
Reference Architectures and Scrum: Friends or Foes?
Ma�hias Galster

University of Canterbury
Christchurch, New Zealand

mgalster@ieee.org

Samuil Angelov
Fontys University of Applied Sciences

Eindhoven, �e Netherlands
s.angelov@fontys.nl

Silverio Martı́nez-Fernández
Fraunhofer IESE

Kaiserslautern, Germany
silverio.martinez@iese.fraunhofer.de

Dan Tofan
Independent Researcher

Iasi, Romania
dan.tofan@gmail.com

ABSTRACT
So�ware reference architectures provide templates and guidelines
for designing so�ware systems in a particular domain. Companies
use reference architectures to achieve interoperability of (parts of)
their so�ware, standardization, and faster development. In contrast
to system-speci�c so�ware architectures that “emerge” during de-
velopment, reference architectures dictate signi�cant parts of the
so�ware design early on. Agile so�ware development frameworks
(such as Scrum) acknowledge changing so�ware requirements and
the need to adapt the so�ware design accordingly. In this paper, we
present lessons learned about how reference architectures interact
with Scrum (the most frequently used agile process framework).
�ese lessons are based on observing so�ware development projects
in �ve companies. We found that using reference architectures can
be a good agile practice in Scrum: �ey provide enough design
upfront without spending too much e�ort, reduce documentation
activities, facilitate knowledge sharing, and contribute to “archi-
tectural thinking” of developers. On the other hand, we found
that reference architectures can impose risks or even threats to the
success of Scrum (e.g., to self-organizing and motivated teams).

CCS CONCEPTS
•So�ware and its engineering→ So�ware architectures; So�ware
design engineering; Agile so�ware development;

KEYWORDS
So�ware reference architectures, agile so�ware development, Scrum,
experience report, lessons learned
ACM Reference format:
Ma�hias Galster, Samuil Angelov, Silverio Martı́nez-Fernández, and Dan
Tofan. 2017. Reference Architectures and Scrum: Friends or Foes?. In
Proceedings of 2017 11th Joint Meeting of the European So�ware Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of So�ware
Engineering, Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 6 pages.
DOI: h�ps://doi.org/10.1145/3106237.3117773

1 INTRODUCTION
1.1 Context and Background
When it comes to so�ware architecture and design, industry leans
towards �exible designs and lightweight architecture design meth-
ods [12]. However, even though agile so�ware development argues
against big upfront design, “some” upfront architecting is also useful
in agile projects [16]. In general, there are two perspectives on ar-
chitecting so�ware. First, there is the perspective that architectures
should emerge and evolve during development. �is perspective
can be questioned “because architecture encompasses the set of
signi�cant decisions about the structure and behavior of the sys-
tem” [1]. Second, there is the perspective of “big design upfront”
which carries the risk of making many architectural assumptions
that can be expensive to revert later.

So�ware reference architectures are one form of upfront de-
sign. Choosing a reference architecture is usually one of the �rst
architectural decisions in a project. Reference architectures pro-
vide ba�le-proven (and o�en generic) design solutions (including
generic artifacts, architectural styles, and domain vocabulary) for
systems in a particular business domain or technology domain.
�ey include best practices or standards, design guidelines, and
sometimes even partial implementations. In this sense, reference
architectures are a blueprint for system development and can act
as a foundation for designing a concrete (and more re�ned and
detailed) architecture for a particular system. �is allows reusing
design decisions that worked well in the past [13]. For instance, a
reference architecture for web services may describe how a web
service is developed and deployed within an IT ecosystem [10].

Prominent examples of reference architectures are AUTOSAR 1

(for automotive so�ware), Oracle’s reference architecture for big
data systems 2, and vendor-independent reference architectures
for web-based systems 3, the Internet-of-�ings [17] and OATH
for authentication 4. So�ware reference architectures come in
di�erent �avors depending on their context of use (e.g., used in
one or more organizations), origin (either from third parties or
designed in-house) and purpose (e.g., facilitating development and
standardization) [2]. Typical bene�ts of reference architectures
include higher interoperability of di�erent system components,
lower development costs and improved communications within

1www.autosar.org/
2oracle.com/technetwork/topics/entarch/oracle-wp-big-data-refarch-2019930.pdf
3archive.oreilly.com/pub/a/web2/excerpts/web2-architectures/chapter-5.html
4openauthentication.org/speci�cations-technical-resources/

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version will be published in Proceedings of the 11th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, (ESEC/FSE’17)
The final publication can be accessed under the DOI: http://dx.doi.org/10.1145/3106237.3117773

http://dx.doi.org/10.1145/3106237.3117773

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany M. Galster et al.

organizations; a drawback of using reference architectures is the
additional learning e�ort required from developers [14].

