
T BII

D C

On-demand Data Integration

Ph.D. Dissertation
Sergi Nadal Francesch

Dissertation submitted on XXX

A thesis submitted to Barcelona School of Informatics at Universitat Politèc-
nica de Catalunya, BarcelonaTech (UPC) and the Faculty of Engineering at
Université Libre De Bruxelles (ULB), in partial fulfillment of the requirements
within the scope of the IT4BI-DC programme for the joint Ph.D. degree in
computer science. The thesis is not submitted to any other organization at the
same time.

Thesis submitted: XXX, 2019

Ph.D. Supervisors: Prof. Alberto Abelló Gamazo
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain
Prof. Oscar Romero Moral
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain
Prof. Stijn Vansummeren
Université Libre de Bruxelles, Brussels, Belgium

PhD Committee: Prof. George H. L. Fletcher, Eindhoven University of
Technology, Eindhoven, Netherlands
Prof. Eduardo Mena, Universidad de Zaragoza,
Zaragoza, Spain
Dr. Mahmoud Sakr, Université Libre de Bruxelles, Brus-
sels, Belgium
Prof. Robert Wrembel, Poznan University of Technol-
ogy, Poznan, Poland
Prof. Esteban Zimányi, Université Libre de Bruxelles,
Brussels, Belgium

PhD Series: Barcelona School of Informatics, Universitat Politècnica
de Catalunya, BarcelonaTech

© Copyright by Sergi Nadal Francesch. Author has obtained the right to
include the published and accepted articles in the thesis, with a condition that
they are cited, DOI pointers and/or copyright/credits are placed prominently
in the references.

Printed in Belgium, 2019

Curriculum Vitae

Sergi Nadal

Sergi Nadal graduated in Computer Science Engineering in June 2013 at
Barcelona School of Informatics, Universitat Politècnica de Catalunya (UPC).
In September 2013 he continued his education enrolling the Erasmus Mundus
Joint Master Degree Programme in Information Technologies for Business
Intelligence (IT4BI), which brought him to internationally study at Université
Libre de Bruxelles (ULB) in Belgium, Université François Rabelais Tours
(UFRT) in France, and back to UPC. In 2014 he obtained a scholarship from
the Erasmus+ programme.

In September 2015, he decided to pursue his PhD studies as part of the
Erasmus Mundus Joint Doctorate in Information Technologies for Business
Intelligence – Doctoral College (IT4BI-DC), under the supervision of professors
Alberto Abelló, Oscar Romero and Stijn Vansummeren. As part of his PhD
studies, Sergi performed three short research stays at Université Libre de
Bruxelles, his host university.

During his master and PhD period, he has been working on the problems
related to data integration in data-intensive ecosystems. His research interests
mainly fall in the broad area of data management. Some specific topics being
data integration, data warehousing, distributed data processing, data stream
processing and complex event processing.

During his PhD studies, he has participated in the H2020 SUPERSEDE
project (SUpporting evolution and adaptation of PERsonalized Software by
Exploiting contextual Data and End-user feedback). There, he has been
member of the feedback and data analysis work package performing technical

iii

Curriculum Vitae

and research tasks.
Sergi, has also participated in teaching and advisory work as teaching

assistant at UPC during his PhD studies. He was involved in database-related
courses taught by the Department of Service and Information System Engi-
neering, precisely: BI Project (master level, winter 2017), Big Data Management
(master level, winter 2017 and spring 2018), Databases (bachelor level, winter
2018), and Concepts for Specialized Databases (bachelor level, winter 2018). Since
2016, he has also been teaching lab sessions in the Big Data Management and
Analytics (BDMA) postgraduate and master programmes, at UPC School of
Professional and Executive Development. He also participated in the hands-on
sessions for the Big Data Management in Brief course in the Summer School of
the Master in Statistics and Operations Research (MESIO UPC-UB). Besides
that, he has also co-advised one master thesis in the topic of complex event
processing.

While doing his PhD he has co-authored 9 peer-reviewed publications,
including 3 journal papers, 2 research track full conference papers, 2 workshop
papers, 1 tool demonstration, and 1 reference work.

iv

Abstract

Data has an undoubtedly impact on society. Storing and processing large
amounts of available data is currently one of the key success factors for an
organization. In order to carry on these data exploitation tasks, organizations
first perform data integration combining data from multiple sources to yield
a unified view over them. Nonetheless, we are recently witnessing a change
represented by huge and heterogeneous amounts of data. Indeed, 90% of the
data in the world has been generated in the last two years. This requires revis-
iting the traditional integration assumptions to cope with new requirements
posed by such data-intensive settings.

This PhD thesis aims to provide a novel framework for data integration
in the context of data-intensive ecosystems, which entails dealing with vast
amounts of heterogeneous data, from multiple sources and in their original
format. To this end, we advocate for an integration process consisting of
sequential activities governed by a shared repository of metadata. From an
stewardship perspective, this activities are the deployment of a data integra-
tion architecture, followed by the population of such shared metadata. From
a data consumption perspective, the activities are virtual and materialized
data integration, the former an exploratory task and the latter a consolidation
one. Following the proposed framework, we focus on providing contributions
to each of the four activities. We begin proposing a software reference archi-
tecture for semantic-aware data-intensive systems. Such architecture is as a
blueprint to deploy a stack of systems, with metadata a first-class citizen. Next,
we propose a graph-based metadata model as formalism for metadata man-
agement. We put the focus on supporting schema and data source evolution, a
predominant factor the heterogeneous sources at hand. For virtual integration,
we propose query rewriting algorithms that rely on the previously proposed
metadata model. We additionally consider semantic heterogeneities in the
data sources, which the proposed algorithms are capable of automatically
resolving. Finally, the thesis focuses on the materialized integration activity,
and to this end, proposes a method to select intermediate results to materialize
in data-intensive flows. Overall, the results of this thesis serve as contribution
to the field of data integration in current data-intensive ecosystems.

v

Resum

The final submission will contain here the abstract in catalan

vi

Résumé

The final submission will contain here the abstract in french

vii

Acknowledgements

The final submission will contain here the acknowledgements

viii

Contents

Curriculum Vitae iii

Abstract v

Resum vi

Résumé vii

Acknowledgements viii
List of Figures . xiii
List of Tables . xv

Thesis Details xvi

1 Introduction 1
1 Background and Motivation . 1
2 Data Integration . 2

2.1 Supporting end-to-end data integration 4
2.2 Virtual integration . 5
2.3 Materialized integration 6
2.4 Activities in data integration: state of the art and chal-

lenges . 7
3 Structure of the Thesis . 10
4 Thesis Overview . 11

4.1 Chapter 2: A software reference architecture for semantic-
aware data-intensive systems 12

4.2 Chapter 3: An integration-oriented ontology to govern
evolution in data-intensive ecosystems 14

4.3 Chapter 4: Answering queries using views under seman-
tic heterogeneities and evolution 15

4.4 Chapter 5: SLA-driven selection of intermediate results
to materialize . 17

ix

Contents

5 Contributions . 17

2 A Software Reference Architecture for Semantic-Aware Data-Intensive
Systems 20
1 Introduction . 22
2 Big Data Definition and Dimensions 24

2.1 Volume . 25
2.2 Velocity . 25
2.3 Variety . 26
2.4 Variability . 26
2.5 Veracity . 26
2.6 Summary . 27

3 Related Work . 29
3.1 Selection of papers . 29
3.2 Analysis . 29
3.3 Discussion . 32

4 Bolster: a Semantic Extension for the λ-Architecture 33
4.1 The design of Bolster . 33
4.2 Adding semantics to the λ-architecture 34
4.3 Bolster components . 36

5 Exemplar Use Case . 41
5.1 Semantic representation 42
5.2 Data ingestion . 42
5.3 Data processing and analysis 43

6 Bolster Instantiation . 43
6.1 Available tools . 44
6.2 Component selection . 47
6.3 Tool evaluation . 51

7 Industrial Experiences . 51
7.1 Use cases and instantiation 52
7.2 Validation . 56

8 Conclusions . 60

3 An Integration-Oriented Ontology to Govern Evolution in Data-Intensive
Ecosystems 61
1 Introduction . 63
2 Overview . 65

2.1 Running example . 66
2.2 Notation . 68

3 Big Data Integration Ontology 72
3.1 Global graph . 72
3.2 Source graph . 74
3.3 Mapping graph . 75

x

Contents

4 Handling Evolution . 77
4.1 Releases . 77
4.2 Release-based ontology evolution 78

5 Evaluation . 79
5.1 Functional evaluation . 79
5.2 Industrial applicability . 81
5.3 Ontology evolution . 82

6 Related Work . 83
7 Conclusions . 84

4 Answering Queries Using Views Under Semantic Heterogeneities
and Evolution 85
1 Introduction . 86
2 Related Work . 89
3 Preliminaries . 90

3.1 Case study . 90
3.2 Formal background . 92
3.3 Case study (cont.) . 97

4 Rewriting Conjunctive Queries 99
4.1 Preliminaries . 99
4.2 Rewriting algorithm . 100
4.3 Intra-concept generation 101
4.4 Inter-concept generation 103
4.5 Discussion . 105

5 Rewriting Conjunctive Aggregate Queries 107
5.1 The aggregation graph . 107
5.2 Generating CAQs . 109
5.3 Discussion . 113

6 Experimental evaluation . 114
6.1 Experimental setting . 114
6.2 Experimental results . 116

7 Conclusions . 117

5 SLA-driven Selection of Intermediate Results to Materialize 118
1 Introduction . 120

1.1 Motivational example . 120
2 Formal Building Blocks and Problem Statement 123

2.1 Multiquery AND/OR DAGs and data-intensive flows . 123
2.2 Components . 124
2.3 Problem statement . 125

3 Cost Model for Intermediate Results Materialization Selection . 125
3.1 Data-intensive flow statistics 125
3.2 Metrics . 126

xi

Contents

3.3 Cost functions . 128
4 State Space Search Algorithm . 130

4.1 Actions . 130
4.2 Initial state . 132
4.3 Heuristic . 133
4.4 Searching the solution space 133

5 Experiments . 134
5.1 Intermediate results selection evaluation 135

6 Related Work . 140
7 Conclusions . 141

6 Conclusions and Future Directions 142
1 Conclusions . 143
2 Future directions . 145

Appendices 146

A Detailed Algorithms for Rewriting Conjunctive Queries 147
1 Preliminaries . 147
2 Intra-concept generation . 147
3 Inter-concept generation . 150

B Extended Experiments for Rewriting Conjunctive Queries 154
1 Evolution of response time based on wrappers 154
2 Evolution of response time based on edges in the query. 156

C MDM: Governing Evolution in Big Data Ecosystems 159
1 Introduction . 161

1.1 Motivational use case . 162
2 Demonstrable Features . 164

2.1 Definition of the global graph 164
2.2 Registration of new data sources 165
2.3 Definition of LAV mappings 166
2.4 Querying the global graph 167
2.5 Implementation details 168

3 Demonstration overview . 169

Bibliography 170
References . 171

xii

List of Figures

List of Figures

1.1 The data integration process . 3
1.2 High-level representation of a semantic-aware integration archi-

tecture . 5
1.3 Virtual integration within a semantic-aware data integration

architecture . 6
1.4 Materialized integration within a semantic-aware data integra-

tion architecture . 7
1.5 λ-architecture . 12
1.6 Bolster SRA . 13
1.7 High-level overview of the proposed integration system 15
1.8 Example of a graph-based query rewriting 16
1.9 Contributions in the data integration process 18

2.1 λ-architecture . 35
2.2 Bolster SRA conceptual view . 36
2.3 Excerpt of the content in the Metadata Repository 42
2.4 Selected characteristics and subcharacteristics from SQuaRE . . 47
2.5 Bolster instantiation for the BDAL use case 53
2.6 Bolster instantiation for the SUPERSEDE use case 54
2.7 Bolster instantiation for the WISCENTD use case 55
2.8 Validation per Quality Factor . 59

3.1 High-level overview of our approach 66
3.2 UML conceptual model for the SUPERSEDE case study 67
3.3 RDF dataset of the metadata model and data model of G for

the SUPERSEDE running example. 74
3.4 RDF dataset of the metadata model and data model of S 75
3.5 RDF dataset of the metadata model and data model of the

complete ontology for the SUPERSEDE running example. . . . 76
3.6 RDF dataset for the evolved ontology T for the SUPERSEDE

running example. Colored subgraphs are the same as Figure
3.5, the one for w4 being the same than for w1 79

3.7 Growth in number of triples for S per release in Wordpress API 83

4.1 Conceptual model for SUPERSEDE 91
4.2 Sample metadata for SoftwareApplications, Monitor and Hour . . 92
4.3 InfoMonitor data at different time granularity levels. 92
4.4 Global graph for SUPERSEDE . 97
4.5 Integration system for SUPERSEDE. Each wrapper is colored

as its corresponding LAV mapping 98

xiii

List of Figures

4.6 Fragment of Gagg for SUPERSEDE 109
4.7 LAV mappings, respectively, for w1, w2 and w3 in Gagg specify-

ing different levels of granularity 109
4.8 Evolution of R w.r.t. |W| for |F| “ 5 and |F| “ 20 116
4.9 Evolution of R w.r.t. |EQ| for |F| “ 5 and |F| “ 20 117

5.1 An Example of a DIF . 121
5.2 (a) depicts a BDS configuration where answerability is not

satisfied, (b) depicts a configuration where non-dominance is
not satisfied, and (c) depicts the valid actions for configuration
{3,4} . 132

5.3 DIF of six TPC-H queries . 135
5.4 Evolution of probabilities per number of iterations for each

different solution . 136
5.5 Comparison of our approach, ReStore (C) conservative heuris-

tics and ReStore (A) aggressive heuristics 138
5.6 Effect of Refresh Frequency on Loading Cost and Freshness . . 139

B.1 Evolution of R w.r.t. |W| for |F| “ 5 155
B.2 Evolution of R w.r.t. |W| for |F| “ 10 155
B.3 Evolution of R w.r.t. |W| for |F| “ 20 156
B.4 Evolution of R w.r.t. |EQ| for |F| “ 5 157
B.5 Evolution of R w.r.t. |EQ| for |F| “ 10 157
B.6 Evolution of R w.r.t. |EQ| for |F| “ 20 158

C.1 UML of the motivational use case 163
C.2 Sample data for Players API and Teams API 163
C.4 High-level overview of our approach 164
C.5 Global graph for the motivational use case. Blue and yellow

nodes denote concepts and features 165
C.6 Source graph for the motivational use case. Red, orange and

blue denote data sources, wrappers and attributes 166
C.7 LAV mappings for the motivational use case 167
C.8 Posing an OMQ in MDM . 168

xiv

List of Tables

List of Tables

2.1 Requirements for a Big Data Architecture (BDA) 28
2.2 Fulfillment of each requirement in the related work 31
2.3 Bolster components and requirements fulfilled 41
2.4 Example tool selection for Batch Processing 51
2.5 Characterization of use cases and Big Data dimensions 56
2.6 List of participants per organization 57
2.7 Validation questions along with the subcharacteristics they map

to . 58

3.1 Sample output for each of the exemplary wrappers. 68
3.2 API-level changes dealt by wrappers or BDI ontology 80
3.3 Method-level changes dealt by wrappers or BDI ontology . . . 81
3.4 Parameter-level changes dealt by wrappers or BDI ontology . . 81
3.5 Number of changes per API and percentage of partially and

fully accommodated changes by T 82

4.1 Domain for each experimental variable 115

5.1 Selected intermediate nodes and cost for the four SLAs (load,
query, store, freshness) . 122

5.2 Update Frequency (UF) of TPC-H tables 136
5.3 Sample workload based on TPC-H 138

C.1 Sample output for the exemplary query. 168

xv

Thesis Details

Thesis Title: On-demand Data Integration
Ph.D. Student: Sergi Nadal Francesch
Supervisors: Prof. Alberto Abelló Gamazo, Universitat Politècnica de

Catalunya, BarcelonaTech, Spain (UPC co-supervisor)
Prof. Oscar Romero Moral, Universitat Politècnica de
Catalunya, BarcelonaTech, Spain (UPC co-supervisor)
Prof. Stijn Vansummeren, Université Libre de Bruxelles,
Brussels, Belgium (ULB supervisor)

The main body of this thesis consists of the following papers:

[1] A software reference architecture for semantic-aware Big Data systems.
Sergi Nadal, Victor Herrero, Oscar Romero, Alberto Abelló, Xavier
Franch, Stijn Vansummeren, Danilo Valerio. Information & Software
Technology 90: 75-92 (2017).

[2] An Integration-Oriented Ontology to Govern Evolution in Big Data
Ecosystems. Sergi Nadal, Oscar Romero, Alberto Abelló, Panos Vassil-
iadis, Stijn Vansummeren. International Workshop On Design, Opti-
mization, Languages and Analytical Processing of Big Data (DOLAP)
(2017).

[3] An Integration-Oriented Ontology to Govern Evolution in Big Data
Ecosystems. Sergi Nadal, Oscar Romero, Alberto Abelló, Panos Vassil-
iadis, Stijn Vansummeren. Information Systems 79: 3-19 (2019).

[4] On-demand Integration of Heterogeneous and Evolving Data Sources.
Sergi Nadal, Alberto Abelló, Oscar Romero, Stijn Vansummeren, Panos
Vassiliadis. Under submission for SIGMOD 2019.

[5] Intermediate Results Materialization Selection and Format for Data-
Intensive Flows. Rana Faisal Munir, Sergi Nadal, Oscar Romero, Alberto

xvi

Thesis Details

Abelló, Petar Jovanovic, Maik Thiele, Wolfgang Lehner. Fundamenta
Informaticae (163, 2): 111-138 (2018).

In addition to the main papers, the following peer-reviewed publications have
also been made or the student has participated in its development.

Conference articles.

[6] A Situational Approach for the Definition and Tailoring of a Data-Driven
Software Evolution Method. Xavier Franch, Jolita Ralyté, Anna Perini,
Alberto Abelló, David Ameller, Jesús Gorroñogoitia, Sergi Nadal, Marc
Oriol, Norbert Seyff, Alberto Siena, Angelo Susi. CAiSE 2018: 603-618.

[7] FAME: Supporting Continuous Requirements Elicitation by Combining
User Feedback and Monitoring. Marc Oriol, Melanie J. C. Stade, Farnaz
Fotrousi, Sergi Nadal, Jovan Varga, Norbert Seyff, Alberto Abelló, Xavier
Franch, Jordi Marco, Oleg Schmidt. RE 2018: 217-227.

Workshop papers.

[8] Big Data Management Challenges in SUPERSEDE. Sergi Nadal, Alberto
Abelló, Oscar Romero, Jovan Varga. EuroPro 2017.

Tool demonstrations.

[9] MDM: Governing Evolution in Big Data Ecosystems. Sergi Nadal, Al-
berto Abelló, Oscar Romero, Stijn Vansummeren, Panos Vassiliadis.
EDBT 2018: 682-685.

Reference works.

[10] Integration-Oriented Ontology. Sergi Nadal, Alberto Abelló. In: Sakr
S., Zomaya A. (eds) Encyclopedia of Big Data Technologies. Springer,
Cham.

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers
which are listed above. Parts of the papers are used directly or indirectly in
the extended summary of the thesis.

xvii

Chapter 1

Introduction

1 Background and Motivation

The importance of data in today’s society is unquestionable. A large portion
of companies - those known as digital companies - base their business model
on the collection, storage and analysis of any data relevant to their business.
This philosophy implies a paradigm shift in the management of organisations’
operations, and requires the digitalisation of all their business processes (e.g.,
creating information systems to interact with customers and suppliers such as
websites, mobile applications or GPS systems, adding sensors to mechanical
processes to monitor them, etc). While the digitalisation of an organisation is
an arduous task, the data generated and collected can be analysed in order to
yield important information for making business decisions. This has now been
identified as a determinant and differentiating success factor that increases
organisations’ competitiveness [87].

Nowadays, a new kind of data-intensive systems that gather and analyse
all kinds of data has emerged bringing new challenges for data management
and analytics1 [147, 81]. The most popular characterization of such systems
is based on the three Vs: volume (digitalisation of some processes can gen-
erate large volumes of data), variety (from heterogeneous and evolving data
sources) and velocity (in terms of potential arrival time and data process-
ing in real time). To address them, these systems are based on two pillars:
new architectures (mainly based on cloud computing and distributed data
management), and new data models (such as documents, graphs, key-value
and streams). While abundant research has yield mature tools to handle
volume (e.g., distributed data storage and processing [125]) and velocity (e.g.,
data stream and complex event processing [18]), variety has been mostly
overlooked.

1These are today referred as Big Data systems.

1

2. Data Integration

Indeed, the data variety challenge refers to the complexity of providing
an on-demand integrated view over an heterogeneous and evolving set of
data sources such that it conceptualizes the domain at hand. For example,
consider a company organizing events. External data such as weather data or
a calendar with public holidays may help to predict the attendance to events.
Crossing data from diverse sources has been identified as a key success factor
in data-intensive projects [21]. Ultimately, the data variety challenge aims
to democratize the access to relevant sources of data so that data analysts
can conduct richer (i.e., better contextualized) analysis without needing to
be proficient in data management tasks. However, current solutions to tackle
the data variety challenge require data analysts to perform complex IT tasks,
making the access to such systems nowadays restricted to highly specialized
technical profiles (i.e., the so called data scientists).

2 Data Integration

Information integration, or data integration, has been an active research
area for decades. Succinctly, it consists of given a single query involving
several data sources get a single answer. Data integration is a pervasive area
in data management, with applications spanning the domain of business
(e.g., to enable access to legacy systems or external services), science (e.g., to
combine information from the hundreds of biomedical databases available)
or the Web (e.g., to build a platform analysing and comparing prices for
products) [39]. All such examples entail building a system capable of modeling
multiple autonomous data sources, and provide a uniform query interface
over them. Since its outset, data integration has been traditionally tackled in
two independent forms: materialized integration or virtual integration.

The materialized approach, data warehousing being the most popular al-
ternative, consists of extracting the content of the sources and physically
materializing it in a structured repository [92]. Here, the integration task con-
sists of defining a target database schema and a set of procedural mappings (i.e.,
extract-transform-load -ETL- processes) that periodically fetch and populate the
target warehouse. This approach creates physical independence between the
warehouse and the data sources, at the expense of freshness (i.e., out-of-date
results), storage space and synchronization cost. Online analytical processing
(OLAP) tools are the most well known representatives of materialized integra-
tion systems. Relying on a lattice structure (i.e., the data cube), data analysts
obtain the required information dismissing the access to the sources. Such
structures are also referred, in general, as materialized views.

Conversely, the virtualized approach defines a global schema, also known
as mediated schema, such that queries posed over it are automatically translated
to queries over the sources. Now, the integration task consists of defining

2

2. Data Integration

Data Integration Process

Materialized
Data Integration

Virtual
Data Integration

Metadata
Management

Data Integration
Architecture
Deployment

Legend:

Process

Logical
Sequence

Data
Steward

Data
Analyst

Fig. 1.1: The data integration process

declarative mappings that define relationships between the mediated schema
and the sources. Such schema mappings are categorized as global-as-view
(GAV), local-as-view (LAV), or the more general tuple-generating dependencies
(GLAV); which directly determine how queries are processed. Rewriting
queries in GAV, where concepts of the global schema are characterized in
terms of queries over the sources, can be reduced to a simple unfolding
process. Conversely, in the LAV setting, where the sources are characterized in
terms of queries over the global schema, query rewriting generally becomes a
complex reasoning task (likewise for GLAV). Thus, query answering consists
of resolving such mapping assertions generating queries over the sources. This
yields benefits for freshness, however at the expense of creating a dependence
upon the availability of the sources.

Nonetheless, current data-intensive systems (i.e., those characterized with
the three Vs) bring new challenges for data integration that require care-
fully rethinking how to deal with the traditional approaches [56]. Precisely,
traditional data integration has focused on modeling well-defined domains
with few structured data sources [71]. However, as characterized by the data
variety challenge, we are now dealing with a scale of data sources growing
to hundreds or thousands, each providing humongous amount of data in a
variety of forms [26, 56, 146].

On the one hand, in this settings, the virtual approach can aid to easily
navigate and explore the content of the sources with no cost for freshness,
space and synchronization. However, efficiency when executing queries is
now compromised on dealing with massive datasets. On the other hand,
the materialized approach, which fails at the exploratory phase, can provide
benefits on consolidating the materialization of relevant data and optimizing
the execution of complex queries aimed at gaining deep insights into data.
Thus, clearly combining both integration approaches (i.e., virtual and materi-
alized) can bring benefits to tackle data integration in the context of nowadays
data-intensive systems. This PhD thesis is motivated by this premise, thus we
envision an end-to-end integration system where, after a metadata definition

3

2. Data Integration

phase, data exploitation is performed first via virtual integration (i.e., explo-
ration) followed by materialized integration (i.e., consolidation). We depict
such process in Figure 1.1, which begins with the activities that define an
architecture capable of interacting with metadata artifacts allowing to deal
with the complexity entailed by variety. Note we distinguish two main actors
that participate in the integration life-cycle (a) the data steward, who, similarly
to the database administrator, is in charge of managing the integration system;
and (b) the data analyst, who is the consumer of data. Next, we detail each
of the phases composing the data integration life-cycle, where we also addi-
tionally highlight related open research problems that will drive the proposed
contributions in this thesis.

2.1 Supporting end-to-end data integration

The cornerstone to perform data integration are metadata (i.e., data describing
data). Relevant examples of metadata for data integration are: description
of the sources, their schemata, or queries that will be posed over them (i.e.,
workload). The amount and kind of metadata available will have a direct
impact on the degree of automation that can be achieved in further data
transformation tasks. Thus, a general objective is the adoption of architectures
that have means to represent metadata and the flows where those metadata
are generated and consumed. Traditional data integration systems, depicted as
enterprise information integration systems in industry [70], were commonly built
on top of database management systems. Taking the relational data model
as foundation, such architectures provides the core constructs to represent
metadata for data integration (e.g., schemata or views).

Conversely, current technological stacks for the management and pro-
cessing of data-intensive tasks are composed of independent components
(commonly those in the NOSQL family [113]) that generally work in isolation
and are orchestrated together to map to what would be equivalent to different
functionalities of a database management system. A well-known example
of this case is the Hadoop ecosystem [63]. This scenario requires manual
orchestration of components, yielding ad hoc solutions that do not benefit
from more general best practices in data integration (i.e., sharing metadata
across components). This is a well-known problem of NOSQL repositories,
which lack relevant semantics (i.e., metadata) due to their schemaless proper-
ties. This lack of metadata prevents the system from knowing which data are
stored and how they interrelate. Thus, data analysts are hindered with data
management tasks, like understanding the specific structure and parsing it,
before writing their queries.

The previous discussion motivates the need to define a data-intensive
integration architecture where metadata are accessible and shared throughout
all its functional components. Such envisioned architecture is depicted in

4

2. Data Integration

Fig. 1.2: High-level representation of a semantic-aware integration architecture

Figure 1.2 at a high abstraction level. Precisely, it is divided in three sequential
layers where data are (a) ingested in its natural form from the sources; (b)
consolidated in an integrated view and partial views (i.e., subsets of the
integrated view targeted to groups of users); and (c) prepared for the specific
data exploitation task. Processes in each layer generate and use metadata from
such Semantic Layer, precisely in the figure we depict all metadata-generating
flows. This, gives the means for data governance and automation of the
following activities (i.e., virtual and materialized integration). The population
and management of metadata in the semantic layer is a task supported by
data stewards.

2.2 Virtual integration

Virtual data integration enables data analysts to perform exploratory tasks
searching for particular insights of interest, a process enabled by the consump-
tion of metadata from the semantic layer. As depicted in Figure 1.3, virtual
integration consists of rewriting a query QG posed over a mediated (or global)
schema (i.e., the domain metadata previously discussed) into an equivalent
set of queries over the sources [27]. This amounts to the problem of answering
queries using views [69]. As this activity directly accesses the sources, all
tasks are carried out in the exploitation layer. Such activities precisely consist
of rewriting QG using the global schema and mappings to a rewritten set of

5

2. Data Integration

Fig. 1.3: Virtual integration within a semantic-aware data integration architecture

queries QR. Then, those queries are further translated, each to their native
source language QS, using the source schemata, and evaluated. The returned
results R1, . . . , Rn are merged and integrated into a common structure R that
the analyst receives.

2.3 Materialized integration

Once sources have been explored and the data analyst has identified the
insights of interest, as virtual integration compromises computational com-
plexity, it is time to materialize the subset of data used to compute such
insights. Here, as for the virtual case, we also leverage metadata consumed
from the semantic layer. Thus, this last activity consists of the consolidation
of such exploratory queries into procedural mappings (i.e., ETL processes).
These processes periodically extract, transform and load the desired informa-
tion from the sources while meeting the specified quality requirements. Thus,
here operations go beyond the capabilities of virtual data integration queries,
now performing complex tasks such as data cleaning, computing user defined
functions or running predictive tasks. While in classic data integration the vast
majority of analysed data was transactional, the newly emerged data-intensive
settings has replaced traditional ETL processes with much richer data-intensive
flows (DIFs) [82]. MapReduce [38], Spark [170] or Flink [32] are exemplary

6

2. Data Integration

Fig. 1.4: Materialized integration within a semantic-aware data integration architecture

frameworks to implement such large scale DIFs.
Figure 1.4 depicts the materialized integration process, which is divided in

two independent activities. View maintenance consists of periodically executing
DIFs defined by data stewards that adhere to some service level agreements
(SLAs). The execution of such DIFs yields resulting data R, which are incre-
mentally included into the integrated and partial repository of views V. The
second activity, which is triggered by the data analyst, consists of querying
such integrated repositories containing transformed data. Thus, given a query
over the global schema QG, the query engine transforms it and accesses the
integration layer to yield the user the resulting data R.

2.4 Activities in data integration: state of the art and chal-
lenges

In this subsection we review the state of the art related to the data integration
activities depicted in Figure 1.1. Here, we also highlight related open research
problems that will drive the proposed contributions.

7

2. Data Integration

Data integration architecture deployment

The first activity composing the data integration process consists of deploying
the software architecture encompassing the metadata artifacts for data inte-
gration. Such architecture must provide predefined flows to populate such
metadata in order to automate the next activities. As previously discussed,
in traditional data integration such architectures were based on relational
database management systems. Prominent examples of such database archi-
tectures are the mediator/wrapper architecture [165], federated databases
[141], peer-to-peer [37] or multi-databases [102]. All this examples contain the
database catalog, which stores all relevant metadata for the system [80]. How-
ever, in the current landscape of tools to perform data-intensive tasks there is
no such artifact as a metadata catalog, which hinders the automation of further
integration activities. Furthermore, data-intensive architectures are complex,
commonly spanning more than one product, and harnessing the collection,
manipulation and expolitation of metadata as a whole. This is worsened by the
vast number of available off-the-shelf tools for data-intensive architectures, as
there are no existing architectural guidelines for their engineering considering
the systematic management of semantic metadata [45, 106].

Hence, the first problem of interest in this thesis concerns the definition of a
semantic-aware data-intensive integration architecture including predefined flows of
metadata to support the automation of data exploitation.

Metadata management

Semantic Web technologies are nowadays the most popular approach to ex-
change self-describing linked data. Thus, they are well-suited to represent
metadata for data integration. Given the simplicity and flexibility of seman-
tic graphs (i.e., ontologies), they constitute an ideal tool to define a unified
interface that models heterogeneous and autonomous sources. Besides oper-
ational metadata (e.g., schema), equally relevant are domain metadata which
formalize the domain of interest. Indeed, the goal of an ontology is precisely
to conceptualize the knowledge of a domain [64]. Such knowledge is com-
monly represented in terms of the Resource Description Framework (RDF)
[166], which enables to automate its processing, and thus opens the door to
exchange such information on the Web as Linked Data [25]. Therefore, a vast
number of ontologies, or vocabularies, have been proposed to achieve common
consensus when sharing data, such as the RDF Data Cube Vocabulary or the
Data Catalog Vocabulary. Specific languages have been proposed in the RDF
realm to define schema mappings, R2RML being a notorious example [36].

Nonetheless, such approaches fall short to represent complex relationships
between the ontology and the data sources (e.g., LAV) in a virtual integration
context. This is a necessary aspect to define the constructs to automate virtual
data integration. Hence, alternative logical formalisms (e.g., datalog) must be

8

2. Data Integration

adopted to define such mappings. However, the new data integration settings,
where variety is a predominant factor, bring new challenges and account
for novel techniques. Precisely, in this settings where event data generated
by sensors, monitors or logs are highly predominant [65], it is common that
different sources report data at different levels of generalization/specializa-
tion as well as aggregation/decomposition [125]. Additionally, due to the
unprecedented growth in the number of data providers and how often they
change, it is also necessary to reflect all such coexisting schema versions in
the adopted metadata model. Thus, making more desirable to adopt LAV
approaches that deal better with evolution. In this cases, the definition of
specific models on top of semantic graphs (i.e., constraining the vocabulary)
can aid on defining metadata models and mappings to support managing
semantic heterogeneities and evolution.

Thus, the second problem of interest in this thesis concerns on providing new
metadata artifacts that allow to represent variety and variability in the sources, while
maintaining simplicity in schema mappings leveraging on semantic graphs and their
formalisms.

Virtual data integration

A well-known approach is that of ontology-based data access (OBDA), based
on the decoupling of extensional data (i.e., schema) in an ontology and
intensional data in the sources. The most prominent OBDA approaches are
based on generic reasoning in description logics (DLs) for query rewriting
(see [130]). In this settings, the global schema is encoded in an OWL2 QL
ontology [59], which is built upon the DL-Lite family of DLs. Those allow
to represent conceptual models with polynomial cost for reasoning in the
ontology [30]. This rewritings remain tractable as schema mappings follow the
GAV approach. However, despite the flexibility on querying, the management
of the sources is still a problem (magnified in such highly heterogeneous
settings), as the variability in their content and structure (i.e., schema) would
potentially entail reconsidering all existing mappings (a well known drawback
in GAV).

Besides OBDA, there exist a variety of approaches that perform virtual
integration based on LAV mappings. Precisely, some of the most prominent
LAV mediation algorithms are the bucket algorithm [100], the inverse rules
algorithm [42] and the MiniCon algorithm [131]. All these algorithms are
datalog-based to yield sets of maximally-contained query rewritings. To
this end, conjuncts in the body of datalog rules are considered subgoals
that need to be isolately processed and further combined. How subgoals
are resolved, and how rewritings are combined differs among each of them.
Nonetheless, none of the discussed approaches (i.e., OBDA or LAV mediation
algorithms) addresses the seamless management of semantic heterogeneities.

9

3. Structure of the Thesis

In a variety-centric integration environment, where hundreds of sources might
provide data at multiple combinations of granularity levels, it is paramount to
automatically aggregate all available data to this specific granularity.

Hence, the third problem of interest in this thesis is the definition of a new approach
to the problem of answering queries using views under semantic heterogeneities as
well as data source and schema evolution.

Materialized data integration

Complex DIFs may span throughout several areas of an organization and
involve multiple sources. Indeed, a recent survey on large scale analytical
workloads shows that user workloads have high temporal locality, as 80% of
them will be reused by different stakeholders on the range of minutes to hours
[35]. Clearly, reusing some of the intermediate results that are computed in
such DIFs can highly increase the reusability and hence the performance of
user workloads. This problem boils down to the classic problem of materi-
alized view selection [72], a well known NP-hard problem [67]. The classic
approaches to select materialized views in relational databases [69] have the
single goal of improving the performance of executing queries, dismissing
other relevant SLAs that are of interest for data-intensive applications. Exam-
ples of such SLAs are freshness, reliability or scalability [143]. There exists
other, more recent, approaches to find the optimal partial materialization in
DIFs [123, 44, 161]. Nonetheless, they are restricted to specific processing
frameworks (i.e., MapReduce) and they generally focus on optimizing the
system performance-wise ignoring other SLAs.

To this end, the fourth, and last, problem of interest in this thesis is that of selecting
the optimal set of intermediate results to be reused from DIFs driven by metadata and
SLAs.

