
Artifacts of Software Reference Architectures:

A Case Study
Silverio Martínez-Fernández, Claudia Ayala, Xavier Franch

Universitat Politècnica de Catalunya, BarcelonaTech
Jordi Girona, 1-3, 08034, Barcelona (Spain)

{smartinez, cayala, franch}@essi.upc.edu

Helena Martins Marques
everis

Diagonal, 605, 08028, Barcelona (Spain)

hmartinm@everis.com

ABSTRACT

Context: Software reference architectures (SRA) have emerged as

an approach to systematically reuse architectural knowledge and

software elements in the development of software systems. Over

the last years, research has been conducted to uncover the artifacts

that SRAs provide in order to build software systems. However,

empirical studies have not focused on providing industrial evi-

dence about such artifacts. Aim: This paper investigates which

artifacts constitute an SRA, how SRAs are designed, the potential

reuse of SRA‘s artifacts, and how they are used in practice.

Method: The study consists of a case study made in collaboration

with a multinational consulting company that designs SRAs for

diverse client organizations. A total of nine European client or-

ganizations that use an SRA participated in the study. We ana-

lyzed available documentation and contacted 28 practitioners.

Results: In the nine analyzed projects, we observed that the arti-

facts that constitute an SRA are mainly software elements, guide-

lines and documentation. The design and implementation of SRAs

are influenced by the reuse of artifacts from previous software

system development and experiences, and the reuse of an SRA

across different business domains may be possible when they are

platform-oriented. Regarding SRAs usage, we observed that con-

formance checking is seldom performed. Conclusions: This study

reports artifacts of SRAs as stated by practitioners in order to help

software architects and scientists in the inception, design, and

application of SRAs.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures – do-

main-specific architectures

General Terms

Design, Experimentation, Standardization.

Keywords

Software reference architecture, software reuse, empirical soft-

ware engineering, case study

1. INTRODUCTION
―A Reference Architecture (RA) is, in essence, a predefined archi-

tectural pattern, or set of patterns, possibly partially or completely

instantiated, designed and proven for use in particular business

and technical contexts, together with supporting artifacts to enable

their use. Often, these artifacts are harvested from previous pro-

jects‖ [19]. Devising an RA is complex, and may involve different

architecture disciplines. Bass et al. identify three disciplines:

software architecture, system architecture and enterprise architec-

ture [5]. In this work, we focus on RAs for software architectures,

namely Software Reference Architecture (SRA) [2]. ―An SRA is a

generic architecture for a class of systems that is used as a founda-

tion for the design of concrete architectures from this class‖ [2].

Hence, the purpose of SRAs is to serve as guidance for the stan-

dardization, development, and evolution of software systems in a

cost-effective manner [20][21][29]. A recent Gartner report

claims that an SRA ―enables greatly increased speed and reduced

operational expenses as well as quality improvements due to low-

ered complexity, greater investment and greater reuse‖ [36]. Thus,

―IT organizations that lack architecture and configuration stan-

dards […] have higher costs and less agility that those with en-

forced standards‖ [36]. According to their expected benefits [22],

SRAs have become widely studied and used [1].

However, several works have stated recently that the perspective

on what constitutes an SRA still varies significantly [7][8]. Also,

a recent literature review about evidence in software architecture,

in which only two papers were about SRAs, shows that there is

limited knowledge about current industrial SRA usage practices

[32]. As a result, practitioners usually find the current SRA-

related literature scarce and abstract [1], limiting the industrial

uptake of research results in the field. In this context, we believe

that the research community must both clarify the artifacts that

constitute an SRA and understand what the current industrial

SRA-related practices are to envisage more realistic and effective

solutions [15]. This would enable practitioners to fully exploit the

benefits of SRA adoption and usage. Thus, our research goal is:

Which are the artifacts that compose an SRA and how such arti-

facts are designed, reused, and used?

With this goal in mind, we planned and designed an exploratory

case study in the context of a multinational consulting company

called everis in order to understand its SRA practices and gather

observations. Despite this study only focuses in the everis context,

it aims to provide evidence that might contribute to an empirical

basis towards further understanding SRA practices in similar con-

texts (cf. [10][16][17][18][24][28]), and therefore the alignment

of research endeavors with real industrial needs.

The paper is organized as follows. Section 2 provides a brief

background to SRA infrastructure, design, reuse and use. Section

3 presents the methodology and details of this study. Section 4

presents the results obtained, while Section 5 provides an in-depth

discussion of the findings. Section 6 summarizes the conclusions.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

2. BACKGROUND
This section provides a brief background on the aspects of SRAs

which are the focus of this study: the artifacts that constitute an

SRA, and the design, the reuse and the usage of SRAs. In the

discussions, this background is compared with our results.

2.1 SRA Infrastructure
The artifacts or constituent parts of SRAs have received little

attention [2]. However, a few works in the RA literature (not only

limited to the software architecture dimension) describe the arti-

facts that could be used to build software systems based on an RA

(these artifacts are also known as infrastructure [29]). Next, we

show how diverse authors state significantly different views about

the artifacts or deliverables of an SRA. We also explore artifacts

of RAs, to study when they are also present in SRAs.

First, Angelov et al. distinguish components and connectors, in-

terfaces, protocols, algorithms, and policies and guidelines [1].

They identified these artifacts after analyzing 24 SRAs.

Second, Galster et al. indicate that the basic structure of an RA

consists of its common building blocks (i.e., common stakehol-

ders, views, model kinds) according to ISO/IEC 42010 [13]. Be-

sides, they note the importance of the documentation of these RA

building blocks. The authors are based on their own experience.

Third, Nakagawa et al. [29] indicate that an RA infrastructure

provides: software elements, used to develop software systems;

general structure, normally represented by architectural styles;

hardware elements, which host software systems based on the

RA; and guidelines, which indicate how to apply best practices.

They studied the literature of RAs, concrete software architec-

tures, and generic models of software systems (e.g., Zachman).

Fourth, Cloutier et al. point out that architectural knowledge is

the key asset of RAs. They indicate as common elements of RAs:

business purpose, standards, guidance for implementing, and

roadmap [8]. The two latter ones are artifacts of an RA infrastruc-

ture. Their vision comes from the system architecture discipline.

Fifth, Herold et al. identify the following artifacts in the RA of a

German public administration: reusable components of software,

operation platform, methodology, tools, blue-line prints [17].

By analyzing the similarities of these views, an SRA may include

the following artifacts:

 Software elements [29] (i.e., implementation of components

and connectors [1][17]).

 Best practices and guidelines [29] (i.e., policies [1], gui-

dance for implementing [8], methodology, tools and blue-

line prints [17]).

 General structure [29] (represented by documentation of

common building blocks [13], architectural knowledge and

roadmaps [8]).

 Hardware elements [29] (i.e., operating platform [17]).

 Others: interfaces, protocols, algorithms [1].