1.2 Addressed Problem and Contributions
�ere is an inherent tension between agility in so�ware devel-
opment and reference architectures. On the one hand, reference
architectures, in contrast to concrete system architectures that
“emerge” during agile development, constrain the design and devel-
opment process from the very beginning of a project. Reference
architectures dictate parts of the so�ware design by specifying
architectural decisions early. On the other hand, agile principles
welcome changing requirements. In this paper, we investigate this
tension. Our contributions are as follows:

• We present lessons learned from using reference architec-
tures with Scrum. �ese lessons are based on observing
projects in �ve so�ware companies that use Scrum. We fo-
cus on Scrum, because it is currently the most widely used
agile so�ware development framework [11]. Furthermore,
by focusing on Scrum rather than considering agile so�-
ware development in general, we constrain the context in
which our insights are obtained and in which our �ndings
are applicable.

• Based on lessons learned and related observations, we dis-
cuss implications for so�ware engineering practice and
how the observations can help so�ware developers, design-
ers and team leads use reference architectures in Scrum.

�e target audience of our �ndings are so�ware managers, team
leads, developers, designers, architects, and so�ware engineering
researchers who would like to understand the use of particular
so�ware engineering practices (in this case reference architectures)
with Scrum and potential positive and negative e�ects on project
and development agility.

As Bellomo et al. argue, concerns about long-term decrease in
the quality of large-scale agile projects have led to an increasing
interest of the agile so�ware development community in so�ware
architecture [6]. Successfully integrating architecting with agile
practices is key to performing architectural work that is useful for
agile teams [19]. �e role of so�ware architecture and architecting
activities in agile development has broadly been discussed in the
literature (for example, see Babar et al. [5] and Yang et al. [20] for a
comprehensive literature review and Galster et al. [8] for an analysis
of the role of the architect in Scrum). Our work complements
these works by focusing on the interaction between real-world
usages of Scrum (i.e., one particular agile development framework)
and reference architectures (i.e., one speci�c so�ware architecture
practice).

2 INDUSTRIAL CONTEXT AND METHOD
To understand the use of reference architectures with Scrum, we
observed the use of reference architectures in �ve global companies.

2.1 Company Pro�les
Below we describe the companies involved in our analysis. �is
allows others to interpret �ndings by analogy (i.e., our �ndings
may apply to companies which are similar to the companies in this
study) [18]. We selected companies based on their use of reference

architectures and Scrum. �e Scrum framework consists of Scrum
teams and their associated roles, events, artifacts, and rules [15].
�erefore, rather than relying on the claims of companies to prac-
tice Scrum, we checked if typical roles (Product Owners, Scrum
Masters, cross-functional and self-managed Scrum teams), artifacts
(product backlog, sprint backlog) and events (sprint planning, stand-
ups/daily Scrum, sprint reviews, retrospectives) according to the
Scrum Guide (see Schwaber and Sutherland [15]) existed. Company
pro�les are shown in Table 1.

Table 1: Company pro�les

Company Employees Domain Types of so�ware
C1 ˜500 Automation Embedded
C2 ˜2,500 Insurance Web-based
C3 ˜41,000 Healthcare Embedded
C4 ˜13,000 Textile Any
C5 ˜20,000 Printing Embedded

Below we list several commonalities of the �ve companies:
• So�ware is developed for external clients rather than for

internal use in the companies.
• Companies self-classi�ed their projects as medium to large

(based on project duration, budget, amount of code, etc.).
• Typical projects are “green�eld” systems in mature do-

mains. So�ware products developed are usually novel (e.g.,
for new products brought to market), rather than evolu-
tions of previously developed products.

• All companies indicated that their so�ware projects have
high criticality for achieving business goals of the company.

