
Quality-aware Rapid Software Development Project:
The Q-Rapids Project

Xavier Franch1, Lidia Lopez1, Silverio Martínez-Fernández2, Marc Oriol1, Pilar Ro-
dríguez3 and Adam Trendowicz2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{franch, llopez, moriol}@essi.upc.edu

2 Fraunhofer IESE, Kaiserslautern, Germany
{silverio.martinez, adam.trendowicz}@iese.fraunhofer.de

3 University of Oulu, Oulu, Finland
pilar.rodriguez@oulu.fi

Abstract. Software quality poses continuously new challenges in software de-
velopment, including aspects related to both software development and system
usage, which significantly impact the success of software systems. The Q-Rapids
H2020 project defines an evidence-based, data-driven quality-aware rapid soft-
ware development methodology. Quality requirements (QRs) are incrementally
elicited, refined and improved based on data gathered from software repositories,
project management tools, system usage and quality of service. This data is ana-
lysed and aggregated into quality-related key strategic indicators (e.g., develop-
ment effort required to include a given QR in the next development cycle) which
are presented to decision makers using a highly informative dashboard. The Q-
Rapids platform is being evaluated in-premises by the four companies participat-
ing in the consortium, reporting useful lessons learned and directions for new
development.

Keywords: Software quality, Data-driven requirements engineering, Software
analytic tools, Software repositories, Quality models, Agile software develop-
ment, Rapid software development, Quality requirements, Non-functional re-
quirements

1 Introduction

The Q-Rapids project proposes a data-driven approach to the elicitation, prioritization
and management of quality requirements (QRs), see Fig. 1. Data comes from: the or-
ganization, through software development repositories and project management tools;
the users, through explicit feedback and usage logs. This basic data is elaborated into
strategic indicators (e.g., team productivity, product quality) and presented to decision-
makers through a dashboard that also offers techniques as what-if analysis and predic-
tion. Expert-defined alerts inform about violations on quality thresholds, and QR pat-
terns are suggested to remedy them. The decision-maker can explore the effects of ap-
plying them and eventually decide to include a QR in the backlog, closing the cycle.

Franch, X. [et al.]. Quality-aware Rapid Software Development Project: The Q-Rapids Project.
A: Technology of Object-Oriented Languages and Systems International conference. "Software
Technology: Methods and Tools, 51st International Conference, TOOLS 2019: Innopolis, Russia,
October 15-17, 2019: proceedings". Berlín: Springer, 2019, p. 378-392.
The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-29852-4_32

mailto:moriol%7d@essi.upc.edu
mailto:adam.trendowicz%7d@iese.fraunhofer.de

2

Fig. 1. The Q-Rapids Framework

The project started in November 2017 and finishes in October 2019. The consortium is
composed of 3 research partners (UPC, U. Oulu and Fraunhofer-IESE) and 4 compa-
nies (Bittium, ITTI, Softeam and Nokia). The project URL is https://www.q-rapids.eu/
and the software may be found at https://github.com/q-rapids.

The rest of the paper is organized as follows. Section 2 explains the first part of the
Q-Rapids cycle, namely data gathering and analysis. Section 3 introduces Q-Rapids
process related aspects, remarkably process metrics. Section 4 provides details on the
strategic dashboard fed by the result of the analysis. Section 5 presents the results of
the evaluation conducted so far. Then, Section 6 summarizes some lessons learned and
Section 7 finalizes the paper with the conclusions and related work

2 Data Gathering and Analysis

The ultimate goal of data gathering and analysis is to gain relevant knowledge about
software quality (in particular at runtime) from the available software data, including
development and runtime data. To achieve this goal, several tasks must be accom-
plished. Figure 2 presents the Cross Industry Standard Process for Data Mining, CRISP-
DM [1], which Q-Rapids applied to guide analysis of software quality.