3 Structure of the Thesis

The results of this PhD thesis are reported in the four main chapters of
the document (i.e., Chapter 2 ´ Chapter 5). Each chapter is self-contained,
corresponding to an individual or a collection of research papers. Thus,
they can be read in isolation as each chapter adheres to the same structure
providing related work for the topic, as well as concluding remarks. There
might exist overlapping in concepts and examples given they were formulated
in similar settings. This is specially the case of Chapters 3 and 4, which share
an initial motivation but delve into different aspects of the integration process.
Importantly, note that we refer to the same concept that denotes the proposed
metadata structure using different terms. Specifically, in Chapter 3 we refer
to it as ontology (where we put an emphasis on semantic graphs), while in

10

4. Thesis Overview

Chapter 4 we refer to it as graph (where we put an emphasis on the topology).
Additionally, Appendix A refers to a published tool demonstration of our
approach to virtual data integration.

The papers included in this thesis are listed below. Chapter 2 is based on
Paper 1; Chapter 3 is based on Papers 2 and 3; Chapter 4 is based on Paper 4;
Chapter 5 is based on Paper 5, and Appendix A is based on Paper 6.

1. A software reference architecture for semantic-aware Big Data systems.
Sergi Nadal, Victor Herrero, Oscar Romero, Alberto Abelló, Xavier
Franch, Stijn Vansummeren, Danilo Valerio. Information & Software
Technology 90: 75-92 (2017).

2. An Integration-Oriented Ontology to Govern Evolution in Big Data
Ecosystems. Sergi Nadal, Oscar Romero, Alberto Abelló, Panos Vassil-
iadis, Stijn Vansummeren. International Workshop On Design, Opti-
mization, Languages and Analytical Processing of Big Data (DOLAP)
(2017).

3. An Integration-Oriented Ontology to Govern Evolution in Big Data
Ecosystems. Sergi Nadal, Oscar Romero, Alberto Abelló, Panos Vassil-
iadis, Stijn Vansummeren. Information Systems 79: 3-19 (2019).

4. On-demand Integration of Heterogeneous and Evolving Data Sources.
Sergi Nadal, Alberto Abelló, Oscar Romero, Stijn Vansummeren, Panos
Vassiliadis. Under submission for ACM SIGMOD International Confer-
ence on Management of Data (2019).

5. Intermediate Results Materialization Selection and Format for Data-
Intensive Flows. Rana Faisal Munir, Sergi Nadal, Oscar Romero, Alberto
Abelló, Petar Jovanovic, Maik Thiele, Wolfgang Lehner. Fundamenta
Informaticae (163, 2): 111-138 (2018).

6. MDM: Governing Evolution in Big Data Ecosystems. Sergi Nadal, Al-
berto Abelló, Oscar Romero, Stijn Vansummeren, Panos Vassiliadis.
International Conference on Extending Database Technology (EDBT)
2018: 682-685.

4 Thesis Overview

This PhD thesis focuses on studying the current field of data integration,
where some of the considered assumptions in the traditional setting [98] are
no longer valid. In this section, we provide a brief overview of the results of
this PhD thesis by discussing the contributions presented in each chapter.

11

4. Thesis Overview

4.1 Chapter 2: A software reference architecture for semantic-
aware data-intensive systems

In Chapter 2, we study the problem of enabling metadata management and
exploitation in current data-intensive software architectures. This chapter
begins with a definition of sought requirements for such architecture. These
requirements were obtained twofold, first we thoroughly reviewed the state of
the art on software architectures with a focus on data-intensive architectures;
second we obtained feedback from different industrial stakeholders in the
domain. With that, a set of 15 requirements was defined, scattered across
the 5 dimensions of volume, velocity, variety, variability and veracity. Next,
we study the related work on data-intensive software architectures, which is
performed via a systematic literature review checking whether the reviewed
solutions fulfill the defined requirements. Precisely, we distinguish between
custom architectures, which are software solutions tailored to a specific use
case, and software reference architectures (SRAs), which are architectural
blueprints tailored to a domain. As a result of this study we conclude that
there nowadays exists two main families of architectures that cover part of
the desired requirements. First, we encounter those presented as an evolution
of the λ-architecture [111] (see Figure 1.5), succeeding to cover most of the
volume and velocity requirements. Next, we find architectures based on
Semantic Web principles, which analogously succeed to cover most of the
variety, variability and veracity requirements. In general, we conclude that
there is no existing architectural solution covering all desired requirements.

Fig. 1.5: λ-architecture

From the previous conclusion, a natural course of action is to propose a
new architecture with the goal of covering all desired requirements. To this
end, we propose Bolster (see Figure 1.6) a software reference architecture for
semantic-aware data-intensive systems. Bolster adopts the best out of the two
families of architectures. To this end, it extends the λ-architecture with a
metadata management component that contains the necessary formalisms to

12

4. Thesis Overview

represent metadata in a machine-readable format (e.g., RDF). As a second
innovation, Bolster refines the λ-architecture by giving a precise definition of
its components and their interconnections. Thus, the data steward’s task is not
the production of a new architecture from a set of independent components
that need to be assembled. Instead, the data steward knows beforehand what
type of components are needed and how they are interconnected. There-
fore, his/her main responsibility is the selection of technologies for those
components given the organizational requirements and structure.

Fig. 1.6: Bolster SRA

Next, we provide an end-to-end illustrative example based on an online
social network benchmark [173], where all components in Bolster interact. To
aid the instantiation of Bolster we present a framework to select the right tool
based on quality requirements from a set of candidate (here open source) tools.
We base this (C)OTS (comercial off-the-shelf) selection problem [95] on the
ISO/IEC 25000 SQuaRE standard (Software Product Quality Requirements and
Evaluation) [79] as reference quality model. Finally, our work is concluded with
the description of a set of industrial experiences where Bolster was successfully
adopted. Precisely, we depict each specific instantiation as well as the results of
a validation with the goal to assess to which extent Bolster lead to a perceived
quality improvement in the software or service targeted in each use case.

13

4. Thesis Overview

4.2 Chapter 3: An integration-oriented ontology to govern
evolution in data-intensive ecosystems

In Chapter 3, we tackle the second data integration activity. We first propose
a flexible metadata model to deal with evolution. The ultimate goal is to
build a metadata model that allows to represent how data sources and their
schemata change, with the goal of enabling seamless virtual integration over
it. We advocate for the adoption of graph formalisms (here semantic graphs)
to represent an integration system I (i.e., the global schema, source schemata
and mappings) [98]. Unlike other approaches that combine data structures
with logical rules for mappings, using graphs we are capable of encoding
all constructs composing I in a single data structure. This yields significant
advantages on simplicity, as the algorithms using the structure need only to be
concerned with a unique formalism to exploit metadata. Thus, I is composed
of the three following elements:

1. Global graph (G). Representing the domain of interest of analysts using
relevant conceptual modeling constructs (i.e., association, specialization
and aggregation). To this end we distinguish among concepts (i.e., classes)
and features (i.e., class attributes). Furthermore we distinguish between
those features that act as identifiers and those that do not.

2. Source graph (S). Representing the schema of wrappers and their at-
tributes. Adopted from the mediator-wrapper architecture, a wrapper
consists of a view encoding a program or query hiding the complexity
of accessing a data source [134].

3. Mappings graph (M). Representing LAV schema mappings linked the
global and source graphs. In logical terms, a LAV schema mapping is
represented by a first-order formula of the form @xpRpxq Ñ Dyψpx, yqq,
where R is an element (relation) in the source and ψ a query over the
global schema. In the proposed graph-based representation LAV map-
pings are represented via subgraphs at the wrapper level. Furthermore,
a surjective function F : a Ñ f links attributes in the wrappers to fea-
tures. This is particularly relevant in heterogeneous integration settings
where attribute names (externally defined in the wrappers) might differ
from feature names (defined in the global graph).

Figure 1.7 depicts an overview of the proposed approach including the
previously described components. To support source evolution, we present
a method to semi-automatically include new wrappers in the source and
mappings graphs.

Next, we present a method to semi-automatically include new wrappers in
the source and mappings graphs. Finally, this chapter is complemented with

14

4. Thesis Overview

Source Data Analyst

Source Graph

...

Data Analyst

Q1

QM

Source

...

Integration System

Global Graph

LAV
Mappings

Q

Q

Q

Data
Steward Define

Wrappers

W1

W2

WN

Register

Fig. 1.7: High-level overview of the proposed integration system

an evaluation of the proposed approach. Precisely, we perform a functional
evaluation on the applicability of our approach w.r.t. the results of RESTful
API evolution studies. Our evaluation results reveal that we are capable of
semi-automatically accommodating all structural changes concerning data
ingestion, which on average makes up 71.62% of the changes occurring on
widely used APIs.

4.3 Chapter 4: Answering queries using views under seman-
tic heterogeneities and evolution

This chapter presents our approach to query answering under semantic hetero-
geneities, focusing on specialization and aggregation (i.e., different granularity
levels), as well as data source and schema evolution of the provided data.
Precisely, leveraging on the previously introduced metadata model we present
a query rewriting algorithm (i.e., rewriteCQ) that transforms a given query
over G into a set of equivalent queries over the wrappers that include or
discard semantically heterogeneous data sources, as well as perform implicit
aggregations of data. Figure 1.8 depicts a high-level overview of the querying
process (here implemented in SPARQL).

Given a query over the global graph QG , rewriteCQ deals with the
semantic heterogeneities of specialization and aggregation by generating
sets of queries that request data at all available lower levels of granularity.
This process, which is inspired by the bucket algorithm [100], leverages the
semantic annotations in G to unambiguously resolve LAV mappings. This is
achieved in two phases:

1. Intra-concept generation. Which receives as input a query (represented as
a pattern in G) and generates a graph of conjunctive queries. This graph,
contains as nodes all concepts included in the pattern together with sets
of conjunctive queries. Those indicate how to access the wrappers to

15

4. Thesis Overview

Fig. 1.8: Example of a graph-based query rewriting

fetch the required features.

2. Inter-concept generation. Given the concept-centric graph of conjunctive
queries, this phase deals with the discovery of equi join conditions
among wrappers. To this end, we look for those intersecting LAV
mappings (represented as subgraphs) to find shared identifier features.
By systematically compacting the input graph, we compute a final set
of rewritings (to be interpreted as a union of conjunctive queries) that
represent all legal combinations of queries equivalent to QG .

We theoretically show that rewriteCQ provides minimally-sound and
minimally-complete rewritings.

To deal with semantic heterogeneities, we propose the aggregation graph
Gagg as an analogy to an OLAP multidimensional lattice. Gagg is defined as
a copy of G where all granularity levels at which wrappers provide data are
explicitly materialized in hierarchies. Features are associated with their seman-
tically valid aggregation functions, which shall be used to perform implicit
aggregations in the querying answering process. To exploit such structure, we
present rewriteCAQ an algorithm performing implicit aggregations of data
to yield results at the requested granularity level by the analyst. For instance,
if the data are required at the hourly level, but current wrappers provide
it at the second or minute level, implicit aggregations should automatically
be performed to produce the desired granularity. Intuitively, we define a
virtual graph (i.e., Gvirtual), as a copy of G, where implicit aggregate queries
will be considered as new (virtual) wrappers. Once all virtual wrappers have
been defined, we can evaluate QG over Gvirtual to obtain a resulting union of
conjunctive queries, where all data have been aggregated at the requested
granularity. Next, we theoretically show that rewriteCAQ is also sound and
complete.

16

5. Contributions

This chapter is complemented with an extensive set of experiments where
we positively show the practical behavior of the algorithms.

4.4 Chapter 5: SLA-driven selection of intermediate results
to materialize

In this final chapter, we present our contribution to the last phase of the data
integration life-cycle (i.e., materialized integration). As previously discussed,
reusing intermediate results of a DIF’s execution can potentially yield great
benefits. To this end, in this chapter we revisit the traditional framework for
materialized view selection [153] and analyse its applicability and extensions
in DIFs. We present a method to select the optimal partial materialization of
data from a DIF, driven by multiple quality objectives represented as SLAs.
We apply well-known multi-objective optimization techniques, proven to effi-
ciently tackle multiple and conflicting objectives. To assess different objectives,
we introduce efficient cost estimation techniques leveraging on different data
flow statistics gathered from the data sources and propagated over the DIF.
Precisely, our method considers a set of design goals DG, characterizing
SLAs (computed by means of cost functions CF) to minimize/maximize or
constraints that should not be exceeded.

Due to the non-monotonicity of cost functions, purely greedy algorithms
will not provide near-optimal results. Thus, we propose to adopt local search
algorithms, consisting on the systematical modification of a given state by
means of action functions in order to derive an improved solution state.
Many complex techniques do exist for such approach (e.g., simulated annealing
or genetic algorithms). The intricacy of these algorithms consists of their
parametrization, which is at the same time their key performance aspect. Our
proposal adopts hill-climbing, a non-parametrized search algorithm which can
be seen as a greedy local search, always following the path that yields higher
heuristic values. Since cost functions in DIFs are highly variable, due to their
non-monotonicity, hill-climbing might provide different outputs depending
on the initial state. In order to overcome such problem, we adopt a variant
named Shotgun hill-climbing which consists of a hill-climbing with restarts.
After certain number of iterations, we can obtain the most converging solution.
Such approach of hill-climbing with restarts is surprisingly effective, specially
when considering random initial states. We scrutinize the performance and
quality of the algorithm with the proposed components.

5 Contributions

Figure 1.9 depicts a holistic view of the contributions of this PhD thesis within
the data integration process.

17

5. Contributions

Data Integration Process

SLA-driven
Selection of
Intermediate

Results

Answering
Queries using
Views under

Evolution and
Heterogeneity

Graph-based
Metadata to

Govern
Evolution

Semantic-aware
Software

Reference
Architecture

Legend:

Process

Logical
Sequence

Data
Steward

Data
Analyst

Fig. 1.9: Contributions in the data integration process

The contributions of this PhD thesis are summarized as follows:

• Data integration architecture. We propose a software reference architecture
for data-intensive systems. The architecture considers metadata as a first-
class citizen by defining the Metadata Management System component. A
detailed description of each component and their interaction allows data
stewards to instantiate them with existing off-the-shelf tools. Engineering
software architectures for data-intensive systems is nowadays an ad hoc
task, thus our contribution brings novelty as it tackles the complex
function of harmonizing and interconnecting different heterogeneous
components towards a generic set of requirements.

• Metadata management. We propose a graph-based metadata model to
support virtual data integration. Precisely, we encode in a graph all
elements of an integration system (global schema, source schema and
LAV mappings). The novelty of our contribution lies in the fact that
we encode all integration constructs in a single data structure, thus
simplifying the definition and exploitaiton of metadata. To exemplify
this fact, we focus on the management of schema evolution presenting
an algorithm to update the graph based on source changes, an aspect
non commonly dealt with in the data integration literature.

• Virtual integration. We present a query rewriting algorithm that, given a
query posed over the graph-based model, transforms it to an equivalent
set of queries over the sources exploiting semantic annotations. The
proposed algorithm automatically considers specialization relationships,
which allow to prune the number of sources involved in a query, as
well as navigations through featureless concepts. As an extension, we
propose semantic annotations to deal with semantic heterogeneities
and include data at lower granularity levels. To this end, we present

18

5. Contributions

a novel algorithm inspired by OLAP approaches, which rely on multi-
dimensional lattices, that automatically generates sets of queries that
perform implicit aggregations. This is a particularly relevant extension
of the proposed integration graph, as currently such kind of semantic
heterogeneities must be manually dealt with.

• Materialized integration. Lastly, we provide support to the reuse of in-
termediate results in DIFs. We propose a method that, given a set of
SLAs, selects the optimal nodes to materialize. Our approach is novel
with respect to traditional materialized view selection, where we select
to materialize intermediate results of a DIF for a given set of weighted
conflicting objectives.

19

Chapter 2

A Software Reference
Architecture for
Semantic-Aware
Data-Intensive Systems

This chapter has been published as a paper in Information and Software
Technology, 90: 75-92 (2017).
The layout of the papers has been revised
DOI: https://doi.org/10.1016/j.infsof.2017.06.001

Elsevier copyright / credit notice:
© 2017 Elsevier. Reprinted with permission from Sergi Nadal, Victor Herrero,
Oscar Romero, Alberto Abelló, Xavier Franch, Stijn Vansummeren, and Danilo
Valerio. A software reference architecture for semantic-aware Big Data systems,
Information and Software Technology Volume 90, October 2017.

20

Abstract

Context: Big Data systems are a class of software systems that ingest, store, process
and serve massive amounts of heterogeneous data, from multiple sources. Despite
their undisputed impact in current society, their engineering is still in its infancy and
companies find it difficult to adopt them due to their inherent complexity. Existing
attempts to provide architectural guidelines for their engineering fail to take into
account important Big Data characteristics, such as the management, evolution and
quality of the data.

Objective: In this chapter, we follow software engineering principles to refine the
λ-architecture, a reference model for Big Data systems, and use it as seed to create
Bolster, a software reference architecture (SRA) for semantic-aware Big Data systems.

Method: By including a new layer into the λ-architecture, the Semantic Layer,
Bolster is capable of handling the most representative Big Data characteristics (i.e.,
Volume, Velocity, Variety, Variability and Veracity).

Results: We present the successful implementation of Bolster in three industrial
projects, involving five organizations. The validation results show high level of
agreement among practitioners from all organizations with respect to standard quality
factors.

Conclusion: As an SRA, Bolster allows organizations to design concrete architectures
tailored to their specific needs. A distinguishing feature is that it provides semantic-
awareness in Big Data Systems. These are Big Data system implementations that
have components to simplify data definition and exploitation. In particular, they
leverage metadata (i.e., data describing data) to enable (partial) automation of data
exploitation and to aid the user in their decision making processes. This simplification
supports the differentiation of responsibilities into cohesive roles enhancing data
governance.

21

1. Introduction

1 Introduction

Major Big Data players, such as Google or Amazon, have developed large Big
Data systems that align their business goals with complex data management
and analysis. These companies exemplify an emerging paradigm shift towards
data-driven organizations, where data are turned into valuable knowledge
that becomes a key asset for their business. In spite of the inherent complexity
of these systems, software engineering methods are still not widely adopted
in their construction [57]. Instead, they are currently developed as ad hoc,
complex architectural solutions that blend together several software compo-
nents (usually coming from open-source projects) according to the system
requirements.

An example is the Hadoop ecosystem. In Hadoop, lots of specialized
Apache projects co-exist and it is up to Big Data system architects to select and
orchestrate some of them to produce the desired result. This scenario, typical
from immature technologies, raises high-entry barriers for non-expert players
who struggle to deploy their own solutions overwhelmed by the amount of
available and overlapping components. Furthermore, the complexity of the so-
lutions currently produced requires an extremely high degree of specialization.
The system end-user needs to be what is nowadays called a “data scientist”, a
data analysis expert proficient in managing data stored in distributed systems
to accommodate them to his/her analysis tasks. Thus, s/he needs to master
two profiles that are clearly differentiated in traditional Business Intelligence
(BI) settings: the data steward and the data analyst, the former responsible of
data management and the latter of data analysis. Such combined profile is
rare and subsequently entails an increment of costs and knowledge lock-in.

Since the current practice of ad hoc design when implementing Big Data
systems is hence undesirable, improved software engineering approaches
specialized for Big Data systems are required. In order to contribute towards
this goal, we explore the notion of Software Reference Architecture (SRA)
and present Bolster, an SRA for Big Data systems. SRAs are generic archi-
tectures for a class of software systems [10]. They are used as a foundation
to derive software architectures adapted to the requirements of a particular
organizational context. Therefore, they open the door to effective and efficient
production of complex systems. Furthermore, in an emergent class of systems
(such as Big Data systems), they make it possible to synthesize in a systematic
way a consolidated solution from available knowledge. As a matter of fact, the
detailed design of such a complex architecture has already been designated
as a major Big Data software engineering research challenge [106, 45]. Well-
known examples of SRAs include the AUTOSAR SRA [109] for the automotive
industry, the Internet of Things Architecture (IoT-A) [164], an SRA for web
browsers [62] and the NIST Cloud Computing Reference Architecture [103].

22

1. Introduction

As an SRA, Bolster paves the road to the prescriptive development of
software architectures that lie at the heart of every new Big Data system. Using
Bolster, the work of the software architect is not to produce a new architecture
from a set of independent components that need to be assembled. Instead, the
software architect knows beforehand what type of components are needed
and how they are interconnected. Therefore, his/her main responsibility is the
selection of technologies for those components given the concrete requirements
and the goals of the organization. Bolster is a step towards the homogenization
and definition of a Big Data Management System (BDMS), as done in the past
for Database Management Systems (DBMS) [53] and Distributed Database
Management Systems (DDBMS) [125]. A distinguishing feature of Bolster is
that it provides an SRA for semantic-aware Big Data Systems. These are Big
Data system implementations that have components to simplify data definition
and data exploitation. In particular, such type of systems leverage on metadata
(i.e., data describing data) to enable (partial) automation of data exploitation
and to aid the user in their decision making processes. This definition supports
the differentiation of responsibilities into cohesive roles, the data steward and
the data analyst, enhancing data governance.

Contributions The main contributions of this chapter are as follows:

• Taking as building blocks the five “V’s” that define Big Data systems (see
Section 2), we define the set of functional requirements sought in each
to realize a semantic-aware Big Data architecture. Such requirements
will further drive the design of Bolster.

• Aiming to study the related work on Big Data architectures, we perform
a lightweight Systematic Literature Review. Its main outcome consists of
the division of 21 works into two great families of Big Data architectures.

• We present Bolster, an SRA for semantic-aware Big Data systems. Com-
bining principles from the two identified families, it succeeds on satisfy-
ing all the posed Big Data requirements. Bolster relies on the systematic
use of semantic annotations to govern its data lifecycle, overcoming the
shortcomings present in the studied architectures.

• We propose a framework to simplify the instantiation of Bolster to differ-
ent Big Data ecosystems. For the sake of this chapter, we precisely focus
on the components of the Apache Hadoop and Amazon Web Services
(AWS) ecosystems.

• We detail the deployment of Bolster in three different industrial scenarios,
showcasing how it adapts to their specific requirements. Furthermore,
we provide the results of its validation after interviewing practitioners
in such organizations.

23

2. Big Data Definition and Dimensions

Outline. The chapter is structured as follows. Section 2 introduces the Big
Data dimensions and requirements sought. Section 3 presents the Systematic
Literature Review. Sections 4, 5 and 6 detail the elements that compose
Bolster, an exemplar case study implementing it and the proposed instantiation
method respectively. Further, Sections 7 report the industrial deployments
and validation. Finally, Section 8 wraps up the main conclusions derived from
this work.

2 Big Data Definition and Dimensions

Big Data is a natural evolution of BI, and inherits its ultimate goal of trans-
forming raw data into valuable knowledge. Nevertheless, traditional BI archi-
tectures, whose de-facto architectural standard is the Data Warehouse (DW),
cannot be reused in Big Data settings. Indeed, the so-popular characterization
of Big Data in terms of the three “V’s (Volume, Velocity and Variety)” [81],
refers to the inability of DW architectures, which typically rely on relational
databases, to deal and adapt to such large, rapidly arriving and heterogeneous
amounts of data. To overcome such limitations, Big Data architectures rely
on NOSQL (Not Only SQL), co-relational database systems where the core
data structure is not the relation [113], as their building blocks. Such systems
propose new solutions to address the three V’s by (i) distributing data and
processing in a cluster (typically of commodity machines) and (ii) by intro-
ducing alternative data models. Most NOSQL systems distribute data (i.e.,
fragment and replicate it) in order to parallelize its processing while exploit-
ing the data locality principle, ideally yielding a close-to-linear scale-up and
speed-up [125]. As enunciated by the CAP theorem [28], distributed NOSQL
systems must relax the well-known ACID (Atomicity, Consistency, Isolation,
Durability) set of properties and the traditional concept of transaction to
cope with large-scale distributed processing. As result, data consistency may
be compromised but it enables the creation of fault-tolerant systems able to
parallelize complex and time-consuming data processing tasks. Orthogonally,
NOSQL systems also focus on new data models to reduce the impedance
mismatch [60]. Graph, key-value or document-based modeling provide the
needed flexibility to accommodate dynamic data evolution and overcome
the traditional staticity of relational DWs. Such flexibility is many times
acknowledged by referring to such systems as schemaless databases. These
two premises entailed a complete rethought of the internal structures as well
as the means to couple data analytics on top of such systems. Consequently,
it also gave rise to the Small and Big Analytics concepts [147], which refer to
performing traditional OLAP/Query&Reporting to gain quick insight into
the data sets by means of descriptive analytics (i.e., Small Analytics) and Data
Mining/Machine Learning to enable predictive analytics (i.e., Big Analytics)

24

2. Big Data Definition and Dimensions

on Big Data systems, respectively.
In the last years, researchers and practitioners have widely extended the

three “V’s” definition of Big Data as new challenges appear. Among all
existing definitions of Big Data, we claim that the real nature of Big Data can
be covered by five of those “V’s”, namely: (a) Volume, (b) Velocity, (c) Variety,
(d) Variability and (e) Veracity. Note that, in contrast to other works, we do
not consider Value. Considering that any decision support system (DSS) is the
result of a tightly coupled collaboration between business and IT [52], Value
falls into the business side while the aforementioned dimensions focus on the
IT side. In the rest of this chapter we refer to the above-mentioned “V’s” also
as Big Data dimensions.

In this section, we provide insights on each dimension as well as a list of
linked requirements that we consider a Big Data architecture should fulfill.
Such requirements were obtained in two ways: firstly inspired by reviewing
related literature on Big Data requirements [51, 7, 137, 48, 34]; secondly they
were validated and refined by informally discussing with the stakeholders
from several industrial Big Data projects (see Section 7) and obtaining their
feedback. Finally, a summary of devised requirements for each Big Data
dimension is depicted in Table 2.1. Note that such list does not aim to provide
an exhaustive set of requirements for Big Data architectures, but a high-level
baseline on the main requirements any Big Data architecture should achieve
to support each dimension.

2.1 Volume

Big Data has a tight connection with Volume, which refers to the large amount
of digital information produced and stored in these systems, nowadays shift-
ing from terabytes to petabytes (R1.1). The most widespread solution for
Volume is data distribution and parallel processing, typically using cloud-
based technologies. Descriptive analysis [140] (R1.2), such as reporting and
OLAP, has shown to naturally adapt to distributed data management solu-
tions. However, predictive and prescriptive analysis (R1.3) show higher-entry
barriers to fit into such distributed solutions [156]. Classically, data analysts
would dump a fragment of the DW in order to run statistical methods in
specialized software, (e.g., R or SAS) [124]. However, this is clearly unfeasible
in the presence of Volume, and thus typical predictive and prescriptive analy-
sis methods must be rethought to run within the distributed infrastructure,
exploiting the data locality principle [125].

2.2 Velocity

Velocity refers to the pace at which data are generated, ingested (i.e., dealt
with the arrival of), and processed, usually in the range of milliseconds to

25

2. Big Data Definition and Dimensions

seconds. This gave rise to the concept of data stream [18] and creates two main
challenges. First, data stream ingestion, which relies on a sliding window
buffering model to smooth arrival irregularities (R2.1). Second, data stream
processing, which relies on linear or sublinear algorithms to provide near
real-time analysis (R2.2).

2.3 Variety

Variety deals with the heterogeneity of data formats, paying special attention to
semi-structured and unstructured external data (e.g., text from social networks,
JSON/XML-formatted scrapped data, Internet of Things sensors, etc.) (R3.1).
Aligned with it, the novel concept of Data Lake has emerged [152], a massive
repository of data in its original format. Unlike DW that follows a schema
on-write approach, Data Lake proposes to store data as they are produced
without any preprocessing until it is clear how they are going to be analysed
(R3.2), following the load-first model-later principle. The rationale behind a Data
Lake is to store raw data and let the data analyst decide how to cook them.
However, the extreme flexibility provided by the Data Lake is also its biggest
flaw. The lack of schema prevents the system from knowing what is exactly
stored and this burden is left on the data analyst shoulders (R3.3). Since
loading is not that much of a challenge compared to the data transformations
(data curation) to be done before exploiting the data, the Data Lake approach
has received lots of criticism and the uncontrolled dump of data in the Data
Lake is referred to as Data Swamp [148].

2.4 Variability

Variability is concerned with the evolving nature of ingested data, and how
the system copes with such changes for data integration and exchange. In
the relational model, mechanisms to handle evolution of intension (R4.1)
(i.e., schema-based), and extension (R4.2) (i.e., instance-based) are provided.
However, achieving so in Big Data systems entails an additional challenge due
to the schemaless nature of NOSQL databases. Moreover, during the lifecycle
of a Big Data-based application, data sources may also vary (e.g., including
a new social network or because of an outage in a sensor grid). Therefore,
mechanisms to handle data source evolution should also be present in a Big
Data architecture (R4.3).

2.5 Veracity

Veracity has a tight connection with data quality, achieved by means of data
governance protocols. Data governance concerns the set of processes and
decisions to be made in order to provide an effective management of the data

26

2. Big Data Definition and Dimensions

assets [91]. This is usually achieved by means of best practices. These can
either be defined at the organization level, depicting the business domain
knowledge, or at a generic level by data governance initiatives (e.g., Six Sigma
[73]). However, such large and heterogeneous amount of data present in Big
Data systems begs for the adoption of an automated data governance protocol,
which we believe should include, but might not be limited to, the following
elements:

• Data provenance (R5.1), related to how any piece of data can be tracked
to the sources to reproduce its computation for lineage analysis. This re-
quires storing metadata for all performed transformations into a common
data model for further study or exchange (e.g., the Open Provenance
Model [114]).

• Measurement of data quality (R5.2), providing metrics such as accuracy,
completeness, soundness and timeliness, among others [20]. Tagging all
data with such adornments prevents analysts from using low quality
data that might lead to poor analysis outcomes (e.g., missing values for
some data).

• Data liveliness (R5.3), leveraging on conversational metadata [152] which
records when data are used and what is the outcome users experience
from it. Contextual analysis techniques [17] can leverage such metadata
in order to aid the user in future analytical tasks (e.g., query recommen-
dation [55]).

• Data cleaning (R5.4), comprising a set of techniques to enhance data
quality like standardization, deduplication, error localization or schema
matching. Usually such activities are part of the preprocessing phase,
however they can be introduced along the complete lifecycle. The degree
of automation obtained here will vary depending on the required user
interaction, for instance any entity resolution or profiling activity will
infer better if user aided.

Including the aforementioned automated data governance elements into
an architecture is a challenge, as they should not be intrusive. First, they
should be transparent to developers and run as under the hood processes.
Second, they should not overburden the overall system performance (e.g., [77]
shows how automatic data provenance support entails a 30% overhead on
performance).

2.6 Summary

The discussion above shows that current BI architectures (i.e., relying on
RDMS), cannot be reused in Big Data scenarios. Such modern DSS must adopt

27

2. Big Data Definition and Dimensions

NOSQL tools to overcome the issues posed by Volume, Velocity and Variety.
However, as discussed for Variability and Veracity, NOSQL does not satisfy key
requirements that should be present in a mature DSS. Thus, Bolster is designed
to completely satisfy the aforementioned set of requirements, summarized in
Table 2.1.

Requirement

1. Volume
R1.1 The BDA shall provide scalable storage of massive data sets.
R1.2 The BDA shall be capable of supporting descriptive analytics.
R1.3 The BDA shall be capable of supporting predictive and pre-

scriptive analytics.
2. Velocity
R2.1 The BDA shall be capable of ingesting multiple, continuous,

rapid, time varying data streams.
R2.2 The BDA shall be capable of processing data in a (near) real-

time manner.
3. Variety
R3.1 The BDA shall support ingestion of raw data (structured, semi-

structured and unstructured).
R3.2 The BDA shall support storage of raw data (structured, semi-

structured and unstructured).
R3.3 The BDA shall provide mechanisms to handle machine-

readable schemas for all present data.
4. Variability
R4.1 The BDA shall provide adaptation mechanisms to schema

evolution.
R4.2 The BDA shall provide adaptation mechanisms to data evolu-

tion.
R4.3 The BDA shall provide mechanisms for automatic inclusion of

new data sources.
5. Veracity
R5.1 The BDA shall provide mechanisms for data provenance.
R5.2 The BDA shall provide mechanisms to measure data quality.
R5.3 The BDA shall provide mechanisms for tracing data liveliness.
R5.4 The BDA shall provide mechanisms for managing data clean-

ing.

Table 2.1: Requirements for a Big Data Architecture (BDA)

28

3. Related Work

3 Related Work

In this section, we follow the principles and guidelines of Systematic Litera-
ture Reviews (SLR) as established in [94]. The purpose of this review is to
systematically analyse the current landscape of Big Data architectures, with
the goal to identify how they meet the devised requirements, and thus aid in
the design of an SRA. Nonetheless, in this chapter we do not aim to perform
an exhaustive review, but to depict, in a systematic manner, an overview on
the landscape of Big Data architectures. To this end, we perform a lightweight
SLR, where we focus on high quality works and evaluate them with respect to
the previously devised requirements.

3.1 Selection of papers

The search was ranged from 2010 to 2016, as the first works on Big Data
architectures appeared by then. The search engine selected was Scopus1, as
it indexes all journals with a JCR impact factor, as well as the most relevant
conferences based on the CORE index2. We have searched papers with title,
abstract or keywords matching the terms “big data” AND “architecture”. The
list was further refined by selecting papers only in the “Computer Science”
and “Engineering” subject areas and only documents in English. Finally, only
conference papers, articles, book chapters and books were selected.

By applying the search protocol we obtained 1681 papers covering the
search criteria. After a filter by title, 116 papers were kept. We further
applied a filter by abstract in order to specifically remove works describing
middlewares as part of a Big Data architecture (e.g., distributed storage or
data stream management systems). This phase resulted in 44 selected papers.
Finally, after reading them, sixteen papers were considered relevant to be
included in this section. Furthermore, five non-indexed works considered
grey literature were additionally added to the list, as considered relevant to
depict the state of the practice in industry. The process was performed by our
research team, and in case of contradictions a meeting was organized in order
to reach consensus. Details of the search and filtering process are available at
[116].

3.2 Analysis

In the following subsections, we analyse to which extent the selected Big Data
architectures fulfill the requirements devised in Section 2. Each architecture is
evaluated by checking whether it satisfies a given requirement (3) or it does
not (7). Results are summarized in Table 2.2, where we make the distinction

1http://www.scopus.com
2http://www.core.edu.au/conference-portal

29

http://www.scopus.com
http://www.core.edu.au/conference-portal

3. Related Work

between custom architectures and SRAs. For the sake of readability, references
to studied papers have been substituted for their position in Table 2.2.

Requirements on Volume

Most architectures are capable of dealing with storage of massive data sets
(R1.1). However, we claim those relying on Semantic Web principles (i.e.
storing RDF data), [A1,A8] cannot deal with such requirement as they are
inherently limited by the storage capabilities of triplestores. Great effort is put
on improving such capabilities [172], however no mature scalable solution is
available in the W3C recommendations3. There is an exception to the previous
discussion, as SHMR [A14] stores semantic data on HBase. However, this
impacts its analytical capabilities with respect to those offered by triplestores.
Oppositely, Liquid [A9] is the only case where no data are stored, offering
only real-time support and thus not addressing the Volume dimension of
Big Data. Regarding analytical capabilities, most architectures satisfy the
descriptive level (R1.2) via SQL-like [A4,A10,A11,A18] or SPARQL [A1,A8]
languages. Furthermore, those offering MapReduce or similar interfaces
[A2,A3,A6,A13,A14,A15,A20] meet the predictive and prescriptive level (R1.3).
HaoLap [A12] and SHMR [A14] are the only works where MapReduce is
narrowed to descriptive queries.

Requirements on Velocity

Several architectures are capable of ingesting data streams (R2.1), either by
dividing the architecture in specialized Batch and Real-time Layers [A2,A6,A7,
A10,A11,A15,A20], by providing specific channels like data feeds [A4] or by
solely considering streams as input type [A1,A8,A9]. Regarding processing
of such data streams (R2.2), all architectures dealing with its ingestion can
additionally perform processing, with the exception of AsterixDB [A4] and
M3Data [A5], where data streams are stored prior to querying them.

