges of:

— Stakeholders: desired and acceptable ranges of liveness,
accuracy, response time, speed, capabilities, etc.

— System internal and external states: integration test, acceptance
test, field test, etc.; weather, terrain, DEFCON,
takeoff/flight/landing, etc.

— System internal and external processes: security thresholds,
types of payload/cargo; workload volume, diversity

— Effects of other SQs: synergies, conflicts

4-29-2015 13

somseaneenns Otakeholder value-based, means-ends hierarchy

Research Center

Mission operators and managers want improved Mission Effectiveness

— Involves Physical Capability, Cyber Capability, Human Usability, Speed, Accuracy,
Impact, Endurability, Maneuverability, Scalability, Versatility, Interoperability

e Mission investors and system owners want Mission Cost-Effectiveness

— Involves Cost, Duration, Personnel, Scarce Quantities (capacity, weight, energy, ...);
Manufacturability, Sustainability

* All want system Dependability: cost-effective defect-freedom, availability, and
safety and security for the communities that they serve

— Involves Reliability, Availablilty, Maintainability, Survivability, Safety, Security,
Robustness

* In an increasingly dynamic world, all want system Flexibility: to be rapidly and
cost-effectively changeable

— Involves Modifiability, Tailorability, Adaptability

s maneena UL ViFginia: Coq Formal Reasoning Structure

Research Center

Inductive Dependable (s: System): Prop :=

mk_dependability: Security s -> Safety s -> Reliability s ->
. Maintainability s -> Availability s -> Survivability s ->
. Robustness s -> Dependable s.

e Example aSystemisDependable: Dependable aSystem.
e apply mk_dependability.

e exact (is_secure aSystem).

e exact (is_safe aSystem).

e exact (is_reliable aSystem).

e exact (is_maintainable aSystem).

e exact (is_avaliable aSystem).

e exact (is_survivable aSystem).

e exact (is_robust aSystem).

* Qed.

4-29-2015 15

L]
SYSTEMS ENGINEERING Outllne

Research Center

e Critical nature of system qualities (SQs)
— Or non-functional requirements; ilities
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management

* Need for SQs ontology
— Nature of an ontology; choice of IDEF5 structure
— Stakeholder value-based, means-ends hierarchy

=) Synergies and Conflicts matrix and expansions
 Example means-ends hierarchy: Affordability

seenavene /X7 Synergies and Conflicts Matrix

Research Center

e Mission Effectiveness expanded to 4 elements

— Physical Capability, Cyber Capability, Interoperability, Other
Mission Effectiveness (including Usability as Human Capability)

e Synergies and Conflicts among the 7 resulting elements
identified in 7x7 matrix

— Synergies above main diagonal, Conflicts below

 Work-in-progress tool will enable clicking on an entry and
obtaining details about the synergy or conflict

— ldeally quantitative; some examples next
e Still need synergies and conflicts within elements
— Example 3x3 Dependability subset provided

4-29-2015 17

Flexibility

Dependability

Flexibility

Accreditation

Agile methods assurance

Encryption

Many options
Multi-domain modifiability
Multi-level security

Self Adaptive defects

User programmability

Dependability

Mission Effectivenss

Resource Utilization

Physical Capability

Cyber Capability

Interoperability

Mission Effectivenss

Autonomy vs. Usability
Modularity slowdowns

Multi-domain architecture
interoperability conflicts
Versatility vs. Usability

Domain architecting within
domain

Modularity

Self Adaptive

Smart monitoring

Spare Capacity

Use software vs. hardware

Adaptability

Many options
Service oriented

Spare capacity

User programmability

Versatility

Adaptability

Agile methods
Automated 1/0O validation
Loose coupling for
sustainability

Product line architectures

Staffing, Empowering

Adaptability

Spare capacity

Adaptability

Spare capacity

Adaptability

Loose coupling
Modularity

Product line architectures

Service-oriented
connectors

Use software vs. Hardware
User programmability

Anti-tamper

Armor vs. Weight

Easiest-first development
Redundancy

Scalability

Spare Capacity

Usability vs. Security

Resource Utilization

Agile Methods scalability
Assertion checking
overhead

Fixed cost contracts

Modularity

Multi-domain architecture
interoperability conflicts

Spare capacity

Tight coupling
Use software vs. hardware

Accreditation
Acquisition Cost

Certification

Easiest-first development
Fallbacks

Multi-domain architecture
interoperability conflicts
Redundancy

Spare Capacity, tools costs
Usability vs. Cost savings

Accreditation

FMEA

Multi-level security

Survivability
Spare capacity

Agile methods scalability
Cost of automated aids

Many options
Multi-domain architecture
interoperability conflicts

Spare capacity

Usability vs. Cost savings

Versatility

Automated aids
Automated I/0 validation

Domain architecting within
domain

Product line architectures
Staffing, Empowering
Total Ownership Cost
Value prioritizing