In the business understanding phase, the research goals of the project and business
expectations of the project partners were translated into the specific objectives of data
analysis. One of the analysis goals was to explore dependency between quality of soft-
ware during development and its runtime quality. The development quality was repre-
sented by properties of software artifacts and development environment, in particular
code, whereas runtime quality was represented by software misbehavior during testing
and operation (in particular user crash reports).

The data understanding phase aimed at identifying sources of relevant software
quality data available at application project partners and gaining first insights into the
data to better understand its meaning and potential usefulness for achieving project ob-
jectives. In addition, this phase included an initial analysis of data quality as a critical

https://www.q-rapids.eu/
https://github.com/q-rapids

3

success factor for the analysis. To cope with various structures of the data at involved
project partners, that data from the source systems was imported as documents into a
distributed storage system supported by ElasticSearch (ES) and Kibana. The major ad-
vantages of this solution include a powerful search functionality of ES and interactive
visualizations offered by Kibana. Thanks to these features, initial insights into data and
its quality can be made without much effort. The main sources of data included the
software code repositories (e.g., Git, SVN), issue tracking systems (e.g., Jira, Mantis,
Redmine), structural properties of software code (e.g., SonarQube) and runtime issue
reports (e.g., Hockeyapp).

Fig. 2. CRISP-DM model used in Q-Rapids to guide the analysis of software quality

The data preparation phase focused on handling data quality deficits and preparing the
data for specific data analyses. Data preparation tasks included: (1) integrating data
stored in different source systems and structures, (2) handling data quality deficits, such
as incomplete, inconsistent, and incorrect data, and (3) transforming data into the for-
mat acceptable for specific methods and tools used during the analysis. The data prep-
aration phase is in practice the most challenging and the most expensive phase of the
entire data analysis cycle; Q-Rapids was not different in this matter. Table 1 summa-
rizes the most relevant challenges and the associated lessons we learned in the context
of Q-Rapids. Summarizing, Q-Rapids replicates the experiences gained in several other
projects regarding relatively low usefulness of software engineering data for quantita-
tive analysis of software quality. Analysis of dependencies between development- and
runtime-quality of software requires, on the one hand, complete and consistent data on
potentially relevant quality factors (product-, process- and context characteristics); on
the other hand, analysis of quality dependencies requires the data from different sources

4

can be connected to each other, i.e., be integrated. Unfortunately, primary objectives of
data collection do typically not include quality analysis and modeling. For example, the
primary objective of issue tracking is to record and monitor progress of software issues,
not to learn from issues, especially in connection with other software development as-
pects such as properties of software artifacts issues refer to or properties of the envi-
ronment in which an issue occurred. In other words, quantitative cause-effect analysis
does typically not belong to primary objectives of data collection.

Table 1. Example challenges of data preparation and analysis in Q-Rapids
Challenge Recommendation

Availability/Accessibility: The required
quality data is not available because appro-
priate data collection tools or/and processes
are missing or systems were data is stored
cannot be accessed. E.g., available code mea-
surement tool does not cover all important
base code metrics. For instance, although So-
narQube provides data on violations of rules
that are based upon specific base metrics it
does not provide raw data for these metrics.

Select and set up data collection tool based
on the explicitly defined business and analy-
sis objectives, and potentially relevant data
required for achieving these objectives. Data
analysis should always start with business
and data understanding (first two phases of
the CRISP-DM model).

Completeness: Issue and change tracking
data are incomplete, e.g., documented code
changes are not associated to any issue.

Predefine orthogonal issue categories; use
them consistently to classify issues; ensure
every change can be associated to an issue.

Correctness: Actual type (nature) of change
is not documented and cannot be recognized
automatically. In particular, file rename or
movement is recognized as deletion and ad-
dition of an entire file.

Label actual amount of change (e.g., in terms
of its labor cost) to distinguish between
changes that are or are not significant from
the perspective of their potential impact on
software quality.