Requirements on Variety

Variety is handled in diverse ways in the studied architectures. Concerning
ingestion of raw data (R3.1), few proposals cannot deal with such requirement,
either because they are narrowed to ingest specific data formats [A8,A16],
or because specific wrappers need to be defined on the sources [A1,A19].
Concerning storage of raw data (R3.2), many architectures define views to
merge and homogenize different formats into a common one (including those
that do it at ingestion time) [A4,A5,A10,A12,A14,A15,A17]. On the other hand,
the λ-architecture and some of the akin architectures [A2,A6,A7,A11] and

3https://www.w3.org/2001/sw/wiki/Category:Triple_Store

30

https://www.w3.org/2001/sw/wiki/Category:Triple_Store

3.
R

elated
W

ork

Custom Architectures Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A1 CQELS [129] 7 3 7 3 3 7 7 3 3 7 3 7 7 7 7

A2 AllJoyn Lambda [160] 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A3 CloudMan [132] 3 3 3 7 7 3 3 7 7 7 7 7 7 7 7

A4 AsterixDB [9] 3 3 7 3 7 3 7 3 3 3 3 3 7 7 7

A5 M3Data [78] 3 3 3 3 7 3 7 3 7 7 7 7 7 7 3

A6 [157] 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A7 λ-arch. [111] 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A8 Solid [110] 7 3 7 3 3 7 7 3 7 7 7 7 7 7 7

A9 Liquid [47] 7 7 7 3 3 3 3 7 7 7 7 3 7 7 7

A10 RADStack [169] 3 3 7 3 3 3 7 3 7 7 7 7 7 7 3

A11 [97] 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A12 HaoLap [145] 3 3 7 7 7 3 7 3 7 7 7 7 7 7 7

A13 [163] 3 3 3 7 7 3 3 7 7 7 7 3 3 7 3

A14 SHMR [66] 3 3 7 7 7 3 7 3 7 7 7 7 7 7 7

A15 Tengu [158] 3 3 3 3 3 3 7 3 7 7 3 7 7 7 7

A16 [168] 3 3 7 7 7 7 7 3 7 7 7 3 7 3 7

A17 [43] 3 3 3 7 7 3 7 3 7 7 7 7 7 7 3

A18 D-Ocean [175] 3 3 7 7 7 3 3 3 3 7 7 7 7 7 7

Software Reference Architectures Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A19 NIST [58] 3 3 3 7 7 7 7 3 7 7 3 7 3 3 3

A20 [126] 3 3 3 3 3 3 3 7 7 7 7 7 7 7 3

A21 [54] 3 3 3 7 7 3 3 7 7 7 7 7 7 7 7

Bolster 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 2.2: Fulfillment of each requirement in the related work

31

3. Related Work

[A20] are the only ones natively storing raw data. In schema management
(R3.3), all those architectures that favored ingesting and storing raw data
cannot deal with such requirement, as no additional mechanism is present to
handle it. Oppositely, the ones defining unified views are able to manage them,
likewise relational database schemas. There is an exception to the previous
discussion, D-Ocean [A18], which defines a data model for unstructured data,
hence favouring all requirements.

Requirements on Variability

Requirements on Variability are poorly covered among the reviewed works.
Schema evolution is only handled by CQELS [A1], AsterixDB [A4] and D-
Ocean [A18]. CQELS uses specific wrapper configuration files which via a
user interface map new elements to ontology concepts. On the other hand,
AsterixDB parses schemas at runtime. Finally, D-Ocean’s unstructured data
model embraces the addition of new features. Furthermore, only AsterixDB
considers data evolution (R4.2) using adaptive query processing techniques.
With respect to automatic inclusion of data sources (R4.3), CQELS has a service
allowing wrappers to be plugged at runtime. Moreover, other architectures
provide such feature as AsterixDB with the definition of external tables at
runtime, [A19] providing a discovery channel or Tengu [A15] by means of an
Enterprise Service Bus.

Requirements on Veracity

Few of the studied architectures satisfy requirements on Veracity. All works
covering data provenance (R5.1) log the operations applied on derived data in
order to be reproduced later. On the other hand, measurement of data quality
(R5.2) is only found in [A19] and [A13], the former by storing such metadata
as part of its Big Data lifecycle and the latter by tracking data quality rules
that validate the stored data. Regarding data liveliness (R5.3), [A16] tracks it
in order to boost reusage of results computed by other users. Alternatively,
[A19] as part of its Preservation Management activity applies aging strategies,
however it is limited to its data retention policy. Finally, with respect to data
cleaning (R5.4) we see two different architectures. In [A5,A13,A17,A19] cleans-
ing processes are triggered as part of the data integration phase (i.e. before
being stored). Differently, [A10,A20] execute such processes on unprocessed
raw data before serving them to the user.

3.3 Discussion

Besides new technological proposals, we devise two main families of works in
the Big Data architectures landscape. On the one hand, those presented as an
evolution of the λ-architecture [A7] after refining it [A2,A6,A10,A11,A15]; and,

32

4. Bolster: a Semantic Extension for the λ-Architecture

on the other hand, those positioned on the Semantic Web principles [A1,A8].
Some architectures aim to be of general-purpose, while others are tailored to
specific domains, such as: multimedia data [A14], cloud manufacturing [A3],
scientific testing [A15], Internet of Things [A2] or healthcare [A13].

It can be concluded from Table 2.2 that requirements related to Volume,
Velocity and Variety are more fulfilled with respect to those related to Variabil-
ity and Veracity. This is due to the fact, to some extent, that Volume, Velocity
and partly Variety (i.e., R3.1, R3.2) are core functionalities in NOSQL systems,
and thus all architectures adopting them benefit from that. Furthermore, such
dimensions have a clear impact on the performance of the system. Most of the
architectures based on the λ-architecture naturally fulfil them for such reason.
On the other hand, partly Variety (i.e., R3.3), Variability and Veracity are
dimensions that need to be addressed by respectively considering evolution
and data governance as first-class citizens. However, this fact has an impact on
the architecture as a whole, and not on individual components, hence causing
such low fulfiment across the studied works.

4 Bolster: a Semantic Extension for the λ-
Architecture

In this section, we present Bolster, an SRA solution for Big Data systems
that deals with the 5 “Vs”. Briefly, Bolster adopts the best out of the two
families of Big Data architectures (i.e., λ-architecture and those relying on
Semantic Web principles). Building on top of the λ-architecture, it ensures
the fulfillment of requirements related to Volume and Velocity. However, in
contrast to other approaches, it is capable of completely handling Variety,
Variability and Veracity leveraging on Semantic Web technologies to represent
machine-readable metadata, oppositely to the studied Semantic Web-based
architectures representing data. We first present the methodology used to
design the SRA. Next, we present the conceptual view of the SRA and describe
its components.

4.1 The design of Bolster

Bolster has been designed following the framework for the design of empirically-
grounded reference architectures [50], which consists of a six-step process
described as follows:

Step 1: decision on type of SRA. The first step is to decide the type of SRA
to be designed, which is driven by its purpose. Using the characterization from
[10], we conclude that Bolster should be of type 5 (a preliminary, facilitation
architecture designed to be implemented in multiple organizations). This

33

4. Bolster: a Semantic Extension for the λ-Architecture

entails that the purpose of its design is to facilitate the design of Big Data
systems, in multiple organizations and performed by a research-oriented team.

Step 2: selection of design strategy. There are two strategies to design SRAs,
from scratch or from existing architectures. We will design Bolster based on
the two families of Big Data architectures identified in Section 3.

Step 3: empirical acquisition of data. In this case, we leverage on the Big
Data dimensions (the five “V’s”) discussed in Section 2 and the requirements
defined for each of them. Such requirements, together with the design strategy,
will drive the design of Bolster.

Step 4: construction of SRA. The rationale and construction of Bolster is
depicted in Section 4.2, where a conceptual view is presented. A functional
description of its components is later presented in Section 4.3, and a functional
example in Section 5.

Step 5: enabling SRA with variability. The goal of enabling an SRA with
variability is to facilitate its instantiation towards different use cases. To this
end, we provide the annotated SRA using a conceptual view as well as the
description of components, which can be selectively instantiated. Later, in
Section 6, we present methods for its instantiation.

Step 6: evaluation of the SRA. The last step of the design of an SRA is its
evaluation. Here, and leveraging on the industrial projects where Bolster has
been adopted, in Section 7.2, we present the results of its validation.

4.2 Adding semantics to the λ-architecture

The λ-architecture is the most widespread framework for scalable and fault-
tolerant processing of Big Data. Its goal is to enable efficient real-time data
management and analysis by being divided into three layers (Figure 2.1).

• The Batch Layer stores a copy of the master data set in raw format as data
are ingested. This layer also pre-computes Batch Views that are provided
to the Serving Layer.

• The Speed Layer ingests and processes real-time data in form of streams.
Results are then stored, indexed and published in Real-time Views.

• The Serving Layer, similarly as the Speed Layer, also stores, indexes and
publishes data resulting from the Batch Layer processing in Batch Views.

34

4. Bolster: a Semantic Extension for the λ-Architecture

Fig. 2.1: λ-architecture

The λ-architecture succeeds at Volume requirements, as tons of hetero-
geneous raw data can be stored in the master data set, while fast querying
through the Serving Layer. Velocity is also guaranteed thanks to the Speed
Layer, since real-time views complement query results with real-time data.
For these reasons, the λ-architecture was chosen as departing point for Bol-
ster. Nevertheless, we identify two main drawbacks. First, as pointed out
previously, it completely overlooks Variety, Variability and Veracity. Second, it
suffers from a vague definition, hindering its instantiation. For example, the
Batch Layer is a complex subsystem that needs to deal with data ingestion,
storage and processing. However, as the λ-architecture does not define any fur-
ther component of this layer, its instantiation still remains challenging. Bolster
(Figure 2.2) addresses the two drawbacks identified in the λ-architecture:

• Variety, Variability and Veracity are considered first-class citizens. With
this purpose, Bolster includes the Semantic Layer where the Metadata
Repository stores machine-readable semantic annotations, in an analo-
gous purpose as of the relational DBMS catalog.

• Inspired by the functional architecture of relational DBMSs, we refine
the λ-architecture to facilitate its instantiation. These changes boil down
to a precise definition of the components and their interconnections. We
therefore introduce possible instantiations for each component by means
of off-the-shell software or service.

Finally, note that this SRA aims to broadly cover different Big Data use
cases, however it can be tailored by enabling or disabling components ac-
cording to each particular context. In the following subsections we describe
each layer present in Bolster as well as their interconnections. In bold, we
highlight the necessary functionalities they need to implement to cope with
the respective requirements.

35

4. Bolster: a Semantic Extension for the λ-Architecture

Fig. 2.2: Bolster SRA conceptual view

4.3 Bolster components

In this subsection, we present, for each layer composing Bolster, the list of its
components and functional description.

Semantic Layer

The Semantic Layer (depicted blue in Figure 2.2) contains the Metadata Man-
agement System (MDM), the cornerstone for a semantic-aware Big Data
system. It is responsible of providing the other components with the necessary
information to describe and model raw data, as well as keeping the footprint
about data usage. With this purpose, the MDM contains all the metadata
artifacts, represented by means of RDF ontologies leveraging the benefits
provided by Semantic Web technologies, needed to deal with data governance
and assist data exploitation. We list below the main artifacts and refer the
interested reader to [159, 24] for further details:

1. Data analysts should work using their day-by-day vocabulary. With this
purpose, the Domain Vocabulary contains the business concepts (e.g.,
customer, order, lineitem) and their relationships (R5.1).

2. In order to free data analysts from data management tasks and decouple
this role from the data steward, each vocabulary term must be mapped to
the system views. Thus, the MDM must be aware of the View Schemata
(R3.3) and the mappings between the vocabulary and such schemata.

36

4. Bolster: a Semantic Extension for the λ-Architecture

3. Data analysts tend to repeat the same data preparation steps prior to
conducting their analysis. To enable reusability and a collaborative
exploitation of the data, on the one hand, the MDM must store Pre-
processing Domain Knowledge about data preparation rules (e.g., data
cleaning, discretization, etc.) related to a certain domain (R5.4), and on
the other hand descriptive statistics to assess data evolution (R4.2).

4. To deal with automatic inclusion of new data sources (R4.3), each in-
gested element must be annotated with its schema information (R4.1). To
this end, the Data Source Register tracks all input data sources together
with the required information to parse them, the physical schema, and
each schema element has to be linked to the attributes it populates, the
logical schema (R3.3). Furthermore, for data provenance (R5.1), the Data
Transformations Log has to keep track of the performed transformation
steps to produce the views, the last processing step within the Big Data
system.

Populating these artifacts is a challenge. Some of them can be automati-
cally populated and some others must be manually annotated. Nonetheless,
all of these artifacts are essential to enable a centralized master metadata
management and hence, fulfil the requirements related to Variety, Variability
and Veracity. Analogously to database systems, data stewards are responsible
of populating and maintaining such artifacts. That is why we claim for the
need that the MDM provides a user friendly interface to aid such processes.
Finally, note that most of the present architectural components must be able to
interact with the MDM, hence it is essential that it provides language-agnostic
interfaces. Moreover, such interfaces cannot pose performance bottlenecks, as
doing so would highly impact in the overall performance of the system.

Batch Layer

This layer (depicted yellow in Figure 2.2) is in charge of storing and process-
ing massive volumes of data. In short, we first encounter Batch Ingestion,
responsible for periodically ingesting data from the batch sources, then the
Data Lake, capable of managing large amounts of data. The last step is the
Batch Processing component, which prepares, transforms and runs iterative
algorithms over the data stored in the Data Lake to shape them accordingly to
the analytical needs of the use-case at hand.

Batch Ingestion. Batch sources are commonly big static raw data sets that
require periodic synchronizations (R3.1). Examples of batch sources can be
relational databases, structured files, etc. For this reason, we advocate for
a multiple component instantiation, as required by the number of sources
and type. These components need to know which data have already been

37

4. Bolster: a Semantic Extension for the λ-Architecture

moved to the Data Lake by means of Incremental Bulks Scheduling and
Orchestration. The MDM then comes into play as it traces this information.
Interaction between the ingestion components and the MDM occurs in a
two-phase manner. First, they learn which data are already stored in the Data
Lake, to identify the according incremental bulk can be identified. Second, the
MDM is enriched with specific information regarding the recently brought
data (R5.3). Since Big Data systems are multi-source by nature, the ingestion
components must be built to guarantee its adaptability in the presence of new
sources (R4.3).

Data Lake. This component is composed of a Massive Storage system (R1.1).
Distributed file systems are naturally good candidates as they were born to
hold large volumes of data in their source format (R3.2). One of their main
drawbacks is that its read capabilities are only sequential and no complex
querying is therefore feasible. Paradoxically, this turns out to be beneficial for
the Batch Processing, as it exploits the power of cloud computing. Different
file formats pursuing high performance capabilities are available, focusing on
different types of workload [115]. They are commonly classified as horizontal,
vertical and hybrid, in an analogous fashion as row-oriented and column-
oriented databases, respectively.

Batch Processing. This component models and transforms the Data Lake’s
files into Batch Views ready for the analytical use-cases. It is responsible to
schedule and execute Batch Iterative Algorithms, such as sorting, searching,
indexing (R1.2) or more complex algorithms such as PageRank, Bayesian
classification or genetic algorithms (R1.3). The processing components, must
be designed to maximize reusability by creating building blocks (from the
domain-knowledge metadata artifacts) that can be reused in several views.
Consequently, in order to track Batch Data Provenance, all performed trans-
formations must be communicated to the MDM (R5.1).

Batch processing is mostly represented by the MapReduce programming
model. Its drawbacks appear twofold. On one hand, when processing huge
amounts of batch data, several jobs may usually need to be chained so that
more complex processing can be executed as a single one. On the other hand,
intermediate results from Map to Reduce phases are physically stored in hard
disk, completely detracting the Velocity (in terms of response time). Massive
efforts are currently put on designing new solutions to overcome the issues
posed by MapReduce. For instance, by natively including other more atomic
relational algebra operations, connected by means of a directed acyclic graph;
or by keeping intermediate results in main memory.

38

4. Bolster: a Semantic Extension for the λ-Architecture

Speed Layer

The Speed Layer (depicted green in Figure 2.2) deals primarily with Velocity.
Its input are continuous, unbounded streams of data with high timeliness and
therefore require novel techniques to accommodate such arrival rate. Once
ingested, data streams can be dispatched either to the Data Lake, in order
to run historical queries or iterative algorithms, or to the Stream Processing
engine, in charge of performing one-pass algorithms for real-time analysis.

Stream Ingestion. The Stream Ingestion component acts as a message queue
for raw data streams that are pushed from the data sources (R3.1). Multiple
sources can continuously push data streams (e.g., sensor or social network
data), therefore such component must be able to cope with high throughput
rates and scale according to the number of sources (R2.1). One of the key
responsibilities is to enable the ingestion of all incoming data (i.e., adopt
a No Event Loss policy). To this end, it relies on a distributed memory or
disk-based storage buffer (i.e. event queue), where streams are temporarily
stored.

This component does not require any knowledge about the data or schema
of incoming data streams, however, for each event, it must know its source
and type, for further matching with the MDM. To assure fault-tolerance and
durability of results in such a distributed environment, techniques such as
write-ahead logging or the two-phase commit protocol are used, nevertheless
that has a clear impact on the availability of data to next components.

Dispatcher. The responsibilities of the Dispatcher are twofold. On the one
hand, to ensure data quality, via MDM communication, it must register and
validate that all ingested events follow the specified schema and rules for
the event on hand (i.e., Schema Typechecking (R4.1, R5.2)). Error handling
mechanisms must be triggered when an event is detected as invalid, and
various mitigation plans can be applied. The simplest alternative is event
rejection, however most conservative approaches like routing invalid events to
the Data Lake for future reprocess can contribute to data integrity.

On the other hand, the second responsibility of the Dispatcher is to perform
Event Routing, either to be processed in a real-time manner (i.e., to the Stream
Processing component), or in a batch manner (i.e., to the Data Lake) for
delayed process. In contrast to the λ-architecture, which duplicates all input
streams to the Batch Layer, here only those that will be used by the processing
components will be dispatched if required. Moreover, before dispatching such
events, different routing strategies can influence the decision on where data is
shipped, for instance by means of evaluating QoS cost models or analysing
the system workload, as done in [97]. Other approaches like sampling or load
shedding can be used here, to ensure that either real-time processing or Data

39

4. Bolster: a Semantic Extension for the λ-Architecture

Lake ingestion are correctly performed.

Stream Processing. The Stream Processing component is responsible of
performing One-Pass Algorithms over the stream of events. The presence of
a summary is required as most of these algorithms leverage on in-memory
stateful data structures (e.g., the Loosy Counting algorithm to compute heavy
hitters, or HyperLogLog to compute distinct values). Such data structures
can be leveraged to maintain aggregates over a sliding window for a certain
period of time. Different processing strategies can be adopted, being the most
popular tuple-at-a-time and micro-batch processing, the former providing
low latency while the latter providing high throughput (R2.2). Similarly as
the Batch Processing, this component must communicate to the MDM all
transformations applied to populate Real-time Views in order to guarantee
Stream Data Provenance (R5.1).

Serving Layer

The Serving Layer (depicted red in Figure 2.2) holds transformed data ready to
be delivered to end-users (i.e. it acts as a set of database engines). Precisely, it
is composed of Batch and Real-time Views repositories. Different alternatives
exist when selecting each view engine, however as they impose a data model
(e.g., relational or key-value), it is key to perform a goal-driven selection
according to end-user analytical requirements [74]. It is worth noting that
views can also be considered new sources, in case it is required to perform
transformations among multiple data models, resembling a feedback loop.
Further, the repository of Query Engines is the entry point for data analysts
to achieve their analytical task, querying the views and the Semantic Layer.

Batch Views. As in the λ-architecture, we seek Scalable and Fault-Tolerant
Databases capable to provide Random Reads, achieved by indexing, and
the execution of Aggregations and UDFs (user defined functions) over large
stable data sets (R1.1). The λ-architecture advocates for recomputing Batch
Views every time a new version is available, however we claim incremen-
tal approaches should be adopted to avoid unnecessary writes and reduce
processing latency. A common example of Batch View is a DW, commonly
implemented in relational or columnar engines. However databases imple-
menting other data models such as graph, key-value or documents also can
serve the purpose of Batch Views. Each view must provide a high-level query
language, serving as interface with the Query Engine (e.g., SQL), or a specific
wrapper on top of it providing such functionalities.

Real-time Views. As opposite to Batch Views, Real-time Views need to
provide Low Latency Querying over dynamic and continuously changing

40

5. Exemplar Use Case

data sets (R2.1). In order to achieve so, in-memory databases are currently
the most suitable option, as they dismiss the high cost it entails to retrieve
data from disk. Additionally, Real-Time views should support low cost
of updating in order to maintain Sketches and Sliding Windows. Finally,
similarly to Batch Views, Real-time Views must provide mechanisms to be
queried, considering as well Continuous Query Languages.

Query Engines. Query Engines, play a crucial role to enable efficiently
querying the views in a friendly manner for the analytical task on hand. Data
analysts query the system using the vocabulary terms and apply domain-
knowledge rules on them (R1.2, R1.3). Thanks to the MDM artifacts, the
system must internally perform the translation from Business Requirements
to Database Queries over Batch and Real-time Views (R3.3), hence making
data management tasks transparent to the end-user. Furthermore, the Query
Engine must provide to the user the ability for Metadata Query and Explo-
ration on what is stored in the MDM (R5.1, R5.2, R5.3).

Summary

Table 2.3 summarizes for each component the fulfilled requirements discussed
in Section 2.

Component Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

Metadata Management System 3 3 3 3 3 3

Batch Ingestion 3 3 3

Data Lake 3 3

Batch Processing 3 3 3

Stream Ingestion 3 3

Dispatcher 3 3

Stream Processing 3 3

Batch Views 3

Real-time Views 3

Query Engines 3 3 3 3 3 3

Table 2.3: Bolster components and requirements fulfilled

5 Exemplar Use Case

The goal of this section is to provide an exemplar use case to illustrate how
Bolster would accommodate a Big Data management and analytics scenario.
Precisely, we consider the online social network benchmark described in [173].
Such benchmark aims to provide insights on the stream of data provided by
Twitter’s Streaming API, and is characterized by workloads in media, text,
graph, activity and user analytics.

41

5. Exemplar Use Case

5.1 Semantic representation

Figure 2.3 depicts a high level excerpt of the content stored in the MDM.
In dark and light blue, the domain knowledge and business vocabulary
respectively which has been provided by the Domain Expert. In addition,
the data steward has, possibly in a semi-automatic manner [119], registered a
new source (Twitter Stream API4) and provided mappings for all JSON fields
to the logical attributes (in red). For the sake of brevity, only the relevant
subgraph of the ontology is shown. Importantly, to meet the Linked Open
Data principles, this ontology should be further linked to other ontologies
(e.g., the Open Provenance Model [114]).

Legend

Status

ID

Creation
Date

Fav
Count

Language

hasAttribute

hasAttribute

hasAttribute

hasAttribute

User

tweetBy

ID
hasAttribute

Place

Text

hasAttribute

location

type

ID

hasAttribute

type
type

String

type

String

type

Date

type

int type

hasSource

JSON

hasFormat

id_str

https://api.twitter.com/
1.1/search/tweets.json

created_at

metadata.
iso_language_code

mapsTo

hasAttribute
hasAttributehasAttribute

favourites_count

hasAttribute

text

mapsTo

mapsTo

hasAttribute

mapsTo

mapsTo

hasAttribute

user.id_str

place

media.media_url

mapsTo

hasAttribute

hasAttribute

hasAttribute

mapsTo

NOT
NULL

rule

NOT
NULL

rule
NOT
NULL

rule
Domain

Class

Logical
Schema

Physical
Schema

Legend

int

Media

hasMedia

IDhasAttribute

type

Image

hasAttribute

media.id

hasAttribute

mapsTo

mapsTo

URL

type

Fig. 2.3: Excerpt of the content in the Metadata Repository

5.2 Data ingestion

As raw JSON events are pushed to the Stream Ingestion component, they are
temporary stored in the Event Queue. Once replicated, to guarantee durability
and fault tolerance, they are made available to the Dispatcher, which is aware
on how to retrieve and parse them by querying the MDM. Twitter’s docu-
mentation5 warns developers that events with missing counts rarely happen.
To guarantee data quality such aspect must be checked. If an invalid event

4https://dev.twitter.com/streaming/overview
5https://dev.twitter.com/streaming/overview/processing

42

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview/processing

6. Bolster Instantiation

is detected, it should be discarded. After this validation, the event at hand
must be registered in the MDM to guarantee lineage analysis. Furthermore
the Dispatcher sends the raw JSON event to the Stream Processing and Data
Lake components. At this point, there is a last ingestion step missing before
processing data. The first workload presented in the benchmark concerns
media analytics, however as depicted in Figure 2.3, the API only provides
the URL of the image. Hence, it is necessary to schedule a batch process
periodically fetching such remote images and loading them into the Data
Lake.

5.3 Data processing and analysis

Once all data are available to be processed in both Speed and Batch Layers,
we can start executing the required workloads. Many of such workloads
concern predictive analysis (e.g., topic modeling, sentiment analysis, location
prediction or collaborative filtering). Hence, the proposed approach is to
periodically refresh statistical models in an offline manner (i.e., in the Batch
Layer), in order to assess predictions in an online manner (i.e., in the Speed
Layer). We distinguish between those algorithms generating metadata (e.g.,
Latent Dirichlet Allocation (LDA)) and those generating data (e.g., PageRank).
The former will store its results in the MDM using a comprehensive vocabulary
(e.g., OntoDM [127]); and the latter will store them into Batch Views. Once
events have been dispatched, the required statistical model has to be retrieved
from the MDM to assess predictions and store outcomes into Real-time Views.
Finally, as described in [173], the prototype application provides insights
based on tweets related to companies in the S&P 100 index. Leveraging on
the MDM, the Query Engine is capable of generating queries to Batch and
Real-time Views.

6 Bolster Instantiation

In this section we list a set of candidate tools, with special focus on the
Apache Hadoop and Amazon Web Services ecosystems, to instantiate each
component in Bolster. In the case when few tools from such ecosystems were
available, we propose other available commercial tools which were considered
in the industrial projects where Bolster was instantiated. Further, we present
a method to instantiate the reference architecture. To this end, we propose
a systematic scoring process driven by standard software product quality
characteristics. The result of using our method yields, for each component,
the most suitable tool.

43

6. Bolster Instantiation

6.1 Available tools

Semantic Layer

Metadata Management System. Two different off-the-shelf open source
products can instantiate this layer, namely Apache Stanbol6 and Apache At-
las7. Nevertheless, the features of the former fall short for the proposed
requirements of the MDM. Not surprisingly, this is due to the novel nature
of Bolster’s Semantic Layer. Apache Atlas satisfies the required functionalities
more naturally and it might appear as a better choice, however it is currently
under heavy development as an Apache Incubator project. Commercial tools
such as Cloudera Navigator8 or Palantir9 are also candidate tools.

Metadata Storage. We advocate for the adoption of Semantic Web storage
technologies (i.e. triplestores), to store all the metadata artifacts. Even though
such tools allow storing and reasoning over large and complex ontologies, that
is not the pursued purpose here, as our aim is to allow a simple and flexible
representation of machine-readable schemas. That is why triplestores serve
better the purpose of such storage. Virtuoso10 is at the moment the most mature
triplestore platform, however other options are available such as 4store11 or
GraphDB12. Nonetheless, given the graph nature of triples, any graph database
can as well serve the purpose of metadata storage (e.g., AllegroGraph13 or
Neo4j14).

Batch Layer

Batch Ingestion. This components highly depends on the format of the data
sources, hence it is complex to derive a universal driver due to technological
heterogeneity. Instantiating this component usually means developing ad
hoc scripting solutions adapting to the data sources as well as enabling
communication with the MDM. Massive data transfer protocols such as FTP
or Hadoop’s copyFromLocal15 will complement such scripts. However, some
drivers for specific protocols exist such as Apache Sqoop16, the most widespread
solution to load data from/to relational sources through JDBC drivers.

6https://stanbol.apache.org
7http://atlas.incubator.apache.org
8https://www.cloudera.com/products/cloudera-navigator.html
9https://www.palantir.com

10http://virtuoso.openlinksw.com
11http://4store.org
12http://graphdb.ontotext.com/graphdb
13http://allegrograph.com
14http://neo4j.com
15https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/

FileSystemShell.html#copyFromLocal
16http://sqoop.apache.org

44

https://stanbol.apache.org
http://atlas.incubator.apache.org
https://www.cloudera.com/products/cloudera-navigator.html
https://www.palantir.com
http://virtuoso.openlinksw.com
http://4store.org
http://graphdb.ontotext.com/graphdb
http://allegrograph.com
http://neo4j.com
https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html# copyFromLocal
https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html# copyFromLocal
http://sqoop.apache.org

6. Bolster Instantiation

Data Lake. Hadoop Distributed File System and Amazon S317 perfectly fit in
this category, as they are essentially file systems storing plain files. Regarding
data file formats, some current popular options are Apache Avro18, Yahoo
Zebra19 or Apache Parquet20 for horizontal, vertical and hybrid fragmentation
respectively.

Batch Processing. Apache MapReduce21 and Amazon Elastic MapReduce22 are
nowadays the most popular solutions. Alternatively, Apache Spark23 and Apache
Flink24 are gaining great popularity as next generation replacement for the
MapReduce model. However, to the best of our knowledge, only Quarry [84] is
capable to interact with the MDM and, based on the information there stored,
automatically produce batch processes based on user-defined information
requirements.

Speed Layer

Stream Ingestion. All tools in the family of “message queues” are candidates
to serve as component for Stream Ingestion. Originated with the purpose of
serving as middleware to support enterprise messaging across heterogeneous
systems, they have been enhanced with scalability mechanisms to handle high
ingestion rates preserving durability of data. Some examples of such systems
are Apache ActiveMQ25 or RabbitMQ26. However, some other tools were born
following similar principles but aiming Big Data systems since its inception,
being Apache Kafka27 and AWS Kinesis Firehose28 the most popular options.

Dispatcher. Here we look for tools that allow developers to define data
pipelines routing data streams to multiple and heterogeneous destinations.
It should also allow the developer to programmatically communicate with
the MDM for quality checks. Apache Flume29 and Amazon Kinesis Streams30 are
nowadays the most prevalent solutions.

17https://aws.amazon.com/s3
18https://avro.apache.org
19http://pig.apache.org/docs/r0.9.1/zebra_overview.html
20https://parquet.apache.org
21https://hadoop.apache.org
22https://aws.amazon.com/elasticmapreduce
23http://spark.apache.org
24https://flink.apache.org
25http://activemq.apache.org
26https://www.rabbitmq.com
27http://kafka.apache.org
28https://aws.amazon.com/kinesis/firehose
29https://flume.apache.org
30https://aws.amazon.com/kinesis/streams

45

https://aws.amazon.com/s3
https://avro.apache.org
http://pig.apache.org/docs/r0.9.1/zebra_overview.html
https://parquet.apache.org
https://hadoop.apache.org
https://aws.amazon.com/elasticmapreduce
http://spark.apache.org
https://flink.apache.org
http://activemq.apache.org
https://www.rabbitmq.com
http://kafka.apache.org
https://aws.amazon.com/kinesis/firehose
https://flume.apache.org
https://aws.amazon.com/kinesis/streams

6. Bolster Instantiation

Stream Processing. In contrast to Batch Processing, it is unfeasible to adopt
classical MapReduce solutions considering the performance impact they yield.
Thus, in-memory distributed stream processing solutions like Apache Spark
Streaming31, Apache Flink Streaming32 and Amazon Kinesis Analytics33 are the
most common alternatives.

Serving Layer

Batch Views. A vast range of solutions are available to hold specialized
views. We distinguish among three families of databases: (distributed) re-
lational, NOSQL and NewSQL. The former is mostly represented by major
vendors who evolved their traditional centralized databases into distributed
ones seeking to improve its storage and performance capabilities. Some com-
mon solutions are Oracle34, Postgres-XL35 or MySQL Cluster36. Secondly, in
the NOSQL category we might drill-down to the specific data model imple-
mented: Apache HBase37 or Apache Cassandra38 for column-family key-value;
Amazon DynamoDB39 or Voldemort40 for key-value; Amazon Redshift41 or Apache
Kudu42 for column oriented; Neo4j43 or OrientDB44 for graph; and MongoDB45

or RethinkDB46 for document. Finally, NewSQL are high-availability main
memory databases which usually are deployed in specialized hardware, where
we encounter SAP Hana47, NuoDB48 or VoltDB49.

Real-time Views. In-memory databases are currently the most popular
options, for instance Redis50, Elastic51, Amazon ElastiCache52. Alternatively,

31http://spark.apache.org/streaming
32https://flink.apache.org
33https://aws.amazon.com/kinesis/analytics
34https://www.oracle.com/database
35http://www.postgres-xl.org
36https://www.mysql.com/products/cluster
37https://hbase.apache.org
38http://cassandra.apache.org
39https://aws.amazon.com/dynamodb
40http://www.project-voldemort.com/voldemort
41https://aws.amazon.com/redshift
42http://getkudu.io
43http://neo4j.com
44http://orientdb.com/orientdb
45https://www.mongodb.org
46https://www.rethinkdb.com
47https://hana.sap.com
48http://www.nuodb.com
49https://voltdb.com
50http://redis.io
51https://www.elastic.co
52https://aws.amazon.com/elasticache

46

http://spark.apache.org/streaming
https://flink.apache.org
https://aws.amazon.com/kinesis/analytics
https://www.oracle.com/database
http://www.postgres-xl.org
https://www.mysql.com/products/cluster
https://hbase.apache.org
http://cassandra.apache.org
https://aws.amazon.com/dynamodb
http://www.project-voldemort.com/voldemort
https://aws.amazon.com/redshift
http://getkudu.io
http://neo4j.com
http://orientdb.com/orientdb
https://www.mongodb.org
https://www.rethinkdb.com
https://hana.sap.com
http://www.nuodb.com
https://voltdb.com
http://redis.io
https://www.elastic.co
https://aws.amazon.com/elasticache

6. Bolster Instantiation

PipelineDB53 offers mechanism to query a data stream via continuous query
languages.

Query Engine. There is a vast variety of tools available for query engines.
OLAP engines such as Apache Kylin54 provide multidimensional analysis
capabilities, on the other hand solutions like Kibana55 or Tableau56 enable the
user to easily define complex charts over the data views.

6.2 Component selection

Selecting components to instantiate Bolster is a typical (C)OTS (commercial
off-the-shelf) selection problem [95]. Considering a big part of the landscape of
available Big Data tools is open source or well-documented, we follow a quality
model approach for their selection, as done in [22]. To this end, we adopt
the ISO/IEC 25000 SQuaRE standard (Software Product Quality Requirements
and Evaluation) [79] as reference quality model. Such model is divided into
characteristics and subcharacteristics, where the latter allows the definition of
metrics (see ISO 25020). In the context of (C)OTS, the two former map to the
hierarchical criteria set, while the latter to evaluation attributes. Nevertheless,
the aim of this chapter is not to provide exhaustive guidelines on its usage
whatsoever, but to supply a blueprint to be tailored to each organization.
Figure 2.4 depicts the subset of characteristics considered relevant for such
selection. Note that not all subcharacteristics are applicable, given that we are
assessing the selection of off-the-shelf software for each component.

Fig. 2.4: Selected characteristics and subcharacteristics from SQuaRE

Evaluation attributes

Previously, we discussed that ISO 25020 proposes candidate metrics for each
present subcharacteristic. However, we believe that they do not cover the
singularities required for selecting open source Big Data tools. Thus, in the

53https://www.pipelinedb.com
54http://kylin.apache.org
55https://www.elastic.co/products/kibana
56http://www.tableau.com

47

https://www.pipelinedb.com
http://kylin.apache.org
https://www.elastic.co/products/kibana
http://www.tableau.com

6. Bolster Instantiation

following subsections we present a candidate set of evaluation attributes
which were used in the use case applications described in Section 7. Each has
associated a set of ordered values from worst to better and its semantics.

Functionality. After analysing the artifacts derived from the requirement
elicitation process, a set of target functional areas should be devised. For
instance, in an agile methodology, it is possible to derive such areas by
clustering user stories. Some examples of functional areas related to Big
Data are: Data and Process Mining, Metadata Management, Reporting, BI 2.0 or
Real-time Analysis. Suitability specifically looks at such functional areas, while
with the other evaluation attributes we evaluate information exchange and
security concerns.

