Difficulties in Running
Experiments in the
Software Industry:
Experiences from the
Trenches

Sira Vegas Universidad Politécnica de Madrid

Background

- Laboratory experiments are common practice in SE
- Laboratory experiment = Simplified reality
 - Students vs. professionals
 - Toy software vs. real systems
 - Exercises vs. real projects
 - Just learned vs. knowledge & experience
- Laboratory findings <u>MUST</u> be generalized through other types of experiments: e.g. experimentation in industry

Experimentation in the Sw. Industry: State of the Practice

- Most controlled SE experiments are run in academia
- Conduct experiments in the software industry is challenging: few experiences
- Previous attempts at running experiments in the software industry:
 - NASA SEL-University of Maryland
 - Daimler Ulm University
 - Simula

Our Approach

	# Companies	University	Replication
SEL-UMD	Single	Single	Not systematic
Daimler-Ulm	Single	No	No
Simula	Multiple	No	No

 Run the same experiment in several companies and several universities

	# Companies	University	Replication
Our approach	Multiple	Multiple	Systematic

Experiment Description

- RQ: How does TDD compare to ITL regarding: amount of work done, code quality and developers' productivity?
- Treatments: TDD vs. ITL
- Response variables
 - Amount of work done: Tackled user stories
 - Quality: Quality of tackled user stories
 - Productivity: Amount of work successfully delivered
- Tasks:
 - MarsRover
 - Modified version of Robert Martin's Bowling Score Keeper
 - MusicPhone
- Experiment run in either Java or C++

Concept Warmly Welcomed

- Company decisions are usually based on:
 - Marketing speak
 - Recommendations of a consultant
- The idea of having a means to objectively and quantitatively evaluate technologies and methods was appealing

But...

Identified Difficulties: Company Involvement

- D1. Concept tough to grasp
 They do not see how the idea will materialize
- D2. We need more than one subject
 Confusion with single-subject study
- D3. Experiment as a free training course
 Win-win strategy. Both parties get a benefit

Course-experiment bound: a bad marriage for us

- Subject are not proficient on the task
- Causes trouble with participants:
 - Must accept some differences from a regular course
 - Reluctance to training
 - Non-constructive discussion
 - Pressure on trainer
- Subjects' perception on training has an effect on motivation

Identified Difficulties: Experiment Planning

- D4. Choose experiment topic
 Most companies hardly seemed to care which topic was investigated
- D5. Choosing experimental tasks
 Companies did not provide us with experimental tasks
- D6. Getting experimental subjects
 Innovation manager does not have the power to enrol people in a course. Internal organization critical
- D7. Selecting a design: few degrees of freedom Constrained by small number of participants (within-subjects), and course as experiment (AB design)

Identified Difficulties: Experiment Execution

D8. Facilities might not be available
 Harder to gain access to computers

D9. Privacy and security issues

- Impossibility to install specific instrumentation on computers => virtual machines
- Access to resources denied: network, printing/storing data, access to rooms only at given times

D10. Company technology unsuitable

All material in Java and Junit. Extra work porting tasks, test cases, etc.

D11. Dropouts

Due to proximity between working and experimental environments, subjects skip parts of the course

Identified Difficulties: Data Analysis and Reporting

D12. Missing data

Due to dropouts. Critical for within-subjects experiments

D13. Large variability in data

Larger than in students. Could be due to either differences in background or motivation. They do not perform better than students. Only high-performing ones

D14. Rush for results

As a result, we made mistakes during data measurement, and analyses had to be repeated several times. Took us longer than expected

D15. Reporting must be adapted

Managers do not necessarily have knowledge of statistics/experimental design. Simple and visual representations

Conclusions

- Difficult to materialize a very welcomed concept
- Industrial environment imposed constraints
- Professionals were troublesome, under motivated, and did not perform better than students
- Results reliability could be influenced by specific characteristics of data: missing, variability, etc.
- Reporting used in journals not appropriate