2.2 Reuse in SRA Design
As the definition of an RA shows, its artifacts are often harvested

from previous projects [19]. Hence, the design of an SRA usually

involves reusing the essential of existing software architectures

[13]. Reusable software assets are not limited to code [24], they

may include algorithms and models, design patterns, scripts, tech-

nical documentation, test results, use metrics as well as other

artifacts. Reuse in the design of an SRA is a cost-effective ap-

proach to create common building blocks [6], and implies the

application of proven components and architectural styles that

induce specific quality attributes [24].

However, there is little evidence on what is reused in order to

design SRA. As a consequence, several problems arise when re-

using assets in the design of SRAs: (1) SRAs are usually not de-

signed in a systematic manner with repeatable steps [13]; (2) shar-

ing architectural assets is not an explicit part of software archi-

tects‘ job description. Thus, they need to be motivated by assist-

ing them during architecting activities, instead of only offering

repositories or templates to store their expertise and experiences

[12]; and (3) it requires a high degree of communication between

people, especially when the knowledge is shared implicitly [18].

2.3 Reuse of SRA Across Business Domains
SRAs are designed to be used in a given domain. SRAs may be

designed for two types of domains: ―platform-oriented‖ [29] or

technological when they are related to a specific architectural style

or technology (e.g., service-oriented architectures [37]); and busi-

ness-oriented when they address a specific application domain

(e.g., automotive [3][10], banking [28], space [24][30]).

This clash of multiple disciplines, different sectors, numerous

enterprises and organizations with own goals and visions, compli-

cate the possibility of reusing SRAs across different domains. In

spite of these difficulties, several efforts have been conducted to

facilitate reuse across disparate domains in large European indus-

trial research programs [25] and private partnerships [3]. Still,

there is no evidence when an SRA can be reused across domains.

2.4 SRA Usage
Checking the conformance of software systems with respect to

SRA is vital to evaluate whether a software system satisfies the

quality attributes enforced by the SRA or there is architectural

erosion [7][17][31]. An SRA, then, is an approach for quality

control during software systems development. SRAs can take up

to three different roles in software development: an instructive

role for designing new application architectures, an informative

role for sharing architectural knowledge, and a regulative role for

restricting the design space of systems in development [7].

Although automatic rule-based conformance checking has been

explored for SRAs [7][17], there are not empirical studies that

investigate how the aforementioned roles are adopted for SRAs.

3. RESEARCH METHODOLOGY
This study has been planned and designed in the context of everis,

a multinational consulting company with which the GESSI re-

search group at UPC is currently running a long-term collabora-

tion aimed at supporting innovation dissemination [3] and the

improvement of everis‘ SRA-related practices. The goal is to get

evidence on the artifacts that compose an SRA, and the role that

these artifacts play in the design, reuse and use of SRAs. Thus,

everis is utterly interested and willing to participate in the study.

3.1 Research Setting
everis offers solutions for big organizations from diverse business

domains (e.g., banks, insurance companies, public administration,

utilities, and industrial organizations) that need to manage a wide

portfolio of complex and business-critical applications. Given the

complexity of these resulting applications, which integrate be-

spoke software with off-the-shelf components, they demand high-

quality software architectures. The strategy adopted by everis to

reach this quality is to foster the adoption of SRAs in these client

organizations as a baseline for developing standardized concrete

software architectures for new applications. In summary, everis

supports its client organizations to design and develop their own

SRA, and to build applications on top of such SRA.

There are three types of key stakeholders related to the design and

use of SRAs: (1) software architects that cooperatively work to

figure out an SRA based on the everis’ reference model (i.e., a

platform-oriented design solution from previous SRA projects) to

accomplish the desired quality attributes and architecturally-

significant requirements of the client organization. We differenti-

ate between a reference model and an SRA because an SRA in-

cludes software elements that cooperatively implement the func-

tionality of the reference model [5]; (2) architecture developers

that are responsible for coding, maintaining, integrating, testing

and documenting the software components of the SRA designed

by everis for the client organization; and (3) application builders

that take the SRA reusable components and instantiate them to

build concrete software architectures for the client organization‘s

applications. Figure 1 shows how software architects and architec-

ture developers form the SRA team, whilst application builders

form concrete software architecture teams (one for every appli-

cation) [20]. Both teams compose an SRA project and may com-

bine professionals from everis and from the client organization.

Figure 1. Key stakeholders in everis’ SRA projects.

In order to design and develop the SRA for their client organiza-

tions, SRA teams are suggested to use a corporate reference model

that helps them to reuse knowledge and homogenize the concep-

tion of SRAs. This is a conceptual model divided into four diffe-

rent views: (a) ―execution architecture‖, which details the soft-

ware elements that an SRA could provide; (b) ―development ar-

chitecture‖ which details the need of guidelines to facilitate the

development of software systems and documentation about the

design; (c) ―technical architecture‖, which generally states the

hardware elements and application servers (e.g., WebLogic,

Tomcat) for deploying applications, and (d) ―architecture of ope-

ration‖, which consists of the procedures to guarantee that appli-

cations are working (e.g., monitoring tools).

In this context, and with our research goal in mind, four GESSI

members and three everis managers considered the study of the

everis‘ SRA-related practices in some everis’ client organizations.

We inquired the Research Questions (RQ) below.

Although SRA teams are suggested to use everis’ reference model

that provide them a unified view of what an SRA should provide,

we wanted to investigate which of those conceptual elements pro-

posed by the reference model were actually used in practice or

even to identify elements that are not currently part of this refe-

rence model. This would lead to pragmatic improvements on the

reference model. Therefore, we stated RQ1: Which artifacts

constitute an SRA designed by everis for a client organization?

Regarding reuse, two aspects resulted of interest. On the one

hand, understanding and identifying the reuse practices of SRA

teams for creating SRAs would lead everis to potentiate reuse

initiatives inside the organization. Therefore, we stated RQ2:

What is reused by everis in order to create SRAs? On the other

hand, SRAs are naturally used to foster and improve reuse

throughout the client organizations‘ software applications. How-

ever, there was a lack of understanding about the scope of reuse

that the artifacts created for a specific client organization could

have. This might help to better realize reuse strategies in everis;

thus we stated RQ3: Could SRA’s artifacts of a specific client

organization be reused in other organizations with a different

business domain?

Finally, in order to understand how the client organizations use

the SRA‘s artifacts designed by everis, we stated RQ4: What is

the perception of application builders about the role that an

SRA plays in the development of applications? We especially

focused on the role that an SRA plays in the development (in-

formative, instructive or regulative). This will help us to under-

stand the importance of the SRA‘s artifacts in practice.