• Companies indicated that their so�ware must comply with
quality standards (e.g., ISO12485) or audit requirements.
As a consequence, documentation was a �rst-class concern
in all companies.

In summary, observed companies used reference architectures in
stable contexts, for larger systems with low rates of change, and
for relatively critical and novel systems.

Reference architectures in companies: Each company used
an internally de�ned reference architecture for its projects. �e ref-
erence architectures used in the companies include documentation
de�ning basic architecture views, architectural design principles
and guidelines that all projects need to follow. Reference architec-
tures used in the companies are not new but have been in use for
3-15 years. For example, C1 de�ned a reference architecture for
Windows-based application development for industrial automation
(robotics, automotive, etc.). C2 uses a technology-oriented refer-
ence architecture to combine various technologies, such as Java,
.NET, Lotus Notes, Visual Basic, etc. C3’s reference architecture
consists of two documents that describe architectural views as UML
diagrams and less formal “boxes and arrows”. �e reference archi-
tecture is described at a high level (in a document that describes
mostly design decisions and four major architectural views) and at
a lower level (in a document that elaborates on higher level com-
ponents). Company C4 de�ned a reference architecture based on
their corporate reference model. C5 informally calls its reference

Reference Architectures and Scrum: Friends or Foes? ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

architecture “embedded so�ware reference architecture”. It con-
sists mostly of documents (more than 20 di�erent documents with
500-1,000 pages) that describe di�erent models, views, component
diagrams, sequence diagrams, class diagrams, etc. In all companies,
facilitation is the main goal of using reference architectures and
standardization is a minor concern only in company C5.

Scrum in companies: All companies have several Scrum teams,
depending on the number of projects. All Scrum teams have around
�ve team members, but this might vary per project. In all companies
more than one Scrum team might work on a project but one Scrum
team usually works on one project at a time.

2.2 Data Collection and Analysis
�e primary data source were semi-structured interviews (struc-
tured and open questions) with representative lead architects and
developers in the above companies. Interview questions were cen-
tered on a) how reference architectures are used in Scrum projects
(e.g., what types of reference architectures, at what stage of a project,
who is the driver for using reference architectures), b) what bene-
�ts of using reference architectures with Scrum are (e.g., why are
reference architectures used and what improved through the use
of reference architectures, and c) limitations of using reference
architectures with Scrum. We selected one or two representative
interviewees per company based on their expertise in using refer-
ence architectures and their involvement in Scrum projects in the
respective company:

• C1: project lead
• C2: architect
• C3: team lead, architect
• C4: architect
• C5: team lead, designer

All interviewees had at least an undergraduate degree in so�-
ware engineering, computer science or related �elds. Furthermore,
interviewees spent at least �ve years at organizations in leader-
ship roles and therefore were quali�ed to provide representative
information about companies.

As part of the interviews, we reviewed architecture and process
documentation made available by interviewees (however, some
information was not shared since companies considered it con�-
dential). We took extensive notes during the interviews, recorded
them (with the permission of the interviewees) and transcribed
them. To formulate our �ndings, we followed an inductive ap-
proach and inferred �ndings from coding interviews [18]: We �rst
analyzed how reference architectures impact agile principles and
Scrum. �en, we formulated lessons learned explaining these im-
pacts. To clarify and verify our analysis results, we followed up
with interviewees in e-mails and phone calls.

3 LESSONS LEARNED
We present seven lessons learned about the impact of using refer-
ence architectures in Scrum. In Table 2, we list all lessons learned
and map them to companies in which observations related to a
lesson were made. Column “Impact” indicates whether a lesson
hints at a potential impediment in Scrum caused by reference ar-
chitectures (‘-’) or if it hints at aspects of reference architectures
that help implement agile principles in Scrum (‘+’). Note that this

impact is only indicative and we do not make any claims about the
strength of that impact.