Suitability
Number of functional areas targeted in the project which benefit
from its adoption.

Interoperability
1, no input/output connectors with other considered tools
2, input/output connectors available with some other considered
tools
3, input/output connectors available with many other considered
tools

Compliance
1, might rise security or privacy issues
2, does not raise security or privacy issues

Reliability. It deals with trustworthiness and robustness factors. Maturity
is directly linked to the stability of the software at hand. To that end, we
evaluate it by means of the Semantic Versioning Specification57. The other
two factors, Fault Tolerance and Recoverability, are key Big Data requirements
to ensure the overall integrity of the system. We acknowledge it is impossible
to develop a fault tolerant system, thus our goal here is to evaluate how the
system reacts in the presence of faults.

57http://semver.org

48

http://semver.org

6. Bolster Instantiation

Maturity
1, major version zero (0.y.z)
2, public release (1.0.0)
3, major version (x.y.z)

Fault Tolerance
1, the system will crash if there is a fault
2, the system can continue working if there is a fault but data
might be lost
3, the system can continue working and guarantees no data loss

Recoverability
1, requires manual attention after a fault
2, automatic recovery after fault

Usability. In this subcharacteristic, we look at productive factors regarding
the development and maintenance of the system. In Understandability, we
evaluate the complexity of the system’s building blocks (e.g., parallel data pro-
cessing engines require knowledge of functional programming). On the other
hand, Learnability measures the learning effort for the team to start developing
the required functionalities. Finally, in Operability, we are concerned with the
maintenance effort and technical complexity of the system.

Understandability
1, high complexity
2, medium complexity
3, low complexity

Learnability
1, the operating team has no knowledge of the tool
2, the operating team has small knowledge of the tool and the
learning curve is known to be long
3, the operating team has small knowledge of the tool and the
learning curve is known to be short
4, the operating team has high knowledge of the tool

Operability
1, operation control must be done using command-line
2, offers a GUI for operation control

Efficiency. Here we evaluate efficiency aspects. Time Behaviour measures the
performance at processing capabilities, measured by the way the evaluated
tool shares intermediate results, which has a direct impact on the response
time. On the other hand, Resource Utilisation measures the hardware needs for
the system at hand, as it might affect other coexisting software.

49

6. Bolster Instantiation

Time Behaviour
1, shares intermediate results over the network
2, shares intermediate results on disk
3, shares intermediate results in memory

Resource Utilisation
1, high amount of resources required (on both master and slaves)
2, high amount of resources required (either on master or slaves)
3, low amount of resources required

Maintainability. It concerns continuous control of software evolution. If a
tool provides fully detailed and transparent documentation, it will allow devel-
opers to build robust and fault-tolerant software on top of them (Analysability).
Furthermore, if such developments can be tested automatically (by means of
unit tests) the overall quality of the system will be increased (Testability).

Analysability
1, online up to date documentation
2, online up to date documentation with examples
3, online up to date documentation with examples and books
available

Testability
1, doesn’t provide means for testing
2, provides means for unit testing
3, provides means for integration testing

Portability. Finally, here we evaluate the adjustment of the tool to different
environments. In Adaptability, we analyse the programming languages offered
by the tool. Instability and Co-existence evaluate the effort required to install
such tool and coexistence constraints respectively.

Adaptability
1, available in one programming language
2, available in many programming languages
3, available in different programming languages and offering API
access

Instability
1, requires manual build
2, self-installing package
3, shipped as part of a platform distribution

Co-existence
1, cannot coexist with other selected tools
2, can coexist with all selected tools

50

7. Industrial Experiences

6.3 Tool evaluation

The purpose of the evaluation process is, for each of the candidate tools to
instantiate Bolster, to derive a ranking of the most suitable one according to
the evaluation attributes previously described. The proposed method is based
on the weighted sum model (WSM), which allows weighting criteria (wi) in
order to prioritize the different subcharacteristics. Weights should be assigned
according to the needs of the organization. Table 2.4 depicts an example
selection for the Batch Processing component for the use case described in
Section 7.1. For each studied tool, the Atomic and Weighted columns indicate
its unweighted (fi) and weighted score (wi fi), respectively using a range from
one to five. For each characteristic, the weighted average of each component
is shown in light grey (i.e., the average of each weighted subcharacteristic
ř

i fi{
ř

i wi). Finally, in black, the final score per tool is depicted. From the
exemplar case of Table 2.4, we can conclude that, for the posed weights and
evaluated scores, Apache Spark should be the selected tool, in from of Apache
MapReduce and Apache Flink respectively.

Evaluated Software
Apache Spark Apache MapReduce Apache Flink

Characteristic Subcharacteristic Weight Atomic Weighted Atomic Weighted Atomic Weighted

Functionality
Suitability 2 3 6 2 4 3 6

Interoperability 3 3 9 1 1 1 3
Compliance 1 2 2 2 2 2 2

2.83 1.50 1.83

Reliability
Maturity 1 3 3 3 3 1 1

Fault Tolerance 5 3 15 3 15 3 15
Recoverability 2 2 4 2 4 2 4

2.75 2.75 2.50

Usability
Understandability 5 2 10 3 15 2 10

Learnability 3 4 12 4 12 2 6
Operability 2 2 4 1 2 2 4

2.60 2.90 2.00

Efficiency
Time Behaviour 3 3 9 1 3 3 9

Resource Utilisation 4 1 4 2 8 1 4
1.86 1.57 1.86

Maintainability
Analysability 4 3 12 3 12 2 8

Testability 2 2 4 1 2 1 2
2.67 2.33 1.67

Portability
Adaptability 3 2 6 1 3 2 6

Instability 4 3 12 3 12 2 8
Co-existence 1 2 2 2 2 2 2

2.50 2.13 2.00
2.53 2.27 2.00

Table 2.4: Example tool selection for Batch Processing

7 Industrial Experiences

In this section we depict three industrial projects, involving five organizations,
where Bolster has been successfully adopted. For each project, we describe

51

7. Industrial Experiences

the use case context and the specific Bolster instantiation in graphical form.
Finally we present the results of a preliminary validation that measure the
perception of Bolster from the relevant industrial stakeholders.

7.1 Use cases and instantiation

BDAL: Big Data Analytics Lab

This project takes place in a multinational company in Barcelona58. It runs a
data-driven business model and decision making relies on predictive models.
Three main design issues were identified: (a) each department used its own
processes to create data matrices, which were then processed to build predic-
tive models. For reusability, data sets were preprocessed in ad hoc repositories
(e.g., Excel sheets), generating a data governance problem; (b) data analysts
systematically performed data management tasks, such as parsing continuous
variable discretization or handling missing values, with a negative impact on
their efficiency; (c) data matrices computation resulted in an extremely time
consuming process due to their large volumes. Thus, their update rate was
usually in the range of weeks to months.

The main goal was to develop a software solution to reduce the exposure
of data analysts to data management and governance tasks, as well as boost
performance in data processing.

Bolster instantiation. Bolster’s Semantic Layer allowed the organization to
overcome the data governance problem, consider additional data sources, and
provide automation of data management processes. Additionally, there was a
boost of performance in data processing thanks to the distributed computing
and parallelism in the storage and processing of the Batch and Serving Layers.
The nature of the data sources and analytical requirements did not justify the
components in the Speed Layer, thus Bolster’s instantiation was narrowed to
Batch, Semantic and Serving Layers. Figure 2.5 depicts the tools that compose
Bolster’s instantiation instantiation for this use case.

H2020 SUPERSEDE Project

The SUPERSEDE59 project proposes a feedback-driven approach for software
life-cycle management. It considers user feedback and runtime data as an
integral part of the design, development, and maintenance of software services
and applications. The ultimate goal is to improve the quality perceived by
software end-users as well as support developers and engineers to make the
right software adaptation and evolution decisions. Three use cases proposed

58No details about the company can be revealed due to non-disclosure agreements.
59https://www.supersede.eu

52

https://www.supersede.eu

7. Industrial Experiences

Fig. 2.5: Bolster instantiation for the BDAL use case

by industrial partners, namely: Siemens AG Oesterreich (Austria), Atos (Spain)
and SEnerCon GmbH (Germany), are representative of different data-intensive
application domains in the areas of energy consumption management in home
automation and entertainment event webcasting.

SUPERSEDE’s Big Data architecture is the heart of the analysis stage that
takes place in the context of a monitor-analyse-plan-execute (MAPE) pro-
cess [90]. Precisely, some of its responsibilities are (i) collecting and analysing
user feedback from a variety of sources, (ii) supporting decision making for
software evolution and adaptation based on the collected data, and (iii) enact-
ing the decision and assessing its impact. This set of requirements yielded the
following challenges: (a) ingest multiple fast arriving data streams from moni-
tored data and process them in real-time, for instance with sliding window
operations; (b) store and integrate user feedback information from multiple
and different sources; (c) use all aforementioned data in order to analyse
multi-modal user feedback, identify profiles, usage patterns and identify rel-
evant indicators for usefulness of software services. All implemented in a
performance oriented manner in order to minimize overhead.

Bolster instantiation. Bolster allowed the definition of a data governance
protocol encompassing the three use cases in a single instantiation of the
architecture, while preserving data isolation. The Speed Layer enabled the
ingestion of continuous data streams from a variety of sources, which were
also dispatched to the Data Lake. The different analytical components in the
Serving Layer allowed data analysts to perform an integrated analysis. Figure

53

7. Industrial Experiences

Fig. 2.6: Bolster instantiation for the SUPERSEDE use case

2.6 depicts the tools that compose Bolster’s instantiation for this use case.

WISCENTD: The WHO Information System to Control and Eliminate NTDs

The WISCENTD60 project funded by the World Health Organization (WHO) is
part of the Programme on Control of neglected tropical diseases (NTDs). This project
has the goal of strengthen health information systems in endemic countries in
order to empower them in taking evidence-based decisions to tailor control
interventions; and to capture, clean, store, consolidate and analyse all available
information in order to permit WHO to efficiently monitor advances in control
and finally verify the elimination of selected NTDs. To this end, the aim
is to build an information system serving as an integrated repository of all
information, from different countries and organizations, related to NTDs. The
ultimate beneficiaries of this information system will be the affected neglected
populations whose health will improve if the appropriate interventions are
implemented based on use of good-quality data.

The role of the Big Data architecture is to ingest and integrate data from
a variety of data sources and formats. Currently, the big chunk of data is
ingested from DHIS261, an information system where national ministries enter
data related to inspections, diagnoses, etc. Additionally, NGOs make available
similar information according to their actions. The information dealt with
is continuously changing by nature at all levels: data, schema and sources.

60https://www.who.int/neglected_diseases/disease_management/wiscentds/en
61https://www.dhis2.org

54

https://www.who.int/neglected_diseases/disease_management/wiscentds/en
https://www.dhis2.org

7. Industrial Experiences

Fig. 2.7: Bolster instantiation for the WISCENTD use case

Thus, the challenge falls in the flexibility of the system to accommodate such
information and the one to come. Additionally, flexible mechanisms to query
such data should be defined, as future information requirements will be totally
different from today’s.

Bolster instantiation. Instantiating Bolster favored a centralized manage-
ment, in the Semantic Layer, of the different data sources along with the
provided schemata, a feature that facilitated the data integration and Data
Lake management tasks. Similarly to the BDAL use case, the ingestion and
analysis of data was performed with batch processes, hence dismissing the
need to instantiate the Speed Layer. Figure 2.7 depicts the tools that compose
Bolster’s instantiation for this use case.

Summary

In this subsection, we discuss and summarize the previously presented in-
stantiations. We have shown how, as an SRA, Bolster can flexibly accomodate
different use cases with different requirements by selectively instantiating
its components. Due to space reasons, we cannot show the tool selection
tables per component, instead we present the main driving forces for such
selection using the dimensions devised in Section 2. Table 2.5 depicts the key
dimensions that steered the instantiation of Bolster in each use case.

Most of the components have been successfully instantiated with off-the-
shelf tools. However, in some cases it was necessary to develop customized
solutions to satisfy specific project requirements. This was especially the case

55

7. Industrial Experiences

Use Case Volume Velocity Variety Variability Veracity
BDAL 3 3 3 3

SUPERSEDE 3 3 3 3

WISCENTD 3 3 3

Table 2.5: Characterization of use cases and Big Data dimensions

for the MDM, for which off-the-shelf tools were unsuitable in two out of
three projects. It is also interesting to see that, due to the lack of connectors
between components, it has been necessary to use glue code techniques (e.g.,
in WISCENTD dump files to a UNIX file system and batch loading in R).
As final remark, note that the deployment of Bolster in all described use
cases occurred in the context of research projects, which usually entail a low
risk. However, in data-driven organizations such information processing
architecture is the business’s backbone, and adopting Bolster can generate risk
as few components from the legacy architecture will likely be reused. This
is due to the novelty in the landscape of Big Data management and analysis
tools, which lead to a paradigm shift on how data are stored and processed.

7.2 Validation

The overall objective of the validation is to “assess to which extent Bolster leads
to a perceived quality improvement in the software or service targeted in each
use case”. Hence, the validation of the SRA involves a quality evaluation
where we investigated how Big Data practitioners perceive Bolster’s quality
improvements. To this end, as before, we rely on SQuaRE’s quality model,
however now focusing on the quality-in-use model. The model is hierar-
chically composed of a set of characteristics and sub-characteristics. Each
(sub-)characteristic is quantified by a Quality Measure (QM), which is the
output of a measurement function applied to a number of Quality Measure
Elements (QME).

Selection of participants

For each of the five aforementioned organizations, in the three use cases, a
set of practitioners was selected as participants to report their perception
about the quality improvements achieved with Bolster using the data collection
method detailed in Section 7.2. Care was taken in selecting participants
with different backgrounds (e.g., a broad range of skills, different seniority
levels) and representative of the actual target population of the SRA. This is
summarized in Table 2.6, which depicts the characteristics of the respondents
in each organization. Recall that the SUPERSEDE project involves three

56

7. Industrial Experiences

industrial partners, hence we refer by SUP-1, SUP-2 and SUP-3 to, respectively,
Siemens, Atos and SEnerCon.

ID Org. Function Seniority Specialties
#1 BDAL Data analyst Senior Statistics
#2 BDAL SW architect Junior Non-relational databases, Java
#3 SUP-1 Research scientist Senior Statistics, machine learning
#4 SUP-1 Key expert Senior Software engineering
#5 SUP-1 SW developer Junior Java, security
#6 SUP-1 Research scientist Senior Stream processing, semantic web
#7 SUP-2 Dev. team head Senior CDN, relational databases
#8 SUP-2 Project manager Senior Software engineering
#9 SUP-3 SW developer Junior Web technologies, statistics
#10 SUP-3 SW developer Junior Java, databases
#11 SUP-3 SW architect Senior Web technologies, project leader
#12 WISCENTD SW architect Senior Statistics, software engineering
#13 WISCENTD Research scientist Senior Non-relational databases, semantic web
#14 WISCENTD SW developer Junior Java, web technologies

Table 2.6: List of participants per organization

Definition of the data collection methods

The quality characteristics were evaluated by means of questionnaires. In other
words, for each characteristic (e.g., trust), the measurement method was the
question whether a participant disagrees or agrees with a descriptive statement.
The choice of the participant (i.e., the extent of agreement in a specific rating
scale) was the QME. For each characteristic, a variable numbers of QMEs were
collected (i.e., one per participant). The final QM was represented by the mean
opinion score (MOS), computed by the measurement function

řN
i QMEi{N,

where N is the total number of participants. We used a 7-values rating scale,
ranging from 1 strongly disagree to 7 strongly agree. Table 2.7 depicts the set
of questions in the questionnaire along with the quality subcharacteristic they
map to.

Execution of the validation

The heterogeneity of organizations and respondents called for a strict planning
and coordination for the validation activities. A thorough time-plan was
elaborated, so as to keep the progress of the evaluation among use cases. The
actual collection of data spanned over a total duration of three weeks. Within
these weeks, each use case evaluated the SRA in a 3-phase manner:

1. (1 week): A description of Bolster in form of an excerpt of Section 4 of
this chapter was provided to the respondents, as well as access to the
proposed solution tailored to each organization.

57

7. Industrial Experiences

Subcharacteristic Question

Usefulness • The presented Big Data architecture would be useful in
my UC

Satisfaction • Overall I feel satisfied with the presented architecture
Trust • I would trust the Big Data architecture to handle my UC

data
Perceived Relative
Benefit

• Using the proposed Big Data architecture would be an
improvement with respect to my current way of handling
and analysing UC data

Functional Com-
pleteness

• In general, the proposed Big Data architecture covers the
needs of the UC (subdivided into user stories)

Functional Appro-
priateness

• The proposed Big Data architecture facilitates the storing
and management of the UC data
• The proposed Big Data architecture facilitates the analysis
of historical UC data
• The proposed Big Data architecture facilitates the
real-time analysis of UC data stream
• The proposed Big Data architecture facilitates the
exploitation of the semantic annotation of UC data
• The proposed Big Data architecture facilitates the
visualization of UC data statistics

Functional Correct-
ness

• The extracted metrics obtained from the Big Data
architecture (test metrics) match the results rationally
expected

Willingness to
Adopt

• I would like to adopt the Big Data architecture in my UC

Table 2.7: Validation questions along with the subcharacteristics they map to

2. (1 hour): For each organization, a workshop involving a presentation on
the SRA and a Q&A session was carried out.

3. (1 day): The questionnaire was provided to each respondent to be an-
swered within a day after the workshop.

Once the collection of data was completed, we digitized the preferences
expressed by the participants in each questionnaire. We created summary
spreadsheets merging the results for its analysis.

Analysis of validation results

Figure 2.8 depicts, by means of boxplots, the aggregated MOS for all respon-
dents (we acknowledge the impossibility to average ordinal scales, however

58

7. Industrial Experiences

Fig. 2.8: Validation per Quality Factor

we consider them as their results fall within the same range). The top and
bottom boxes respectively denote the first and third quartile, the solid line the
median and the whiskers maximum and minimum values. The dashed line
denotes the average, and the diamond shape the standard deviation. Note
that Functional Appropriateness is aggregated into the average of the 5 questions
that compose it, and functional completeness is aggregated into the average
of multiple user-stories (a variable number depending on the use case).

We can see that, when taking the aggregated number, none of the character-
istics scored below the mean of the rating scale (1-7) indicating that Bolster was
on average well-perceived by the use cases. Satisfaction sub-characteristics
(i.e., Satisfaction, Trust, and Usefulness) present no anomaly, with Usefulness
standing out as the highest rated one. Regarding Functional Appropriateness,
Bolster was perceived to be overall effective, with some hesitation regarding the
functionality offered for the semantic exploitation of the data. All other scores
are considerably satisfactory. The SRA is marked as functionally complete,
correct, and expected to bring benefits in comparison to current techniques
used in the use cases. Ultimately this leads to a large intention to use.

Discussion. We can conclude that generally user’s perception is positive,
being most answers in the range from Neutral to Strongly Agree. The prelim-
inary assessment shows that the potential of the Bolster SRA is recognized
also in the industry domain and its application is perceived to be beneficial in
improving the quality-in-use of software products. It is worth noting, however,
that some respondents showed reluctancy regarding the Semantic Layer in
Bolster. We believe this aligns with the fact that Semantic Web technologies
have not yet been widely adopted in industry. Thus, lack of known successful
industrial use cases may raise caution among potential adopters.

59

8. Conclusions

8 Conclusions

Despite their current popularity, Big Data systems engineering is still in its
inception. As any other disruptive software-related technology, the consolida-
tion of emerging results is not easy and requires the effective application of
solid software engineering concepts. In this chapter, we have focused on an
architecture-centric perspective and have defined an SRA, Bolster, to harmo-
nize the different components that lie in the core of such kind of systems. The
approach uses the semantic-aware strategy as main principle to define the dif-
ferent components and their relationships. The benefits of Bolster are twofold.
On the one hand, as any SRA, it facilitates the technological work of Big Data
adopters by providing a unified framework which can be tailored to a specific
context instead of a set of independent components that are glued together
in an ad hoc manner. On the other hand, as a semantic-aware solution, it
supports non-expert Big Data adopters in the definition and exploitation of
the data stored in the system by facilitating the decoupling of the data steward
and analyst profiles. However, we anticipate that in the long run, with the
maturity of such technologies, the role of software architect will be replaced in
favor of the database administrator. In this initial deployment, Bolster includes
components for data management and analysis as a first step towards the
systematic development of the core elements of Big Data systems. Thus,
Bolster currently maps to the role played by a relational DBMS in traditional
BI systems.

Acknowledgements. We thank Gerhard Engelbrecht for his assistance in
setting up the validation process, and Silverio Martínez for his comments
and insights that helped to improve this chapter. This work was partly
supported by the H2020 SUPERSEDE project, funded by the EU Information
and Communication Technologies Programme under grant agreement no
644018, and the GENESIS project, funded by the Spanish Ministerio de Ciencia
e Innovación under project TIN2016-79269-R.

60

Chapter 3

An Integration-Oriented
Ontology to Govern
Evolution in Data-Intensive
Ecosystems

This chapter is composed of the following papers:

• Proceedings of the Nineteenth International Workshop On Design, Op-
timization, Languages and Analytical Processing of Big Data (2017).
CEUR Workshop Proceedings Volume 1810.
DOI: http://ceur-ws.org/Vol-1810/DOLAP_paper_09.pdf

• Information Systems, 79: 3-19 (2019).
DOI: https://doi.org/10.1016/j.is.2018.01.006

The layout of the papers has been revised.

CEUR-WS.org copyright / credit notice:
Copyright held by the owner/author(s). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

Elsevier copyright / credit notice:
© 2017 Elsevier. Reprinted with permission from Sergi Nadal, Oscar Romero,
Alberto Abelló, Panos Vassiliadis, and Stijn Vansummeren. An integration-
oriented ontology to govern evolution in Big Data ecosystems, Information
Systems Volume 79, January 2019.

61

http://ceur-ws.org/Vol-1810/DOLAP_paper_09.pdf
https://doi.org/10.1016/j.is.2018.01.006

Abstract

Big Data architectures allow to flexibly store and process heterogeneous data, from
multiple sources, in their original format. The structure of those data, commonly
supplied by means of REST APIs, is continuously evolving. Thus data analysts need
to adapt their analytical processes after each API release. This gets more challenging
when performing an integrated or historical analysis. To cope with such complexity,
in this chapter, we present the Big Data Integration ontology, the core construct
to govern the data integration process under schema evolution by systematically
annotating it with information regarding the schema of the sources. To cope with
syntactic evolution in the sources, we present an algorithm that semi-automatically
adapts the ontology upon new releases. A functional and performance evaluation on
real-world APIs is performed to validate our approach.

62

1. Introduction

1 Introduction

Big Data ecosystems enable organizations to evolve their decision making
processes from classic stationary data analysis [2] (e.g., transactional) to situa-
tional data analysis [104] (e.g., social networks). Situational data are commonly
obtained in the form of data streams supplied by third party data providers
(e.g., Twitter or Facebook), by means of web services (or APIs). Those APIs
offer a part of their data ecosystem at a certain price allowing external data
analysts to enrich their data pipelines with them. With the rise of the RESTful
architectural style for web services [128], providers have flexible mechanisms
to share such data, usually semi-structured (i.e., JSON), over web protocols
(e.g., HTTP). However, such flexibility can be often a disadvantage for analysts.
In contrast to other protocols offering machine-readable contracts for the
structure of the provided data (e.g., SOAP), web services using REST typically
do not publish such information. Hence, analysts need to go over the tedious task
of carefully studying the documentation and adapting their processes to the particular
schema provided. Besides the aforementioned complexity imposed by REST
APIs, there is a second challenge for data analysts. Data providers are constantly
evolving such endpoints12, hence analysts need to continuously adapt the dependent
processes to such changes. Previous work on schema evolution has focused on
software obtaining data from relational views [107, 144]. Such approaches
rely on the capacity to veto changes affecting consumer applications. Those
techniques are not valid in our setting, due to the lack of explicit schema
information and the impossibility to prevent changes from third party data
providers.

Given this setting, the problem is how to aid the data analyst in the presence of
schema changes by (a) understanding what parts of the data structure change and (b)
adapting her code to this change.

Providing an integrated view over an evolving and heterogeneous set of
data sources is a challenging problem, commonly referred as the data variety
challenge [75], that traditional data integration techniques fail to address. An
approach to tackle it is to leverage on Semantic Web technologies, and the so-
called ontology-based data access (OBDA). OBDA are a class of systems that
enable end-users to query an integrated set of heterogeneous and disparate
data sources decreasing the need for IT support [130]. OBDA achieves its
purpose by providing a conceptualization of the domain of interest, via an
ontology, allowing users to pose ontology-mediated queries (OMQs), and thus
creating a separation of concerns between the conceptual and the database
level. Due to the simplicity and flexibility of ontologies, they constitute an ideal
tool to model such heterogeneous environments. However, such flexibility is

1https://dev.twitter.com/ads/overview/recent-changes
2https://developers.facebook.com/docs/apps/changelog

63

https://dev.twitter.com/ads/overview/recent-changes
https://developers.facebook.com/docs/apps/changelog

1. Introduction

also one of its biggest drawbacks, as OBDA currently has no means to provide
continuous adaptation to changes in the sources (e.g., schema evolution), and
thus causing queries to crash.

The problem is not straightforwardly addressable, as current OBDA ap-
proaches, which are built upon generic reasoning in description logics (DLs),
represent schema mappings following the global-as-view (GAV) approach [98].
In GAV, elements of the ontology are characterized in terms of a query over the
source schemata. This provides simplicity in the query answering methods,
which consists of unfolding the queries to the sources. Changes in the source
schemata, however, will invalidate the mappings. In contrast, local-as-view
(LAV) schema mappings characterize elements of the source schemata in
terms of a query over the ontology. They are naturally suited to accomodate
dynamic environments, as we will see. The trade-off however, comes at the
expense of query answering, which becomes a computationally complex task
that might require reasoning [82]. To this end, we aim to bridge this gap
by providing a new approach to data integration using ontologies with LAV
mapping assertions, while maintaining query answering tractable.

In this chapter, we focus on the definition of the ontological vocabulary,
which relies on a tailored metadata model to design the ontology (i.e., a set
of design guidelines). This allows to annotate the data integration constructs
with semantic annotations, enabling to automate the process of evolution.
Our approach builds upon the well-known framework for data integration
[98], and it is divided in two levels represented by graphs (i.e., Global and
Source graphs) in order to provide analysts with an integrated and format-
agnostic view of the sources. By relying on wrappers (from the well-known
mediator/wrapper architecture for data integration [53]) we are able to acco-
modate different kinds of data sources, as the query complexity is delegated
to wrappers and the ontology is only concerned with how to join them and
what attributes are projected. Additionally, we allow the ontology to contain
elements that do not exist in the sources (i.e., syntactic sugar for data analysts),
such as taxonomies, to facilitate querying. Note that the definition of the
metadata model is highly tailored to the query rewriting process using it,
which is the focus of next chapter (see Chapter 4).

Contributions The main contributions of this chapter are as follows:

• We introduce a structured ontology based on an RDF vocabulary that
allows to model and integrate evolving data from multiple providers. As
an add-on, we take advantage of RDF’s nature to semantically annotate
the data integration process.

• We provide a method that handles schema evolution on the sources.
According to our industry applicability study, we flexibly accommodate

64

2. Overview

source changes by only applying changes to the ontology, dismissing
the need to change the analyst’s queries.

• We assess our method by performing a functional and performance
evaluation. The former reveals that our approach is capable of semi-
automatically accomodating all structural changes concerning data in-
gestion, which on average makes up 71.62% of the changes occurring on
widely used APIs.

Outline. The rest of the chapter is structured as follows. Section 2 describes
a running example and formalizes the problem at hand. Section 3 discusses
the constructs of the Big Data Integration ontology and its RDF representation.
Section 4 introduces the techniques to manage schema evolution. Section 5
reports on the evaluation results. Sections 6 and 7 discuss related work and
conclude the chapter, respectively.

2 Overview

Our approach (see Figure 3.1) relies on a two-level ontology of RDF named
graphs to accommodate schema evolution in the data sources. Such graphs are
built based on a RDF vocabulary tailored for data integration. Precisely, we
divide it into the Global graph (G), and the Source graph (S). Briefly, G represents
an integrated view of the domain of interest (also known as domain ontology),
while S represents data sources, wrappers and their schemata. On the one
hand, data analysts issue OMQs to G. We also assume a triplestore with
a SPARQL endpoint supporting the RDFS entailment regime (e.g., subclass
relations are automatically inferred) [151]. On the other hand, we have a set
of data sources, each with a set of wrappers querying it. Different wrappers
for a data source represent different schema versions. Under the assumption
that wrappers provide a flat structure in first normal form, we can easily
depict an accurate representation of their schema into S . To accommodate a
LAV approach, each wrapper in S is related to the fragment of G for which it
provides data.

The management of such a complex structure (i.e., modifying it upon
schema evolution in the sources) is a hard task to automate. To this end, we
introduce the role of data steward as an analogy to the database administrator
in traditional relational settings. Aided by semi-automatic techniques, s/he is
responsible for (a) registering the wrappers of newly incoming, or evolved,
data sources in S , and (b) make such data available to analysts by defining LAV
mappings to G (i.e., enriching the ontology with the mapping representations).
With such setting, intuitively the problem consists of given a query over G, to
derive an equivalent query over the wrappers leveraging on S . Throughout

65

2. Overview

the rest of this section, we introduce the running example and the formalism
behind our approach. To make a clear distinction among concepts, hereinafter,
we will use italics to refer to elements in G, while sans serif font to refer
to elements in S . Additionally, to refer to RDF constructs, we will use
typewriter font.

Fig. 3.1: High-level overview of our approach

2.1 Running example

As an exemplary use case we take the H2020 SUPERSEDE project3. It aims
to support decision-making in the evolution and adaptation of software ser-
vices and applications (i.e., SoftwareApps) by exploiting end-user feedback
and monitored runtime data, with the overall goal of improving end-users’
quality of experience. For the sake of this case study, we narrow the scope
to video on demand (VoD) monitored data (i.e., Monitor tools generating
InfoMonitor events) and textual feedback from social networks such as Twitter
(i.e., FeedbackGathering tools generating UserFeedback events). This scenario is
conceptualized in the UML depicted in Figure 3.2, which we use as a starting
point to provide a high-level representation of the domain of interest that is
later used to generate the ontological knowledge captured in G. Figure 3.3 in
Section 3 depicts the RDF-based representation of the UML diagram used in
our approach, which we will introduce in detail in that section.

Next, let us assume three data sources, in the form of REST APIs, and
respectively one wrapper querying each. The first data source provides
information related to the VoD monitor, which consist of JSON documents as
depicted in Code 3.1. We additionally define a wrapper on top of it obtaining
the monitorId of the monitor and computing the lag ratio metric (a quality of
service measure computed as the fraction of wait and watch time) indicating
the percentage of time a user is waiting for a video. The query of this wrapper

3https://www.supersede.eu

66

https://www.supersede.eu

2. Overview

Fig. 3.2: UML conceptual model for the SUPERSEDE case study

is depicted in Code 3.2 using MongoDB syntax4, where for each tuple the
attribute VoDmonitorId (renamed from monitorId in the JSON) and lagRatio
are projected (respectively mapping to the conceptual attributes toolId and
lagRatio).

{
"monitorId": 12,
"timestamp": 1475010424,
"bitrate": 6,
"waitTime": 3,
"watchTime": 4

}

Code 3.1: Sample JSON for VoD
monitors

db.getCollection ("vod").aggregate([
{$project: {

"VoDmonitorId":"$monitorId",
"lagRatio": {$divide : ["$waitTime","

$watchTime"]}}
}

])

Code 3.2: Wrapper projecting attributes VoDmonitorId and
lagRatio (using MongoDB’s Aggregation Framework syntax)

For the sake of simplicity, hereinafter, we will represent wrappers as rela-
tions where their schema are the attributes projected by the queries, dismissing
the details of the underlying query. Hence, the previous wrapper would be
depicted as w1pVoDmonitorId, lagRatioq (note that the JSON key monitorId
has been renamed to VoDmonitorId). To complete our running example, we
define a wrapper w2pFGId, tweetq providing, respectively, the toolId for the
FeedbackGathering at hand and the description for such UserFeedback. Finally,
the wrapper w3pTargetApp, MonitorId, FeedbackIdq states for each SoftwareAp-
plication the toolId of its associated Monitor and FeedbackGathering tools. Table
3.1 depicts an example of the output generated by each wrapper.

Now, the goal is to enable data analysts to query the attributes of the
ontology-based representation of the UML diagram (i.e., G) by navigating
over the classes, such that the sources are automatically accessed. Assume the

4Note that the use of the aggregate keyword is used to invoke the aggregate querying
framework. The aggregate keyword does not entail grouping unless the $group keyword is used.
Thus, note no aggregation is performed in this query.

67

2. Overview

w1
VoDmonitorId lagRatio

12 0.75
12 0.90
18 0.1

w2
FGId tweet

77 “I continuously see the loading symbol”
45 “Your video player is great!”

w3
TargetApp MonitorId FeedbackId

1 12 77
2 18 45

Table 3.1: Sample output for each of the exemplary wrappers.

analyst wants to retrieve for each applicationId its lagRatio instances. Hence,
the task consists of rewriting such OMQ to an equivalent one over the wrap-
pers, which can be translated to the following relational algebra expression:
Πw3.TargetApp,w1.lagRatiopw1 ’

VoDmonitorId“MonitorId
w3q. Recall such rewriting pro-

cess is depicted in Chapter 4.
Assume now that the first data source releases a new version of its API

and in the new schema lagRatio has been renamed to bufferingRatio. Hence,
a new wrapper w4pVoDmonitorId, bufferingRatioq is defined. With such set-
ting, the analyst should not be aware of such schema evolution, but now
the query should consider both versions and be automatically rewritten to
the following expression: Πw3.TargetApp,w1.lagRatiopw1 ’

VoDmonitorId“MonitorId
w3q

Ť

Πw3.TargetApp,w4.bufferingRatiopw4 ’
VoDmonitorId“MonitorId

w3q.

2.2 Notation

We consider a set of data sources D “ tD1, . . . , Dnu, where each Di consists
of a set of wrappers tw1, . . . , wmu representing views over different schema
versions. We define the operator sourcepwq, which returns the data source D
to which w belongs to. As previously stated, a wrapper is represented as a
relation with the attributes its query projects. We distinguish between ID and
non-ID attributes, hence a wrapper is defined as wpaID, anIDq, where aID and
anID are respectively the set of its ID attributes and non-ID attributes.

Example 2.1
The VoD monitoring API would be depicted as D1 “

tw1ptVoDmonitorIdu, tlagRatiouq, w4ptVoDmonitorIdu, tbufferingRatiouqu,
the feedback gathering API as D2 “ tw2ptFGIdu, ttweetuq and the
relationship API as D3 “ tw3ptTargetApp, MonitorId, FeedbackIdu, tuq.

68

2. Overview

Wrappers can be joined to each other by means of a restricted equi join
on IDs (r’). The semantics of r’ are those of an equi join (wi ’

a“b
wj), but

only valid if a P wi.aID and b P wj.aID. We also define the projection operator
rΠ, whose semantics are likewise a standard projection for non-ID attributes.
We do not permit to project out any ID attribute, as they are necessary for
r’. With such constructs, we can now define the concept of a walk over
the wrappers (W), which consists of a relational algebra expression where
wrappers are joined (r’) and their attributes are projected (rΠ). Thus, we
formally define a walk as W “ rΠpw1qr’ . . . r’rΠpwkq. Furthermore, we work
under the assumption that schema versions from the same data source should
not be joined (e.g., w1 and w4 in the running example). To formalize this
assumption let wrapperspWq denote the set of wrappers used in walk W.
Then we require that @wi, wj P wrapperspWq : sourcepwiq ‰ sourcepwjq. Note
that a walk can also be seen as a conjunctive query over the wrappers (i.e.,
select-project-join expression), thus two walks are equivalent if they join the
same wrappers dismissing the order how this is done. Consider, however, that
as the operator rΠ does not project out ID attributes, all ID attributes will be
part of the output schema.