Consistency: Summary changes for multiple
issues of different type are documented in
single change tracking entry. So, the exact
amount of change per issue type is unknown.

Collection of already aggregated data should
be avoided. Raw data on possibly atomic
level should be supported by data collection
tools (e.g., issue and change records).

Consistency: Inconsistent temporal granu-
larity of different data sets, e.g., code
changes and measurement data are recorded
per commit (e.g., several times per day) but
test and usage issues are recorded once a
week or on an irregularly basis.

Associated data should be collected on a
consistent granularity level, i.e., one entry
per issue or issue type (e.g., new feature de-
velopment, bug fix) to support data integra-
tion and cause-effect quality analyses.

Precision: Data is collected on a granularity
level inappropriate for accomplishing analy-
sis objectives. An example are source code
measurements, collected on a file level. In
such case, fine-granular changes on class-
and function-level can compensate each
other within a file and be thus not visible in
the corresponding measurement data.

Based on explicitly defined business and
analysis goals, specify precision (granular-
ity) requirements for the necessary data. Set
up tools that support collecting data with the
required precision.

Redundancy: Issue tracking data contain
duplicated entries.

Data collection and reporting tool should
support real-time checks for duplicated, in-
correct and inconsistent data entries.

5

The modeling phase various analysis and visualization techniques are applied on the
prepared data to explore and model software quality dependencies represented by the
data. Example analysis may investigate the probability (or frequency) of software bugs
of runtime issues (user issue reports) in association with structural properties of soft-
ware code and amount and type of software changes along its evolution. Figure 3 illus-
trates example quality analysis. Input data are gathered from multiple sources and in-
clude software code quality metrics, which represent specific product factors, and prod-
uct quality data in terms of bug issues found in the software. The analysis provides two
outcomes: relevancy of individual metrics as predictors of product quality and a quality
model that captures quantitatively dependencies between the most relevant metrics and
the product quality.

Fig. 3. Example of data-driven quality model

In the evaluation phase the outcomes of the data analysis phases, incl. data understand-
ing, preparation, and modeling, are assessed from the perspective of business expecta-
tions defined in the very first business understanding phase. In our case these where to

6

overall Q-Rapids research objectives and the specific business objectives of project
partners whose software project data were analyzed in the project.

Finally, during the deployment phase, models (e.g., quality forecasting) will be inte-
grated into the Q-Rapids tool to provide information to the strategies dashboard (e.g.,
predicted evolution of software quality or indication of the most relevant factors influ-
encing software quality). For example, prediction models created in Python might be
deployed as REST API service. As soon as new project data are available in Elas-
ticSearch, Q-Rapids dashboard will call the Quality Model API with the required input
data (metrics) and receive the answer regarding the predicted quality (forecasted num-
ber of bug issues to be found).

3 The Q-Rapids Software Development Process

Q-Rapids provides solutions for quality management in the context of Agile and Rapid
Software Development. Under the umbrella of the Agile Manifesto, agile software de-
velopment methods, such as Scrum and XP, are already the most popular software de-
velopment approaches in industry [2]. Indeed, the tendency is towards reducing devel-
opment cycles more and more to achieve a continuous software development flow, us-
ing principles from Lean thinking (e.g. lean software development [3]) and methods
such as Kanban [4]. This is commonly known as Rapid software development [5,6].
However, faster and more frequent release cycles should not compromise software
quality [7,8]. Indeed, quality is essential to be able to satisfy customers, which is, cer-
tainly, the ultimate goal of Agile and Rapid Software Development processes.

The literature evidences that this is not often the case, though. For example, technical
debt (TD) has become a popular concept in Agile software development owing to the
specific characteristics of ASD that make it prone to incurring TD [9]. Moreover, in a
software development approach driven by functionality, the way in which QRs should
be managed is unclear [10]. In this sense, the technical solutions provided by Q-Rapids
(the Q-Rapids data gathering and analysis engine - Section 3, and the Q-Rapids dash-
board - Section 5) aim to complement Agile and Rapid software development processes
by incorporating three key process characteristics: quality awareness, data-driven de-
cision making and rapid (lightweight) development.