Table 2: Summary of lessons learned

Lesson Impact C1 C2 C3 C4 C5
L1 – Early delivery + X X X X X
L2 – Development pace + X X X X X
L3 – Documentation e�orts + X X X X X
L4 – Architectural thinking + X X X
L5 – Information sharing + X X X X X
L6 – Self-organizing teams - X X X X
L7 – Motivated developers - X X X X

3.1 “Positive” Lessons Learned
3.1.1 Early Delivery of So�ware. In all companies we studied,

reference architectures are used from the very beginning of projects.
Companies con�rmed that reference architectures provide inspira-
tion for the design of so�ware systems, without pu�ing too many
constraints on so�ware development. All pointed out the reduced
investment in upfront design because of the use of reference archi-
tectures since reference architectures already con�ne the design
space and o�er proven design decisions for a domain. �is reduc-
tion in upfront e�orts o�en even outweighs the e�ort required to
learn about a reference architecture. For example, in company C5
the reference architecture helps focus on important design deci-
sions for printing devices at the beginning and avoids producing
designs that require heavy redesign later. �is allows companies
to produce a potentially releasable version of their product earlier
than if designs for new so�ware systems were created from scratch.

Lesson 1:
Reference architectures support early delivery of so�ware.

3.1.2 Development Pace. In companies C1 to C5, experiences
with using the reference architecture accumulated over time provide
reliable data to be�er plan sprints. In particular, companies C3, C4,
and C5 reported simpler e�ort estimation for user stories. For
example, company C3 reported simpli�ed backlog grooming and
fewer di�culties when re-estimating incomplete stories during
sprint planning. Similarly, company C4 plans the implementation
of so�ware modules (their reference architecture advocates module-
based systems) in each sprint based on their priority as core or
optional modules in the reference architecture. In company C5,
teams reuse backlog items that are about instantiating the reference
architecture across di�erent projects. Minimizing unexpected or
poorly estimated sprint tasks contributes to the ability of teams to
follow a constant development pace.

Lesson 2:
Reference architectures support a steady development pace.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany M. Galster et al.

3.1.3 Documentation E�orts. Reference architectures in the �ve
companies come with supporting artifacts and documentation, so
large parts of concrete system architectures do not need to be doc-
umented and maintained separately. �is avoids a lot of additional
and redundant documentation. Scrum teams and architects focus on
documenting product-speci�c features and design decisions, rather
than the whole architecture and all design decisions. Companies
that we observed document only deviations from the reference ar-
chitecture (company C1 documents these deviations in more detail,
since their reference architecture is quite generic). For example, as
one interviewee in company C3 stated, “we saw a lot of waste about
duplication in projects and we reduced that waste by introducing a
reference architecture. �at is how, at least for us, worked well in
more agile so�ware development”. �e reduction or avoidance of
documenting activities allows companies to use working so�ware
as a primary measure of progress.

Lesson 3:
Reference architectures reduce documentation e�orts.

3.1.4 Architectural Thinking. In companies C1 and C2, refer-
ence architectures inject architectural thinking into Scrum. Before
using reference architectures, architectural issues were neglected
and architectures emerged implicitly. As stated by company C4,
reference architectures help “architecturalize” an application. �is
is particularly useful for Scrum team members without a strong
architecting skill set. However, we also found that in companies C3
and C5, architectural thinking and activities are deeply embedded
in their so�ware development practices and are not changed by
the use of reference architectures. Nevertheless, overall, reference
architectures enforce a�ention to architecting throughout a project
allows teams to pay continuous a�ention to technical excellence
and good design.

Lesson 4:
Reference architectures encourage architectural thinking.

3.1.5 Information Sharing. In all companies we found that a
shared architectural mindset of core architectural issues helps com-
municate the shared architectural vision as a “reference point”
within Scrum teams during and across sprints. As found in com-
pany C1 and C3, this shared understanding of common architectural
ideas across di�erent Scrum teams allows engineers to move across
di�erent projects and/or teams, and to work on more than one
project at the same time (as long as the same reference architec-
ture is used). �is facilitates cross-functional teams. Company
C5 stated the �exibility of so�ware engineers to switch between
projects as a signi�cant bene�t since engineers can immediately
recognize the structure and terminology in a new project. �e exis-
tence of a common architectural knowledge facilitates face-to-face
communications during projects and therefore impacts positively
e�cient and e�ective methods of conveying information to and
within development teams.

Lesson 5:
Reference architectures support information sharing.