Example 2.2
The exemplary query (i.e., for each applicationId fetch its lagRatio instances)
would consist of two walks W1 “ rΠlagRatiopw1q r’

VoDmonitorId“MonitorId
rΠTargetApppw3q and W2 “ rΠbufferingRatiopw4q r’

VoDmonitorId“MonitorId
rΠTargetApppw3q.

Next, we formalize the ontology T as a 3-tuple xG,S ,My of RDF named
graphs. The Global graph (G) contains the concepts and relationships that
analysts will use to query, the source graph (S) the data sources and the
schemata of wrappers, and the mappings graph (M) the LAV mappings
between S and G. Recall that data analysts pose OMQs over G, however we
do not allow arbitrary queries. We restrict OMQs to a subset of standard
SPARQL defining subgraph patterns of G, and only project elements of such
pattern. Code 3.3 depicts the template of the permitted queries. Precisely,
attr1, . . . , attrn must be attribute URIs (i.e., mapping to the UML attributes in
Fig. 3.2), where each attri has an invited variable ?vi in the SELECT clause.
The set of triples in the WHERE clause must define a connected subgraph of
G. On the one hand, it contains triples of the form xsi, hasFeature, attriy, where
si are class URIs (i.e., mapping to UML classes) and hasFeature a predicate
stating that attri is attribute of class si. On the other hand, it contains triples

69

2. Overview

of the form xsj, pj, ojy, where sj and oj are class URIs (i.e., mapping to UML
classes) and pi predicate URIs (i.e., mapping to relationships between UML
classes).

SELECT ?v1 . . . ?vn
FROM G
WHERE {

VALUES (?v1 . . . ?vn) { (attr1 . . . attrn) }
s1 p1 attr1 .
. . .
sn pn attrn .
. . .
sm pm om

}

Code 3.3: Template for accepted SPARQL queries

OMQs are meant to be translated to sets of walks (a process we depict in
Chapter 4), to this end the aforementioned SPARQL queries must be parsed
and manipulated. This task can be simplified leveraging on SPARQL Algebra5,
where the semantics of the query evaluation are specified. Libraries such as
ARQ6 provide mechanisms to get such algebraic structure for a given SPARQL
query. Code 3.4 depicts the algebra structure generated after parsing the
subset of permitted SPARQL queries.

(p r o j e c t (?v1 . . . ?vn)
(j o i n

(t a b l e (vars ?v1 . . . ?vn)
(row [?v1 attr1] . . . [?vn attrn])

)
(bgp

(t r i p l e s1 p1 attr1)
. . .
(t r i p l e sn pn attrn)
. . .
(t r i p l e sm pm om)

)))))

Code 3.4: SPARQL algebra for the accepted SPARQL queries

In order to easily manipulate such algebraic structures, we formalize the
allowed SPARQL queries as QG “ xπ, ϕy, where π is the set of projected
attributes (i.e., the URIs attr1, . . ., attrn) and ϕ the graph pattern specified
under the bgp clause (i.e., basic graph pattern). Note that π Ď Vpϕq, where
Vpϕq returns the vertex set of ϕ.

5https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html
6https://www.w3.org/2011/09/SparqlAlgebra/ARQalgebra

70

https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html
https://www.w3.org/2011/09/SparqlAlgebra/ARQalgebra

2. Overview

Example 2.3
The exemplary query is depicted using SPARQL in Code 3.5. Alterna-
tively, it would be represented as π “ tlagRatio, applicationIdu, and ϕ the
subgraph applicationId ÐÝÝÝÝÝÝ

hasFeature
So f twareApplication ÝÝÝÝÝÝÝÑ

hasMonitor
Monitor

ÝÝÝÝÝÝÝÝÑ
generatesQoS

In f oMonitor ÝÝÝÝÝÝÑ
hasFeature

lagRatio.

SELECT ?x ?y
FROM G
WHERE {

VALUES (?x ?y) { (applicationId lagRatio) }
So f twareApplication hasFeature applicationId .
So f twareApplication hasMonitor Monitor .
Monitor generatesQoS In f oMonitor .
In f oMonitor hasFeature lagRatio

}

Code 3.5: Running example’s SPARQL query

The wrappers and the ontology are linked by means of schema mappings.
Those are commonly formalized using tuple-generating dependencies (tgds)
[46], which are logical expressions of the form @xpDyΦpx, yq ÞÑ DzΨpx, zqq,
where Φ and Ψ are conjunctive queries. However, in our context we serialize
such mappings in the graph M, and not as separated logical expressions.
Hence, we define a LAV mapping for a wrapper w as LAVpwq : w ÞÑ ϕG ,
where ϕG is a subgraph of G. We additionally consider a function F : aw ÞÑ am,
that translates the name of an attribute in S to its corresponding conceptual
representation in G. Such function allows us to denote semantic equivalence
between physical and conceptual attributes in the ontology (respectively, in S
and G). Intuitively, F forces a physical attribute in the sources to map to one
and only one conceptual feature in G. As schema mappings, this function is
also serialized in M.

Example 2.4
The LAV mapping for w1 would be the subgraph Monitor ÝÝÝÝÝÝÝÝÑ

generatesQoS
In f oMonitor (also including all class attributes). Regarding F, the function
would make the conversions w1.VoDmonitorId ÞÑ tool Id and w1.lagRatio ÞÑ
lagRatio.

71

3. Big Data Integration Ontology

3 Big Data Integration Ontology

In this section, we present the Big Data Integration ontology (BDI), the meta-
data artifact that enables a systematic approach for the data integration system
governance when ingesting and analysing the data. To this end, we have fol-
lowed the well-known theory on data integration [98] and divided it into
two levels (by means of RDF named graphs): the Global and Source graphs,
respectively G and S , linked via mappings M. Thanks to the extensibility
of RDF, it further enables us to enrich G and S with semantics such as data
types. In this section we present the RDF vocabulary to be used to represent G
and S . To do so, we present a metamodel for the global and source ontologies
that current models (i.e., G and S) must mandatorily follow. In the following
subsections, we elaborate on each graph and present its RDF representation.

3.1 Global graph

The Global graph G reflects the main domain concepts, relationships among
them and features of analysis (i.e., maps to the role of a UML diagram in a
machine-readable format). Its elements are defined in terms of the vocabulary
users will use when posing queries. The metadata model for G distinguishes
concepts from features, the former mimicking classes and the latter attributes
in a UML diagram. Concepts can be linked by means of domain-specific
object properties, which implicitely determine their domain and range. Such
properties will be used for data analysts to navigate the graph, dismissing the
need of specifying how the underlying sources are joined. The link between
a concept and its set of features is represented via G:hasFeature. In order
to disambiguate the query rewriting process we restrict features to belong to
only one concept. Additionally, it is possible to define a taxonomy of features,
which will denote related semantic domains (e.g., the feature sup:monitorId
is subclass of sc:identifier). Features can be enriched with new semantics
to aid the data management and analysis phases. In this thesis, we narrow the
scope to data types for features, widely used in data integrity management.

Code 3.6 provides the triples that compose G in Turtle RDF notation7.
It contains the main metaclasses (using the namespace prefix G8 as main
namespace) which all features of analysis will instantiate. Concepts and
features can reuse existing vocabularies by following the principles of the
Linked Data (LD) initiative. Additionally, we include elements for data types
on features linked using G:hasDatatype, albeit their maintenance is out of
the scope of this thesis. Following the same LD philosophy, we reuse the
rdfs:Datatype class to instantiate data types. With such design, we favor the

7https://www.w3.org/TR/turtle
8http://www.essi.upc.edu/~snadal/BDIOntology/Global

72

https://www.w3.org/TR/turtle
http://www.essi.upc.edu/~snadal/BDIOntology/Global

3. Big Data Integration Ontology

elements of G to be of any of the available types in XML Schema (prefix xsd9).
Finally, note that we focus on non-complex data types, however our model
can be easily extended to include complex types [41].

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix voaf: <http://purl.org/vocommons/voaf#> .
@prefix vann: <http://purl.org/vocab/vann/> .
@prefix G: <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .

<http://www.essi.upc.edu/~snadal/BDIOntology/Global/> rdf:type voaf:Vocabulary ;
vann:preferredNamespacePrefix "G";
vann:preferredNamespaceUri "http://www.essi.upc.edu/~snadal/BDIOntology/Global";
rdfs:label "The␣Global␣graph␣vocabulary" .

G:Concept rdf:type rdfs:Class;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .

G:Feature rdf:type rdfs:Class;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .

G:hasFeature rdf:type rdf:Property ;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> ;
rdfs:domain G:Concept ;
rdfs:range G:Feature .

G:hasDataType rdf:type rdf:Property ;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> ;
rdfs:domain G:Feature ;
rdfs:range rdfs:Datatype .

Code 3.6: Metadata model for G in Turtle notation

Example 3.1
Figure 3.3 depicts the instantiation of G in the SUPERSEDE case study,
as presented in the UML diagram in Figure 3.2 (for the sake of con-
ciseness only a fragment is depicted). The color of the elements repre-
sent typing (i.e., rdf:type links). Note that, in order to comply with
the design constraints of G (i.e., a feature can only belong to one con-
cept), the toolId feature has been explicited and made distinguishable
to sup:monitorId and sup:feedbackGatheringId respectively for classes
Monitor and FeedbackGathering. When possible, vocabularies are reused,
namely https://www.w3.org/TR/vocab-duv (prefix duv) for feedback ele-
ments as well as http://dublincore.org/documents/dcmi-terms (prefix
dct) or http://schema.org (prefix sc). However, when no vocabulary is
available we define the custom SUPERSEDE vocabulary (prefix sup).

9http://www.w3.org/2001/XMLSchema

73

https://www.w3.org/TR/vocab-duv
http://dublincore.org/documents/dcmi-terms
http://schema.org
http://www.w3.org/2001/XMLSchema

3. Big Data Integration Ontology

Fig. 3.3: RDF dataset of the metadata model and data model of G for the SUPERSEDE running
example.

3.2 Source graph

The purpose of the Source graph S is to model the different wrappers and
their provided schema. To this end, we define the metaconcept S:DataSource
which models the different data sources (e.g., Twitter REST API). In S , we
additionally encode the necessary information for schema versioning, hence
we define the metaconcept S:Wrapper which will model the different schema
versions for a data source, which in turn consist of a representation of the
projected attributes, modeled in the metaconcept S:Attribute. We embrace
the reuse of attributes within wrappers of the same data source, as we assume
the semantics do not differ across schema versions, however that assumption
is not realistic among different data sources (e.g., not necessarily a timestamp
has the same meaning in the VoD monitor and the Twitter API). Therefore, we
encode in the attribute names the prefix of the data source they correspond
to (e.g., for a data source D, its wrappers W and W1 respectively provide the
attributes tD/a, D/bu and tD/a, D/cu). Code 3.7 depicts the metadata model for
S in Turtle RDF notation (using prefix S10 as main namespace).

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix voaf: <http://purl.org/vocommons/voaf#> .
@prefix vann: <http://purl.org/vocab/vann/> .

10http://www.essi.upc.edu/~snadal/BDIOntology/Source

74

http://www.essi.upc.edu/~snadal/BDIOntology/Source

3. Big Data Integration Ontology

@prefix S: <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .

<http://www.essi.upc.edu/~snadal/BDIOntology/Source/> rdf:type voaf:Vocabulary ;
vann:preferredNamespacePrefix "S";
vann:preferredNamespaceUri "http://www.essi.upc.edu/~snadal/BDIOntology/Source";
rdfs:label "The␣Source␣graph␣vocabulary" .

S:DataSource rdf:type rdfs:Class;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .

S:Wrapper rdf:type rdfs:Class;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .

S:Attribute rdf:type rdfs:Class;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .

S:hasWrapper rdf:type rdf:Property ;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> ;
rdfs:domain S:DataSource ;
rdfs:range S:Wrapper .

S:hasAttribute rdf:type rdf:Property ;
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> ;
rdfs:domain S:Wrapper ;
rdfs:range S:Attribute .

Code 3.7: Metadata model for S in Turtle notation

Example 3.2
Figure 3.4 shows the instantiation of S in SUPERSEDE. Red nodes depict
the data sources that correspond to the three data sources introduced in
Section 2.1. Then, orange and blue nodes depict the wrappers and attributes,
respectively.

Fig. 3.4: RDF dataset of the metadata model and data model of S .

3.3 Mapping graph

As previously discussed, we encode LAV mappings in the ontology. Recall
that mappings are composed of (a) subgraphs of G, one per wrapper, and

75

3. Big Data Integration Ontology

(b) the function F linking elements of type S:Attribute to elements of type
G:Feature. We serialize such information in RDF in the Mapping graph
M. Subgraphs are represented using named graphs, which identify a subset
of G. Thus, each wrapper will have associated a named graph identifying
which concepts and features it is providing information about. This will be
represented using triples of the form xw, M:mapping, Gy, where w is an instance
of S:Wrapper and G is a subgraph of G. Regarding the function F, we represent
it via the owl:sameAs property (i.e., triples of the form xx, owl:sameAs, yy,
where x and y are respectively instances of S:Attribute and G:Feature.

Example 3.3
In Figure 3.5 we depict the complete instantiation of the BDI ontology for
the SUPERSEDE running example. To ensure readability, internal classes
are omitted and only the core ones are shown. Named graphs are depicted
using colored boxes, respectively red for w1, blue for w2 and green for w3.

Fig. 3.5: RDF dataset of the metadata model and data model of the complete ontology for the
SUPERSEDE running example.

The previous discussion sets the baseline to enable semi-automatic schema
management in the data sources. Instantiating the metadata model, the data

76

4. Handling Evolution

steward is capable of modeling the schema of the sources to be further linked
to the wrappers and the data instances they provide. With such, in the rest
of this chapter we will introduce techniques to adapt the ontology to schema
evolution as well as query answering.

4 Handling Evolution

In this section, we present how the BDI ontology accomodates the evolution
of situational data. Specific studies concerning REST API evolution [101, 162]
have concluded that most of such changes occur in the structure of incoming
events, thus our goal is to semi-automatically adapt the BDI ontology to such
evolution. To this end, in the following subsections we present an algorithm
to aid the data steward to enrich the ontology upon new releases.

4.1 Releases

In Section 2, we discussed the role of the data steward as the unique maintainer
of the BDI ontology in order to make data management tasks transparent to
data analysts. Now, the goal is to shield the analysts queries, so that they do
not crash upon new API version releases. In other words, we need to adapt S
to schema evolution in the data sources, so that G is not affected. To this end,
we introduce the notion of release, the construct indicating the creation of a
new wrapper, and how its elements link to features in G. Thus, we formally
define a release R as a 3-tuple R “ xw, G, Fy, where w is a wrapper, G is a
subgraph of G denoting the elements in G that the wrapper contributes to,
and F “ a ÞÑ VpGq a function where a P w.aID Y w.anID and VpGq vertices
of type G:Feature in G. R must be created by the data steward upon new
releases. Several approaches can aid this process. For instance, to define the
graph G, the user can be presented with subgraphs of G that cover all features.
However, this raises the question of which is the most appropiate subgraph
that the user is interested in. Regarding the definition of F, probabilistic
methods to align and match RDF ontologies, such as paris [149], can be used.
Note that the definition of wrappers (i.e., how to query an API) is beyond the
scope of this thesis.

Example 4.1
Recall wrapper w4 for data source D1. Its associated re-
lease would be defined as w4pVoDmonitorId, bufferingRatioq,
G “ sup:lagRatio ÐÝÝÝÝÝÝÝÝ

G:hasFeature
sup:InfoMonitor ÐÝÝÝÝÝÝÝÝÝÝÝ

sup:generatesQoS
sup:Monitor ÝÝÝÝÝÝÝÝÑ

G:hasFeature
sup:monitorId, and F “ tVoDmonitorId ÞÑ

sup:monitorId, bufferingRatio ÞÑ sup:lagRatiou.

77

4. Handling Evolution

4.2 Release-based ontology evolution

As mentioned above, changes in the source elements need to be reflected
in the ontology to avoid queries to crash. Furthermore, the ultimate goal is
to provide such adaptation in an automated way. To this end, Algorithm 1
applies the necessary changes to adapt the BDI ontology T w.r.t. a new release
R. It starts registering the data source, in case it is new (line 4), and the new
wrapper to further link them (lines 7 and 8). Then, for each attribute in the
wrapper R.w, we check their existence in the current Source graph and register
it, in case it is not present. Given the way URIs for attributes are constructed
(i.e., they have the prefix of their source), we can ensure that only attributes
from the same source will be reused within subsequent versions. This helps
to maintain a low growth rate for T .S , as well as avoiding potential semantic
differences. Next, the named graph is registered to the Mapping graph, to
conclude with the serialization of function F (in R.F). The complexity of this
algorithm is linearly bounded by the size of the parameters of R.

Algorithm 1 Adapt to Release
Input: T is the BDI ontology, R new release
Output: T is adapted w.r.t. R
1: function NewRelease(T , R)
2: Sourceuri “ "S:DataSource/"+sourcepR.wq
3: if Sourceuri R SELECT ?ds FROM T WHERE x?ds, "rdf:type", "S:DataSource"y then
4: T .S Y“ xSourceuri , "rdf:type", "S:DataSource"y
5: Wrapperuri “ "S:Wrapper/"+R.w
6: T .S Y“ xWrapperuri , "rdf:type", "S:Wrapper"y
7: T .S Y“ xSourceuri , "S:hasWrapper", Wrapperuriy

8: for each a P pR.w.aID Y R.w.anIDq do
9: Attributeuri “ Sourceuri+a

10: if Attributeuri R SELECT ?a FROM T WHERE x?a, "rdf:type", "S:Attribute"y then
11: T .S Y“ xAttributeuri , "rdf:type", "S:Attribute"y
12: T .S Y“ xWrapperuri , "S:hasAttribute", Attributeuriy

13: T .MY“ xWrapperuri , "M:mapping", R.Gy
14: for each pa, f q P R.F do
15: auri “ Sourceuri+a
16: furi “ "G:Feature/"+ f
17: T .MY“ xauri , "owl:sameAs", furiy

Example 4.2
In Figure 3.6, we depict the resulting ontology T after executing Algorithm
1 with the release for wrapper w4.

78

5. Evaluation

Fig. 3.6: RDF dataset for the evolved ontology T for the SUPERSEDE running example. Colored
subgraphs are the same as Figure 3.5, the one for w4 being the same than for w1

5 Evaluation

In this section, we present the evaluation results of our approach. We provide
three kinds of evaluations: a functional evaluation on evolution management,
the industrial applicability of our approach and a study on the evolution of
the ontology in a real-world API.

5.1 Functional evaluation

In order to evaluate the functionalities provided by the BDI ontology, we take
the most recent study on structural evolution patterns in REST API [162].
Such work distinguishes changes at 3 different levels, those in (a) API-level,
(b) method-level and (c) parameter-level. Our goal is to demostrate that our
approach can semi-automatically accommodate such changes. To this end, it
is necessary to make a distinction between those changes occurring in the data
requests and those in the response. The former are handled by the wrapper’s
underlying query engine, which also needs to deal with other aspects such as
authentication or HTTP query parametrization. The latter will be handled by

79

5. Evaluation

the proposed ontology.

API-level changes

Those changes concern the whole of an API. They can be observed either
because a new data source is incorporated (e.g., a new social network in
the SUPERSEDE use case) or because all methods from a provider have
been updated. Table 3.2 depicts the API-level change breakdown and the
component responsible to handle it.

API-level Change Wrapper BDI Ont.
Add authentication model 3

Change resource URL 3

Change authentication model 3

Change rate limit 3

Delete response format 3

Add response format 3

Change response format 3

Table 3.2: API-level changes dealt by wrappers or BDI ontology

Adding or changing a response format at API level consists of, for each
wrapper querying it, registering a new release with this format. Regarding
the deletion of a response format, it does not require actions, due to the fact
that no further data on such format will arrive. However, in order to preserve
historic backwards compatibility, no elements should be removed from T .

Method-level changes

Those changes concern modifications on the current version of an operation.
They occur either because a new functionality is released or because existing
functionalities are modified. Table 3.3 summarizes the method-level change
breakdown and the component responsible to handle it.

Those changes have more overlapping with the wrappers due to the fact
that new methods require changes in both request and response. In the context
of the BDI ontology, each method is an instance of S:DataSource and thus,
adding a new one consists of declaring a new release and running Algorithm
1. Renaming a method requires renaming the data source instance. As before,
a removal does not entail any action with the aim of preserving backwards
historic compatibility.

80

5. Evaluation

Method-level Change Wrapper BDI Ont.
Add error code 3

Change rate limit 3

Change authentication model 3

Change domain URL 3

Add method 3 3

Delete method 3 3

Change method name 3 3

Change response format 3

Table 3.3: Method-level changes dealt by wrappers or BDI ontology

Parameter-level changes

Such changes are those concerning schema evolution and are the most com-
mon on new API releases. Table 3.4 depicts such changes and the component
in charge of handling it.

Parameter-level Change Wrapper BDI Ont.
Change rate limit 3

Change require type 3

Add parameter 3 3

Delete parameter 3 3

Rename response parameter 3

Change format or type 3

Table 3.4: Parameter-level changes dealt by wrappers or BDI ontology

Similarly to the previous level, some parameter-level changes are managed
by both wrappers and the ontology. This is caused by the ambiguity of the
change statements, and hence we might consider both URL query parameters
and response parameters (i.e., attributes). Changing format of a parameter
has a different meaning as before, and here entails a change of data type or
structure. Any of the parameter-level changes identified can be automatically
handled by the same process of creating a new release for the source at hand.

5.2 Industrial applicability

After functionally validating that the BDI ontology and wrappers can handle
all types of API evolution, next we aim to study how these changes occur in
real-world APIs. With this purpose, we study the results from [101] which
presents 16 change patterns that frequently occur in the evolution of 5 widely
used APIs (namely Google Calendar, Google Gadgets, Amazon MWS, Twitter API

81

5. Evaluation

and Sina Weibo). With such information, we can show the number of changes
per API that could be accommodated by the ontology. We summarize the
results in Table 3.5. As before, we distinguish between changes concerning
(a) the wrappers, (b) the ontology and (c) both wrappers and ontology. This
enables us to measure the percentage of changes per API that can be partially
accommodated by the ontology (changes also concerning the wrappers) and
those fully accommodated (changes only concerning the ontology). Our
results show that for all studied APIs, the BDI ontology could, on average,
partially accommodate 48.84% of changes and fully accommodate 22.77% of
changes. In other words, our semi-automatic approach allows to solve on
average 71.62% of changes.

API Owner
#Changes
Wrapper

#Changes
Ontology

#Changes
Wrapper&Ontology

Partially
Accommodates

Fully
Accommodates

Google Calendar 0 24 23 48.94% 51.06%
Google Gadgets 2 6 30 78.95% 15.79%
Amazon MWS 22 36 14 19.44% 50%
Twitter API 27 0 25 48.08% 0%
Sina Weibo 35 3 56 59.57% 3.19%

Table 3.5: Number of changes per API and percentage of partially and fully accommodated
changes by T

5.3 Ontology evolution

Now, we are concerned with performance aspects of using the ontology.
Particularly, we will study its temporal growth w.r.t. the releases of a real-
world API, namely Wordpress REST API11. This analysis is of special interest,
considering that the size of the ontology may have a direct impact on the cost
of querying and maintaining it. As a measure of growth, we count the number
of triples in S after each new release, as it is the most prone to change. Given
the high complexity of such APIs, we focus on a specific method and study
its structural changes, namely the GET Posts API. By studying the changelog,
we start from the currently deprecated version 1 evolving it to the next major
version release 2. We further introduce 13 minor releases of version 2. (the
details of the analysis can be found in [118]). We assume that a new wrapper
providing all attributes is defined for each release.

The barcharts in Figure 3.7 depict the number of triples added to S per
version release. As version 1 is the first occurrence of such endpoint, all
elements must be added and thus carries a big overhead. Version 2 is a
major release where few elements can be reused. Later, minor releases do
not have many schema changes, with few attribute additions, deletions or
renames. Thus, the largest batch of triples per minor release are edges of

11https://wordpress.org/plugins/rest-api

82

https://wordpress.org/plugins/rest-api

6. Related Work

type S:hasAttribute. Each new version needs to identify which attributes
it provides even though no change has been applied to it w.r.t. previous
versions.

Fig. 3.7: Growth in number of triples for S per release in Wordpress API

With such analysis we conclude that major version changes entail a steep
growth, however that is infrequent in the studied API. On the other hand,
minor versions occur frequently but the growth in terms of triples has a
steady linear growth. The red line depicts the cumulative number of triples
after each release. For a practically stable amount of minor release versions,
we obtain a linear, stable growth in S . Notice also that G does not grow.
Altogether guarantees that querying T in query answering will not impose
a big overhead, ensuring a good performance of our approach across time.
Nonetheless, other optimization techniques (e.g., caching) can be used to
further reduce the query cost.

6 Related Work

In previous sections, we have cited relevant works on RESTful API evolution
[162, 101]. They provide a catalog of changes, however they do not provide
any approach to systematically deal with them. Other similar works, such
as [171], empirically study API evolution aiming to detect its healthiness. If
we look for approaches that automatically deal with such evolution, we must
shift the focus to the area of database schemas, which are mostly focused
on relational databases [144, 107]. They apply view cloning to accommodate
changes while preserving old views. Such techniques rely on the capability of
vetoing certain changes that might affect the overall integrity of the system.
This is however an unrealistic approach to adopt in our setting, as schema
changes are done by third party data providers.

Attention has also been paid to change management in the context of
description logics (DLs). The definition of a DL that provides expresiveness to
represent temporal changes in the ontology has been an interesting topic of
study in the past years [105]. Relevant examples include [16], that defines the

83

7. Conclusions

temporal DL TQL, providing temporal aspects at the conceptual model level, or
[89] that delves on how to provide such temporal aspects for specific attributes
in a conceptual model. It is known, however, that providing such temporal
aspects to DLs entails a poor computational behaviour for CQ answering
[105], for instance the previous examples are respectively coNP-hard and
undecidable. Recent efforts are being put to overcome such issues and to
provide tractable DLs and methods for rewritability of OMQs. For instance,
[15] provides a temporal DL where the cost of first-order rewritability is
polynomial, however that is only applicable for a restricted fragment of DL-Lite,
and besides the notion of temporal attribute, which is key for management of
schema evolution does not exist. Generally speaking, most of this approaches
lack key characteristics for the management of schema evolution [122].

Regarding LAV schema mappings in data integration, few approaches
strictly follow its definition. This is mostly due to the inherent complexity
of query answering in LAV, which is reduced to the problem of answering
queries using views [99]. Probably the most prominent data integration system
that follows the LAV approach is Information Manifold [93]. To overcome the
complexity posed by LAV query answering, combined approaches of GAV
and LAV have been proposed, which are commonly referred as both-as-view
(BAV) [112] or global-and-local-as-view (GLAV) [49]. Oppositely, we are capable
of adopting a purely LAV approach by restricting the kind of allowed queries
as well as how the mediated schema (i.e., ontology) has to be constructed.

7 Conclusions

In this chapter we have presented the building blocks to handle schema evolu-
tion using a vocabulary-based approach to OBDA. Thus, unlike current OBDA
approaches, we restrict the language from generic knowledge representation
ontology languages (such as DL-Lite) to ontologies based on RDF vocabularies.
This enables us to adopt LAV mappings instead of the classical GAV. The
proposed Big Data integration ontology aims to provide data analysts with an
RDF-based conceptual model of the domain of interest, with the limitations
that features cannot be reused among concepts. Data sources are accessed via
wrappers, which must expose a relational schema in order to depict its RDF-
based representation in the ontology and define LAV mappings, by means
of named graphs and links from attributes to features. We have presented
an algorithm to aid data stewards to systematically accommodate announced
changes in the form of releases. Our evaluation results show that a great
number of changes performed in real-world APIs could be semi-automatically
handled by the wrappers and the ontology. We additionally have shown the
feasability of our query answering algorithm.

84

Chapter 4

Answering Queries Using
Views Under Semantic
Heterogeneities and
Evolution

This chapter is under submission for ACM SIGMOD/PODS International
Conference on Management of Data (2019).
The layout of the paper has been revised.

Abstract

The data variety challenge refers to the complexity of managing and integrating a set of
heterogeneous and evolving Big Data sources. Traditional data integration techniques,
that focus on a rather static setting, fail to address such Big Data integration problems
where a higher degree of autonomy is expected from the system. In this chapter, we
address the problem of query processing in the presence of data variety. We precisely
focus on processing queries that are agnostic of the semantic heterogeneities in the
extensions of the sources as well as the evolution of data sources and their schemata.
The former, is a predominant case for event data ingested at different granularity
levels, while the latter occurs when queries access external sources that continuously
change. To obtain both characteristics, we adopt a graph-based approach to represent
the integration system with a restricted set of semantic annotations. The proposed
query rewriting algorithm uses such annotations to resolve queries in the presence
of the problems above. We theoretically and experimentally validate our approach
showing its soundness and completeness.

85

1. Introduction

1 Introduction

Big Data integration (BDI) refers to the wide set of techniques, methods
and tools that go beyond traditional data integration to combine and unify
Big Data sources [40]. Nowadays, for example organizations enhance their
analytical pipelines by combining in-house and external data. These data
are commonly ingested from third party providers, such as social networks,
via REST APIs or other web protocols. Here, data are neither generated nor
under control of the organization, thus it is paramount to provide a higher
degree of autonomy to deal with semantic heterogeneities and unavoidable
changes. For instance, Facebook’s Graph API yields information related to
users’ posts1 where the created_at attribute is encoded using a datetime
format (i.e., millisecond granularity), however Facebook’s marketing click
tracking API2 yields aggregated information for a specific day. Furthermore,
in 2018 Facebook’s Graph API suffered at least eleven breaking changes3. A
natural desiderata in this setting is to enable data analysts to easily query
such data disregarding the need of writing complex data transformations or
safeguard mechanisms that avoid failure. This scenario requires providing
on-demand integration of an heterogeneous and evolving set of data sources,
which falls under the umbrella of the data variety challenge. This has been
designated as a key success factor for Big Data projects [21]. The ultimate goal
of the data variety challenge is to enable data analysts, with domain expertise
but not proficiency in data management, to easily explore data sources, and
thus democratize data access within an organization.

Classic data integration techniques have focused on the definition of a
global schema that mediates queries over a static and generally structured set
of data sources (i.e., the source schemata) [98]. This amounts to the problem of
answering queries using views, whose goal is to rewrite queries posed over the
global schema into an equivalent set of queries over the sources [69]. Yet, some
of the assumptions from the classical integration setting are no longer valid
and must be rethought for BDI [1, 56]. An observed recurring demand from
data analysts in a number of BDI projects is to include into their query results
all available data making transparent how it is originated in the sources. We
identify two new major challenges, with respect to traditional data integration,
that need to be dealt with in order to enable such autonomous and agnostic
query processing:

• Semantic heterogeneities. In Big Data scenarios, event event data gener-
ated by sensors, monitors or logs are highly predominant [65]. Thus, it
is common that different sources report data at different levels of gener-

1https://developers.facebook.com/docs/graph-api/reference/v3.1/post
2https://developers.facebook.com/docs/marketing-api/click-tags
3https://developers.facebook.com/docs/graph-api/changelog/breaking-changes

86

https://developers.facebook.com/docs/graph-api/reference/v3.1/post
https://developers.facebook.com/docs/marketing-api/click-tags
https://developers.facebook.com/docs/graph-api/changelog/breaking-changes

1. Introduction

alization/specialization as well as aggregation/decomposition [125]. For
instance, different sources might have varying sampling rates such as mil-
lisecond, second or minute. However, if the analyst is only interested in
observing data at the hourly level, then the system should automatically
aggregate all available data to this specific granularity.

• Data source and schema evolution. Due to the unprecedented growth
in the number of data providers, the management of data source evolu-
tion requires to ensure queries are agnostic and gracefully adapt to the
addition or removal of new data sources. Furthermore, given that such
providers continuously evolve their services (e.g., new API releases), and
consequently modify the schema or format provided in previous versions,
we have to maintain coexisting schema versions in the integration system
and automatically expand queries over them.

Consequently, in this chapter we focus on the problem of answering
queries using views that are affected by semantic heterogeneities and evolution.
Unfortunately, to our knowledge there is no related work that can help us
address the problem easily and elegantly. There exist two major approaches to
data integration; either physically materializing the content of the sources in
an integrated repository, or virtualizing their schema and mediating queries
over them. Online analytical processing (OLAP) tools are the most well
known representatives of materialized integration systems. However, in BDI,
where warehousing processes can be very expensive due to the high degree of
autonomy in the sources, the predominant option is that of virtual integration
across heterogeneous data models, coined as polystores [150]. For virtual
integration, the kind of adopted schema mappings, either global-as-view (GAV)
or local-as-view (LAV), will directly determine how the sources are modeled
and queries processed [29]. One prominent family of virtual integration
approaches are ontology-based data access (OBDA), which adopt ontologies,
represented in a description logic (DL), on the target schema [130]. In OBDA,
ontological assertions allow to enrich query results with extra knowledge (e.g.,
inheritance can be easily dealt with), allowing to find the certain answers
of a query under the open-world assumption (OWA). OBDA generally adopts
GAV mappings, characterizing concepts of the global schema in terms of
queries over the sources. The task of query processing is reduced to mapping
unfolding, however high variability in the data sources might entail continuous
maintenance of mappings, making GAV not suitable.

Considering these premises, we propose a novel BDI approach to tackle
query processing under semantic heterogeneities and evolution. Our main
contribution is a query rewriting algorithm that transforms queries over
the global schema to equivalent ones that include or discard semantically
heterogeneous data sources. To deal with evolution, we advocate for the

87

1. Introduction

adoption of LAV mappings, that characterize elements of the source schemata
in terms of a query over the global schema. They are inherently more suitable
for dynamic environments like ours, where adding, removing or updating a
source requires modifying only one mapping definition. We adopt a graph-
based structure to represent the complete integration system. The benefits of
using a graph formalism are twofold: first, all required metadata (i.e., global
schema, mappings and source descriptions) are encoded in a single data
structure, which simplifies the interoperability among them; second, graphs
offer the flexibility to easily encode any required annotation for the rewriting
process in the domains of vertices and edges. Precisely, the global schema (i.e.,
the global graph) encodes the domain of interest, as well as semantic annotations
that cover the most relevant conceptual modeling constructs (i.e., association,
specialization and aggregation). Data sources are accessed via wrappers,
which act to us as views that hide the complexity of accessing the set of
heterogeneous data sources [134]. The source graph is an accurate graph-based
representation of wrappers and their attributes. To link the source and global
graphs we encode LAV schema mappings as subgraphs. We precisely assume
complete sources, an approach known as the closed world assumption (CWA).

The proposed algorithm deals with the semantic heterogeneities of spe-
cialization and aggregation by generating sets of queries that request data at
lower granularity levels. These are rewritten to equivalent unions of conjunc-
tive queries over the wrappers. The rewriting process is driven by semantic
annotations in the global graph and the mappings, which permit to satisfy
the properties of minimally-soundness and minimally-completeness. Next, we
perform implicit aggregations on such rewritings to align available data with the
granularity required in the original query. This is transparent to data analysts,
who are not necessarily aware of the different granularity levels of data.

In particular, our main contributions are as follows.

• We present a novel BDI approach that encodes all required metadata (i.e.,
global schema, LAV mappings and wrapper descriptions) in a graph struc-
ture. The proposed structure maps to a subset of the BDI ontology presented
in the previous chapter, here focusing on the necessary constructs for query
rewriting.

• We introduce an algorithm that given a query, deals with the semantic
heterogeneities of specialization and aggregation, by generating a set of
equivalent queries.

• We present a query rewriting algorithm that resolves LAV mappings and
translates graph-based queries to equivalent unions of conjunctive queries
over the wrappers.

• We provide theoretical and experimental validations of our approach. First,
proving the completeness and soundness of the rewriting algorithms, and

88

2. Related Work

later showing the practical efficiency in a real Big Data setting with high
variety.

Outline. The rest of the chapter is structured as follows. We discuss additional
related work in Section 2 and introduce background concepts in Section 3.
Then, in Section 4 and 5 we respectively present the rewriting algorithms for
CQs and CAQs. Next, in Section 6 we experimentally validate our approach.
Finally, we present the conclusions in Section 7.