3.1 Quality Awareness

In their current form, Agile methods such as Scrum, are mostly driven by functional
requirements. Functional requirements are usually specified as user stories in a product
backlog and prioritized using a customer perspective. This approach tends to naturally
favor functional requirements over QRs [10]. As a result, quality aspects such as system
security, performance or usability are often compromised [7]. The Q-Rapids software
development process provides support for:

• Continuous product quality assessment and monitoring. Quality, which is modeled
through a company specific quality model, is continuously monitored at different

7

organizational levels. Quality related metrics provide a (almost) real time under-
standing on product quality to individual developers and development teams. Devel-
opers can check quality status at any time using the Q-Rapids and Kibana dash-
boards. This information also feeds discussions in agile ceremonies such as daily
stand-up meetings or weekly (or bi-weekly) sprint meetings. In this way, quality
aspects are an important part of these ceremonies, making quality a primary concern,
and not an afterthought. Moreover, product quality is also continuously assessed by
strategic decision makers in release planning and review meetings (e.g. once per
month). Through quality-related key strategic indicators, decision makers at busi-
ness level (e.g. program and product managers) can understand the implications that
their decisions will have upon product and process quality.

• Incremental elicitation of QRs: the Q-Rapids software development process pro-
vides incremental and semi-automatic elicitation of QRs based on the continuous
analysis of quality data [11]. Thus, product owners and development teams get sup-
port when defining and prioritizing quality related backlog items. QRs are explicitly
included in product backlogs, decreasing the risk to overlook them during sprint
planning meetings. Moreover, Q-Rapids supports the tasks of refining and improv-
ing QRs as the development progresses, using practices such as backlog grooming
and sprint planning.

• Continuous process quality assessment and monitoring: besides product quality, Q-
Rapids also offers support to continuously monitor the status of the process. Through
a complete set of process metrics, Q-Rapids supports ceremonies such as Agile ret-
rospectives, in which the way of working is discussed. Development teams can use
Q-Rapids to analyze trends and process metrics values. The hard evidence reported
by Q-Rapids motivates the team to find problems in order to resolve them and im-
prove their way of working. For example, Q-Rapids can be used to identify process
bottlenecks or improve estimation capabilities. Indeed, the Q-Rapids solutions and
visualization of process metrics fill the current gap on tools related to processes in
Agile and Rapid software development. Most existing tools focus on product quality
or on continuous integration, without measures for the process (e.g. SonarQube).
Basically, GitLab Time Tracker is one of the few competing solutions that could be
used to analyze the process. However, Q-Rapids proposes a wider set of calculated
process metrics, better visualization as well as enhanced analysis capabilities.

3.2 Evidence-based, Data-driven Software Development Process

Agile methods, such as Scrum, are founded on an evidence-based management style.
Instead of making long-term predictions, Agile methods embrace a learning culture in
which evidence drives decisions. However, to make accurate decisions, evidence must
be reliable as well. Software analytics play a key role in this context. Agile’s incremen-
tal development and extensive use of automation produce enormous amount of data
that, properly used, can guide more accurate decisions. Quality related decisions in the
Q-Rapids software development process are based on the insights provided by the Q-
Rapids data gathering and analysis engine, which collects data from different systems
such as software code repositories (e.g., Git, SVN), issue tracking systems (e.g., Jira,

8

Mantis, Redmine), structural properties of software code (e.g., SonarQube) and runtime
issue reports (e.g., Hockeyapp).