Fallbacks

Lightweight agility

Redundancy

Spare capacity
Value prioritizing

Fallbacks

Redundancy

Value prioritizing

Assertion Checking
Domain architecting within
domain

Service oriented

Physical Capability

Multi-domain architecture
interoperability conflicts

Over-optimizing

Tight coupling
Use software vs. hardware

Lightweight agility

Multi-domain architecture
interoperability conflicts
Over-optimizing

Multi-domain architecture
interoperability conflicts

Over-optimizing

Automated aids
Domain architecting within
domain

Staffing, Empowering

Value prioritizing

Cost of automated aids

Multi-domain architecture
interoperability conflicts
Over-optimizing

Automated aids
Domain architecting within
domain

Staffing, Empowering

Value prioritizing

Automated aids
Domain architecting within
domain

Staffing, Empowering

Value prioritizing

Automated aids
Domain architecting within
domain

Staffing, Empowering

Cyber Capability

Agile Methods scalability

Multi-domain architecture
interoperability conflicts
Over-optimizing

Tight coupling

Use software vs. hardware

Multi-domain architecture
interoperability conflicts

Over-optimizing

Multi-domain architecture
interoperability conflicts

Over-optimizing

Cost of automated aids

Multi-domain architecture
interoperability conflicts
Over-optimizing

Automated aids

Domain architecting within
domain

Staffing, Empowering

Value prioritizing

Automated aids

Domain architecting within
domain

Staffing, Empowering

Value priorit

Automated aids

Domain architecting within
domain

Rework cost savings

Staffing, Empowering

Over-optimizing

Physical architecture or
cyber architecture

Interoperalility

Multi-domain architecture
interoperability conflicts

Wsgr-programmed
interoperability

Encryption interoperability

Multi-domain architecture
interoperability conflicts

Multi-domain architecture
interoperability conflicts

Assertion checking

Cost, duration of added
connectors

Over-optimizing

Tight vs. Loose coupling

Automated aids

Staffing, Empowering

Value prioritizing

checking

Reduced speed of
connectors, standards
compliance

Tight vs. Loose coupling

Automated aids

Domain architecting within
domain

Reduced speed of Assertion|

Automated aids

Domain architecting within

domain

Software Development Cost vs. Reliability

1.4

1.3

Relative 1.2

Cost to

Develop 11
1.0

0.9

0.8

MTBF (hours) 1

4-29-2015

Low Nominal High
COCOMO Il RELY Rating
10 300 10,000

Very
High

300,000

19

Software Ownership Cost vs. Reliability

14
VL = 2.55 Operational-defect cost at Nominal dependability
L=152 = Software life cycle cost
1.3 1.26
Relative 70%
12 1.23 Maint
Cost to 1.20 '
Develop, . 110 10
Maintain, 111
Operational - 1.07
Own and 1.0 defect cost =0 105 o7
Operate 0.99
0.9 0.92
0.8 0.82 - 76
0.69
| | | |
| | | | |
Very Low Nominal High Very
Low High
COCOMO Il RELY Rating
MTBF (hours) 1 10 300 10,000 300,000
4-29-2015 20

Cost
Improvements
and Tradeoffs

Affordability and Tradespace Framework

Get the Best from People

Make Tasks More Efficient

Eliminate Tasks

Eliminate Scrap, Rework

Simplify Products (KISS)

Reuse Components

Reduce Operations, Support Costs

BERRRERRRREn

Value- and Architecture-Based
Tradeoffs and Balancing

4-29-2015

Staffing, Incentivizing, Teambuilding
Facilities, Support Services
Kaizen (continuous improvement)

Tools and Automation
Work and Oversight Streamlining
Collaboration Technology

Lean and Agile Methods

Task Automation
Model-Based Product Generation

Early Risk and Defect Elimination
Evidence-Based Decision Gates

Modularity Around Sources of Change
Incremental, Evolutionary Development
Value-Based, Agile Process Maturity

Risk-Based Prototyping

Value-Based Capability Prioritization
Satisficing vs. Optimizing Performance
Domain Engineering and Architecture

Composable Components,Services, COTS
Legacy System Repurposing

——Automate Operations Elements
— Design for Maintainability, Evolvability

——Streamline Supply Chain
——Anticipate, Prepare for Change

Costing Insights: COCOMO Il Productivity Ranges

e — :
Scale Factor Ranges: 10, 100, 1000 KSLOC

Development Flexibility (FLEX)
——> Team Cohesion (TEAM)
Develop for Reuse (RUSE)
Precedentedness (PREC)
Architecture and Risk Resolution (RESL)
———> Platform Experience (PEXP)
Data Base Size (DATA)
Required Development Schedule (SCED)
—> Language and Tools Experience (LTEX)
——> Process Maturity (PMAT)
Storage Constraint (STOR)
Use of Software Tools (TOOL)
Platform Volatility (PVOL)
_S Applications Experience (AEXP)
Multi-Site Development (SITE)
Documentation Match to Life Cycle Needs (DOCU)
Required Software Reliability (RELY)
S Personnel Continuity (PCON)
Time Constraint (TIME)
—> Programmer Capability (PCAP)
———> Analyst Capability (ACAP)
Product Complexity (CPLX)

—> Staffing

—> Teambuilding

— > Continuous
Improvement

Productivity Range

4-29-2023

SYSTEMS ENGINEERING CO n CI u S i O n S

Research Center

e System qualities (SQs) are success-critical
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management

e SQs ontology clarifies nature of system qualities
— Using value-based, means-ends hierarchy
— ldentifies sources of variation: states, processes, relations
— Relations enable SQ synergies and conflicts identification

e Continuing SERC research creating tools, formal definitions