3.2 Research Design
In line with the exploratory nature of our RQs, we decided to use

a qualitative case study approach based on the analysis of nine

SRA projects designed by everis for nine different client organi-

zations. Considering several projects in different client organiza-

tions allowed us a better interpretation and assessment of the SRA

design practices and usage. It would otherwise have been very

difficult to interpret certain decisions or influential factors related

to the nature of the projects or their context. Baldasasarre et al.

state that explorative case study is the most efficient study for

innovation dissemination because it involves stakeholders in the

innovation process and knowledge diffusion [4].

3.2.1 Sampling and data collection
As stated above, the target population of our study was everis‘

SRA projects. The authors and another two everis managers se-

lected nine SRA projects from different client organizations on

the basis of their suitability and feasibility to contact at least with

one person playing each of the targeted roles (i.e., software archi-

tects, architecture developers and application builders). Once the

projects were selected, the everis‘ managers provided us with their

detailed information (explicitly, the so-called SRA project card

with summarized description, documentation, and metrics about

the invested effort) and contacted with potential participants for

agreeing on their participation. Whenever we needed clarification,

everis managers put us in contact with the corresponding project

technical manager or suitable people to handle our questions.

Thus, when required, we held some informal meetings with them.

We finally ended up with 28 people from everis that participated

in the selected projects. In one project we did not manage at the

end to contact any application builder, whilst in other two pro-

jects, we had two of them (see Table 1). The high response rate

shows the interest of everis in the study results. Table 1 gives

information about the SRA projects for the client organizations.

In line with the objective of each RQ, it was clear that some

stakeholders were related with specific RQs. We designed diffe-

rent data collection instruments (available in [23]) based on this

assumption, and designed and piloted them following the guide-

lines stated in [33][34], previous experience performing interna-

tional surveys [1], and the corresponding literature background.

Table 1. Overview of the selected everis’ SRA projects.

Id

org.

Partici-

pants

Main

domain SRA Target

SRA

Project

Type

Approx.

Effort (in

hours)
SA AD AB

A 1 1 1 Industry Web-based applications

to allow vendors up-

dating information

about clients in a de-

partment store.

Des.

P.O.

≈5,000

B 1 1 1 Banking Multi-platform applica-

tions that are fast, sa-

tisfy practices of the

market and support

transaction processing.

Des.,

Evol.

A.D.

≈97,000

C 1 1 1 Banking Multi-platform applica-

tions of a bank.

Des.,

Evol.

P.O.

≈37,000

D 1 1 1 Insurance Applications that satisfy

internal request for pro-

posals.

Des.,

Evol.

P.O.

≈29,000

E 1 1 1 Public

sector

Java web applications,

with flexible front-end,

integration and batch

processes.

Des.,

Evol.

P.O.

≈6,500

F 1 1 2 Public

sector

Web-based applications

for the different de-

partments of a public

administration.

Des.,

Evol.

P.O.

≈20,000

G 1 1 0 Public

sector

Applications with en-

hanced reusability and

reduced development

costs.

Des.

P.O.

≈4,500

H 1 1 2 Insurance Applications integrated

with services of an in-

surance company.

Des.

P.O.

≈4,000

I 1 1 1 Public

sector

Applications that in-

clude the business pro-

cesses of a utility or-

ganization.

Des.

P.O.

≈6,500

SA; Software Architect; AD: Architecture Developer; AB: Application

Builder; Des: SRA Design; Evol: SRA Evolution; PO: Platform-Oriented

SRA; AD: SRA with Application (i.e., business) Domain.

To address RQ1 and RQ2, we approached software architects, as

they are responsible of designing the SRAs and to design the ar-

tifacts than conform an SRA. Furthermore, as SRA design is a

non-deterministic and unsystematic task, the need of further un-

derstanding certain decisions and the rationale behind the SRA‘s

artifacts were evident. Hence, we used semi-structured interviews

based on an interview guide as a data gathering instrument. Semi-

structured interviews provided us with the ability of eliciting de-

tails for each of the analyzed projects, whilst inquiring and under-

standing the particularities of each project, as follow up questions

were allowed when required. In general, the interview guide was

mostly focused on analyzing design tasks of software architects to

create SRA artifacts and their opinions regarding the scope of

reuse of the resulting SRA of the analyzed project (i.e., RQ3).

Prior to the interview, we requested each software architect their

personal information (to shorten the meetings) and documentation

of the SRA (to prepare the meetings). Interviews were conducted

face-to-face in Spanish. Each interview took about one hour and

was audio-taped and prepared for analysis through the manual

transcription of the audio records into text documents (made by an

external company and reviewed by the researchers).

Based on the results and insights gained from performing the

semi-structured interviews to software architects, we then aimed

at understanding the scope of reuse and usage aspects of the SRAs

designed by everis (i.e., approaching RQ3 and RQ4 respectively).

The target participants for gathering such information were archi-

tecture developers and application builders as they are the ones

that develop or use the SRA designed by the software architects.

Given the nature of RQ3 and RQ4 and the fact that it was almost

impossible to contact personally architecture developers and ap-

plication builders (they use to work on different locations based

on the client organizations, sometimes located in other cities or

even countries), we decided to use online questionnaires to ap-

proach them. Thus, two different online questionnaires were de-

signed. Architecture developers and application builders were

inquired about the reuse of the artifacts that conform the SRA

being analyzed. In addition, application builders were also asked

about how the artifacts of the SRA designed by everis were used

in the context of the each client organization, as they are the ones

that use the SRA designed by everis‘ software architects. To par-

tially mitigate the rigidness of questionnaires, we provided room

to add any comment or observation to all the questions therein.

everis managers contacted the corresponding SRA project mana-

gers in order to ensure the stakeholders‘ participation.

3.3 Data Analysis
To perform data analysis, the research team held several discu-

ssion meetings during and after data collection, and established

specific protocols and templates for data analysis.

In the case of the interviews, we used an Excel-based template to

organize each participant‘s answer to each question using tables.

For doing this, we used the interview transcripts and individual

notes taken by different researchers during the interviews. Then,

we analyzed the data from two perspectives that lead us to a better

understanding and interpretation of the results. First, we analyzed

the answers at the project level, in order to understand the specific

context of each project and the perspective of its stakeholders.

Second, we analyzed the answers at whole by assessing all par-

ticipants‘ answers related to each question, in order to categorize

their answers using template tables that described (in each co-

lumn): the name of the category, a detailed description of the cas-

es covered by the category, the participant, and the explicit sen-

tences that support the category. Such categories were then further

discussed and analyzed by the entire team in order to better ana-

lyze the evidence and improve our understanding until reaching

an agreement. As a result, some categories were split, modified,

discarded or added to ensure that all answers were well-

represented. In the case of online questionnaires, we used tools

(e.g., LimeSurvey) to automatically gather and organize the data,

and followed the same procedure above to generate categories.

It is important to emphasize that, in line with the qualitative cha-

racter of our approach, the generated categories were aimed to

provide us a way to analyze and report our findings instead of

providing a quantitative vision of the everis context.