2 Related Work

The problem of answering queries using views has set the theoretical under-
pinnings for several data integration approaches [69]. Multiple research areas
exist depending on the underlying assumptions made. We categorize these
across three dimensions: first, whether the target schema is physically materi-
alized or virtual; second, the type of mappings used to link target and source
schemata (i.e., GAV, LAV or GLAV); and last how source incompleteness is
dealt with (i.e., OWA or CWA). The most similar approaches to our setting are
those performing virtual integration based on LAV mappings and assuming
complete sources (i.e., CWA). There exist several algorithms for LAV medi-
ation, with the bucket algorithm [100], the inverse rules algorithm [42] and the
MiniCon algorithm [131] being the most prominent ones. All these algorithms
are datalog-based to yield sets of maximally-contained query rewritings. To
this end, conjuncts in the body of the query are considered subgoals that need
to be isolately processed and further combined. How subgoals are resolved,
and how rewritings are combined differs among the algorithms.

Data warehouses. A data warehouse (DW) is the best example of a material-
ized integration system where queries are evaluated under the CWA. Queries
over a DW leverage a lattice structure such that data can be implicitly aggre-
gated at multiple dimensional levels [72]. Related to our problem of interest,
several extensions to DWs have been proposed for instance to include domain
knowledge via ontologies [3]; or related to the management of evolution to
detect and automatically fix inconsistencies upon changes [107].

Data exchange. The data exchange (DE) problem consists of materializing
instances from a source schema S to a target schema T, such that the set of
source-to-target constraints (Σs-t) and target constraints (Σt) are satisfied [12].
In general GLAV mappings are adopted, and query answering consists of
computing the set of certain answers, generally assuming OWA, and evalu-
ating the query over T. In practice, this is achieved by computing the chase
over the instances in S, a method that systematically extends dependencies

89

3. Preliminaries

and generates new facts until all dependencies are satisfied. However, the
scalability of this method is still one of its major drawbacks [23]. Answering
aggregate queries has also been studied in this context, defining different
semantics for aggregate queries in the presence of incompleteness (e.g., range
semantics based on database repairs [13], or based on the endomorphic images
of the canonical universal solution [4]).

Ontology-based data access. OBDA implements a virtual integration ap-
proach using ontologies. To this end, they adopt the DL-Lite family of DLs
as foundation, a well-behaved fragment capturing a fair portion of concep-
tual modeling formalisms, and guarantee first-order rewritability of ontology-
mediated queries [14]. The ontology can be leveraged to complement query
results with further knowledge, thus being able to compute the certain answers
under the OWA. Thanks to adopting GAV mappings, the query answering task
is reduced to an unfolding process of mappings. Explicit aggregate queries
have also been studied in an OBDA context. In [31] the authors propose
epistemic semantics for aggregate queries, which aggregate only certainly
known values. As pointed out in [96] such semantics might yield incorrect
answers for count aggregates. To overcome this, the authors propose aggregate
certain answers semantics which are more suitable when counting.

As conclusions of this succint related work study we acknowledge that, to
the best of our knowledge, there is no work considering the intersection of our
problems of interest (i.e., dealing with semantic heterogeneties to implicitly
aggregate data and management of evolution) in a virtual data integration
environment.

3 Preliminaries

3.1 Case study

As a case study, we take the SUPERSEDE4 project, which will serve as running
example throughout the chapter. SUPERSEDE aims to support decision-
making in the evolution and adaptation of software services by exploiting
end-user feedback and monitoring runtime data. This project is characterized
by a high variety in the number and type of sources. One of its main technical
challenges is to obtain aggregated quality metrics in a constantly evolving
set of monitoring devices. This is an unattainable task for data analysts,
whose expertise falls beyond that required to express complex queries joining
multiple data sources and spanning over all schema versions. A desiderata is

4https://www.supersede.eu

90

https://www.supersede.eu

3. Preliminaries

to have a high-level representation of the domain of interest, agnostic of such
technical details, so that data analysts can pose queries over it.

Figure 4.1 depicts the conceptual representation for SUPERSEDE. We
use a UML class diagram as a representative modeling language, however
any other would also suffice (e.g., entity/relationship). It supports multiple
instances of SoftwareApplication (or just app), but for the sake of simplicity, we
narrow the scope to a video broadcasting service for olympic games. There
exist multiple device-specific implementations of the app, thus on execution
different kinds of data collectors continuously obtain quality metrics. These
can be categorized into Monitors or FeedbackGathering, respectively obtaining
runtime data (i.e., InfoMonitor), and user feedback (i.e., UserFeedback). Such
events are associated with their generation time (at the level of Hour).

InfoMonitor

bitRate

lagRatio

DataCollector

dcId

collectorName

FeedbackGathering

language
Monitor

UserFeedback

description

WebApp

url

*

1

hasTime

1

*
hasMonitor

1

*

hasFGTool

Hour

hourId 1

*

hasTime

1

SoftwareApp

appId

version

name

hasCollectionDevice
*

1

MobileApp

iOSApp AndroidApp

Fig. 4.1: Conceptual model for SUPERSEDE

Next, Figure 4.2 depicts an excerpt of the data sources, here represented
as an homogeneous set of JSON documents to ease readability (albeit this
is far from a realistic scenario). Precisely, from left to right, we encounter:
metadata about the registered applications (e.g., the competition being broad-
casted), metadata about the registered monitors (e.g., geographical area they
cover), and the temporal aggregation hierarchy. Note that JSON keys do

91

3. Preliminaries

{
"identifier": 4,
"name": "2018

Winter
Olympics",

"version": 2.3
}

{
"monitor":

63,
"name": "

Europe
CDN"

"app": 4
}

{
"sId": "2018-02-09 07:

34:25",
"mId": "2018-02-09 07:

34",
"hId": "2018-02-09 07h

"
}

Fig. 4.2: Sample metadata for SoftwareApplications, Monitor and Hour

{
"idMonitor": 44,
"bitRate": 15,
"watchTime": 2,
"waitTime": 4,
"hour": "2018-02-

09 12h"
}

{
"idMonitor": 63

,
"bitRate": 18,
"lagRatio": 64,
"minute": "2018

-02-09 10:2
4"

}

{
"idMonitor": 28,
"bitRate": 12,
"lagRatio": 88,
"second": "2018-0

2-09 09:33:2
1"

}

Fig. 4.3: InfoMonitor data at different time granularity levels.

not necessarily conform the names in the conceptual model. We will later
show this is acceptable in our approach. Then, Figure 4.3 depicts a fragment
of the event data generated by monitors (i.e., InfoMonitor). Here, different
monitors provide data at different time granularity levels, as well as different
measurements (e.g, the lag ratio is measured as the fraction of wait and watch
time). Also, let us assume the first two correspond to Android devices, while
the latter to iOS.

Now, given this setting, the goal is to allow data analysts pose queries over
a graph-based representation of the conceptual model in Figure 4.1. These
should be automatically rewritten to equivalent queries over the sources (e.g.,
Figures 4.2 and 4.3). Throughout the chapter, we will exemplify our approach
with the following query: “app name and average hourly monitored lag ratio for
Android-based apps”.

3.2 Formal background

Throughout this subsection, we formalize the components that build up our
approach. Note that, for the sake of consistency, we present again some of the
concepts previously introduced in Chapter 3. Here, however, we put the focus
on the used graph structure and components with the goal of performing
query rewriting.

92

3. Preliminaries

Data source model and queries

Relations and wrappers. A schema R is a finite nonempty set of relational
symbols tr1, . . . , rmu, where each ri has a fixed arity ni. Let A be a set of
attribute names, then each ri P R is associated to a tuple of attributes denoted
by attpriq. Henceforth, we will assume that @i, j : i ‰ j Ñ attpriq X attprjq “ H

(i.e., relations do not share attribute names), which can be simply done
prefixing attribute names with their relation name. Let D be a set of values, a
tuple t in ri is a function t : attpriq Ñ D. For any relation ri, tuplespriq denotes
the set of all possible tuples for ri. A wrapper w is an element in R with a
function exec() that returns a set of tuples T Ď tuplespwq. The mechanism
underlying exec() is transparent to our approach, only requiring its output
to be a set of relational tuples. In practice, wrappers can be implemented via
SQL queries, Apache Spark jobs or remote web service invocations, as long as
there exists a mapping function from the specific data model to first normal
form (1NF).

Conjunctive and conjunctive aggregate queries. A conjunctive query (CQ)
is an expression of the form

Q “ πypw1px1q ˆ . . .ˆwnpxnq |

m
ľ

i“1

Pipziqq

where w1, . . . , wn are distinct wrappers; x1, . . . , xn are sets of attributes such
that xi “ attpwiq; P1, . . . , Pn are equi join predicates respectively over z1, . . . zn;
and both

Ťm
i“1 zi and y are subsets of

Ťn
i“1 xi. Here, y denotes output (or

projected) attributes. Note that we have dropped predicate filters out of
the definition of Q. Throughout the chapter, we might refer to a CQ as a
3-tuple Q “ xπ, ’, Wy respectively denoting the sets of projected attributes,
join predicates and wrappers of Q. We also define the functions attpQq,
wrappQq and predattpQq respectively denoting the sets of projected attributes
π, wrappers W and attributes contained in the equi join predicates ’ of Q.
We define the composition of two CQs (Q “ Q1 ‘ Q2) as Q “ xattpQ1q Y

attpQ2q, predattpQ1q Y predattpQ2q, wrappQ1q YwrappQ2qy.
Note the presented syntax of CQs does not include filters (e.g., w1.age ą 30).

Without loss of generality, it is always possible to push down unary selection
predicates on top of every wrapper.

A union of conjunctive queries (UCQ) is an expression of the form

Q “ Q1 Y . . .YQn

where Q1, . . . , Qn are union-compatible CQs. Two CQs Q1 and Q2 are union-
compatible if they have the same number of attributes (i.e., |attpQ1q| “

|attpQ2q|). From now on, we will interpret a set of CQs as a UCQ.

93

3. Preliminaries

A conjunctive aggregate query (CAQ) is an expression of the form

Q1 “ px, αq Q

where Q is a CQ (or a UCQ); x Ď attpQq is the group-by set; and each α P α
is an aggregate function defined over some attribute a P attpQq for tuplespQq.
We require, x and attpαq to be disjoint (i.e., xX attpαq “ H), and its union to
cover all attributes from Q (i.e., xY attpαq “ attpQq).

Integration graph

In this thesis we adopt Lenzerini’s data integration framework [98] into our
graph-based integration setting. Thus, an integration graph I is formalized
as a 3-tuple xG,S ,My, consisting of, respectively the global, source and
mappings graphs. Next, we individually present each of these components.

Global graph. The global graph G “ xVG , EGy is an unweighted, directed,
connected graph with no self loops. The vertex set VG is partitioned into two
disjoint sets C and F. We call the elements of C concepts, and the elements of F
features. The set F itself is further partitioned into two disjoint subsets Fid and
F´id , consisting of id features and non-id features, respectively. Next, labels in
EG contain the analyst’s domain L as well as the set of semantic annotations A.
Semantic annotations are system specific labels and have a special treatment,
for instance to drive the query rewriting process. Note that A and L must
be disjoint. For now, we focus on the semantic annotations hasFeature, used
to relate concepts and their features; and subClass, which allow to represent
specialization (IS-A) relationships. Throughout the chapter, we will introduce
further semantic annotations as required. Hence, we formalize the edge set
EG as the union of the following sets:

• pCˆLˆ Cq, assigning labels in L between concepts;

• pCˆ thasFeatureu ˆ Fq, linking concepts and their features;

• pCˆ tsubClassu ˆ Cq, creating inheritance relationships between con-
cepts.

In the spirit of non-composite primary keys, we require concepts to have at
most one ID feature. Moreover every ID feature can be linked to at most one
concept.

Source graph. The definition of the source graph S is analogous to that of
G. However, here the vertex set VS is composed of pW Y Aq, respectively the
set of wrappers and attributes from the previous definition (recall that S is
a graph-based representation of the wrappers and their attributes). We use

94

3. Preliminaries

wrappSq to denote the set of wrappers in VS . Here, we introduce the semantic
annotation hasAttribute, meant to connect a wrapper with its attributes.
Thus, in S the edge set ES is composed of pW ˆ thasAttributeu ˆ Aq. Note
that, under the 1NF assumption, S can be seen as a set of stars. The semantics
of a query over the source graph QS is that previously introduced of CQs over
the wrappers.

Edge-restricted patterns. An edge-restricted pattern is a triple p “ xs, `, ty,
where s and t are constants in VG ; and ` P pLYAq is an edge label. From
now on we are going to consider sets of edge-restricted patterns as graphs.
Furthermore, hereinafter we will assume that the considered sets of edge-
restricted patterns are connected.

Schema mappings. A LAV schema mapping for a wrapper w is a pair
Mpwq “ xF , ϕy, where F is an injective function F : attpwq Ñ F; and ϕ
is a set of edge-restricted patterns. Consequently, we define the functions
mappMpwqq and pattpMpwqq respectively denoting, for Mpwq, the mapping
from attributes to features F and the set of edge-restricted patterns ϕ. Recall
that we encode mappings as part of the graph, precisely M contains F and
ϕ. Thus, to encode F we extend the set of semantic annotations A with the
sameAs label, linking attributes in S to features in G. For ϕ, we encode it as a
subgraph of G (i.e., a named graph), which intuitively identifies the fragment
of G covered by w. From now on, we will assume consistency between F and
ϕ, in the sense that all features mapped by F are mentioned in t for some
edge-restricted pattern in ϕ.

Before moving on with the formalization, let us reflect on the relationship
between the proposed mappings and the customary form found in literature.
Commonly, schema mappings are represented by source-to-target tuple gen-
erating dependencies (s-t tgds) [46]. These are logical expressions of the form
@xpφSpxq Ñ DyψTpx, yqq, where φSpxq and ψTpx, yq are respectively conjunc-
tions of first-order formulas over the source and target schemas. LAV map-
pings are a special case of them, with the form @xpRSpxq Ñ DyψTpx, yqq, where
RSpxq is a source relational symbol. Note there exists a direct relation between
the graph-based and this logical form for LAV mappings. Specifically, for each
Mpwq we would have a formula of the form @xS pwpxS q Ñ DyG ϕpxG , yGqq,
where xS Ď attpwq; xG , yG Ď F, and ϕ is a connected set of edge-restricted
patterns. Unlike traditional mapping definitions, the set of variables xS does
not appear in the body. This is aligned with the fact that attribute names
(externally defined in the wrappers) might differ from feature names (defined
in the global graph). Such link is made by the injective function F .

95

3. Preliminaries

Querying the sources via the integration graph

Lastly, we now formalize the constructs used to query the data sources via the
integration graph. Thus, from now on we assume all operations are applied
over a fixed instance of I “ xG,S ,My. In order not to overload notation,
we might independently refer to the components of G, S or M avoiding
mentioning I .

Global queries. A global query QG is a pair of the form xπ, ϕy where π Ď F
is a set of projected features; and ϕ “ tp1, . . . , pnu is a set of edge-restricted
patterns. We hence define the functions projpQGq, returning the set of projected
features, and pattpQGq, returning the set of edge-restricted patterns. QG is legal
if composing the elements of ϕ yields a graph that is acyclic and connected
if we disregard edge directions. We do not further specify the semantics on
how to evaluate QG , as queries posed on such language are only meant to be
rewritten, a process we later describe and will fix its semantics.

Definition 1 (CoveringI pW ,ϕq)
A set of wrappers W Ă wrappSq covers the set of edge-restricted patterns
ϕ Ď G, denoted coveringI pW, ϕq, if the union of LAV mappings of wrappers
in W subsumes ϕ. This is formally defined as @w P W :

Ť

pattpMpwqq Ě ϕ.

Definition 2 (MinimalI pW ,ϕq)
A set of wrappers W Ă S is minimal w.r.t. the set of edge-restricted patterns
ϕ Ď G if removing any wrapper in W yields a non-covering set of wrappers.
This is formally defined as Ew P W : coveringI pWzw, ϕq.

Rewritings. A CQ QS is a rewriting of a global query QG if the wrap-
pers in the rewriting cover the set of edge-restricted patterns, formally
coveringI pwrappQS q, pattpQGqq; and attributes participating in equi join
predicates in the rewriting use only ID features, formally @p P predpQS qDw P
wrappQS q : mappMpwqqppq P Fid.

Proposition 1
Given two disjoint sets of edge-restricted patterns ϕ, ϕ1, and two distinct
rewritings QS , Q1S . If minimalI pwrappQS q, ϕq and minimalI pwrappQ1S q, ϕ1q,
then minimalI pwrappQS ‘Q1S q, ϕY ϕ1q if wrappQS q XwrappQ1S q “ H.

Proof. The proof can be straightforwardly obtained from Definition 2.

Rewriting algorithm. A rewriting algorithm is a function RI : QG Ñ QS
from the set QG of all legal global queries to the set QS of UCQs, such that
@QG P QG , RI pQGq consists only of rewritings of QG . We define the notions
of minimally-sound and minimally-complete rewriting algorithms. Informally,
the former depicting that all rewritings provided by R are minimal, and the

96

3. Preliminaries

latter depicting that R yields all possible minimal rewritings. The formal
definitions are as follows:

Definition 3 (Minimally-soundpRI q)
A rewriting algorithm RI is minimally-sound if @QG P QG and @QS P

RI pQGq we have minimalI pwrappQS q, pattpQGqq.

Definition 4 (Minimally-completepRI q)
A rewriting algorithm RI is minimally-complete if @QGPQG and every QS
such that it is a rewriting of QG and satisfies minimalI pwrappQS q, pattpQGqq,
it holds that QS P RI pQGq.

Problem statement We recall that in this chapter we are interested in study-
ing the problem of answering queries QG posed over an integration graph I .
Hence, this reduces to finding a rewriting algorithm RI : QG Ñ QS where it
holds that minimally-soundpRI q and minimally-completepRI q.

3.3 Case study (cont.)

Going back to the case study presented in Section 3.1, we now exemplify it
using the introduced formalization. Figure 4.4 depicts the graphical represen-
tation of the global graph G.

Fig. 4.4: Global graph for SUPERSEDE

Then, let us assume S contains a set of wrappers covering the previ-
ously introduced data sources. Precisely, we have wappspidApp, name, versionq,
wmonpidMon, nameMon, appq and wtimepsID, mID, hIDq, respectively provid-
ing data for apps, monitors and time as depicted in Figure 4.2. Next, we have
the wrappers for event data from Figure 4.3. We define w1pidMonitor, bitRate,
lagRatio, timeq as the wrapper querying the leftmost JSON document (i.e.,
info monitor for Android devices at the hour level), which does not provide

97

3. Preliminaries

the lag ratio metric but the watch and wait times. Note the wrapper’s schema
and that of the JSON document differ, which is caused by the wrapper’s im-
plementation (i.e., the exec() function) as defined in Code 4.1. Similarly, we
define w2 and w3 with the same schema, respectively querying info monitor
for Android devices at minute level and for iOS devices at second level.

sparkContext.read.json("hdfs://...")
.withColumn("lagRatio",col("watchTime")/col("waitTime"))
.withColumnRenamed("hour","time")
.select("idMonitor","bitRate","lagRatio","time")
.collect

Code 4.1: Spark-based implementation of w1 in Scala

Next, the global and source graphs are linked via LAV mappings. Figure
4.5 depicts a graphical representation of the complete integration system I , as
well as the LAV mappings of wrappers wapps, wmon, wtime and w1 (note we do
not include those that involve aggregation techniques, precisely w2 and w3,
which will be introduced later in the chapter).

Fig. 4.5: Integration system for SUPERSEDE. Each wrapper is colored as its corresponding LAV
mapping

Finally, recall the query “app name and average hourly monitored lag ratio
for Android-based apps”, whose global query QG version corresponds to the
following expression.

• π “ tname, hId, lagRatiou

98

4. Rewriting Conjunctive Queries

• ϕ “ txHour, hasFeature, hIdy ^ xInfoMonitor, hasTime, Houry ^ xInfoMonitor,
hasFeature, lagRatioy ^ xInfoMonitor, hasMonitor, Monitory ^ x Monitor, sub-
Class, DataCollectory ^ xDataCollector, hasApp, SoftwareAppy ^ xSoftwareApp,
hasFeature, namey ^ xMobileApp, subClass, SoftwareAppy ^ xAndroidApp, sub-
Class, MobileAppyu

A legal rewriting for it would be the following expression (we omit the
wrapper’s sets of attributes for brevity in this example). Note we have not
included w2 in the rewriting, as its attribute time is at the minute level and
should be aggregated. The process involving implicit aggregation and CAQ
generation is described in Section 5.

πwapps .name,wtime .hId,w1.lagRatiopw1 ˆwmon ˆwapps ˆwtimeq|

w1.idMonitor “ wmon.idMon^wmon.app “ wapps.idApp^w1.time “ wtime.hIdq

4 Rewriting Conjunctive Queries

The core of our method is RewriteCQ, a rewriting algorithm that given a
query QG “ xπ, ϕy automatically resolves the LAV mappings and discovers
how to join wrappers to yield a UCQ QS . RewriteCQ is inspired by the bucket
algorithm for LAV mediation [100]. As presented, the main idea of the bucket
algorithm is first to individually find rewritings for each subgoal in the query,
and store them in buckets. Then, the algorithm finds a set of conjunctive
queries such that each of them contains one conjunct from every bucket. In
our case, concepts are analogous to buckets. Hence, we will first separately
find those wrappers that cover the requested concepts in ϕ (i.e., intra-concept
generation) to later find all ways to join their combinations that yield covering
and minimal rewritings (i.e., inter-concept generation).

An additional feature of our approach is that we leverage specialization
relationships to select wrappers. Precisely, if the set of edge-restricted patterns
ϕ from QG includes the set of concepts c1, . . . , cn, then we should only consider
in the rewriting process those wrappers w such that ci P pattpMpwqq (for
example, in the exemplary query w3 should not be considered as its LAV
mapping does not cover AndroidApp but iOSApp). This feature allows to
reduce the set of candidate wrappers in the resulting QS .

4.1 Preliminaries

The proposed rewriting algorithm extensively performs subgraph matching
tasks, here implemented via conjunctive regular path queries (CRPQs) applied

99

4. Rewriting Conjunctive Queries

over the global and source graphs. A CRPQ retrieves sequences of nodes
and edges in the graph such that these nodes and edges are connected in the
graph by a path conforming to certain regular expressions.

For the sake of simplicity, here, we will distinguish when a CRPQ yields a
unique value to a variable (i.e., denoting the variable as zi) or a set of values
(i.e., denoting the variable as zi).

Example 4.1
The following query, z Ð xx, y, ?zypGq matches all those triples with s “ x
and ` “ y (where x and y are constants) and a variable z from the graph G.
Furthermore, denoting the head as z we indicate the query yields a set of
matches.

Example 4.2
The query, p?c, ? f q Ð x?c, hasFeature, ? f y ^ x? f , subClass, IDypGq returns
pairs of concept and their ID (obtained as a subclass of the constant ID)
from G.

We refer the reader to the literature on queries over graphs for a full formal
syntax and semantics of CRPQs [11, 19, 167].

4.2 Rewriting algorithm

In this and the following subsections we present rewriteCQ at a high ab-
straction level. The specific details of the algorithms, together with their
implementation based on CRPQs, can be found in Appendix A.

Algorithm 2 depicts rewriteCQ. First, we construct the graph of query
related concepts G as an analogy to empty buckets. Precisely, the graph
G consists only of concept vertices (i.e., from C) that ϕ refers to and their
relationships.

Example 4.3
In the exemplary query (i.e., “app name and average hourly mon-
itored lag ratio for Android-based apps”), the graph of query re-
lated concepts G would be that depicted in the following figure.

100

4. Rewriting Conjunctive Queries

Algorithm 2 RewriteCQ

Input: I is an integration graph, QG “ xπ, ϕy is a global query
Output: QS is a UCQ

1: function rewriteCQ(I , QG)
2: let G ÐH be the graph of query related concepts
3: for each triple p P ϕ do
4: if p connects two concepts then
5: GY“ p
6: partialCQsGraph Ð IntraConceptGeneration(QG , G)
7: QS Ð InterConceptGeneration(partialCQsGraph)
8: return QS

4.3 Intra-concept generation

This phase (see Algorithm 3) receives as input a global query QG and the
graph of query related concepts to generate a graph of partial rewritings (or
partial CQs) per concept. Partial rewritings cover a specific concept and its
features that have been stated in ϕ. These will be obtained resolving the LAV
mappings for each concept to find which wrappers provide their features.
Thus, for each concept c, as a first step, we identify all those wrappers that
cover some of the queried features (i.e., the set of candidate CQs). We also
select those wrappers that cover featureless concepts in the query. Next, we
systematically generate combinations of such queries such that they cover c
and all its queried features.

Algorithm 3 Intra-concept generation

Input: QG “ xπ, ϕy is a global query, G is the graph of query related concepts
Output: partialCQsGraph is the graph of partial CQs per concept
1: function IntraConceptGeneration(xπ, ϕy, G)
2: let partialCQsGraph be an empty graph where vertices are pairs <Concept,CQ>
3: for each concept c in the graph of query related concepts G do
4: let attsPerWrapper be a map structure where keys are wrappers (W) and values sets of

covered attributes (A)
5: let F be the set of queried features for concept c
6: if no features in c have been queried (F “ H) then
7: add H to attsPerWrapper for each wrapper covering the concept c
8: for f P F do
9: let W1 be the set of wrappers covering the feature f of c

10: for w P W1 do
11: add to w in attsPerWrapper the attribute a corresponding to f covered by w
12: let candidateCQs, be a set of queries generated from each pair xw, Ay in attsPerWrapper
13: let coveringCQs ÐH, be the set of CQs fully covering the queried features for c
14: while candidateCQs ‰ H do
15: let Q be a query removed from the set of candidates
16: let I be the graph induced by c and its queried features F
17: coveringCQsY“ coveringCQs(I, c, Q, candidateCQs)

101

4. Rewriting Conjunctive Queries

18: add vertex c to partialCQsGraph with the set of covering queries coveringCQs
19: add edges to partialCQsGraph preserving the connectivity in G
20: return partialCQsGraph

Example 4.4
The output of Algorithm 3 in the example would be a graph (for the sake
of simplicity here we show the vertex set) with the following pairs xc, CQy.
Note that, due to the succinctness of the running example, no combinations
of CQ have been generated here. For the sake of simplicity we omit set
notation when sets contain only one element.

• Hour ´ xhID,H, wtimey, xtime,H, w1y

• InfoMonitor ´ xlagRatio,H, w1y, xlagRatio,H, w2y, xlagRatio,H, w3y

• Monitor ´ xH,H, wmony, xH,H, w1y, xH,H, w2y, xH,H, w3y

• DataCollector ´ xidMon,H, wmony, xidMonitor,H, w1y, xidMonitor,H, w2y,
xidMonitor,H, w3y

• SoftwareApp ´ xtidApp, nameu,H, wappsy

• MobileApp ´ xH,H, w1y, xH,H, w2y, xH,H, w3y

• AndroidApp ´ xH,H, w1y

Generating covering CQs

The process of generating covering CQs (see Algorithm 4) is a recursive task
that given an input query Q and a set of candidate CQs incrementally gener-
ates covering combinations. Ultimately, each of this generated combinations
must cover the graph G. Here, G represents the graph induced by the concept
c and its queried features. Note that we do not move on with the process if
adding a query does not contribute with new features, which ensures min-
imality. Generating the combination of two CQs might entail discovering
join conditions among them, this process is depicted in the inter-concept
generation (see method combineCQ in Algorithm 6).

Algorithm 4 Get covering CQs

Input: G is the graph to check coverage, c is the concept at hand, currentCQ is a CQ, candidateCQs
is a set of CQs

Output: the set candidateCQs is empty, all potential combinations of covering CQs with respect
to G are in coveringCQs

1: function coveringCQs(G, c, currentCQ, candidateCQs)

102

4. Rewriting Conjunctive Queries

2: let coveringCQs ÐH be the set of generated covering CQs
3: if currentCQ covers G then
4: add currentCQ to the set coveringCQs
5: else if candidateCQs ‰ H then
6: for CQ P candidateCQs do
7: if currentCQ‘ CQ provides more features than currentCQ itself then
8: let Q1 be the query resulting from calling combineCQ(currentCQ, CQ, c, c)
9: recursively call coveringCQs using Q1 as currentCQ and removing CQ from candidateCQs

10: return coveringCQs

Example 4.5
Additionally to the wrappers presented in the case study, let us assume
two new wrappers w1appspidApp, nameq and w2appspidApp, versionq covering
SoftwareApp and the respective features. Thus, when processing the concept
SoftwareApp (for the sake of this example, let us assume version is also
covered by ϕ), Algorithm 4 would generate the following two covering CQs:

• xtidApp, name, versionu,H, wappsy

• xtw1apps.idApp, w1apps.name, w2appsversionu, tw1apps.idApp “ w2apps.idAppu, tw1apps, w2appsuy

4.4 Inter-concept generation

This phase deals with the combination of queries covering connected concepts.
It receives as input the partialCQsGraph and systematically compacts edges
from the graph generating new sets of minimal CQs. At each iteration, we
generate a new synthetic node as a result of compacting the source and target
nodes of the selected edge, thus the algorithm terminates when the graph
has no edges. Note method chooseEdge, which can range from a purely
random selection to an informed heuristic based decision that prioritizes early
pruning. In our implementation, chooseEdge is based on the least number of
wrappers on both ends. Defining complex heuristics is out of the scope of this
chapter. Next, we discuss the high level specification of the algorithm.

Algorithm 5 Inter-concept generation

Input: partialCQsGraph is the graph of partial CQs per concept
Output: UCQs is a set of CQs (i.e., a union of CQs)
1: function InterConceptGeneration(partialCQsGraph)
2: while partialCQsGraph has edges do
3: e Ð chooseEdge(partialCQsGraph)
4: let s and t be the source and target concepts of e, and CQs and CQt be the sets of CQs

respectively covering s and t
5: let CQ be the resulting set of calling combineCQ(CQs, CQt, s, t)
6: Remove s, t from partialCQsGraph, add a new vertex s` t with CQ preserving connectivity.
7: return aVertexFrom(partialCQsGraph) Ź partcialCQsGraph has a single vertex

103

4. Rewriting Conjunctive Queries

Example 4.6
Using the input from the previous phase (see Example 4.4, the output from
Algorithm 5 would be a set containing the following expression:

πwapps .name,wtime .hId,w1.lagRatiopw1 ˆwmon ˆwapps ˆwtimeq|

w1.idMonitor “ wmon.idMon^wmon.app “ wapps.idApp^w1.time “ wtime.hIdq

Combining sets of CQs

Method combineCQs (see Algorithm 6) deals with the generation of legal
combinations of the queries in the sets CQs and CQt. This method is split in
two steps, first combining those CQs that share a wrapper and then combining
those that do not share wrappers. Two CQs that share a wrapper can be
merged (i.e., using operator ‘) if the resulting query is minimal with no
further action. Merging CQs that do not share wrappers involve discovering
equi joins among their participating wrappers. To this end, we filter out
those queries from CQs and CQt that cover the identifier of the participating
concepts cs and ct (i.e., yielding the four sets of queries CQs´IDs , CQs´IDt ,
CQt´IDs and CQt´IDt). Then, by computing the cartesian product of those
sets of queries covering the same ID we call method findJoins.

Algorithm 6 Combine sets of CQs

Input: CQs and CQt are sets of CQs, cs and ct are concepts respectively covered by CQs and CQt,
e is the edge connecting cs and ct

Output: CQ is a set with all valid combinations of CQs and CQt
1: function combineCQs(CQs, CQt, cs, ct, e)
2: let Wshared be the set of wrappers that appear in both CQs and CQt, and cover edge e
3: for w P Wshared do
4: for each pair qs,qt from the cartesian product CQs and CQt that contain w do
5: if qs ‘ qt is minimal w.r.t. the graph induced by cs, ct and the edge connecting them then
6: add to CQ the query qs ‘ qt

7: define CQs´IDs , CQs´IDt , CQt´IDs and CQt´IDt as the subsets of respectively CQs or CQt
that cover e and the identifiers of cs or ct, and do not have wrappers in Wshared

8: for each pair qs, qt P CQs´IDs ˆ CQt´IDs do
9: add to CQ the result of findJoins(qs, qt, IDs)

10: for each pair qs, qt P CQs´IDt ˆ CQt´IDt do
11: add to CQ the result of findJoins(qs, qt, IDt)
12: return CQ

Discovering joins for two CQs.

Given two CQs CQs and CQt, method findJoins (see Algorithm 7) performs
the process of finding equi join predicates among them using the identifier ID.
This process finds all wrappers covering ID from CQs and CQt, to compute

104

4. Rewriting Conjunctive Queries

their cartesian product. For each combination of wrappers, we look the
attribute corresponding to ID and generate a new equi join predicate.

Algorithm 7 Find joins

Input: Qs and Qt are CQs, ID is an identifier feature
Output: CQ is a combination of Qs and Qt with equi join predicates
1: function findJoins(Qs, Qt, ID)
2: let Ws be the wrappers from Qs covering ID
3: let Wt be the wrappers from Qt covering ID
4: CQ Ð Qs ‘Qt
5: for each pair ws, wt P Ws ˆWt do
6: let as be the attribute corresponding to ID in ws
7: let at be the attribute corresponding to ID in wt
8: add as “ at as new equi join predicate to CQ
9: return CQ

4.5 Discussion

In this subsection, we discuss the computational complexity of rewriteCQ as
well as its soundness and completeness.

Computational complexity

We start this discussion classifying rewriteCQ to its complexity class.

Theorem 1. Rewriting a query QG to a UCQs QS using rewriteCQ is NP-hard.

Proof. The previous theorem can be easily proved by reduction from Set Cover
[88]. The optimization/search version of set cover is a well-known NP-hard
problem. Shortly, the set cover problem is defined as: given a set S of n
points and F “ tS1, S2, . . . , Smu a collection of subsets of S, select as few as
possible subsets from F such that every point in S is contained in at least
one of the subsets. The reduction works as follows. From the set of points S,
let us consider a global query QG , where for each point in S we generate a
triple pi “ xs, `, ty P ϕ (note graph edges can be disregarded and checked at
the end). Then, from the set tS1, . . . , Smu we consider the set of all wrappers
covering some point in S. It is straightforward to see that finding combinations
of subsets is equivalent to finding combinations of wrappers such that the
complete set of attributes in the query is covered. Furthermore, the set cover
problem seeks as few as possible subsets, which is equivalent to our definition
of a minimal rewriting. As a matter of fact, we are interested in enumerating
all possible solutions of the problem, while in some instances of set cover
finding one is enough.

Next, after classifying rewriteCQ in the class of NP-hard problems we
want to get an accurate cost formula. Let W be the average number of

105

4. Rewriting Conjunctive Queries

wrappers covering each concept (not including those concepts that are not
covered by any wrapper), F be the number of features in a query pattern
ϕ, and C be the number of concepts covered in the query pattern ϕ. To
start with, recall that Algorithm 3 first generates all covering combinations of
wrappers per concept. This is achieved incrementally by obtaining all different
ways to perform equi joins among them. Next, Algorithm 5 further finds
all combinations of queries among different wrappers. From the previous

rationale, we can conclude that the complexity of rewriteCQ is
`W

F
˘C

. Its
worst case corresponds to the scenario where each wrapper only contributes
to one queried feature, and thus all possible combinations are covering. Note
that the processing of inheritance relationships does not incur additional cost,
oppositely it might prune the set of considered wrappers (and thus the set of
covering rewritings).

Minimally-soundness and minimally-completeness

Our aim now is to show that rewriteCQ is a minimally-sound (see Definition
3) and minimally-complete (see Definition 4) rewriting algorithm. Precisely,
we discuss the following invariants that hold: (a) QS does not contain any
non-minimal CQ, and (b) QS contains all minimal CQs.

Proof. The trivial case occurs when a single concept C is covered by the query
pattern ϕ. Here, only Algorithm 3 will be executed. We can easily see that the
set of candidate CQs (line 12) contains all CQs that cover C and some of its
queried features. Then, Algorithm 4 systematically combines CQs to later gen-
erate combinations of covering CQs (Algorithm 6). As previously explained,
this process only generates minimal covering queries (as any combination not
contributing with new features is discarded), which guarantees the first invari-
ant. Note also that concepts involved in specialization relationships are also
considered by default if they are part of ϕ. Regarding the second invariant,
it is guaranteed by Algorithm 6 which performs a cartesian product when
generating combinations of CQs (i.e., finds all possible equi join conditions).

