Difficulties in Running Experiments in the Software Industry: Experiences from the Trenches

Sira Vegas
Universidad Politécnica de Madrid
Background

- Laboratory experiments are common practice in SE
- Laboratory experiment = Simplified reality
 - Students vs. professionals
 - Toy software vs. real systems
 - Exercises vs. real projects
 - Just learned vs. knowledge & experience
- Laboratory findings **MUST** be generalized through other types of experiments: e.g. experimentation in industry
Experimentation in the Sw. Industry: State of the Practice

- Most controlled SE experiments are run in academia
- Conduct experiments in the software industry is challenging: few experiences
- Previous attempts at running experiments in the software industry:
 - NASA SEL-University of Maryland
 - Daimler – Ulm University
 - Simula
Our Approach

- Run the same experiment in several companies and several universities

<table>
<thead>
<tr>
<th></th>
<th># Companies</th>
<th>University</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL-UMD</td>
<td>Single</td>
<td>Single</td>
<td>Not systematic</td>
</tr>
<tr>
<td>Daimler-Ulm</td>
<td>Single</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Simula</td>
<td>Multiple</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th># Companies</th>
<th>University</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our approach</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Systematic</td>
</tr>
</tbody>
</table>
Experiment Description

- RQ: How does TDD compare to ITL regarding: amount of work done, code quality and developers’ productivity?

- Treatments: TDD vs. ITL

- Response variables
 - Amount of work done: Tackled user stories
 - Quality: Quality of tackled user stories
 - Productivity: Amount of work successfully delivered

- Tasks:
 - MarsRover
 - Modified version of Robert Martin’s Bowling Score Keeper
 - MusicPhone

- Experiment run in either Java or C++
Concept Warmly Welcomed

- Company decisions are usually based on:
 - Marketing speak
 - Recommendations of a consultant

- The idea of having a means to objectively and quantitatively evaluate technologies and methods was appealing

But...
Identified Difficulties: Company Involvement

- **D1. Concept tough to grasp**
 They do not see how the idea will materialize

- **D2. We need more than one subject**
 Confusion with single-subject study

- **D3. Experiment as a free training course**
 Win-win strategy. Both parties get a benefit
Course-experiment bound: a bad marriage for us

- Subject are not proficient on the task
- Causes trouble with participants:
 - Must accept some differences from a regular course
 - Reluctance to training
 - Non-constructive discussion
 - Pressure on trainer
- Subjects’ perception on training has an effect on motivation
Identified Difficulties: Experiment Planning

- D4. Choose experiment topic
 Most companies hardly seemed to care which topic was investigated

- D5. Choosing experimental tasks
 Companies did not provide us with experimental tasks

- D6. Getting experimental subjects
 Innovation manager does not have the power to enrol people in a course. Internal organization critical

- D7. Selecting a design: few degrees of freedom
 Constrained by small number of participants (within-subjects), and course as experiment (AB design)
Identified Difficulties: Experiment Execution

- **D8. Facilities might not be available**
 Harder to gain access to computers

- **D9. Privacy and security issues**
 - Impossibility to install specific instrumentation on computers => virtual machines
 - Access to resources denied: network, printing/storing data, access to rooms only at given times

- **D10. Company technology unsuitable**
 All material in Java and JUnit. Extra work porting tasks, test cases, etc.

- **D11. Dropouts**
 Due to proximity between working and experimental environments, subjects skip parts of the course
Identified Difficulties:
Data Analysis and Reporting

- **D12. Missing data**
 Due to dropouts. Critical for within-subjects experiments

- **D13. Large variability in data**
 Larger than in students. Could be due to either differences in background or motivation. They do not perform better than students. Only high-performing ones

- **D14. Rush for results**
 As a result, we made mistakes during data measurement, and analyses had to be repeated several times. Took us longer than expected

- **D15. Reporting must be adapted**
 Managers do not necessarily have knowledge of statistics/experimental design. Simple and visual representations
Conclusions

- Difficult to materialize a very welcomed concept
- Industrial environment imposed constraints
- Professionals were troublesome, under motivated, and did not perform better than students
- Results reliability could be influenced by specific characteristics of data: missing, variability, etc.
- Reporting used in journals not appropriate