3.4 Limitations of the Study
This section discusses possible threats to validity in terms of cons-

truct, internal, external validity; and the mitigation actions used.

Construct validity. To strengthen this aspect we made sure of

performing a rigorous planning of the study and establishing a

solid protocol and templates for data collection and data analysis

by following guidelines for software engineering [33]. We paid

special attention to design our data collection templates in such a

way that qualitative details and representative sentences suppor-

ting the evidence are always captured and related. Our protocol

included specific mitigation actions for evaluation apprehension

by ensuring the confidentiality of the answers. In addition, the

instruments used to gather data (i.e., the interview guide and the

online questionnaires) were designed based on current SRA-re-

lated practices in the literature and practice, and then piloted and

enhanced to ensure their effectiveness. For instance, we made sure

of polishing the instruments with suitable vocabulary that the

participants were familiar with. This was particularly relevant in

our case as stakeholders used different terms to refer to the same

thing. In this way we ensured the effectiveness of our instruments.

Internal validity. We are aware of factors that might affect internal

validity such as the selection of the most successful projects as

sampling by everis‘ managers. To minimize this, we explained

them the importance of having a representative sampling of the

SRA projects they perform in order to obtain reliable data. In

addition, the facts that we analyzed each project independently

and that diverse roles were approached for each project, allow us

better interpretation and understanding of contextual information

and the SRA–related practices. Otherwise, it would have been

very difficult to interpret certain decisions or influential factors

related to the nature of the projects or the activities of the stake-

holders. Furthermore, regarding individuals that participated in

the study, there is always the possibility that they forget some-

thing or do not explicitly state it when they are asked for. To re-

duce this risk: (1) in the case of the interviews, we discussed some

potential topics that might be omitted by the respondents, and

paid particular attention to them during the interviews in order to

ask for clarifications if necessary; (2) for the online questio-

nnaires, the respondent needed to answer all the corresponding

questions while s/he could complete the questionnaire at any time

(so it gives them the possibility of consulting documentation in

case s/he needs to remember something), and optional extra space

was given in each question to add comments; (3) in all cases we

also had the opportunity to contact the participants when we really

needed clarification. We also made sure to design our data collec-

tion instruments in such a way that tricky questions have related

questions that help to confirm the answers correctness.

Other mitigation strategies were: recording and transcribing all

interviews to contribute to better understanding and assessment of

the data gathered. Also, to reduce the potential researcher bias,

several meetings were held among the researchers and everis‘

managers in order to discuss the results.

External validity. We recognize that our results are tight to the

everis context and should be interpreted as such. Therefore, the

everis context has been detailed as much as possible. Neverthe-

less, the results offer useful evidence that might mostly serve in

organizations that have similar context, e.g., Volvo [10], Océ

[16], Credit Suisse [28], Dutch e-government [14], and German

public administration [17].

We acknowledge that several factors that were not explicitly re-

quested in our study may influence SRA artifacts, such as organi-

zational processes and policies, resources, and cultural issues. But

we think that our instruments were designed to identify and in-

quiry as much as possible in these situations.

We are aware of the importance of conducting similar studies in

other organizations. Hence, we foster other researchers and prac-

titioners to use the instruments of this study (available and further

described at [23]). We expect that our results strengthen the evi-

dence regarding SRA and encourage others to provide similar

evidences that help to mature SRAs research and practice.

4. RESULTS
This section presents the results of the study. They are grouped in

four subsections according to the RQs. Results are described in

terms of the categories or codes generated from the data analysis.

Given the qualitative nature of our study, these categories are

complemented with narrative descriptions and some representa-

tive quotes. Besides, these categories are further explained in the

annex [23]. After representative quotes, it is indicated between

squared brackets the identifier of the organization of the respon-

dent (from A to I) and the role of stakeholder (nothing for soft-

ware architects, AD for architecture developers, and AB for appli-

cation builders). Figures are used when necessary to show the

frequency of answers belonging to each category.

4.1 RQ1: Which Artifacts Constitute an SRA

Designed by everis for a Client Organization?
Software architects were specifically inquired: ―Which delivera-

bles were produced during the SRA project and what was the aim

of these deliverables?‖ Based on all their answers, we found that

in general, the SRA created by everis may provide three main

types of artifacts:

 Common software elements (i.e., software components)

aimed to be reused for all the applications, e.g. ―The SRA is

the set of software elements that support the development of

applications‖ [E].

 Guidelines for the homogeneous development of applica-

tions. These guidelines facilitate the development of applica-

tions with the software elements. As one interviewee said,

the SRA provides ―a methodology, procedures and methods

that have to be applied to be able to develop with the pro-

vided software elements‖ [C], ―guidelines have to be applied

to be able to develop with the provided software elements‖

[C].

 Documentation that describe the logical solution to create a

set of applications. One participant noted: ―the SRA includes

the design of a logic solution to create a set of applications;

and the set of software components that are develop to give

support to such logic design‖ [C].

Regarding the produced deliverables, we present the results in

terms of the three main types of artifacts below.

4.1.1 Software elements
Software elements are provided by means of code. This code can

be provided in two complementary forms: as source code (in the 9

projects), and as ready-to-use libraries (3 projects). One software

architect noted: ―The SRA source code is given to the client in

case that they need it in the future, and the libraries of the SRA

are normally uploaded to a repository, so that application builders

can get them and start to develop applications with them‖ [F].

4.1.2 Guidelines
From the answers of the interviewees, we identified up to three

different types of artifacts related with guidelines:

 User manuals and guidelines for development (in 7 projects).

They show the procedures to be followed to develop appli-

cations. There are development guides for SRAs software

elements. They show how to use them as required by the ap-

plications needs, and how to set them up. One participant

summarized the issues in these words: ―we make develop-

ment guides for the presentation module and the rest of SRA

components. Also, there are guides for the installation pro-

cess of the integrated development environment and its

plugins, for development methodologies, and for indicating

when the SRA will give functionalities for coordination bet-

ween teams (i.e., roadmap) and when an application can be

released‖ [C].

 Tools prescription or plugins to facilitate software develop-

ment (in 4 projects). Some development tools are usually

prescribed (e.g., a specific integrated development environ-

ment as Eclipse, IBM RAD could be used). In addition, bes-

poke plugins for the IDE that automatize the development of

some development tasks, and tools that support the develop-

ment of applications (e.g., for continuous integration) may

also be provided. Among the examples mentioned are: ―a

plugin that allows to visually develop workflows‖ [D], ―a

plugin that facilitates the generation of services and the invo-

cations to services‖ [G].

 Templates and sample instantiations (in the 9 projects). The

best way to see how something works is through examples.

The SRA is always delivered with an application based on

the SRA. The application could be demanded by the client

organization (i.e. real), a demo or a ready-to-use template for

new applications. One software architect noted these exem-

plar deliverables: ―an application that serves as a reference

and a demo application. The former is a template for any new

application based on the SRA. The latter is a sample imple-

mentation developed from the aforementioned template‖ [G].