3.2 “Negative” Lessons Learned
3.2.1 Self-organizing Teams. Self-organizing teams mean that

teams have authority to make decisions related to their tasks. In
company C1, choosing a reference architecture is a team decision,
rather than the decision of the architect only. However, it is the
architect (member of the team) who suggests the use of the ref-
erence architecture. �is means, in company C1, teams are truly
empowered and self-organized. In companies C2 to C5, the decision
about using a reference architecture is not made by the Scrum team,
but externally. In company C2, a so�ware architect (not part of
the Scrum team) makes the decision, while in companies C3 and
C5 it is lead designers outside the Scrum teams making the deci-
sion. In company C4, it is a higher level organizational decision.
�is shows that despite of empowered and self-organizing teams
in Scrum, some decisions are made by leading roles in an organiza-
tion or project, con�icting with the idea that the best architectures,
requirements, and designs emerge from self-organizing teams.

Lesson 6:
Reference architectures may undermine team authority.

3.2.2 Motivated Developers. In companies C1, C3, C4, and C5
some developers feel restricted in their creativity and freedom in
making decisions. Furthermore, in company C5, engineers (espe-
cially new engineers joining the organization) felt that they need to
step out of their comfort zone because of the reference architecture.
Some developers complain about the reference architecture as a
constraining harness (in a negative way) – “it helps you but it does
not feel that nice” (as stated by one interviewee). �is discomfort
has two reasons: First, developers need to work with (and live with)
major decisions made by others. Second, developers’ decision space
and creativity are limited. As recently found, imposed limitations
on development related to the technical infrastructure is one of the
top-10 causes of unhappiness of developers [9].

Lesson 7:
Reference architectures may frustrate developers in teams.

4 DISCUSSION
4.1 Implications
Overall, our �ndings contribute to highlighting how so�ware re-
ference architectures work with Scrum. In addition to the positive
lessons learned, no company felt that project agility is threatened
(unless a reference architecture is used as a strict standardization
tool). One may argue that positive lessons learned about refe-
rence architectures are about reference architectures in general,
no ma�er if teams follow Scrum or not. However, achieving these
bene�ts directly contributes to allowing Scrum to deliver value.
Also, achieving these bene�ts in Scrum shows that these bene�ts of

Reference Architectures and Scrum: Friends or Foes? ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

reference architectures are not necessarily compromised by using
Scrum. Below, we summarize potential implications for practice.

4.1.1 Implications for Scrum Roles.

• Development team: Reference architectures can stimu-
late architectural thinking in Scrum and help developers
focus on architectural aspects. �is is particularly useful
since architecture activities are o�en performed by engi-
neers from �elds with limited education in so�ware ar-
chitecture [4]. Furthermore, “de�nitions of done” used by
development teams to check whether a user story from the
sprint backlog is completed can be lightweight in terms
of requirements for documenting related design decisions
since reference architectures reduce documentation need.

• Product Owner: �e Product Owner performs all com-
munications between the team and the other stakeholders
(e.g., end users or management roles) outside the team.
Product Owners are usually non-technical persons and
therefore lack an understanding of the role and meaning
of a reference architecture and its impact on Scrum or so�-
ware projects in general [3]. Typically, Product Owners
do not engage in the architecting aspects of a project as
they “are o�en employees of a business department or a
di�erent non-IT department” [7]. As reported by Friedrich-
sen [7], in practice, most Product Owners take care only
about the functional requirements but not about the non-
functional requirements. Reference architectures therefore
allow Product Owners to “ignore” detailed architecting
issues but to rely on high-level structures o�ered by a
reference architecture.

• Scrum Master: A Scrum Master takes care of the proper
implementation of Scrum and related practices. �e Scrum
Master also helps resolve any impediments that the team
may face and manages resources (so�ware, hardware, space,
time, etc.). �erefore, understanding risks or threats to the
success of the Scrum framework as captured in our lessons
learned is essential. Scrum Masters should educate them-
selves about the reference architecture used in a project,
and understand the reasons for using a reference archi-
tecture in a particular project. A concrete action of the
Scrum Master to support the development team is to help
them prepare for the use of the reference architecture at
the beginning of a new project (e.g., by arranging trainings
for members of the development team).