Querying more than one concept involves Algorithm 5. We assume a
graph of partial CQs G with vertices C1, . . . , Cn each with its respective set
of minimal CQs. This can be seen as the instantiation of the trivial case
for each Ci. Given an edge in G, we systematically generating all possible
combinations of CQs from the source and target of it. We show that all minimal
CQs are obtained by reductio ad absurdum, thus let us assume the output of
Algorithm 5 does not contain a minimal query Q1S . Recall that generating such
combination is performed in two disjoint steps, first processing those queries
that share wrappers and then those that do not. For the former, Algorithm
5 makes an explicit check in line 5 to validate that all generated queries are
minimal, thus guaranteeing the first invariant. For the latter, the first invariant

106

5. Rewriting Conjunctive Aggregate Queries

is guaranteed by Proposition 1, which states that combining two minimal
queries that do not share wrappers yields a minimal query. Then, the second
invariant is guaranteed by the fact that all generations are computed from
cartesian products (i.e., see lines 4, 8 and 10) that cover the complete search
space for the sets of queries at hand. Thus, Q1S has necessarily been generated
in one of this three cartesian products (and thus added to the resulting set
CQ), which contradicts the assumption and shows the second invariant is
guaranteed.

5 Rewriting Conjunctive Aggregate Queries

Up to now, we have assumed the global graph G exclusively contains the
analyst’s domain of interest. This implicitly determines the granularity at
which data should be presented. Our aim now, is to offer the possibility to
automatically include any data provided at finer granularity levels into the
query results. This requires the definition of a rewriting algorithm performing
implicit aggregation operations (i.e., CAQ queries). In this section, we first
introduce the required constructs and additional semantic annotations used
to drive the rewriting algorithm, and later present its details.

5.1 The aggregation graph

The definition of data structures defining aggregation relationships is a natural
task in OLAP. In such settings, a multidimensional lattice represents different
aggregations that can be performed from data materialized at lower levels of
granularity. Specific data and query models have been proposed to address
OLAP on graphs [174]. Here, we aim to adopt such ideas into our graph-
based structure to benefit from them in the rewriting process. To this end, we
introduce the aggregation graph Gagg, defined as a copy of G where relevant
aggregation relationships are materialized (i.e., hierarchies and their levels).

For our purposes, a hierarchy H is composed of a strict totally ordered set
of levels L. We identify the top level of a hierarchy as toppHq. We consider
concepts in G as the top levels of their hierarchies. Then, in Gagg we include
all those levels such that there exists a wrapper providing data at a lower
granularity level. Thus, we define the vertex set of Gagg as VGagg “ VG Y LYAF,
where L is the set of levels and AF is the set of aggregation functions. We assume
the set of commutative and associative aggregate functions (i.e., sum, min and
max). Next, in the edge set, we extend the set of semantic annotations A, to
include the following labels.

Aggregation hierarchies. An edge labeled partOf defines a partial order
between two levels. Ultimately, the root of a hierarchy must be a concept c in

107

5. Rewriting Conjunctive Aggregate Queries

the global graph (i.e., c P G).

Aggregable features. A hasAggregationFunction edge creates a link from
features to aggregation functions. A feature is aggregable whenever we can
apply an aggregation function to modify its granularity level. It is important
to define only those functions that are semantically correct for each feature.
For instance, we could link lagRatio with sum, but it would be meaningless
to link such function with description. We also assume ID features are not
aggregable.

Gagg is constructed in a way that levels preserve the same connectivity
properties as their top concept c has in G. Formally, given a triple p “ xs, `, ty P
G such that s and t are concepts, and s has features where there exist wrappers
providing them at granularity levels tl1, . . . , lnu, then for each level li the graph
Gagg contains the following triples:

• p1 “ xx, partOf, yy; where x is a fresh level name, and y is another fresh
level name or s itself.

• p2 “ xli, partOf, ljy, where lj is another level in the aggregation hierarchy
such that li ą lj, or lj “ t.

• p3 “ xx, `, liy, which links the freshly defined level name x with li using
the same edge label ` that originally connects s and t in G.

Regarding wrappers and LAV mappings, we expect them to be defined over
Gagg covering the levels in the graph for which they provide data. We assume
the same mapping mechanism as described in Section 3. The definition of such
lattice structure, as well as mapping creation, is a necessary task that needs to
be done by the data steward (i.e., administrator), similar to the situation in
data warehouses.

Example 5.1
Figure 4.6 depicts the fragment of Gagg for SUPERSEDE. For the sake of
space, we only show the part corresponding to concepts InfoMonitor and
Hour. Note the graph now contains the time aggregation hierarchy, in-
cluding Second and Minute, where the sets of triples p1, p2, p3 have been
materialized for each of the levels. This entailed the definition of InfoMoni-
torSec and InfoMonitorMin.

Recall the set of wrappers introduced in Section 3.3. Figure 4.7 depicts the
subgraphs defined by pattpMpwqq for wrappers wtime, w1, w2 and w3.

108

5. Rewriting Conjunctive Aggregate Queries

Fig. 4.6: Fragment of Gagg for SUPERSEDE

Fig. 4.7: LAV mappings, respectively, for w1, w2 and w3 in Gagg specifying different levels of
granularity

5.2 Generating CAQs

Here, we describe the algorithm that rewrites a query QG to CAQs over the
wrappers. This is achieved leveraging the previously presented algorithm
rewriteCQ. The aggregation graph Gagg allows us to rephrase a query posed
over G, where no aggregates have been explicitly stated, to a set of equivalent
queries over Gagg. Intuitively, we define a virtual graph (i.e., Gvirtual), as a copy
of G, where implicit aggregate queries will be considered as new (virtual)
wrappers. Once all virtual wrappers have been defined, we can evaluate QG
over Gvirtual to obtain a resulting UCQs, where all data have been aggregated
at the requested granularity. Algorithm 8 depicts the main procedure given
an input query QG .

Algorithm 8 is concept-centric, thus we define a mapping function features-
PerConcept that links a concept c to its set of queried features f (i.e., those
present in π). For each pair xc, f y in the map, we identify their adjacent
hierarchies (i.e., sets of levels such that their top concept is connected to
c), as well as their regular neighbors (i.e., neighboring concepts that do not

109

5. Rewriting Conjunctive Aggregate Queries

Algorithm 8 Rewrite CAQ

Input: QG “ xπ, ϕy is a global query
Output: QS is a UCQs where all data provided at lower granularity levels have been

implicitly aggregated
1: function rewriteCAQ(QG)
2: f eaturesPerConcept Ð Map(key:c Ñ val: f)
3: for p “ xs, l, ty P pattpQGq do
4: if p.` “ hasFeature^ p.t P projpQGq then
5: f eaturesPerConceptrp.ss Y“ p.t

6: Gvirtual Ð G
7: for xc, f y P f eaturesPerConcept do
8: HÐ adjacentHierarchies(c,Gagg)
9: R Ð regularNeighbors(c,Gagg,H)

10: for L “ xl1, . . . , lny P H1 ˆ . . .ˆHn do
11: ϕm Ð matchQuery(c, f , L, R)
12: QS Ð rewriteCQpxH, ϕmy,Gaggq

13: for QS P QS do
14: Q1S Ð generateCAQ(QS , π,Gagg)
15: w Ð Wrapper(attpQ1S q, Q1S Ñ exec())
16: Add the wrapper w and its mapping Mpwq to Gvirtual

17: QS Ð rewriteCQ(QG ,Gvirtual)
18: return QS

conform an aggregation hierarchy). These are used to generate queries that
combine levels in the aggregation lattice (i.e., match queries ϕm). A match
query represents an equivalent query as QG at a lower granularity level, which
is subsequently rewritten to its equivalent UCQs. Each of such resulting CQs
is converted to a CAQ, where we distinguish among aggregable attributes (i.e.,
with aggregate functions) and those in the group-by set. This yields a new
wrapper, now providing data at the same granularity level as that specified
in G, which is registered to Gvirtual . Finally, we execute the original query QG
over Gvirtual . Next, we provide details on each of the specific methods used in
rewriteCAQ.

Identify adjacent hierarchies. Algorithm 9 identifies the set of hierarchies
H that are adjacent to c in QG . H is composed of sets of levels that are linked
via partOf edges such that toppHq is connected to c. This is easily obtained
using the Kleene closure in the pattern at line 5.

Example 5.2
For the fragment of Gagg depicted in Figure 4.6 and the exemplary query,
the set H would consist of a single hierarchy tSecond Ñ Minute Ñ Houru.

110

5. Rewriting Conjunctive Aggregate Queries

Algorithm 9 Adjacent hierarchies

Input: c is a concept in Gagg
Output: H is the set of hierarchies adjacent to c

1: function identifyHierarchies(c,Gagg)
2: HÐH

3: t Ð xc, ?`, ?typGaggq

4: for t P t do
5: if D l | x?l, partOf+, typGaggq then
6: HY“ l
7: return H

Identify adjacent regular neighbors. Algorithm 10 complements the previ-
ous step identifying all those concepts adjacent to c in the query (and their
subclasses) that do not conform an aggregation hierarchy.

Example 5.3
From the previous input, the set R would contain the concept Monitor.

Algorithm 10 Adjacent regular neighbors

Input: c is a concept in Gagg, H is the set of adjacent hierarchies
Output: R is the set of concepts adjacent to c and their subclasses

1: function regularNeighbors(c,Gagg,H)
2: R ÐH

3: for t P xc, ?`, ?typGaggq do
4: if t R

Ť

HPH toppHq then
5: RY“ t
6: RY“ tD sc | xsc, subClass+, typGaggq

7: return R

Generate match query. Algorithm 11 depicts how we generate a match
query for a given combination of levels. We generate a subgraph of Gagg
such that it contains for the concept at hand its queried features and its
regular neighboring concepts. Then, for each level l we include all levels in
the hierarchy from l to the top, as well as their counterpart in the generated
hierarchy of c.

Example 5.4
Following the previous example, queries ϕm would be generated, all cover-
ing the same set of features and regular neighbors. Regarding hierarchies

111

5. Rewriting Conjunctive Aggregate Queries

Q1 would cover InfoMonitor ÑhasDate Hour. Then, Q2 would cover InfoMon-
itorMin ÑhasDate Minute as well as all levels until the top of both vertices.
Likewise, Q3 would cover InfoMonitorSec ÑhasDate Second and all levels until
the top of both vertices.

Algorithm 11 Generate match query

Input: c is a concept, f is a set of features, L is a combination of adjacent levels, and R
is its set of regular neighbors

Output: ϕm is a match query
1: function matchQuery(c, f , L, R)
2: ϕm ÐH

3: for f P f do
4: ϕm Y“ xc, hasFeature, f y

5: for R P R do
6: `Ð xc, ?`, RypGaggq

7: for ` P ` do
8: ϕm Y“ xc, `, Ry

9: for l P L do
10: xx, `y Ð x?x, partOf+, cy ^ x?x, ?`, lypGaggq

11: ϕm Y“ xx, `, ly
12: while x ‰ c do
13: top Ð xx, partOf, ?topypGaggq

14: ϕm Y“ xx, partOf, topy
15: x Ð top

16: while ` ‰ l do
17: top Ð x`, partOf, ?topypGaggq

18: ϕm Y“ x`, partOf, topy
19: `Ð top

20: return ϕm

Generate CAQ. For each resulting CQ from the previous step, we now
generate a CAQ that performs implicit aggregations (see Algorithm 12). We
distinguish whether an attribute is aggregable (we need apply an aggregation
function over it) or not (we include it in the group-by set).

Example 5.5
Each of the previously generated rewritings would yield one CAQ. Precisely
aggregating lagRatio and using hID in the group-by set.

112

5. Rewriting Conjunctive Aggregate Queries

Algorithm 12 Generate CAQ
Input: QS is a CQ over the wrappers, π is the set of queried features, G is the global

graph
Output: Q1S is a CAQ defined over QS

1: function generateCAQ(QS , π,G)
2: for a P attpQS q do
3: agg ÐH, groupBy ÐH

4: if DAF, f |xa, sameAs, ? f y ^ x? f , hasAggFunc, AFypGaggq ^ f P π then
5: aggY“ AFpaq
6: else
7: groupByY“ a

8: return CAQ(agg, groupBy, QS)

5.3 Discussion

In this subsection we first provide a cost formula for the computational
complexity of rewriteCAQ, and later prove its soundness and completeness.

Computational complexity

Recall that Algorithm 8, for each concept in the query, exhaustively explores
all combinations of levels for its adjacent hierarchies. Let C be the number
of concepts covered by the query pattern ϕ, then we define H as the average
number of adjacent hierarchies per concept and L their average number of
levels. Thus, from the previous discussion we can easily see that the cost
of rewriting a query to a set of CAQs is CLH . Additionally, for each of
the generated combinations we need to account for the cost of rewriteCQ,
as presented in Section 4.5. Note that, in practice, few of the generated
combinations will have covering wrappers. In this case, as we show in the
experimental results, the cost of rewriteCQ is considerably smaller than
when there exists covering wrappers.

Soundness and completeness

Here, we show that Algorithm 8 is sound and complete given a query QG “
xπ, ϕy. Let us assume the set C with all covered concepts in ϕ, hence, here we
refer to soundness and completeness in the sense that the following invariants
hold: (a) Gvirtual includes all concepts in C, (b) Gvirtual includes all concepts that
are (transitively) descendants of C (i.e., its levels), and (c) Gvirtual includes all
applicable mappings for the concepts in C and their levels. As preconditions,
we assume Gagg is correctly instantiated, and rewriteCQ is minimally-sound
and minimally-complete.

113

6. Experimental evaluation

Proof. In the trivial case, no concepts in C have descendant levels, which entails
that no wrapper provides data at a finer granularity than that specified in QG .
Then, no aggregation is required and no adjacent hierarchies will be identified
in line 8. Thus, the resulting output from line 17 (i.e., rewriteCQ(Q,Gvirtual)
is equivalent to rewriteCQ(Q,G) which, from the preconditions, yields a
minimally-sound and minimally-complete solution.

When some Ci P C has descendant levels, there exists at least a wrapper
providing data at finer granularity. Then, Algorithm 9 would find all levels
in Gagg (note the closure partOf+). Then, all combinations of participating
levels are generated to compose match queries ϕm. As we are invoking
rewriteCQ for each ϕm, and rewriteCQ is minimally-sound and minimally-
complete, we would be obtaining all possible CQs for each combination of
levels, satisfying the first two invariants. Next, the resulting rewritings are
aggregated and added as new wrappers in Gvirtual (together with their LAV
mappings), satisfying the third invariant. As the three invariants hold we
conclude that Algorithm 8 is sound and complete.

6 Experimental evaluation

In this section we experimentally measure the performance of the proposed
rewriting algorithms. Specifically, we aim to show how rewriteCQ behaves
in realistic scenarios with respect to the theoretical complexity.

6.1 Experimental setting

For evaluation purposes, we systematically generate experimental runs (i.e.,
executions of rewriteCQ) with different characteristics. Specifically, we
have the following six experimental variables that define an execution of
rewriteCQ:

• Number of features per concept (|F|)

• Number of edges covered by a query (|EQ|)

• Overall number of wrappers (|W|)

• Number of edges covered by a wrapper (|EW |)

• Fraction of features in a concept covered by a query (FracQ)

• Fraction of features in a concept covered by a wrapper (FracW)

Table 4.1 depicts the domain for each variable, using realistic values similar
to those found in the literature.

114

6. Experimental evaluation

Variable Domain

|F| t5, 10, 20u
|EQ| t2, 4, 6, 8, 10, 12u
|W| t2, 4, 8, 16, 32, 64, 128u
|EW | t2, 4, 6, 8, 10, 12u
FracQ t0.3, 0.6, 0.9u
FracW t0.3, 0.6, 0.9u

Table 4.1: Domain for each experimental variable

The process of generating an experimental run (i.e., a query and a set
of covering wrappers) consists of obtaining random subgraphs of a large
enough clique playing the role of G, which guarantees the desired randomness.
Algorithm 13 depicts the process of generating experimental runs based on
the previously introduced variables.

Algorithm 13 Generate an experimental run (query and wrappers)

Input: G is the global graph (here a clique), |F|, |EQ|, |W|, |EW |, FracQ, FracW
Output: QG is a global query, W is a set of wrappers covering QG

1: function generateExperimentalRun(G, |F|, |EQ|, |W|, |EW |, FracQ, FracW)
2: QG Ð connected random subgraph of G with |EQ| edges
3: Q1G Ð with a probability FracQ of appearing, expand QG with up to |F| features
4: W ÐH

5: for i Ð 1 to |W| do
6: w Ð connected random subgraph of QG with |EW | edges
7: w1 Ð with a probability FracW of appearing, expand QG with up to |F| features
8: W Y“w1

9: return xQ1G , Wy

For each combination of variables in the domain, we generate an experi-
mental run and invoke rewriteCQ. For each experimental run, we measure
the size of the resulting UCQs (U) and the processing time (R) in millisec-
onds. To account for variability, we generate experimental runs using the
same parameters three times and keep the median of R. The experiments are
performed on a machine running GNU/Linux with an Intel Core i5 processor
running at 3.5 GHz and with 16GB of RAM memory.

We implemented a prototype of the rewriting algorithms5. The implemen-
tation is based on SPARQL, where each construct is represented as a resource
description framework (RDF) graph. The Jena library is used to manipulate the
graphs and queries.

5https://github.com/serginf/MDM

115

6. Experimental evaluation

6.2 Experimental results

From the obtained results, we observe that U and R are highly correlated (i.e.,
Pearson correlation of ρ “ 0.997), thus we only report on R. The previously
presented theoretical complexity is always an upper bound, which is not
plotted in the figures to avoid hindering their visualization. In this subsection
we report on the most significant experimental results that show the trend of
our approach. In Appendix B, we exhaustively report all results and provide
a more elaborated discussion on them.

Evolution of response time based on wrappers

We first analyse how the response time evolves based on the number of
wrappers. To this end we plot the evolution of R for different values of |W|.
As depicted in Figure 4.8, in general there is an exponential trend for R as
the number of sources (i.e., wrappers) grow. Nonetheless, we can see our
approach can efficiently deal with a large number of sources (i.e., 128) while
the number of edges in the query is relatively small. With an increased number
of covered edges in ϕ the cost also exponentially grows.

Fig. 4.8: Evolution of R w.r.t. |W| for |F| “ 5 and |F| “ 20

Evolution of response time based on edges in the query.

In the second experimental analysis, we are concerned with studying the
impact of the size of the query on the time to perform a rewriting. To this end,
we plot the evolution of R for different values of |EQ|. As depicted in Figure
4.9, the cost of rewriting is almost linear regardless of |EQ| for low values
of |EW |. This is not a surprising result, as we can expect a large pruning of
candidate solutions in the intra-concept generation phase. As the number
of covered edges by wrappers grows, we start seeing variability and a more
exponential trend.

116

7. Conclusions

Note we have filtered out |W| “ 128 due to the high variability yield
in the results caused by failures in the rewriting process due to the size of
intermediate results, which hindered the visual analysis.

Fig. 4.9: Evolution of R w.r.t. |EQ| for |F| “ 5 and |F| “ 20

7 Conclusions

We have presented an approach to tackle the problem of answering queries
using views under semantic heterogeneities and evolution. We have proposed
a purely graph-based data integration system, which allows us to represent
all integration constructs (i.e., global schema, LAV mappings and source
descriptions) as well as the necessary semantic annotations to drive the query
rewriting process. We have presented a minimally-sound and minimally-
complete rewriting algorithm for an input global query. Next, we deal with
semantic heterogeneities by automatically generating combinations of queries
(and rewriting them) at different levels of granularity, thus performing implicit
aggregations. We have presented experimental results showing the efficiency
in practice of the proposed methods.

Acknowledgements. This work has been partly supported by the H2020
SUPERSEDE project, funded by the EU Information and Communication
Technologies Programme (num. 644018), and the GENESIS project, funded by
the Spanish Ministerio de Ciencia e Innovación (num. TIN2016-79269-R).

117

Chapter 5

SLA-driven Selection of
Intermediate Results to
Materialize

This chapter has been published as a paper in Fundamenta Informaticae,
163(2): 111-138 (2018). The layout of the paper has been revised.
DOI: https://doi.org/10.3233/FI-2018-1734

IOS Press copyright / credit notice:
© 2018 IOS Press. Reprinted with permission from Rana Faisal Munir, Sergi
Nadal, Oscar Romero, Alberto Abelló, Petar Jovanovic, Maik Thiele, Wolfgang
Lehner. Intermediate Results Materialization Selection and Format for Data-
Intensive Flows, Fundamenta Informaticae Volume 163(2), November 2018.

Co-authoring declaration. This work has been done together with the PhD
student Rana Faisal Munir, with an overall equal contribution from both.
Precisely, the introduction (Section 1), problem formulation (Section 2) and
definition of cost model for intermediate result materialization selection (Sec-
tion 3) were done jointly with equal contribution. The state space search
algorithm (Section 4) was done by Sergi Nadal, while a data format selection
approach (not included in this thesis) was done by Rana Faisal Munir. The
experimental evaluation (Section 5) was jointly developed, with focus from
Sergi Nadal on the intermediate result selection evaluation.

118

Abstract

Data-intensive flows deploy a variety of complex data transformations to build infor-
mation pipelines from data sources to different end users. As data are processed, these
workflows generate large intermediate results, typically pipelined from one operator
to the following ones. Materializing intermediate results, shared among multiple
flows, brings benefits not only in terms of performance but also in resource usage
and consistency. Similar ideas have been proposed in the context of data warehouses,
which are studied under the materialized view selection problem. With the rise of Big
Data systems, new challenges emerge due to new quality metrics captured by service
level agreements which must be taken into account. In this chapter, we propose a novel
approach for automatic selection of multi-objective materialization of intermediate
results in data-intensive flows, which can tackle multiple and conflicting quality
objectives. The experimental results show that our approach provides 40% better
average speedup with respect to the current state-of-the-art.

119

1. Introduction

1 Introduction

Nowadays, many organizations are shifting their business strategy towards
data analytics in order to guarantee their success. In the past, the vast majority
of analysed data was transactional, however the emergence of Big Data systems
allows a new range of data analytics, by replacing traditional extract-transform-
load (ETL) process with much richer data-intensive flows (DIFs) [82]. This
new range of data analytics is supported by the Hadoop1 ecosystem which
has a distributed storage system (Hadoop Distributed File System - HDFS2)
to store large scale data and a processing engine (i.e., MapReduce [38]) to
execute DIFs. It works on a distributed cluster of commodity hardware which
provides competitive advantage to organizations by reducing their hardware
costs. In addition, many modern cloud providers offer pay-per-use services
to organizations by implementing the big data systems under service level
agreements (SLAs).

An in-depth study of analytical workloads, in Big Data systems across
seven enterprises, shows that user workloads have high temporal locality, as
80% of them will be reused by different stakeholders on the range of minutes
to hours [35]. Thus, providing partial materialization of results in shared
flows can clearly bring benefits by saving computational resources. However,
the aforementioned study raises the question of “what intermediate results to
materialize?”. This boils down to the traditional data management problem of
materialized view selection [72], which is well-known to be NP-hard [67].

This question is not easily addressable, despite the efforts of the research
community. Some works [123, 44, 161] have tackled the problem of finding the
optimal partial materialization in DIFs, however all of them are specific to the
MapReduce framework and only aim at optimizing the system performance-
wise by ignoring other relevant SLAs (such as freshness, reliability, scalability,
etc.[143]). Moreover, the aforementioned solutions do not consider different
characteristics associated with different SLAs. For instance, in some organiza-
tions, they allow to get results from a stale materialized node (i.e., to allow
low freshness) for a certain time period to reduce the loading cost. These
characteristics can be expressed separately and the optimal value should be
chosen for each materialized node. These shortcomings of existing solutions
are addressed by our proposed approach, which is a technology independent
materialization solution and can take into consideration generic quantifiable
SLAs with their associated characteristics.

1.1 Motivational example

sec:motexample To motivate our work, we present a DIF, shown in Figure 5.1,
1https://hadoop.apache.org
2https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

120

1. Introduction

which depicts a high-level representation containing relational operations
and User Defined Functions (UDFs). It uses five input sources and serves
three queries. Each data source and data operator is labeled by its estimated
processing cost (i.e., consumed resources, in seconds) and storage cost (in GB).
Note that data processing entails extracting and loading data from the sources
into the data processing system.

For the sake of this example, let us suppose that all the sources update once
per day, except Source 1 and Source 3 that have a update frequency of 6 and 4
times per day, respectively. Query 1, Query 2 and Query 3 have a frequency of
2, 20, and 10 times per day, respectively. In addition, let us assume that we
allow stale materialized results and it is provided as a characteristic vector
(given as number of updates per time unit r1, 2, ..., ns).

Fig. 5.1: An Example of a DIF

In this example, we focus on optimizing four SLAs (i.e., time to load, time
to query, space needed to store intermediate results, and freshness). Loading
time is measured by the sum of processing cost from the sources to the partial
materializations, query time is measured by the sum of execution cost from the
partial materializations to the user’s output, storage space is measured by the
sum of storage cost for the selected partial materializations, and freshness is
estimated using the cost function presented in Section 3.3.

Several of the existing intermediate result materialization approaches from
Big Data Systems can be used, as discussed in Section 6. Let us focus on
one of them, namely ReStore [44], which uses two kinds of heuristics (i.e.,
conservative and aggressive) in order to choose DIF nodes for materialization.
Conservative heuristics materialize the output of those operators that reduce
the input size (i.e., project and filter). The aggressive heuristics materialize the
output of those operators which produce large outputs and those known to be
computationally expensive (i.e., join, group and cogroup). Table 5.1 shows the
selected nodes and a quadruple with the costs (i.e., loading time, query time,
storage space, and freshness). It should be noted that query time represents the

121

1. Introduction

sum of times of all three queries. The first two columns show both ReStore’s
heuristics, while the rightmost shows a pareto-optimal solution (i.e., a solution
that cannot be improved further in the presence of multiple conflicting SLAs)
in boldface.

ReStore Cons. ReStore Agg. Pareto-optimal
Nodes N1, N4 N2, N3, N5, N8 N7
Cost x75 s, 257 s, 4.1 GB, 1y x336 s, 115 s, 59 GB, 1y x101 s, 100 s, 3 GB, 0.78y

Table 5.1: Selected intermediate nodes and cost for the four SLAs (load, query, store, freshness)

As shown in Table 5.1, ReStore conservative heuristics choose N1 and
N4. They take more time in loading, due to Source 1, which updates very
frequently and effects the loading cost of N1. We calculate the total load time
of a node by multiplying its load time with the update frequency of its input
sources. Furthermore, both N1 and N4 do not provide good speedup because
they have high query time. ReStore aggressive heuristics choose N2, N3, N5,
and N8. These nodes help to reduce the query time, but require more space
to store and more time to load. It should be noted that ReStore does not
support freshness. If the input sources change, it deletes all their dependent
materialized nodes. This pull-strategy provides a fixed degree of freshness
and thus, we set it to 1 in our quadruple.

Finally, the pareto-optimal solution considers four SLAs (i.e., loading time,
query time, storage space, and freshness) together by assigning them the
same weight, and based on them, it chooses only node N7, which provides
better speedup compared to ReStore’s heuristics. Even though, N7 depends
on Source 3 , which has a high loading cost due to its high update frequency,
it is still worth to materialize because it is reused more often by repetitive
queries (i.e., Query 2, Query 3). Moreover, the loading cost can be improved by
choosing the optimal value of refresh frequency for N7. The possible values are
r1, 2, 3, 4s, where 4 will provide the maximum freshness. The pareto-optimal
solution chooses 3 as the refresh frequency for N7, which helps to improve
the load time and it also provides a good degree of freshness.

The above given example shows that the state-of-the-art solutions produce
suboptimal results in the case of different SLAs. To address this problem, we
revisit the traditional frameworks for materialized view selection [153] and
analyse its applicability and extensions in the context of DIFs for Big Data sys-
tems. As a result, we present an approach to automatically select the optimal
materialization of intermediate results driven by multiple quality objectives
represented as quantifiable SLAs with their associated characteristics. This is
achieved by implementing a multi-objective optimization technique (discuss
in Section 4) which efficiently tackles multiple and conflicting objectives to
select materialized nodes. Moreover, for each to-be-materialized node.

122

2. Formal Building Blocks and Problem Statement

Contributions. The main contributions of our work are as follows:

• We propose a novel cost model for multi-objective selection of optimal
partial data materialization for DIFs.

• We present a local search algorithm that, driven by SLAs, probabilisti-
cally selects a set of near-optimal intermediate results to materialize.

• We assess our method and show its performance gain by using the
TPC-H benchmarking suit.

Outline. The rest of the chapter is structured as follows. Section 2 presents
the theoretical building blocks and formalizes our approach. Sections 3 and
4 present the cost model for intermediate result selection and the algorithm
to explore the search space. In Section 5, we present the experimental results.
Section 6 discusses related work and Section 7 concludes the chapter.

2 Formal Building Blocks and Problem Statement

2.1 Multiquery AND/OR DAGs and data-intensive flows

The general framework for materialized view selection [153] relies on multi-
query AND/OR Directed Acyclic Graphs (DAGs). As defined in [155], a query
DAG is a bipartite graph G, where AND nodes (or operational nodes) are labeled
by a relational algebra operator, and OR nodes (or view nodes) are labeled by a
relational algebra expression. Moreover, given a set of queries Q defined over
a set of source relations R, a multiquery DAG G is a query DAG, which may
have multiple sink (query) nodes. Roughly speaking, the materialized view
selection problem can be expressed as a search space based problem over the
multiquery DAG G. Additionally, [154] formalizes the output of such problem
as a data warehouse (DW) configuration C “ xV, QVy, where QV is the set of
queries in the query set Q rewritten over the view set V. Note that there exist
two special DW configurations: xQ, QQy which represents a materialization of
the query set Q and xR, Qy which represents a complete materialization of the
source data stores R.

However, the multiquery AND/OR DAGs fail to capture the complex
semantics present in DIFs operators, as they solely rely on relational operators.
To this end, in this chapter we build upon the ideas from the aforementioned
frameworks and adapt them for the case of DIFs, which consider more com-
plex data transformations [85]. It is straightforward to see that any multiquery
DAG G can be represented as a DIF, however the opposite does not hold due
to the fact that AND/OR DAGs are solely based on relational operators, while
DIFs are extended with more complex operations. Thus, in this chapter, we

123

2. Formal Building Blocks and Problem Statement

extend the notion of DW configuration to Big Data system (BDS) configura-
tion for the case of DIFs. Hereinafter, we will depict a BDS configuration as
a set of nodes from the DIF to materialize B “ tb1, . . . , bnu. In the following
sections, we describe the specific components for the problem in-hand, and
reformulate the materialized view selection problem in the context of BDS.

2.2 Components

Data-Intensive Flow. In this chapter, we adopt the notation from [83], hence
we define a DIF D as a DAG pV, Eq where its nodes (V) are the flows’ opera-
tional nodes, and its edges (E) represent the directed data flow. Operational
nodes are defined as o “ xI, O, S, Vprey, where I and O are sets of respectively
input and output schemata, where each schema is defined as a finite set of
attributes, S expresses operator’s semantics, and Vpre a subset of attributes of
the input schemata (Vpre Ď

Ť

IPI I) whose values are used by o.

Design Goal (DG). DG represents a set of design goals, where each (DGi)
characterizes an SLA. It can be specified as either a minimization or a max-
imization of an objective cost function, or alternatively as a boundary that
must not be surpassed in such cost function. Formally:

• Min/Max: From a set of BDS configurations B , it returns the minimal
B by means of evaluating the cost function CF, defined as DGminpBq “

minBPB pCFpBqq. Note that maximizing the cost function is equivalent
to the negation of minimization.

• Constraints: For a BDS configuration, it checks whether the evaluation
of the cost function CF fulfills the constraint K, formally DGpBq “
rCFpBq ď Ks. Note that the constraint can express an arbitrary logical
predicate (e.g., ă,ą,ě). It is important to note that DG(C), where C is
constraints, in this case is binary true/false and it differs from the above
which gets the value obtained from the cost function.

Cost Function (CF). Given a BDS configuration, CF represents a set of cost
functions where each (CFi) is the estimation of an SLA for B. Hence, we de-
fine CFpBq “

ř

bPB Epbq (where Epbq is the cost estimation of an element b P B).

Characteristics Vector (CV). Some costs are determined once a node is
chosen, but for SLAs, we can select arbitrary values for the features that
impact them. For instance, in some organizations, they allow stale data for
some period of time, which can be defined as a refresh frequency for every
materialized node. Thus, the refresh frequency should be chosen to maximize

124

3. Cost Model for Intermediate Results Materialization Selection

the overall benefit. We keep a vector of such choices. Each position of the
vector represents a characteristic affecting some SLAs. These characteristics
will impact on the associated cost function CF.

Utility Function. In the context of multi-objective optimization (MOO) [108],
it is common to aggregate all objectives DG1, . . . , DGn into a single value to
obtain the global utility. Such function, known as the utility function U as
it measures benefit, is formally defined as UpDGq “ UpCF1pBq, . . . , CFnpBqq.
Each CFipBq provides a quantitative evaluation of B (it can be seen as indi-
vidual utility functions for each cost function) for its associated DGi, in the
case of min/max design goals, or 0, and `8 for satisfied and non-satisfied
constraints, respectively. Generally in MOO higher utilities are preferred.
However, in our context there are some CF where we aim for minimal utilities
(e.g., query time).

2.3 Problem statement

We state the problem of intermediate results materialization selection in DIFs
as: given a data-intensive flow D, a set of design goals DG, a set of cost
functions CF, a characteristics vector CV, a utility function UpDGq, and a
cost model represented by a set of estimators over D calculated by means of
statistical information from sources, return a BDS configuration B1, such that,
UpDGq is minimal, each b P B1 with its optimal characteristics values for CV.

3 Cost Model for Intermediate Results Materializa-
tion Selection

In this section, firstly we present our approach to estimate statistics for each
operation of a DIF. We assume that the statistics of each input source are
available. Secondly, we discuss the metrics (i.e., execution and storage) that
we consider in this chapter. It should be noted that we choose to ignore the
CPU cost, and focus only on the I/O operations. Also, regardless of being
executed in parallel, the overall execution cost of the flow will remain the
same (only time span would be reduced). Finally, we use the proposed metrics
to estimate the cost of SLAs. In this chapter, we present the cost functions for
four SLAs (loading, query, storage, and freshness).

3.1 Data-intensive flow statistics

As previously mentioned, cost functions are computed from estimators. Every
operational node in a data-intensive flow D might have several estimators,
each assessing a single SLA (e.g., an execution cost), where they perform a

125

3. Cost Model for Intermediate Results Materialization Selection

cost based estimation according to the operator’s semantics. In order to devise
more accurate metrics, some essential statistics must be obtained from the
input data stores and propagated across D. By topologically traversing D, we
can propagate such statistics at each node, based on the specific semantics
of operators. In [68], the authors describe a complete set of statistics which
are necessary to perform cost based estimations for DIFs. Here we focus on
the following subset: selectivity factor selPpRq, number of distinct values per
attribute VpR.aq and cardinality TpRq. R denotes an input data store, while
R.a is an attribute of R. Note that statistics only consider logical properties of
the flow, hence they are independent of the underlying engine where the flow
is executed.

Example 3.1
JOIN operator Let us assume a JOIN operator R1 “ R ’ S (e.g., N6 in Figure
5.1), with input schemata Rpa, bq, Spc, dq and semantics PR.a“S.c. Inspired by
the work in [53], we propose measures for the above-mentioned statistics
for this JOIN operator (we have done likewise for the rest of operators) as:

sel1P “

$

’

’

’

’

&

’

’

’

’

%

1
VpR.aq

, if domainpS.cq Ď domainpR.aq

VpR.aX S.cq
VpR.aq ¨VpS.cq

, otherwise

VpR1.attiq “ VpR.attiq ¨ p1´ selPq
TpRq

VpR.attiq TpR1q “ sel1PpR ’ Sq ¨ TpRq ¨ TpSq

The selectivity factor is obtained as the fraction of the number of shared
values in the JOIN attributes, when the domain of the right-hand side is
contained in the domain of the left-hand side (i.e., analogously to Primary
Key(PK)-Foreign Key(FK) relations), otherwise an estimation is made as a
fraction of shared values and its Cartesian product. Regarding the number
of distinct values for an attribute, it is estimated as the input number of
distinct values, multiplied by the probability that no repetitions of a value
are selected. Finally, the cardinality is measured likewise the relational case.