3.3 Rapid Software Development Process

A key aspect of the Q-Rapids software development process is that it supports quality
management in a light-weight manner. Deploying the solution may be heavy at the
beginning (e.g. defining the quality model, searching for data sources, customizing/de-
fining connectors, etc.). However, once installed, quality support is smoothly integrated
into existing agile practices such as sprint planning and review meetings, daily-stand
up meetings and sprint retrospectives. Still, some extra practices and roles are needed
to maintain the system up and running and to ensure that data is reliable and properly
collected and analysed (e.g. data engineer).

The Q-Rapids software development process is being developed in close collabora-
tion with the four companies participating in the consortium. It includes the use of Q-
Rapids solutions in software development practices, such as coding and testing, and
product management practices, such as sprint planning. It also includes the related sup-
porting processes needed to make sure that the Q-Rapids machinery is up and running.

4 Strategic Decision Making Dashboard

The main goal of the strategic dashboard is twofold: (a) aggregating the gathered and
analysed data into strategic indicators (SIs) and (b) providing extra analysis techniques
that support decision-makers in their decisions.

Based on the quality factors resulting from the analysed data (see Section 2), the
process metrics (see Section 3), and in collaboration with the use cases, we defined the
following strategic indicators: Blocking (assessing when there is some problem that can
alter the regular process flow, identifying potential blocking situations) [12], Product
Quality (assessing the source code quality), Process Performance (assessing the fulfill-
ment of the development process efficiently) [13], and On-Time Delivery (assessing the
capability of fulfilling the issues planned for a specific release meeting internal and
external delivery schedules) [14]. Although there is a generic definition for these stra-
tegic indicators, they must be customised in each use case to adapt them to the specific
needs. For instance, for Process Performance, we have definitions from using two qual-
ity factors (Testing Performance and Issues Velocity) to five (Testing Performance, Is-
sues Velocity, Development Speed, and Realized Requirements). Fig 4 includes the ge-
neric definition for the strategic indicators.

The list of strategic indicators has been extended by some use cases to support their
specific scenarios. E.g., Softeam defined Product Readiness and Quality Feedback
Loop, and Nokia defined Operational Quality and Hardware Reliability. In the case of
Softeam, it is worth mentioning that the Quality Feedback Loop is a strategic indicator
devoted to monitor the QRs generated by the dashboard (see below).

9

Fig. 4. Strategic Indicators

A brief description of the main features of the dashboard are as follows.

Quality assessment visualization. The dashboard includes several views to analyse
the status of the SIs, i.e. indicators meant to support decision-makers to analyse the
achievement of their strategic goals, such as product quality, customer satisfaction, or
process performance. These SIs are defined as an aggregation of quality factors result-
ing from the data analysis, and these factors as an aggregation of quality metrics. The
dashboard allows the decision-maker to navigate through these aggregations to have a
deeper understanding of the assessment. Fig 5 depicts the different kinds of charts and
the navigational path.

SI assessment. The dashboard provides two strategies to compute SIs: a quantitative
approach based on computing the average of the quality factors, and a qualitative ap-
proach involving experts and historical data to define a Bayesian Network model [15].
Fig 5 shows the BN model for the Product Quality strategic indicator, impacted by
Code Quality, Stability, and Testing Status quality factors. The probabilities for quality
factors are computed using historical data, and for the strategic indicators we use do-
main experts.

Fig. 5. Quality Assessment Navigation

10

Prediction. The dashboard provides several forecasting techniques that, applied over
the SIs, allow decision-makers to analyse trends and behavioral patterns. Among oth-
ers, it supports PROPHET, ARIMA, ETS, and THETA forecasting techniques [16, 17].

What-if analysis. Decision-makers can simulate some scenarios in order to see how
different simulated values on metrics and factors would affect the assessment of their
strategic indicators.

QR candidates. When the assessment values are below a given threshold, an alert is
automatically raised and the dashboard identifies QR candidates from a QR patterns
catalogue that, when implemented, would solve the alert [11]. For instance, if the dash-
board receive an alert because the testing performance factor (impacting the process
performance strategic indicator) assessment is below the defined threshold, the dash-
board would suggest to consider the following QRs: (QR1) the commit response time
should be at least X%, and (QR2) the error correction should be at least X%. The de-
cision-maker can simulate the impact of each QR on the strategic indicators (see Fig. 6
for QR2). Then, the decision-maker can export the QR to the tool managing the backlog
(e.g. Jira, OpenProject).