4.1.3 Documentation
As the SRA grows, documentation is generated:

 Technical documentation and architectural knowledge (in 8

projects). Technical documentation includes SRA functions

agreed with the client during the analysis, technical design of

all the SRA components, the test plan, etc. It is useful for fu-

ture architecture developers, so that they will know where

everything is. However, its level of detail varies depending

on the client demands. Some client organizations want de-

tailed documentation whereas others prefer it in digestible

proportions. One software architect noted the advantages of

the latter approach: ―This documentation does not have a lot

of details; it would be impossible and non-maintainable be-

cause there are changes day by day. Therefore, we describe

the main functionalities that the SRA offers and a technical

description about how problems have been solved and im-

plemented with UML diagrams of the main modules‖ [B].

Part of this documentation is also architectural knowledge.

As a software architect pointed out that: ―when we have in-

vestigated how to communicate with an environment and

consider it interesting, this knowledge was added to our

knowledge management tools (wiki, confluence)‖ [D].

 Management documentation (in 2 projects). Clients also ask

for management documentation such as presentations ex-

plaining the status of the SRA project. As one software ar-

chitect noted: ―we made .ppt presentations explaining the sta-

tus of the SRA project, excel files with the tracked time, de-

viations from initial planning, and prediction about the end

date. These deliverables are for management‖ [D].

4.2 RQ2: What is it Reused by everis in Order

to Create SRAs?
We asked software architects: ―For SRA design, was any existing

component or knowledge reused, either from everis or the client

organization?‖. We obtained the following categories:

 Architectural knowledge from everis that was reused in order

to design SRAs (8 projects). As one participant noted: ―we

used everis’ reference model to establish the gap with respect

to our to-be model‖ [G]. It must be noted that they also stat-

ed that their experience in the current project acted as a

source of new knowledge that feeds the architectural

knowledge available in everis. As a consequence, explicit

feedback was applicable to the everis‘ reference model and

architectural knowledge in 3 projects, e.g., ―there is another

SRA that thrives in much of what we did on this SRA pro-

ject. Not only in technology, but in terms of the design ap-

proach, evolutions that we have done, and so on‖ [A], ―other

SRAs are based on best practices or lessons learned from the

SRA of our project‖ [B].

 Architectural knowledge from the market (1 project). Just

one of the SRA projects was not based on the everis’ refe-

rence model: ―the SRA was based on an Oracle solution for

SOA‖ [I].

 Architectural knowledge from own experience (9 projects).

All interviewed software architects had personal experience

in at least one SRA project before. Hence, they reused: ―de-

signs or solutions that we have previously applied in other

SRA projects‖ [C]; ―knowledge and technologies applied in

previous SRAs‖ [D]; ―architectural knowledge and expe-

rience from other project, concretely the use of an ESB‖ [E].

Another participant summarized: ―at the end, components‘

designs are very similar (e.g., authentication and authoriza-

tion). Although software elements from client organizations

cannot be reused, obviously you gain architectural

knowledge in previous projects and it is what you then re-

use.‖ [H].

 Architectural knowledge from colleagues (8 projects). It

consists of transfer and reuse of tacit knowledge, e.g., ―the

transfer of knowledge and experience has been done by peo-

ple, that is, the people who were in SRA projects has disinte-

grated in other SRA projects and his/her knowledge and way

of working has been expanded. Also, news and important

things are discussed among us in meetings once a month. Fi-

nally, when anyone wants more detail of SRAs, it is dis-

cussed in front of the coffee machine‖ [B].

 Software elements from everis (1 project). Since everis‘ em-

ployees realized that architectural knowledge is reused in

most of new projects, they are building a corporate platform-

oriented SRA that includes the most popular cross-cutting

software elements common in diverse business domains. This

corporate platform-oriented SRA (called j-everis) is an im-

plementation of the everis‘ reference model. In the newest

SRA project [A], they were reusing some of these software

elements.

 Software elements from the client (6 projects). When client

organizations have some functionality already implemented,

some software components can be reused. In 6 projects, par-

ticipants noted that they reused: ―existing functionalities of

the financial terminal‖ [B], ―legacy systems in Cobol through

Tuxedo‖ [D], ―a service broker of a previous version of the

RA‖ [E], ―existing backends of the public administration‖

[F], ―an existing database system‖ [H], ―services imple-

mented in Siebel (e.g., search of city halls)‖ [I].

 Software elements from the market (2 projects). Both open

source and commercial components are sometimes reused,

e.g. ―an open source internationalization component‖ [G],

―Oracle products: Portal, BPM Studio and Service Bus‖ [I].

 No reuse of software elements (1 project), e.g., ―we reused

ideas and designs from other SRA projects, of course, but we

did not get any software elements and reuse it‖ [C].

4.3 RQ3: Could SRAs Be Reused in other Or-

ganizations with Different Business Domain?
We asked to all the stakeholders: ―Is the SRA specific to the busi-

ness domain (e.g., banking, insurance, industry, utilities) of the

project or generic? Could it be reused in a different domain?‖.

We coded their vision of situations in which an SRA can be used

as a reuse artifact in three categories (see Figure 2):

 Platform-oriented SRA. Among these SRAs, we found two

situations. On the one hand, platform-oriented SRAs that can

be fully applicable to other business domains. These SRAs

are not tied to the business logic, i.e. SRA-based applications

implement the business logic. Therefore, the SRA can be

transferred to a great extent to different business domains,

e.g., ―I think the key of a good SRA is being completely

modular, scalable, and agnostic to the application that is de-

veloped above. It enables the SRA to be adaptable to the

specific needs of each project, allowing its use and applica-

tion in various business domains‖ [D-AB]. On the other

hand, mostly platform-oriented SRA that also have some ar-

tifacts tied to the organization business domain that cannot

be reused. Hence, the SRA could be partially reused and

some modifications are needed. Some representative quotes:

―An SRA must have a common part between domain/sectors

and another part that should be adapted to each sector, as

they have different requirements‖ [F-AD]. ―There would be

some modules that do not apply to other business domains

but most parts of the SRA can be reused‖ [F-AB1].

 SRA is designed for a specific business domain, in which

only concepts and design of a few generic functionalities can

be reused, e.g., ―there are software elements that could be

generic, but the SRA is mostly for the banking domain‖ [B].

 N/A. In this category, we put the stakeholders that did not

reply to the question. As one of them said: ―With my expe-

rience and knowledge during the use of the SRA, I cannot

argue the response‖ [A-AB].

Additionally, since most of participants replied that the SRA of

their projects were platform-oriented and diverse software ele-

ments could be reused in several business domains, we asked to

all stakeholders: ―Does the SRA offer reusable modules for cross-

cutting services?‖ Several options were given in the online ques-

tionnaires including an open-answer option. The answers are

shown in Figure 3. It can be observed that among the most popu-

lar ones (in more than 50% of projects), we can find: persistence,

security, logging, error management and configuration. These

elements provide cross-cutting functionalities with a technological

scope that are generic and applicable in many business domains.