4.1.2 Risks and Threats to Scrum. Two of our lessons learned
indicate negative impacts on self-organizing teams and motivated
individuals in Scrum teams. �is could be due to the fact that deve-
lopers may have the perception that deviations from the reference
architecture are di�cult and therefore inhibits agility and changing
requirements (i.e., contradicting a basic agile principle of “welcome
changing requirements, even late in development” from the mani-
festo of agile so�ware development). Furthermore, developers fear
that using a reference architecture will introduce some overhead
for maintaining and updating the reference architecture (companies
in our study used internally de�ned reference architectures). �is
may be perceived di�cult due to the required speed and focus on

creating a potentially shippable release at the end of each sprint,
while there is no dedicated time for other activities. �is problem
may be particularly challenging to deal with if the reference archi-
tectures are maintained by architecture bodies (or dedicated teams)
outside individual Scrum teams. To mitigate this problem, some
team management might be required during project planning or
even pre-project work to prepare team members to accept the limi-
tations imposed by reference architectures. To deal with overheads,
reference architecture maintenance needs to be planned also with
respect to sprint schedules of teams (e.g., maintaining the reference
architecture in the middle of a project might cause problems).

4.1.3 Reference Architectures as “Practice” in Scrum. �e Scrum
Guide states that Scrum “is a framework within which you can
employ various processes and techniques.” As Bellomo et al. argue,
there is a growing consensus that a strong architectural foundation
lets teams rapidly evolve complex so�ware systems using iterative,
incremental development [6]. Furthermore, Bellomo et al. argue
that one major challenge agile teams face in building an architec-
tural foundation is balancing two competing concerns: “delivering
near-term functional requirements (based on the agile philosophy
of delivering user value early and o�en) and meeting near- and
long-term quality a�ribute goals (without which the project can
grind to a halt because system complexity makes e�cient modi�-
cations impossible).” �is is where reference architectures within
Scrum can help. �ality a�ribute prioritization in particular can
be di�cult in early increments, and a wrong decision can result in
hard-to-modify, unreliable, slow, or insecure systems. Reference
architectures can facilitate development by helping developers im-
plement systems meeting particular quality goals based on the
context and domain.

4.2 Limitations and�reats to Validity
With regards to construct validity (i.e., did we measure what we
intended to measure), our insights are limited since we obtained
data from a limited number of sources (interviews and review of
architecture and process documentation). However, insights are
based on data from di�erent organizations and projects. Also, inter-
views were based on a common interview guideline and included
control questions to check our understanding of questions and an-
swers. With regards to external validity (i.e., are �ndings of interest
beyond the studied companies), we acknowledge that we focus on
analytical generalization. �is means that our results are generaliz-
able to other companies that have similar characteristics as the ones
included in this study. �e �ndings are based on �ve companies
but as can be seen in Table 2, each lesson learned is based on more
than one company. With regards to reliability (i.e., how the data
analysis depends on those who analyzed the data), we recorded
interviews and interview data, and reviewed data collection and
analysis procedures before conducting the study. Internal validity
is not a concern since our study does not make any claims about
causal relationships.

5 CONCLUSIONS
Our study in �ve companies revealed a mixed impact of using refer-
ence architectures with Scrum. In summary, our exploration of the
interaction of reference architectures and Scrum helps practitioners

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany M. Galster et al.

mitigate risks and recognize threats in advance. Considering the
context of observed organizations and their typical projects, using
reference architectures can be a smart approach to architecting
activities in projects that develop larger systems in stable contexts.
Actionable insights include:

• Reference architectures support several agile so�ware de-
velopment principles implemented in Scrum, such as con-
tinuous delivery and constant development pace.

• Forcing the use of reference architectures on agile teams
poses a threat to self-organizing teams and motivated indi-
viduals in agile so�ware development projects.

We believe that our �ndings are applicable beyond the cases pre-
sented in this paper as long as the cases have similar contexts as
the studied companies. In fact, re�ecting on the use of reference
architectures can be seen as good “agile practice” based on one of
the agile principles in the manifesto of agile so�ware development:
“At regular intervals, the team re�ects on how to become more
e�ective, then tunes and adjusts its behavior accordingly.”

ACKNOWLEDGMENTS
We thank the interviewees who participated in this study. Also, we
thank the reviewers for their insightful comments. �is work was
partially supported by the ERCIM Fellowship Programme.