Fig. 6. QR simulation view

5 Evaluation of the Q-Rapids solution

The aforementioned Q-Rapids components (the tool support for data gathering and
analysis, the software development process model, and the strategic dashboard), are
being transferred and evaluated in industry. The integration of these components com-
prise the Q-Rapids solution, which consists of both tool support and its corresponding
process model. During the technology transfer of Q-Rapids, three releases have been
deployed by the four industry partners in the Q-Rapids project (Bittium, ITTI, Nokia,
and Softeam1) within their specific development environment, where practitioners have

1 https://www.q-rapids.eu/consortium

11

given feedback of the Q-Rapids solution, and used it within pilot projects for several
months (since November 2018). It is worth mentioning that these companies have dif-
ferent profiles (one large corporation, two large/medium companies, one SME) and
produce different types of systems (e.g., from modeling tools to telecommunication
software).

The technology transfer and evaluation of the Q-Rapids solution follows a multi-
staged process aligned with and supporting the iterative development process of the Q-
Rapids components and integrated solution (see Table 2). The multi-stage evaluation
process comprises two phases: formative and summative. First, the formative stage fo-
cused on supporting the evolution of concepts and ideas mainly of research work. Thus,
we evaluated the first prototype and the intermediate version focusing on single com-
ponents and functionalities of the Q-Rapids solution in controlled environments. We
finished the formative stage with a static validation (i.e., presentation to prospective
users) [18]. After the formative stage, the ongoing summative stage consists of the real
use of the integrated Q-Rapids solution in under real settings of four pilot projects (i.e.,
dynamic validation with practitioners on-site).

• Formative evaluation on component level. These components have been the incre-
mental outputs of the scientific work packages, such as components implementing
an expert-based or data-driven quality model for actionable analytics, company spe-
cific software development process models, and a strategic dashboard for supporting
decision-making. This formative evaluation took place at developer sites for the first
release of the Q-Rapids solution, and ended with a static validation presenting the
component’s capabilities to prospective users. The formative evaluation focused on
technical aspects (e.g., general feasibility, scalability, and appropriateness of the
gathered and visualized data). It was helpful to identify interweaved improvements
of the components being developed for next releases. Examples of identified and
addressed suggestions for improvement from the industrial context have been: ex-
plicitly linking the strategic indicators, quality factors, and metrics with other infor-
mation sources (e.g., source code, user stories, and list of issues) in order to better
support the decision making process with the help of the strategic dashboard [19],
include visualization of the raw data in the quality model to facilitate decision-mak-
ing [20], give a practitioner attractive support to follow of the software development
process model (e.g., available on an interactive website rather than long docu-
ments2), and simplify the Q-Rapids solution installation and configuration process
with easy deployment options such dockers [21]. Despite these suggestions for im-
provement, initial results have been promising in pilot projects, since participants
agree on the understandability and usefulness of the Q-Rapids solution components.

• Summative evaluation of the third and final release of the integrated Q-Rapids so-
lution. The summative evaluation is focusing on the application of the integrated
Q.Rapids solution under the realistic circumstances of four selected projects in
which the integrated Q-Rapids solution is being used. The Q-Rapids solution is be-

2 https://www.oulu.fi/q-rapids/

12

ing evaluated by its impact on the selected projects where it is being used. Prelimi-
nary results helped to characterize the value provided by the solution, since Q-Rapids
users have experienced benefits such as including the semi-automated functionality
of creating QRs, the improvement of product quality and process performance, and
an increased awareness of product readiness. Furthermore, another goal is consider-
ing suggestions for the successful commercialisation of the solution, such as looking
for bilateral collaborations with industrial partners out of the Q-Rapids consortium
interested in the capabilities of the Q-Rapids solution, and making effective the in-
stallation process (which currently it is one of the main barriers for adoption).

