ТШТ

Exactly the Information your Subcontractor Needs: DeSyRe — Decomposing System Requirements

Dr. Birgit Penzenstadler Universitat Polytècnica de Catalunya Barcelona, 30. November 2011

Motivation: Decomposition of Requirements

- Example: Development of a car, assignments to subcontractors.
- Requirement: (case study) "The velocity of the vehicle shall be automatically adaptable to the velocity of the preceeding vehicle."
- Question: How do we have to decompose this requirement?

Dooulto f	or Decomposition Crit	orio
Results I	or Decomposition Crit	ena
Table 2.1: Table	of Decomposition Criteria and Assigned W	eights.
Functional criteria	Logical clustering according to usage	8
	Dependencies	11
	Interaction	10
Architectural criteria	Communication requirements	15
	Technical constraints	12
	Design rules	9
Directive criteria	Laws and standards	10
	Patents, licenses, certificates	8
	Business rules, information politics	4
	Implications from subcontractor relationships	10
Quality criteria	Performance	14
	Correctness, robustness, reliability	14
	Usability	8
	Maintainability	12
	Security	12
	Costs	15

5

Description	Template
-------------	----------

Template entity	Description of the entity, to be filled in for each criterion	
Source	<corresponding documents="" for="" information="" retrieval=""></corresponding>	
Impact	<priorities, and="" consequences="" risks=""></priorities,>	
Usage	<Recommendation of state-of-the-art methods $>$	
Examples	<From case study scenario "international logistics company" $>$	
Prioritization	<according according="" decomposition,="" for="" reasons="" td="" the="" the<="" to=""><td>he</td></according>	he
	business domain, and according to the system type>	
	13	

Example: Decomposition of Driver Assistance Systems, Functional Feat.

Tabl	e 3.6: Clustering according to Functional Features
Source	Scenarios, functional requirements
Impact	"Intuitive" and process-oriented, but no explicit account for quality
	requirements
Usage	Broy [BKM07], QUASAR enterprise [Sie02], SOA [BS06], Rittmann
	[Rit08b]
Examples	RFW Feature description: "The system stores information about a
	possible speed limit during a parking stop and presents it to the driver
	at system startup." [Ris07, RFW_SL-66]
	Functional requirement from Diagnostic Service Lane Change
	Warning: "The system warns the driver about risky lane changes and
	supports him / her during the execution with a probably necessary
	correcting reaction to avoid an impending collision." [Gyö08]
Prioritization	According to reason for decomposition (= optimization factors).
	There is a difference in modelling services for distributed development
	and for distributed delivery, as the latter has to include considerations
	about the future usage domains of the system.
	17

Example: Decomposition of Driver Assistance Systems, Comm. Req. Table 3.12: Communication Requirements

Source	Behavioural requirements, standards (for system apects, not	
	documented within system specification)	
Impact	Transaction security, data consistency, technical adequacy	
Usage	Consider for technical architecture, for example, on the SOA layer,	
	see Sensoria [FLB06]	
Examples	"The car is not equipped with RFID transmitters. Communication	
	will only flow in one direction, from the mobile or fixed radio signals	
	to the cars." [Ris07, RFW_SL-72]	
	Information system: "The IP protocol has to be used."	
Prioritization	According to system type, e.g. for a BIS we think about	
	communication protocols in terms of messages, while for an embedded	
	system we think about the bit patterns for certain sensor values.	
	18	

10

Example: Driver Assistance Systems

- Radio Frequency Warner
- Navigation System
- Adaptive Cruise Control

In Detail: Pattern "Pipeline" Requirement: "In case of speeding, the driver shall be warned by display." Radio Frequency Warning System Display RFW Control Control RFW speed display info info info $A(input, output) \Rightarrow G(input, output)$ A(speedinfo, displayinfo): Information on permitted speed is available. A(speedinfo, RFWinfo): Information on permitted velocity is available. G(speedinfo, RFWinfo): Information sent whether driver is speeding. A(*RFWinfo, displayinfo*): Information available on whether driver is speeding. G(RFWinfo, displayinfo): Driver warned by display when indicated. G(speedinfo, displayinfo): Driver warned by display when indicated. Guarantee of Controller fulfills Assumption of Display. 26

<section-header> Deduction of nonfunctional Requirements Alternative: Decompose according to System Attributes (ample: "Display texts that shall be read on a display during driving must not be smaller than 1cm." Alternative: Decompose with Calculation Model (Auternative: Decompose time of the system shall be less than half a second for 90% system uptime." (Calculation models necessary, e.g., for probabilities, geometric characteristics, correction algorithms (Calculation partially unknown) Alternative: Constraint-Handling instead of Decomposition (Example: "The software may not make use of null pointers.")