REFERENCES
[1] P. Abrahamsson, M. Ali Babar, and P. Kruchten. 2010. Agility and Architecture:

Can they Coexist. IEEE So�ware 27, 2 (2010), 16–22.
[2] S. Angelov, P. Grefen, and D. Gree�orst. 2012. A Framework for Analysis and

Design of So�ware Reference Architectures. Information and So�ware Technology
54 (2012), 417–431.

[3] S. Angelov, M. Meesters, and M. Galster. 2016. Architects in Scrum: What
Challenges Do �ey Face?. In European Conference on So�ware Architecture
(ECSA). Springer, 229–237.

[4] P. Oliveira Antonino, A. Morgenstern, and T. Kuhn. 2016. Embedded-So�ware
Architects: It’s not Only about the So�ware. IEEE So�ware 33, 6 (2016), 56–62.

[5] M. Ali Babar, A. Brown, and I. Mistrik. 2013. Agile So�ware Architecture – Aligning
Agile Processes and So�ware Architectures. Morgan Kaufman, Burlington, MA.

[6] S. Bellomo, I. Gorton, and R. Kazman. 2015. Toward Agile Architecture: Insights
from 15 Years of ATAM. IEEE So�ware 32, 5 (2015), 38–45.

[7] U. Friedrichsen. 2014. Opportunities, �reats, and Limitations of Emergent
Architecture. In Agile So�ware Architecture. Morgan Kaufmann, Boston, 335–
355.

[8] M. Galster, S. Angelov, M. Meesters, and P. Diebold. 2016. A Multiple Case Study
on the Architect’s Role in Scrum. In International Conference on Product-Focused
So�ware Process Improvement (PROFES). Springer, 432–447.

[9] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson. 2017. On the Unhap-
piness of So�ware Developers. In 21st International Conference on Evaluation and
Assessment in So�ware Engineering (EASE). ACM, 324–333.

[10] �e Open Group. 2011. SOA Reference Architecture Technical Standard. (2011).
[11] VersionOne Inc. 2017. 11th Annual State of Agile Survey. (2017).
[12] M. Keeling. 2015. Lightweight and Flexible - Emerging Trends in So�ware

Architecture from the SATURN Conferences. IEEE So�ware 32, 3 (2015), 7–11.
[13] P. Kruchten. 2004. �e Rational Uni�ed Process: An Introduction. Addison-Wesley,

Boston, MA.
[14] S. Martı́nez-Fernández, P. Dos Santos, C.Ayala, X. Franch, and G. H. Travassos.

2015. Aggregating Empirical Evidence about the Bene�ts and Drawbacks of
So�ware Reference Architectures. In 2015 ACM/IEEE International Symposium
on Empirical So�ware Engineering and Measurement (ESEM). IEEE, 1–10.

[15] K. Schwaber and J. Sutherland. 2016. �e Scrum Guide. (2016).
[16] M. Waterman, J. Noble, and G. Allan. 2015. How Much Up-Front? A Grounded

�eory on Agile Architecture. In 37th International Conference on So�ware Engi-
neering (ICSE). IEEE, 347–357.

[17] M. Weyrich and C. Ebert. 2016. Reference Architectures for the Internet of �ings.
IEEE So�ware 33, 1 (2016), 112–116.

[18] R. Wieringa. 2014. Design Science Methodology for Information Systems and
So�ware Engineering. Springer Verlag, Berlin/Heidelberg.

[19] E. Woods. 2015. Aligning Architecture Work with Agile Teams. IEEE So�ware
32 (2015), 24–26. Issue 5.

[20] C. Yang, P. Liang, and P. Avgeriou. 2016. A Systematic Mapping Study on
the Combination of So�ware Architecture and Agile Development. Journal of
Systems and So�ware 111 (2016), 157–184.

	Abstract
	1 Introduction
	1.1 Context and Background
	1.2 Addressed Problem and Contributions

	2 Industrial Context and Method
	2.1 Company Profiles
	2.2 Data Collection and Analysis

	3 Lessons Learned
	3.1 ``Positive'' Lessons Learned
	3.2 ``Negative'' Lessons Learned

	4 Discussion
	4.1 Implications
	4.2 Limitations and Threats to Validity

	5 Conclusions
	Acknowledgments
	References