Table 2. Phases of the evaluation and technology transfer of Q-Rapids.
Characteristic Iteration 1 Iteration 2 Iteration 3

Q-Rapids solution
release

Proof-of-concept Consolidated ver-
sion

Final

Evaluation phase Formative evalua-
tion

Formative evalua-
tion

Summative evalua-
tion

Object of study Components of the
Q-Rapids solution
release

Components of the
Q-Rapids solution
release

Integrated Q-Rapids
solution as a whole

Months within the
project

From month 7 to
month 15

From month 16 to
month 24

From month 25 to
month 33

Environment Controlled environ-
ment

Static validation
(i.e., presentation to
prospective users)

Dynamic validation
(i.e,. pilot project us-
ing the tool)

6 Lessons learned

In [21], we have presented the most relevant lessons learned during the project on the
potential adoption of Q-Rapids by practitioners, based on the experiences of the com-
panies in the consortium. Some of them follow:

• Incremental adoption approach. Companies are advised to start using Q-Rapids in a
small product first in order to understand the solution and start to grow a base of
tailored connectors and a quality model fit for purpose.

• Transparency in the organizational culture. The visibility of all quality-related issues
managed in Q-Rapids provides confidence to decision-makers and other involved
stakeholders.

• Single access point to quality assessment. One advantage that was not really foreseen
in the conception of the project is the possibility to put together lots of indicators
that are normally managed through several tools.

• Tailoring to product and projects. Quality is an elusive concept that may change in
every single project, even in the same organization. It is important to tailor the qual-
ity model and strategic indicators to the needs in each context.

• Expert involvement. The Q-Rapids solution requires the participation of several ex-
perts in order to get the most, from developers to implement connectors up to data
scientists to analyse the collected data.

13

7 Conclusions

In this paper we have presented the highlights of the Q-Rapids project. We have de-
scribed the three major parts of the delivered solution (data gathering and analysis;
software development process with Q-Rapids; strategic dashboard) and shown the eval-
uation done, as well as some lessons learned. More information is available in the pro-
ject website, www.q-rapids.edu. Software components are available at
https://github.com/q-rapids.

At this point of time, very close to the completion of the project, we can say that we
have delivered a solution that fulfils most of the original objectives of the project. How-
ever, there are many improvements that we plan to address in the near future. The im-
plementation of machine learning approaches to fine-tune and improve the strategic
indicators definition in every organization is one of the most challenging extensions.
Another important topic is the better definition of cost functions for the QR patterns,
which would allow to make decisions in a more informed manner.

Acknowledgements

This work is a result of the Q-Rapids project, which has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant
agreement No 732253.

References

1. C. Shearer: The CRISP-DM model: the new blueprint for data mining. Journal of Data Ware-
housing, 5 (4), 2000.

2. P. Rodríguez, J. Markkula, M. Oivo, K. Turula: Survey on agile and lean usage in finnish
software industry. In: Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement (ESEM), 2012.

3. M. Poppendieck, T. Poppendieck: Lean Software Development: An Agile Toolkit. Addison-
Wesley. 2003.

4. D.J. Anderson: Kanban: successful evolutionary change for your technology business. Blue
Hole Press. 2010.

5. B. Fitzgerald, K. J. Stol: Continuous software engineering: A roadmap and agenda. Journal
of Systems and Software, vol. 123, 2017.

6. P. Rodríguez et al.: Continuous deployment of software intensive products and services: A
systematic mapping study. Journal of Systems and Software, vol. 123, 2017.

7. B. Ramesh, L. Cao, R. Baskerville: Agile requirements engineering practices and chal-
lenges: an empirical study. Information Systems Journal, 20 (5), 2010.