0%

10%

20%

30%

40%

50%

60%

Applicable to

other domains

Applicable

with

modifications

Specific

business

domain

n/a

Software

architect

Architecture

developer

Application

builder

Average

percentage

all stakeholders

Figure 2. What stakeholders think about SRA reuse in other

domains.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Software

architect

Architecture

developer

Application

builder

Average

percentage

all stakeholders

Figure 3. Popularity of SRAs’ cross-cutting software elements.

4.4 RQ4: What is the Perception of Applica-

tion Builders of the Role that an SRA Plays?
To see how application builders follow the guidelines from the

SRA, we asked them: ―To what extent did you follow the deve-

lopment guidelines provided by the SRA?‖ The feedback was

categorized into three possible responses:

 2 out of 10 application builders indicated that the SRA

played a regulative role as its use was mandatory, leaving

them a limited degree of freedom and its use was subse-

quently validated. The compliance with the restrictions set by

the SRA was verified ―at all times‖ [C-AB].

 7 out of 10 application builders mentioned that the SRA

played an instructive role, providing them a medium degree

of freedom. The guidelines established by the SRA were fol-

lowed without verifying compliance (e.g., although SRA li-

braries are used, its usage is not controlled or verified). As

one participant noted: ―there was not a constant verification

but we always tried to use the artifacts provided by the SRA‖

[H-AB2].

 1 out of 10 application builders stated that the SRA played

an informative role as its use was optional, leaving them a

high degree of freedom. There was neither control about the

compliance of SRA nor its use.

5. DISCUSSION
This section discusses the most relevant observations from the

results. Each subsection corresponds to one RQ. Some of the re-

sults that may be related to the context of the organizations (e.g.,

type of SRA, hours invested) are explained when necessary.

5.1 Software Elements, Guidelines and Do-

cumentation are the Main Artifacts of SRAs
In Section 2.1 we discussed the types of artifacts of SRAs as re-

ported in the literature. The results from this study support the

three first types of artifacts. First, an SRA provides software ele-

ments (provided as source code or libraries) to be reused for all

the applications (see Section 4.1.1). Second, an SRA provides

guidelines (user manuals and guidelines for development, deve-

lopment tools, templates of applications and sample instantia-

tions) to homogenize and facilitate the development of applica-

tions (see Section 4.1.2). Third, an SRA includes documentation

with the design of a solution (explicitly stated in technical docu-

mentation with architectural knowledge and management docu-

mentation) to create a set of applications (see Section 4.1.3). Next,

we analyze the artifacts that were not highlighted by the partici-

pants of this study or that surprisingly differs from our results.

5.1.1 Hardware infrastructure is concern of other

stakeholders in the consulting firms context
The hardware infrastructure and its proper working is also nece-

ssary in SRA projects. However, it is not direct responsibility of

the participants of the study. Indeed, it is managed by other stake-

holders, even from other providers which were not everis. In any

event, SRA stakeholders stated that the SRA needs to be com-

pliant with the hardware infrastructure and this issue is dealt in

different ways: a) firstly design of software elements, e.g., ―we

started working in the conceptual approach of the SRA, and later

go down and think about the hardware infrastructure that supports

it‖ [A]; b) firstly design of hardware infrastructure, e.g., ―when we

come to their environment we found a pre-defined hardware infra-

structure, which was a Unix with WebSphere and Java‖ [D]; c) in

parallel, e.g., ―we design SRA modules and they had very strong

non-functional requirements. At the same time, we needed to be

sure that some hardware infrastructure would support it‖ [B].

5.1.2 SRAs mostly perceived at a technological level
The elaboration of mission, vision and strategy of the organization

was not mentioned by the participants [8]. This element is the

backbone of enterprise architectures [38]. Contrary, SRAs are

focused on the IT solution, instead of business processes or or-

ganizational changes. However, when the organization needs

them, an SRA should provide the IT solution for these tasks, e.g.,

5 software architects stated that the SRA provides software ele-

ments to support business process management (BPM), e.g., see

BPM cross-cutting module in Figure 3). In addition, SRAs do not

aim to make organizational changes. Software architects pointed

out that the adoption of the SRA did not imply any organizational

change, and there were changes only in the way to develop appli-

cations. However, an SRA can support organizational changes as

it did in one client organization: ―The SRA allowed going from a

centralized software system in Barcelona to split it into 6 regions.

This allowed both organizational and technological changes‖ [I].

It has led to the creation of two different ―cultures‖, clearly ex-

plained by one software architect: ―An enterprise architecture

defines the different areas of the organization at a much higher

level than SRAs, and also how it can be translated into systems,

without dealing in depth in the implementation of software com-

ponents at the low or technology level. It has led to two defini-

tions of architecture: enterprise architecture, and solution SRA

that is like the enterprise architecture already landed on a specific

technical implementation‖ [H]. To sum up, SRAs result in an

extension or sub part of enterprise architectures at a lower level.

5.1.3 An SRA could also include other artifacts
Some artifacts reported in the literature, such as algorithms [1],

were not mentioned in this study. A reason could be that the study

does not cover all the possible business domains, and the presence

of specific artifacts depends on the domain. For example, it has

been reported by other researches the presence of computational

models and algorithms in SRAs for the space domain [24][30].

We can conclude that an SRA does not have to include all the

artifacts uncovered by this study (indeed, there are SRAs from our

study that do not include all of them). Also, SRAs can provide

other artifacts that were not uncovered. The unique artifacts that

are mandatory are software elements because without them, no

SRA can exist (it would be a reference model instead [5]). Ho-

wever, the more artifacts an SRA has, the more control it has over

the applications, and the more benefits from reuse it triggers.

To sum up, the views of Nakagawa et al. [29] and Herold et al.

[17] are very close to these results. The former only differs in the

importance given to the hardware. The latter do not mention the

technical and management documentation, but it has a very simi-

lar view with regard to the artifacts that serve as guidelines.

5.2 SRAs Are Created from Existing Assets
When an SRA project starts, software architects could bump into

two possible situations: ―when we have the chance to create a

completely new SRA‖, but it also could happen that some archi-

tecture exists and ―the client organization asks you: ‗do whatever

you want, but improve it‘‖ [A]. As we have seen in the results,

even in the former case, the nine SRAs of the study are defined

based on accumulated practical experience from previous software

systems developments (either from everis or the client organiza-

tion). The most important artifact being reused is everis‘ reference

model, in 8 out of 9 projects. This reflects its usefulness and its

reuse for different client organizations. Under this scenario, everis

has recently created a platform-oriented SRA, called j-everis, to

benefit as much as possible from reuse in future SRA projects.

