Verifying Predictive Services' Quality with Mercury

4th INTERNATIONAL WORKSHOP ON ACADEMIC SOFTWARE DEVELOPMENT TOOLS AND TECHNIQUES WASDeTT 2013. MONTPELLIER (FRANCE)

Silverio Martínez-Fernández, UPC (Spain)
Xavier Franch, UPC (Spain)
Jesús Bisbal, UPF (Spain)
Contents

I. Introduction & Motivation

II. Mercury Development

III. Conclusions & Lessons Learned
INTRODUCTION & MOTIVATION
Predictive services introduction

- Predictive Services
 - show in advance an occurrence about the future
- Big offer of services covering many domains
Using the most accurate service

Given a portfolio of candidate predictive services, which one is expected to be the most accurate to satisfy some given customer needs?

- Importance of choosing “the best” service
 - To trust in the provider
- Depend on client’s needs
 - Predictive services: consistency, quality, value [Murphy ‘93]
 - Common for all kinds of services: reputation, speed, security, quality, personalisation, locality...
Service quality

With an *inaccurate* predictive service you may expect good weather...

... but you experience a winter storm.
Given a portfolio of candidate predictive services, which one is expected to be the most accurate to satisfy some given user needs?

MERCURY: VERIFYING PREDICTIVE SERVICES' QUALITY
QuPreSS Inputs & Outputs

- Predictive services
- Ground truth service
- Predictive context
- Customer query

QuPreSS
Quality for Predictive Service Selection

1. the predictive service with the highest quality
2. key parameters that determine prediction’s accuracy of services

...
Main Functional Requirements

• Forecast verification
 ▪ process of assessing the quality & accuracy of a prediction by comparing:
 A forecast
 An observation

• Service monitoring
 ▪ to observe the behaviour of services
QuPreSS reference model
Ground Truth & Predictive Services
Ground Truth & Predictive Services

Ground Truth Service

- From AEMET
- CSV files compressed in gzip
- Spanish cities
- More than 700 stations with sensors measuring observations
- Daily summaries with high and low temperatures

Predictive Services

- XML file
 - Spanish cities
 - Prediction 7 days in advance
 - High and low temperatures

- XML file
 - Catalan cities
 - Predictions 1 day in advance
 - High and low temperatures

- RSS feed
 - Worldwide cities
 - Predictions 2 days in advance
 - High and low temperatures

- Integrated with a **proxy** developed as a web service
 - pre-defined document format
Monitor Service

- SALMon Monitor web service
 - saves the response for every request to the web services (predictions)
 - measures the values in execution time of dynamic quality attributes (like response time or availability)
Forecast Verification

<< Web Client >> QuPreSS Web Application

<< Service >> QuPreSS Service

<< Component >> Forecast Verifier

<< Component >> Invocator

<< DSMS >> Ground Truth Database

<< DSMS >> Forecast Data Database

<< Service >> Forecasting Data Collector

Databases

queries

inserts

gets observations

gets predictions

uses

uses

uses

uses

uses

uses

uses

queries

measures

uses

use...
Forecast Verification

• Forecasting Data Collector web service
 ▪ collects both ground truth and predictions

• Forecast Verifier web service
 ▪ Compares observations with forecasts:
 • Mean Squared Error & Approximation Error

\[MSE_{PS} = \sqrt{\frac{\sum_{i=1}^{n}(\mu_{GT_{i}} - T_{PS_{i}})^2}{n}}\]
\[AE_{PS} = \frac{\sum_{i=1}^{n}|T_{GT_{i}} - T_{PS_{i}}|}{\sum_{i=1}^{n}|T_{GT_{i}}|}\]

▪ Makes a ranking of services:
 • The less error, the more accurate \(\rightarrow\) redirect to “the best”

▪ Helps to study key parameters of the predictive context
Customers
I want to know the weather forecast for Lleida...
CONCLUSIONS & LESSONS LEARNED
Conclusions

• Mercury has allowed to assess the feasibility of the QuPreSS reference model and to understand the complexity of the prediction problem.
 ▪ Implementation for the weather forecast domain
 ▪ Applicable to other domains
 ▪ Scalable and easy to integrate with other systems
Lessons Learned

• Problems:
 ▪ Adaptations to SALMon
 ▪ Pay-per-use predictive service
 ▪ Production environment: default security, servers version, servers permissions...
 ▪ need of having an expert in the predictive domain

• Strengths
 ▪ previous experience in SOA

• Weaknesses
 ▪ limited duration, students for follow-up, limited resources
Future Work

• Applying this architecture to **other domains** apart from the weather forecast domain
 ▪ Mapping between observations and predictions

• Identifying the current knowledge about **key parameters that determine predictive service quality**
 ▪ Data-mining

• Studying the forecast **value criteria** of predictions
 ▪ Not only quality
Thank you!!

Comments and Questions

Silverio Martínez-Fernández
<smartinez@essi.upc.edu>
@silveriomf
Demo

http://youtu.be/XE58jSwclic