8. L. Guzmán, M. Oriol, P. Rodríguez, X. Franch, A. Jedlitschka, M. Oivo: How Can Quality
Awareness Support Rapid Software Development? – A Research Preview. In: Proceedings
of Requirements Engineering: Foundation for Software Quality (REFSQ), 2017.

9. W. N. Behutiye, P. Rodríguez, M. Oivo, A. Tosun: Analyzing the concept of technical debt
in the context of agile software development: A systematic literature review. Information
and Software Technology, vol. 82, 2017.

https://github.com/q-rapids

14

10. W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez, A.M. Vollmer, P. Rodríguez,
X. Franch, M. Oivo: Management of quality requirements in agile and rapid software devel-
opment: a systematic mapping study. Submitted to IST.

11. X. Franch, C. Gómez, A. Jedlitschka, L. López, S. Martínez-Fernández, M. Oriol, J. Par-
tanen: Data-Driven Elicitation, Assessment and Documentation of Quality Requirements in
Agile Software Development. In: Proceedings of the International Conference on Advanced
Information Systems Engineering (CAiSE), 2018.

12. X. Franch, C. P. Ayala, L. López, S. Martínez-Fernández, P. Rodríguez, C. Gómez, A.
Jedlitschka, M. Oivo, J. Partanen, T. Raty, V. Rytivaara: Data-driven Requirements Engi-
neering in Agile Projects: The Q-Rapids Approach. In: Proceedings of the International
Workshop on Just-In-Time Requirements (JIT-RE), 2017.

13. P. Ram, P. Rodríguez, M. Oivo: Software Process Measurement and Related Challenges in
Agile Software Development: A Multiple Case Study. In: Proceedings of the International
Conference on Product-Focused Software Process Improvement (PROFES), 2018

14. M. Manzano, C. Gómez, C. Ayala, S. Martínez-Fernández, P. Ram, P. Rodríguez, M. Oriol:
Definition of the On-Time Delivery Indicator in Rapid Software Development. In: Interna-
tional Workshop on Quality Requirements in Agile Projects (QuaRAP@RE), 2018

15. M. Manzano, E. Mendes, C. Gómez, C. Ayala, X. Franch: Using Bayesian Networks to
estimate Strategic Indicators in the context of Rapid Software Development. In: Proceedings
of the International Conference on Predictive Models and Data Analytics in Software Engi-
neering (PROMISE), 2018.

16. S. J. Taylor, B. Letham: Forecasting at scale. The American Statistician, 72(1), 2006.
17. R. J. Hyndman, Y. Khandakar: Automatic Time Series Forecasting: The forecast Package

for R. Journal of Statistical Software, 27(3), 2008.
18. T. Gorschek, P. Garre, S. Larsson, C. Wohlin: A model for technology transfer in practice.

IEEE software, 23(6), 2006.
19. L. López et al.: Q-Rapids Tool Prototype: Supporting Decision-Makers in Managing Quality

in Rapid Software Development. In: Proceedings of CAISE Forum, 2018.
20. S. Martinez-Fernandez, A. Jedlitschka, L. Guzman, A. M. Vollmer: A Quality Model for

Actionable Analytics in Rapid Software Development. In: Proceedings of the Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), 2018.

21. S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch, L. López, P. Ram, P.
Rodríguez, S. Aaramaa, A. Bagnato, M. Choras, J. Partanen: Continuously assessing and
improving software quality with software analytics tools: a case study. IEEE Access, vol. 7,
2019.

	1 Introduction
	2 Data Gathering and Analysis
	3 The Q-Rapids Software Development Process
	3.1 Quality Awareness
	3.2 Evidence-based, Data-driven Software Development Process
	3.3 Rapid Software Development Process

	4 Strategic Decision Making Dashboard
	5 Evaluation of the Q-Rapids solution
	6 Lessons learned
	7 Conclusions
	Acknowledgements
	References