This coincides with the literature that states that the SRA design is

based on reusing existing assets when possible [6][13][24]. In

industry, it seems difficult to find Futuristic SRAs (those only

based on theoretical architectural patterns instead of experience

[1]), being common Practice SRAs [1]. Among the assets reused

it is surprising that no architect mentioned reusing architectural

knowledge from clients. It may be because they are consulting

projects that need external support. Also, in 66% of the projects

some software element from the client has been reused, which

indicate the popularity of incremental evolution in SRA projects.

Finally, when assets from the market have been reused, the deci-

sion of going open source or commercial depended on the non-

technical requirement of availability of budget. For instance, in

projects A, E and G, open source were used to reduce costs and

there was no possibility to acquire commercial packages whereas

in project H the organization previously acquired Oracle products

wanted to take as much benefit from them as possible.

5.3 Platform-Oriented SRAs Are Potentially

Reusable in Many Business Domains
SRAs can be designed to capture the essence of software systems

that belong to either a technological or a business domain. The

respondents of our survey support these two types of domains. It

is important to note, though, that the SRAs of our survey were

designed for a single organization (an everis‘ client organization).

As a main result, we saw that platform-oriented SRAs (those with

the scope of a technological domain) can be interesting for many

organizations with different business domains but similar techno-

logical problems. Therefore, they are potentially reusable: ―you

cannot reinvent the wheel; if you create an SRA is because you

think it is good. If you then go to another SRA project and do not

use any of the previous, it would be a little suspicious‖ [C]. Ho-

wever, since they are created for a single organization confiden-

tiality and property issues come up: ―from previous SRAs we

reuse gained knowledge, but the code of the SRA is property of

the client organization‖ [H]. On the other hand, the reuse of SRAs

with the scope of a business domain would require the coopera-

tion between competitor organizations, what seem difficult if there

are not special interests by all parts. An example of a business-

oriented SRA for many organizations is AUTOSAR [3] that stan-

dardizes software development of automotive competing firms.

Although potentially reusable, platform-oriented SRAs are diffi-

cult to design in the beginning: ―designing reuse SRAs compli-

cates the design phase because you have to identify the pieces that

really are reusable whereas the business logic is responsibility of

the application developer‖ [F]. Platform-oriented SRAs are possi-

ble because ―there are not that many architectural styles. For ins-

tance, Microsoft made a compendium of architectures [26]‖ [A].

We think that a confounding factor to this result is the effort in-

vested in an SRA. A high effort invested in an SRA project could

lead to create many specific artifacts to the business domain. The

SRA of the project B, which has been evolved since 2006, was the

unique highlighted as not reusable in other domains. The five

SRA (A, D, E, G, I) that were categorized as platform-oriented

and that can be applicable to other business domains are among

the ones in which less effort has been invested. Another factor is

that three of this SRA projects were only in the design phase.

5.3.1 Divergences among stakeholders
With regard to SRA reuse in other domains, software architects

and architecture developers of the same projects share a similar

vision whereas application builders differ from them. It may be

because architecture developers have a global vision similar to

software architects. However, application builders lack expe-

rience, for instance, this role could be performed by people that

have just started to work in the company without experience (as

the two application builders that do not share the same vision).

The discrepancy about the most popular cross-cutting elements

shows the importance of such elements for the different types of

stakeholders. Architecture developers and application builders

give importance to the modules that help then through the deve-

lopment (e.g., logging, error management, and configuration)

whereas software architects highlight the modules that help to

fulfill significant requirements (e.g., BPM module).

Although most of the organizations share popular cross-cutting

elements (e.g., persistence and security), the inclusion of others

elements in a SRA depend on the business domain and on the

organization needs. For instance, the organizations of the public

sector domain present different needs: project E needed batch

tasks; project I did not need presentation; and the projects E, F

and G do not include business processes (i.e., BPM).

5.4 Conformance Analysis Is Unusual
Software architects give high importance to an adequate adoption

of guidelines, e.g. ―no matter how good the SRA is, if application

builders do not follow guidelines and procedures properly for the

good SRA usage, they will not get much profit‖ [C]. However, in

most of the cases, although application builders follow SRA

guidelines, the compliance of the resulting software systems with

the SRA is not verified. A reason for this situation is that the goal

of the SRA may involve the need of conformance analysis or not.

The nine SRAs of this study aim to either standardize or facilitate

the design and implementation of a set of software systems (the

two goals that an SRA could have as stated in [1]). The former

type of SRA requires to all applications of the organization to be

based on the SRA (plays a regulative role) whereas the latter type

just recommends and facilitates the development of applications

based on the SRA (instructive/regulative role). As one software

architect noted: ―there are usually two types of approaches to

SRA: the extremist, in which the SRA indicates how to do every-

thing and application builders focus on what the SRA gives and

cannot do anything else; and other less strict, in which the SRA

provides some tools, some modules and components, and then

application builders use and extend them as they wish‖ [B]. When

conformance analysis is done (e.g., through rules for analyzing

code and dependencies in Sonar) applications are not upload to

the production environment if they do not conform the SRA rules.

For those SRAs that aim at facilitating the design, conformance

analysis is not a must. For instance, the SRA of the project F is for

a public administration with many IT departments, therefore they

cannot force developers to forget previous technologies, but only

suggest them to use the new SRA. Other reasons could be that

companies demands short time-to-market and conformance check-

ing requires time and resources, or the unavailability of tools.

6. CONCLUSIONS AND FUTURE WORK
There is a vital need for disseminating empirical evidence to help

researchers to assess current research and identify future research

areas, and practitioners to choose appropriate methods and tech-

niques that support the software architecture process [11].

A case study was conducted to analyze the artifacts that nine

SRAs provide for the development of software systems in large

organizations. The main findings were: (1) the identification of

artifacts that compose the SRA infrastructure in nine SRAs in

industry; (2) uncovering the utility of capturing knowledge from

previous experiences; (3) analyzing when SRAs could be reused

to other domains; and (4) checking how strictly SRAs are used in

practice. These results aim to improve current empirical evidence

in SRA research and to help practitioners in the design and use of

SRA.

To sum up, the results from this work may help maturing SRA

adoption and usage. On the one hand, these results disseminate in

everis the artifacts of SRAs from previous projects. On the other

hand, although these results are tight to the everis context, they

offer useful evidence for organizations that have similar context.

Thus, researchers and practitioners may also use the evidence

provided by this paper in similar contexts for the inception, de-

sign, and application of SRAs.

As future work, we plan to conduct two more empirical studies to

investigate other key assets of SRAs: (a) quality attributes and

requirements; and (b) architectural decisions.

7. ACKNOWLEDGMENTS
This work has been supported by the ―Cátedra everis‖ collabora-

tion. We would like to thank all participants for their cooperation.

8. REFERENCES
[1] Ameller, D., Ayala, C., Cabot, J., Franch, X. 2012. How do

software architects consider non-functional requirements: An

exploratory study. In RE 2012, 41-50.

[2] Angelov, S., Grefen, P., and Greefhorst, D. 2012. A frame-

work for analysis and design of software reference architect-

tures. Information and Software Technology 54(4), 417-431.

[3] AUTOSAR. 2011. Development Partnership AUTOSAR to

extend scope of applications to non-automotive areas.

http://www.autosar.org/download/media_release/Developme

nt%20Partnership%20AUTOSAR%20to%20extend%20scop

e%20of%20applications%20to%20non-

automotive%20areas.pdf [Online; accessed 11-Sep-2013]

[4] Baldassarre, M. T., Caivano, D., & Visaggio, G. 2013. Em-

pirical studies for innovation dissemination: ten years of ex-

perience. In EASE 2013, 144-152.

[5] Bass, L., Clements, P., Kazman, R. 2012. Software Architec-

ture in Practice. Addison-Wesley Professional; 3rd edition.

[6] Beyer, H. J., Hein, D., Schitter, C., Knodel, J., Muthig, D.,

and Naab, M. 2008. Introducing architecture-centric reuse

into a small development organization. In ICSR 2008, 1-13.

[7] Buchgeher, G., and Weinreich, R. 2013. Towards continuous

reference architecture conformance analysis. In ECSA 2013.

[8] Cloutier, R., Muller, G., et al. 2010. The concept of reference

architectures. Systems Engineering 13(1), 14-27

[9] Corbin, J., and Strauss, A. 2008. Basics of qualitative re-

search. Sage Publications.

[10] Eklund, U., Askerdal, Ö. et al. 2005. Experience of introduc-

ing reference architectures in the development of automotive

electronic systems. In ACM SIGSOFT SE Notes 30(4), 1-6.

[11] Falessi, D., Babar, M. A. et al. (2010). Applying empirical

software engineering to software architecture: challenges and

lessons learned. ESE Journal, 15(3), 250-276.

[12] Farenhorst, R., and van Vliet, H. 2009. Understanding how

to support architects in sharing knowledge. In

SHARK@ICSE 2009, 17-24.

[13] Galster, M., and Avgeriou, P. 2011. Empirically-grounded

reference architectures: a proposal. In QoSA 2011, 153-158.

[14] Galster, M., Avgeriou, P., & Tofan, D. (2012). Constraints

for the design of variability-intensive service-oriented refer-

ence architectures–An industrial case study. IST Journal.

[15] Glass, R. L. 1994. The software-research crisis. Software,

IEEE, 11(6), 42-47.

[16] Graaf, B., Van Dijk, H., and van Deursen, A. 2005. Evaluat-

ing an Embedded Software Reference Architecture—

Industrial Experience Report—. In CSMR 2005, 354-363.

[17] Herold, S., Mair, M., Rausch, A., & Schindler, I. 2013.

Checking Conformance with Reference Architectures: A

Case Study. In EDOC 2013, pp. 71-80.

[18] Irlbeck, M., Bytschkow, D., Hackenberg, G. et al. 2013.

Towards a Bottom-Up Development of Reference Architec-

tures for Smart Energy Systems. In SE4SG 2013.

[19] Kruchten, P. 2004. The Rational Unified Process: An Intro-

duction. Addison-Wesley.

[20] Martínez-Fernández, S., Ayala, C., Franch, X., Marques, H.

and Ameller, D. 2013. A Framework for Software Reference

Architecture Analysis and Review. ESELAW@CIbSE 2013.

[21] Martínez-Fernández, S., Ayala, C. P., Franch, X., and Mar-

ques, H. 2013. REARM: A Reuse-Based Economic Model

for Software Reference Architectures. In ICSR 2013, 97-112.

[22] Martínez-Fernández, S., Ayala, C., Franch, X., and Martins,

H. Benefits and Drawbacks of Reference Architectures. In

ECSA 2013, 307-310.

[23] Martínez-Fernández, S. 2013. Materials used in this study.

http://www.essi.upc.edu/~smartinez/files/ease14annex.pdf

[Online; accessed; 26-Jan-2014]

[24] Mattmann, C. A., Downs, R. R., Marshall, J. J., Most, N. F.,

et al. 2010. Reuse of software assets for the NASA Earth sci-

ence decadal survey missions. In IGARSS 2010, 1687-1690.

[25] Mazzini, S., Favaro, J., & Vardanega, T. 2013. Cross-

Domain Reuse: Lessons Learned in a Multi-project Trajecto-

ry. In ICSR 2013, 113-126.

[26] Microsoft. 2009. Microsoft Application Architecture Guide,

2nd Edition. http://msdn.microsoft.com/en-

us/library/ff650706.aspx [Online; accessed 30-Apr-2012]

[27] Miles, M. B., and Huberman, A. M. 1994. Qualitative data

analysis: An expanded sourcebook. 2nd Edition. SAGE.

[28] Murer, S. 2013. 15 Years of Service Oriented Architecture at

Credit Suisse. http://www.sei.cmu.edu/library/assets/presenta

tions/murer-saturn2013.pdf [Online; accessed;09-Sep-2013]

[29] Nakagawa, E. Y. et al. 2012. Ramodel: A reference model

for reference architectures. In Joint WICSA 2012, 297-301.

[30] Panunzio, M., & Vardanega, T. 2013. On Software Refer-

ence Architectures and Their Application to the Space Do-

main. In ICSR 2013, 144-159.

[31] Passos, L et al. 2010. Static architecture-conformance check-

ing: An illustrative overview. Software IEEE, 27(5), 82-89.

[32] Qureshi, N., Usman, M., and Ikram, N. 2013. Evidence in

software architecture, a systematic literature review. In EASE

2013, 97-106.

[33] Runeson, P., and Höst, M. 2009. Guidelines for conducting

and reporting case study research in software engineering.

Empirical Software Engineering 14(2), 131-164.

[34] Runeson, P., Host, M., Rainer, A. and Regnell, B. 2012.

Case Study Research in Software Engineering: Guidelines

and Examples. Wiley.

[35] Seddon, P., and Scheepers, P. 2011. Towards the improved

treatment of generalization of knowledge claims in IS resear-

ch: drawing general conclusions from samples, EJIS, 1-16.

[36] Scott, D. 2012. Gartner hype cycle for real-time infrastruc-

ture 2012. http://www.gartner.com/id=2570016 [Online; ac-

cessed;13-Sep-2013]

[37] The Open Group. SOA Reference Architecture Technical

Standard. http://www.opengroup.org/soa/source-

book/soa_refarch/intro.htm [Online; accessed 22-Jan-2014]

[38] Winter, R., and Fischer, R. 2006. Essential layers, artifacts,

and dependencies of enterprise architecture. In EDOCW.

[39] Yin, R. K. 2009. Case Study Research: Design and Methods.

SAGE Publications.

http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.essi.upc.edu/~smartinez/files/ease14annex.pdf