3.2 Metrics

Once statistics for D have been calculated, they can act as building blocks for
metrics. Here, we focus on estimating both performance-wise (Executionestimator)
and space-wise (Spaceestimator) metrics. Performance metrics are measured by
means of estimated disk I/O (in blocks) and space metrics by the number of
disk blocks occupied by the intermediate results materialization. It is worth
noting that in terms of execution, the CPU cost is negligible as opposed to

126

3. Cost Model for Intermediate Results Materialization Selection

I/O cost [6], hence we ignore CPU cost and focus on the I/O cost of operators.
Therefore, non-blocking operational nodes (acting as pipelines) will not incur
any cost for such Executionestimator.

To devise metrics, certain characteristics of the underlying engine are
required. We focus on the following subset: the size of a disk block B, the
number of main memory buffers available M, and the size in bytes that each
attribute occupies sizeO f pattiq. For instance, in the Oracle relational database
the block size is approximately of 8KB, while in Hadoop’s HDFS it is 64MB or
128MB. The incurred space of intermediate results is measured by means of the
estimated number of blocks generated. However, this will vary according to
the underlying schema that such results have and therefore, we need to make
this calculation based on the record length, that is sizeO f pattiq (including the
corresponding control information). Thus, the specific number of blocks for
an input R is measured as:

BpRq “

»

—

—

—

—

—

TpRq
Z

B
ř

sizeO f pattiq

^

fi

ffi

ffi

ffi

ffi

ffi

Example 3.2
JOIN operator cont. Given the JOIN operation from example 3.1, one im-
plementation of such operator is based on the block-nested loop algorithm,
which scans S for every block of R using M´ 2 memory buffers (as the
remaining two are used to perform tuple comparisons and output results),
thus the estimation for execution and space costs is as follows:

Executionestimator “ BpSq ` BpRq ¨
R

BpSq
M´ 2

V

Spaceestimator “ BpR1q

However, in a MapReduce environment, execution cost is dominated
by data transfers (i.e., communication cost over the network) that occurs
during the data shuffling phase between mapper and reducer nodes [5].
In such case, the natural implementation of a JOIN is using the hash join
algorithm, where the hash function maps keys to k buckets and data is
shipped to k reducers. Assuming no data skewness, each reducer receives a
fraction of TpRq

k and TpSq
k . Having c as a constant representing the incurred

network overhead per transferred HDFS block, the cost estimations of the
JOIN are:

Executionestimator “
BpRq ` BpSq

k
¨ c Spaceestimator “ BpR1q

127

3. Cost Model for Intermediate Results Materialization Selection

Note that the presented metrics can be highly variable within D. For
instance, not surprisingly, JOIN nodes are the operations that consume the
most time and space in order to generate intermediate results. Additionally,
modern DIFs make heavy usage of User Defined Functions (UDFs) which
consists of ad-hoc operations, difficulting the estimation of their I/O cost.
An approach to solve this problem is to rely on static analysis of code to
estimate the I/O cost for UDFs [76]. Finally, it is worth noting that other
approaches exist to measure the presented metrics, for instance [142] proposes
a method based on micro-benchmarking. On the contrary, our approach does
not require any execution of the flow which however, impacts the quality of
the estimation.

3.3 Cost functions

In this section, we present a set of cost functions to evaluate a BDS configura-
tion, based on metrics from the materialized operational nodes of D. In our
experiments, we focus on traditional metrics used in multi-query optimization
namely loading cost, query cost, storage cost and freshness. However, note
that our approach is extensible to other types of metrics such as monetary
aspects [121], energy consumption [135], etc. For instance to estimate mone-
tary cost, the pay-per-use cloud services charge based on the resources used,
which can be estimated by our cost model. Further, the estimated resource
utilization can be used to calculate the cost of renting machines on different
cloud providers. Regarding storage, here we are not concerned with the layout
to be used as this is assessed once the selection of nodes to be materialized
has been found.

First, we must present some auxiliary methods over BDS configurations in
which cost functions are based on. Let Prepbq and Sucpbq be respectively the
input and output subgraphs for a node b, recursively defined as Prepbq “ tbuY
@bi P predecessorspbq Prepbiq and Sucpbq “ tbu Y @bi P successorspbq Sucpbiq,
and respectively finishing when the indegree and outdegree of b is 0. Hence,
we can define the input and output subgraphs of a BDS configuration B
as IpBq “

Ť

bPB Prepvq and OpCq “
Ť

vPC Sucpvq. Specifically, the former is
a subgraph where its source nodes are the sources in a D and sink nodes
are all the elements b P B. The latter is a subgraph where its source nodes
are all elements b P B and sink nodes are the final nodes in D. Additionally,
sourcespbq gives the input sources of a node b and sinkspbq provides the queries
over a node b.

Loading Cost. The cost of loading a set of intermediate results CFLT is the
sum of processing source data and propagating them to the intermediate
results in B. Our approach is valid for both maintenance and update of inter-
mediate results, as long as source statistics are properly updated. From a BDS

128

3. Cost Model for Intermediate Results Materialization Selection

configuration B, the estimated loading cost is intuitively the cost of executing
the operations of D, loading the intermediate results for each node b P B (i.e.,
IpBq), and the cost of writing such results to the disk. Thus, we define
CFLT “

ř

bPBr
ř

biPIpbq Executionestimatorpbiq ˚ RFpbiqs `
ř

bPB Spaceestimatorpbq.
Here, RF represents the refresh frequency of materialized nodes which is
fixed in the characteristics vector CV of each node. The unit of refresh fre-
quency is total number of updates per time unit. It should be noted that we are
talking about sequential files that do not provide random access, so only full
update is possible (no incremental).

Query Cost. The query cost CFQT is the sum of querying the intermediate
results, transform the data and deliver results to the user. From a BDS
configuration B, the estimated query cost is computed as the sum of execution
costs of successor nodes for each node b P B (i.e., OpCq). However, note that
the cost of processing the operations of the nodes in B should not be taken into
account as it is already evaluated in CFLT . Therefore, it is necessary to consider
only nodes in the set OpBqzB, denoted O`pBq. Finally, it is necessary to
consider the cost of reading such intermediate results from the disk. Hence, we
define CFQT “

ř

bPBr
ř

biPO`pbqpExecutionestimatorpbiq ˚ p
ř

siPsinkspbiq QFpsiqqs `
ř

bPB Spaceestimatorpbq. Here, QF represents the frequency of queries. The
query frequency can be expressed per day, hour or minute. QF helps to select
the most reused node. Queries with high frequencies benefit more from the
re-usage. Hence, a node which is used in highly repetitive queries will be
given more weight during selection.

Storage Cost. The storage cost function CFS concerns the storage space
needed to store intermediate results. It is computed as the sum of estimated
space for storing the results of each node in B, and it can be seen as the
estimated space require to accommodate the deployed BDS configuration. It is
defined as CFS “

ř

bPB Spaceestimatorpbq. Notice that Spaceestimator can be used
for estimating the costs of reading and loading intermediate results, showed
in CFLT and CFQT , as well as to estimate the occupied space for the case of
minimizing or constraining its value.

Freshness. The freshness cost function estimates the freshness of the results
of a query, which are obtained using materialized nodes, denoted as B1. For
the freshness function, we build on the formula from [138]. The variable
age tells how old data are in a materialized result with regard to the cur-
rent data in the input sources. In our case, age cannot be known as it is
not possible to foresee when materialized results are going to be used. It
should be noted that update frequency of a node is calculated based on its
input sources. Whereas, the refresh frequency is given in the characteristics

129

4. State Space Search Algorithm

vector CV of each node. We calculate the update frequency of a materi-
alized node b as an average of the input frequencies of its input sources
UFpbq “ AveragesiPsourcespbqUFpsiq. Then, we can approximate age of b as the
mid point between two refreshments Agepbq “ RFpbq´1{2. With such, we can
measure the freshness of a node b as Freshnesspbq “ p1`UFpbq ˚ Agepbqq´1.
Furthermore, Freshnesspbq is used to calculate the freshness of the results of a
query Q as CFFreshnesspQresultsq “ Averageb1PB1Freshnesspb1q. This cost function
helps to choose a node for materialization which provides up-to-date results
to the queries.

4 State Space Search Algorithm

As previously mentioned, the problem of intermediate results materialization
in DIFs can be reduced to the general materialized view selection problem,
known to be NP-hard. Hence, we must avoid exhaustive algorithms and rely
on informed search algorithms. Furthermore, in this particular case, purely
greedy algorithms will not provide near-optimal results as the proposed cost
functions are not monotonic. In classic artificial intelligence, a state space
search problem is usually represented with the following components: (i)
initial state where to start the search; (ii) set of actions available from a particular
state; (iii) transition model describing what each action does and what are the
derived results from it; (iv) goal test which determines whether the evaluated
state is the goal state (i.e., the optimal state); and (v) path cost function to
assign cost to the actions path.

In our context, we see a state as any BDS configuration B over which action
functions are applied. It is noteworthy to mention that in such problem we
are not interested in the set of actions that have led to a solution, but in the
solution itself, which is initially unknown. Additionally, as any state B is a
valid solution, we drop the component of goal state. Furthermore, the path
cost is substituted by the definition of a heuristic function, which will guide
the search. In the following subsections, we present the particularities of our
specific problem for the remaining components.

4.1 Actions

For a BDS configuration B, we can compute actions (navigations over the
graph), yielding new BDSs B1. First, we define the generic navigation oper-
ation B1 “ Navpborigin, bdestinationq, with borigin, bdestination P D and semantics
Navpborigin, bdestinationq “

`

Bztboriginu
˘

Y tbdestinationu. We then define three
specific actions applied over nodes in B:

1. Forward (Fpb, b1q “ Navpb, b1q): characterizing a forward movement from
b to b1 in D, applicable when b1 P successorspvq.

130

4. State Space Search Algorithm

2. Backward (Bpb, b1q “ Navpb1, bq): characterizing a backward movement
from b1 to b in D, applicable when b1 P predecessorspbq.

3. Stay (Npbq “ H): always applicable, as it does not perform any move-
ment. Such operator is only useful when other nodes b1 are combined
with M or U, so that a new state is generated where b remains selected.

4. Increment (Incpb, iq): Increases the value of a characteristic (identified by
position ith of the vector CV) for a node b.

5. Decrement (Decpb, iq): On the contrary, it helps to decrease the value of a
characteristic for node b at ith position of the vector CV.

From the previous definitions, for each node b, we define the set Actionspbq
as:

ď

biPsuccessorspbq

tFpb, biqu Y
ď

biPpredecessorspbq

tBpb, biqu Y tNpbqu Y tIncpb, iqu Y tDecpb, iqu

Finally, we obtain all possible actions from a BDS configuration B by com-
puting the Cartesian product of the power set of each Actionspbiq (note, empty
sets are removed from each power set but this is not depicted for readability)
as PpActionspb1qq ˆ . . .ˆPpActionspbnqq. The rationale behind this operation
is to generate, for each node b, all combinations of movements. The usage
of a power set is relevant for the cases when the input or output schemata
of a node is not unary (e.g., a JOIN). Then, such different combinations are
furtherer combined with the rest of nodes via a Cartesian product. Note that
such set can be extremely large for complex Ds, however it is easy to see
that many combinations generate invalid BDS configurations. To this end, we
define the two essential conditions that a BDS configuration must fulfill in
order to be valid, namely answerability and non-dominance.

Answerability of all queries. Ensuring that all queries (sink nodes) can
be answered from materialized results. It can be checked by guarantee-
ing there is at least one materialized node for each path in D. Formally,
@b P sourcespDq@pi P Pathsb,sinkspDqDnode P pi : node P B. For instance, in Fig-
ure 5.2a, we can see that the green-colored BDS configuration does not satisfy
answerability as the path from N2 to N9 does not contain any materialized
node.

Non-dominance of nodes. The purpose of our approach is to minimize the
number of nodes to materialize by avoiding unnecessary materializations. For
instance, if it is decided to materialize all sink nodes then it is unnecessary
to materialize any intermediate node. In graph theory, a node m dominates n
if all paths from the source node to n must pass through m. We extend this

131

4. State Space Search Algorithm

definition for the case of multiple nodes, and thus we test non-dominance of
a set of nodes by checking that, for each node b there is at least one path from
b to sink nodes where b is the only selected node. This is formally defined
as @b P BDpi P Pathsb,sinkspDq : |t@node P pi : node P Bu| “ 1. For instance,
Figure 5.2b, shows that the green-colored BDS configuration does not satisfy
non-dominance, as nodes N6 and N7 dominate N5.

Besides the two essential conditions, it is necessary to maintain a set
of visited nodes to check whether a state B has not been already visited,
and thus avoid unnecessary expansions in the search space. Figure 5.2c,
depicts the valid BDS configurations obtained by applying actions to the
BDS configuration {3,4}. Experimenting with the DIF in Figure 5.1, it has
been observed that on average eliminating states that do not fulfill such
conditions makes a reduction on the search space by 88%. Next, we generate
increment and decrement actions for the current node to move vertically by
using different index positions of CV. This helps to find the best possible
values for given characteristics vector CV for each to-be-materialized node.

(a)

(b) (c)

Fig. 5.2: (a) depicts a BDS configuration where answerability is not satisfied, (b) depicts a
configuration where non-dominance is not satisfied, and (c) depicts the valid actions for

configuration {3,4}

4.2 Initial state

As previously mentioned, the search space contains many local optimum
points due to the non-monotonicity of cost functions, therefore the obtained
solution might vary depending on the initial state. Three possible initial states
have been devised aiming to cover all search space varieties:

• Materialize all source nodes, representing the BDS configuration B “
sourcespDq.

• Materialize all sink nodes, representing the BDS configuration B “

sinkspDq.

132

4. State Space Search Algorithm

• Random selection of nodes, guaranteeing a valid initial state where
answerability and non-dominance are satisfied. Further, for the random
selected nodes, we also randomly choose values in all positions of the
characteristics vector CV.

Note that the two former are special cases of the third, thus this is the
strategy that has been chosen to generate initial states (we provide a more
thorough discussion on this in Section 4.4).

4.3 Heuristic

Provided that values of the different objectives lay in very different ranges,
and in order to provide a consistent comparison, it is necessary to make use
of a non-dimensional utility function normalizing all objectives. There exist a
vast number of different normalization strategies [61]. For our purpose, and
given the nature of the problem, we make use of the normalized weighted sum
as utility function, defined as:

hpBq “ UptCF1, . . . , CFnu, Bq “
n
ÿ

i“1

wi ¨ CFtrans
i pBq

CFtrans
i pBq stands for the evaluation of the transformed cost function for

B, being CFipBq is evaluation CFi (see Section 2.2), CFo
i the utopia point (i.e.,

minimal BDS for CFi), and CFmax
i the maximal BDS:

CFtrans
i pBq “

CFipBq ´ CFo
i

CFmax
i ´ CFo

i

Such approach yields values between zero and one, depending on the
accuracy of both CFo

i and CFmax
i computation. However, it is mostly unattain-

able to get their exact values, and for that we have to rely on estimations. To
achieve this, we compute estimations of utopian BDSs for all cost functions
as the union of all minimum nodes for each path from source to sink nodes.
Maximum points are obtained by following the similar approach, in this case
obtaining maximum nodes for each path from source to sink nodes. Note that,
if design goals with constraints are presented, then it is possible to use such
constraint value K as maximum point by dismissing the need of estimations.

4.4 Searching the solution space

Local search algorithms consist of the systematic modification of a given state,
by means of Action functions, in order to derive an improved state. Many
complex techniques do exist for such approach (e.g., simulated annealing
or genetic algorithms). The intricacy of these algorithms consists of their
parametrization, which is also their key performance aspect at the same time .
In this chapter, we focus on hill-climbing, a non-parametrized search algorithm

133

5. Experiments

which can be seen as a local search by always following the path that yields
higher heuristic values. Since the used cost functions are highly variable
due to their non-monotonicity, hill-climbing might provide different outputs
depending on the initial state. In order to overcome such problem, we adopt
a variant named Shotgun hill-climbing which consists of a hill-climbing with
restarts (see Algorithm 14). After certain number of iterations, we can keep
the best solution. Such approach of hill-climbing with restarts is surprisingly
effective, specially when considering random initial states.

Algorithm 14 Shotgun Hill-Climbing

Input D, i: Ź DIF, number of iterations
Output solution Ź Solution BDS configuration

1: solution “ null
2: do
3: B “ randomInitialState(D); f inished “ f alse
4: while ! f inished do
5: neighbors “ ResultsFromActions(B)
6: B1 “ stateWithSmallestHeuristic(neighbors)
7: if h(B1) ă h(B) then
8: B “ B1

9: else
10: f inished “ true

11: if h(B) ă h(solution) then
12: solution “ B
13: ´´ i
14: while i ą 0
15: return solution

5 Experiments

In this section, we report our experimental findings. Our experiments are
performed on an 8-machine cluster. Each machine has a Xeon E5-2630L v2
@2.40GHz CPU, 128GB of main memory and 1TB SATA-3 of hard disk. Each
machine runs Hadoop 2.6.0 and Pig 0.15.03 on Ubuntu 14.04 (64 bit). We
have dedicated one machine for the name node and the remaining seven
machines for data nodes. We use TPC-H4 benchmarking tool to generate
datasets and queries. These queries have been converted to Apache Pig which
is a procedural language of the big data systems. It has support for user
defined functions which is a key feature of modern DIFs. In order to create
a complex DIF, we use CoAl [83], which in this case, combines six TPC-H

3https://pig.apache.org
4http://www.tpc.org/tpch/

134

5. Experiments

Fig. 5.3: DIF of six TPC-H queries

queries into one integrated DIF as shown in Figure 5.3. The DIF size is chosen
with the goal of representing a realistic data pipeline, however being still
tractable for validation with an exhaustive search.

5.1 Intermediate results selection evaluation

In this section, we evaluate our approach to validate its two properties: one
is convergence and second is the quality of the obtained solutions. We also
compare our approach with an existing state of the art solution to show its
effectiveness.

Evaluation of convergence and quality of the obtained solutions

The goal of this experiment is to evaluate convergence and quality of the
obtained solutions in Algorithm 14. For the sake of experiments, we assign
update frequency to each table of TPC-H as shown in Table 5.2. We assume
that supplier and nation tables never update and hence, they have 0 update
frequency. Further, part and customer tables do not update very often and their
changes can be applied every 6 hours. That is why, we assign them 4 per day
update frequency. Finally, orders and lineitem tables are frequently updated
and they update together whenever there is a new order. We assume that their
changes are synchronized every 1 hour and thus, their update frequencies are
24 per day.

To evaluate the convergence of solutions, we systematically executed sin-
gle shots of our approach (i.e., one iteration) until the number of obtained
solutions converged and no new solutions were obtained. With such informa-
tion, and using the different frequencies, we can provide an estimation of the
probability to obtain a solution BK, formally defined as:

135

5. Experiments

Table Name UF
Part 4 / day
Lineitem 24 / day
Orders 24 / day
Customer 4 / day
Supplier 0 / day
Nation 0 / day

Table 5.2: Update Frequency (UF) of TPC-H tables

PpBKq “
f reqpBKq

n
ř

j“1
f reqpBjq

(5.1)

We aim to provide an estimation of the probability of the running Al-
gorithm 14 with i iterations, a solution BK will be found. To this end, we
introduce Equation (5.2) measuring the probability to obtain such solution at
position K (1 ď K ď n) by running i iterations. It should be noted that B1 has
been confirmed to be the optimal after performing a breadth first search.

PpBK, iq “ PpBK, i´ 1q
n
ÿ

j“K

PpBj, 1q ` PpBK, 1q
n
ÿ

j“K`1

PpBj, i´ 1q (5.2)

Fig. 5.4: Evolution of probabilities per number of iterations for each different solution

The above mentioned formula is a recursive formula where the base case
(i.e., PpBK, 1q) corresponds to the previously defined PpBKq (i.e., the probability
to find solution BK in one iteration). The rationale behind the recursive case is
that after each iteration the one with the lowest heuristic value is kept. Thus,
we measure the probability that the solution at position K (i.e., BK) remains

136

5. Experiments

chosen after i iterations. This is achieved by adding (a) the probability that in
the previous i´ 1 iterations, BK was chosen and in the ith iteration an equal or
worst solution is chosen (i.e., PpBK, i´ 1q

řn
j“K PpBj, 1q); and (b) the probability

that in the previous i´ 1 iterations a worst solution was chosen and in the ith
iteration BK is chosen (i.e., PpBK, 1q

řn
j“K`1 PpBj, i´ 1q). Intuitively, increasing

the number of iterations, those with smallest heuristics will have a higher
probability to be found regardless of the initial probability being low. With
such basis, we can provide an estimation of the evolution of the probability to
find a solution BK by applying the aforementioned formula.

Based on the above mentioned formula, we experiment with the trade-off
between different SLAs. We perform evaluation with the following settings:
(1) two SLAs (i.e., load time, query time), equally weighted to 50%, (2) three
SLAs (i.e., load time, query time, storage space), equally weighted to 33%, and
(3) four SLAs (i.e., load time, query time, storage space, freshness), equally
weighted to 25%. Our experiments show that the number of iterations to
converge gradually increases with the number of considered SLAs. As shown
in Figure 5.4, our approach takes 11 iterations, 26 iterations, and 39 iterations
to converge (i.e., to be certain with a probability of 80%, that the obtained
solutions will be one in the top three) for two, three, and four considered
SLAs, respectively. In addition, we measure the average execution time of an
iteration in different settings. Our approach takes 55.45 seconds, 58.68 seconds,
and 183.34 seconds for two, three and four SLAs, respectively. For four SLAs,
it takes more time because it has larger search space, due to the conflicting
SLAs and the characteristics vector (i.e., refresh frequency). As all considered
scenarios follow the same convergence trend as shown in Figure 5.4, let us
focus on the most complex scenario involving the trade-off of four SLAs. For
four SLAs, we obtained n “ 22 different solutions across 90 executions. It can
be seen that after 39 iterations, it is almost certain (i.e., ą90% probability) that
the obtained solutions will be one in the top three.

From such results, we conclude that the problem of finding optimal solu-
tions by using hill-climbing indicates the issues with local optimums, known
for greedy multi-objective optimization algorithms, and opens the challenge
of applying more complex (i.e., parametrized solutions). However, the ap-
proach of shotgun hill-climbing, quickly yields near-optimal results after few
iterations with high probability.

Comparison with an existing solution

Several intermediate materialization approaches for Big Data systems can be
found in the literature, as discussed in Section 6. However, all of them focus
on improving the query execution time without considering others SLAs (such
as freshness). In order to show the effectiveness of our approach, we compare
against the best representative solution (i.e., ReStore).

137

5. Experiments

Query Name Start Time Repeated When to Repeat
Q3 0 Yes 6 / hour
Q5 1 No -

Q10 2 Yes 2 / hour
Q11 3 Yes 1 / hour
Q17 0 Yes 14 / hour
Q19 2 No -

Table 5.3: Sample workload based on TPC-H

Fig. 5.5: Comparison of our approach, ReStore (C) conservative heuristics and ReStore (A)
aggressive heuristics

As mentioned in [35], 80% of queries are repeated in the range of minutes
to hours. Thus, we created a sample workload by utilizing six TPC-H queries,
based on the aforementioned work. We set four out of six queries as repetitive
and two out of six as non-repetitive queries. In addition, we set their query
frequencies in the range of minutes to hours as shown in Table 5.3. Moreover,
ReStore has a configuration parameter for applying its eviction policies (to
delete unused materialized nodes). For experiments, we chose different
configuration values such as 9, 29, 55, and 70 in minutes to compare with all
the possible behaviors of ReStore.

Figure 5.5 depicts three charts to show different metrics for comparison.
In Figure 5.5a, we compare the total number of materialized nodes, in Figure 5.5b,
we show the total space required, and in Figure 5.5c, we show the average
speedup gain in the repetitive queries. When executing the queries for the
first time as shown in Figure 5.5a and Figure 5.5b, ReStore materializes each
operator matching the heuristics and thus, it materializes more nodes and
takes more space. Whereas, our approach uses the cost model to materialize
only those nodes which satisfy all the four objectives (i.e., loading time, query
time, storage space, and freshness).

When we configured 9 minutes for applying ReStore’s eviction policies, it
perceives only Q17 as a repetitive query because it is repeated before applying
the eviction policies. Hence, it deletes all the materialized nodes except those

138

5. Experiments

Fig. 5.6: Effect of Refresh Frequency on Loading Cost and Freshness

which are used in Q17. Similarly, when we chose 29 minutes, now it assumes
that Q3 and Q17 are repetitive queries and keeps only their materialized
nodes. This decision helps to reduce the occupied space but it also decreases
the average speedup as shown in Figure 5.5c. Likewise, when we configured
55 minutes, ReStore notices three queries (i.e., Q3, Q10, and Q17) as repetitive
and keeps only the associated materialized nodes. As a consequence, it
deletes all other materialized nodes which also reduces the average speedup.
Finally, when we configured 70 minutes, now it detects all possible repetitive
queries and manages to keep all the required materialized nodes. However,
still ReStore (C) keeps more nodes and takes more space compared to our
approach as shown in Figure 5.5a and Figure 5.5b. On the other hand,
ReStore (A) keeps a similar number of materialized nodes to our approach,
but provides less average speedup. In general, our approach considers query
frequency which helps to choose only the required materialized nodes from
the start and provides better speedup than ReStore’s heuristics.

In our experiments, we also evaluated our approach based on the charac-
teristics vector (i.e. refresh frequency) to find the trade-off between loading
cost and freshness. As shown in Figure 5.6, ReStore does not have support
to balance them. It always deletes a materialized node as soon as any of its
input source is updated. Thus, it always provides maximum freshness (only
affected by the time to materialize new nodes). Consequently, it worsens the
loading cost for materialized nodes, which may have highly variable input
sources. Oppositely, our approach takes refresh frequency as an input and
based on this, it tries to balance loading cost and freshness, by choosing the
optimal value for each to-be-materialized node.

From these experiments, we conclude that our approach provides bet-
ter solutions for materialization than ReStore. In addition, it can consider
different SLAs as discussed in Section 3.3, which are not an option in the
existing materialization solutions. Moreover, our example shows that we can

139

6. Related Work

also accept refresh frequency as a characteristic to find the balance between
freshness and loading cost which is not possible in the existing materialized
solutions.

6 Related Work

In this chapter, we discuss related work on selections of intermediate results to
materialize. Our discussion encompasses four different research lines, namely:
materialized view selection in relational databases, materializing intermediate results
in BDS, multi-query optimization, and sharing computation in BDS. In this section,
we separately present their related work.

Materialized Views Selection. The materialized view selection problem has
been extensively studied in the context of data warehouses [69]. Most commer-
cial database systems now include a physical design advisor that automatically
recommends materialized views by analysing a sample workload of queries
(e.g. [8]). According to the survey [69], most view selection methods follow
the approach of balancing the trade-off between query processing and view
maintenance cost, and dismiss other relevant SLAs (such as freshness, etc.).
Whereas, our approach is generic, thus it can consider any type of SLAs that
are quantifiable. In addition, our approach takes a characteristics vector (such
as refresh frequency) as an input for different SLAs and based on it, it chooses
the optimal characteristic value for each to-be-materialized node. This feature
is not an option in the existing materialized views solutions.

Materializing Intermediate Results. There exist several approaches that
aim to identify potential materialization of intermediate results for future
reuse in Big Data systems. ReStore [44] is a heuristic based materialized
solution which is implemented for Apache Pig. It has two heuristics (i.e.,
conservative and aggressive) to decide which operator’s output to materialize.
Similarly, m2r2 [86] also helps in choosing output of different operators
for materialization. However, both solutions are tightly coupled with the
technology and in addition, they do not consider different SLAs. In [133], a
similar approach to ours is presented, however it focuses on a performance-
oriented approach aimed to cloud environments, while we tackle any generic
SLAs that can be represented with cost functions.

Multi-query Optimization. Similar to materialized view selection, there
have been detailed work done on multi-query optimization in relational
databases [136, 139]. Multi-query optimization focuses on improving the
performance of concurrent running queries, while our approach focuses on
recurrent queries which have redundant parts. They keep the redundant parts

140

7. Conclusions

in the memory to use them in the currently running queries. On the contrary,
we materialize the redundant parts to use them in the future queries.

Sharing Computations. Similar to multi-query optimization, there are few
techniques proposed for Big Data systems. MRShare [123] proposes a cost
model to group similar queries and optimizes re-usage of redundant parts in
Hadoop. Similarly, [161] presents an approach for concurrent running jobs in
Hadoop, by reusing existing multi-query optimization techniques. In general,
their goal is to avoid redundant work of concurrent running jobs, whereas our
work focuses on recurrent jobs.

7 Conclusions

In this chapter, we have presented an approach for the selection of intermediate
results from data-intensive flows. We have built upon the general framework
for materialized view selection by giving it additionally a multi-objective
perspective. Moreover, we have provided a set of three cost functions with
its building blocks (i.e., engine-independent statistics and engine-dependent
metrics), and a representation of the approach as a state space search problem.
Experimental results have showed that our approach is highly efficient in
terms of performance, while providing near-optimal results.

Acknowledgements. This research has been partly funded by the European
Commission through the Erasmus Mundus Joint Doctorate “Information
Technologies for Business Intelligence - Doctoral College” (IT4BI-DC) and the
GENESIS project, funded by the Spanish Ministerio de Ciencia e Innovación
(num. TIN2016-79269-R).

141

Chapter 6

Conclusions and Future
Directions

Abstract

In this chapter, we summarize the main results of this PhD thesis, presented in
Chapters 2´ 5. We additionally, present several interesting future directions arising
from this thesis work.

142

1. Conclusions

1 Conclusions

In this thesis dissertation, we have presented our approach for managing the
different activities composing the data integration process. The main goal of
this thesis is to provide a novel framework for data integration in the context
of data-intensive ecosystems. To this end, we introduced our vision for data
integration as a sequence of activities encompassing both stewardship and
data exploitation perspectives. The former represented by the activities of
deployment of an architecture and populating metadata, and the latter by the
activities of virtual and materialized integration. In such vision, metadata
plays a key role to couple the different activities and offers the possibility
to partially automate them. With the focus on the requirements posed by
the three Vs (i.e., volume, variety and velocity), we have proposed novel
contributions towards each of the integration activities. In what follows, we
first summarize the contributions presented in Chapters 2´ 5, and finally
conclude the thesis.

Chapter 2 studied the problem of defining a semantic-aware data-intensive
integration architecture including predefined flows of metadata to support
the automation of data exploitation. The chapter begins with the definition
of a set of requirements sought for a data-intensive architecture, which were
based on the study of the literature and past experience in industrial projects.
Driven by such requirements, we studied the literature related to architectural
solutions for data-intensive ecosystems. This study lead to conclude that
there nowadays exists two main families of architectures that partially cover
the sought requirements. Starting from this premise, we proposed Bolster a
software reference architecture that combines ideas from the two previous
families and satisfies all requirements. A distinguishing feature of Bolster is
that it provides semantic-awareness in data-intensive ecosystems. These are
system implementations that have components to simplify data definition and
exploitation. In particular, they leverage metadata (i.e., data describing data)
to enable (partial) automation of data exploitation and to aid the user in their
decision making processes. This simplification supports the differentiation of
responsibilities into cohesive roles enhancing data governance. Our contribu-
tions were complemented by an exemplary case study illustrating how the
components in Bolster interact. Finally, we presented a framework to support
the instantiation of components from a stack of open source tools, followed by
a description of industrial experiences where Bolster was successfully adopted.

Chapter 3 concerned the problem of providing new metadata artifacts that
allow to represent variety and variability in the sources, while maintaining
simplicity in schema mappings leveraging on semantic graphs and their
formalisms. To this end, we proposed an integration-oriented ontological
vocabulary (i.e., a metadata model) that leverages well-known data integration

143

1. Conclusions

foundations. With the proposed structure, we are capable of formalizing all
integration constructs (i.e., global schema, source schemata and mappings) in
a single graph-based structure. Furthermore, we advocate for the adoption of
local-as-view schema mappings, which are well-suited for the dynamic setting
of interest despite potentially generating performance problems. To semi-
automatically deal with evolution, we proposed an algorithm that, upon a new
change, updates the graph-based metadata structure. Our evaluation results
showed that the proposed approach is capable of handling up to 71.62% of
the kind of structural changes occurring in widely used external data sources.

Chapter 4 presented a novel approach to the problem of answering queries
using views under semantic heterogeneities as well as data source and schema
evolution. Specifically, we leveraged the introduced graph-based metadata
model and proposed query rewriting algorithms that transformed an input
graph-based query into a set of equivalent queries over the sources such
that include or discard semantically heterogeneous data sources, as well as
perform implicit aggregations of data. We showed that, under the closed-
world assumption, the proposed method yields the set of certain answers as it
is sound and complete. Albeit the cost of rewriting a query falls in the NP-
hard complexity class, we show by means of an extensive set of experiments
that the search space is still manageable in realistic scenarios, even without
any pruning or search heuristic. This allows us to efficiently handle query
rewriting over a magnitude of hundreds of sources.

Finally, Chapter 5 focused on the problem of selecting the optimal set
of intermediate results to be reused from data-intensive flows driven by
metadata and service-level agreements. To this end, we revisited the traditional
techniques for materialized view selection and extended them for the case
of data-intensive flows. Precisely, we adopted multi-objective optimization
methods to assess multiple and conflicting objectives (represented by design
goals and cost functions). Employing a heuristic-based local search algorithm
(i.e., shotgun hill climbing), we efficiently explore the search space and find
solutions. The experimental results show that, with high probability, the
obtained solution turns out to be the optimal with a number of iterations in
the order of tenths.

Overall, this thesis proposed contributions to each of the activities in the
data integration process (see Figure 1.9 for its graphical representation). We
contend that this work is a step towards the definition and implementation
of an end-to-end data integration framework in the context of data-intensive
ecosystems.

144

2. Future directions

2 Future directions

The proposed framework in this thesis for data-intensive integration opens
the door to many interesting future directions to extend our current work.

We foresee the extension of the proposed graph vocabulary with richer
semantic annotations (e.g., service-level agreements). These can serve as
drivers to perform a heuristic-based query rewriting process, with the goal of
reducing the result set (e.g., providing only data of the most recent source).
Another relevant line of future work is to explore new classes of queries
beyond the proposed sets of edge-restricted patterns, for instance with regular
querise. Alternatively, we could relax the necessity of specifying the complete
query pattern but provide only the concepts of interest for the analyst. This
would require automatically discovering candidate paths to resolve the query.
Another interesting line of research would be that of extending the core graph
model (e.g., adopt hypergraphs), or any of its constructs (e.g., the mappings
graph to represent global-local-as-view schema mappings) to increase their
expressiveness (e.g., considering derived information).

As future work, resulting from the overall framework, we devise the
coupling of the results of this thesis with Quarry [84], a platform for the
automatic deployment of data-intensive flows from input information require-
ments. Hence, Quarry maps to the materialized activity in the proposed data
integration process. Combining our approach for virtual integration with
Quarry could lead to the implementation and deployment of the envisioned
end-to-end data integration system.

145

Appendices

146

Appendix A

Detailed Algorithms for
Rewriting Conjunctive
Queries

1 Preliminaries

In this appendix we present a detailed version of the different phases involving
rewriteCQ.

2 Intra-concept generation

In this subsection we first depict the main algorithm for intra-concept genera-
tion (see Algorithm 15). Later we detail each of the performed steps together
with examples from the case study introduced in Section 3.1 of Chapter 4.

Algorithm 15 Intra-concept generation

Input QG “ xπ, ϕy is a global query, G is the graph of query related concepts
Output partialCQsGraph is the graph of partial CQs per concept
1: function IntraConceptGeneration(xπ, ϕy, G)
2: partialCQsGraph ÐH Ź Graph with vertices <String,CQ>
3: for c P G.vertexSet() do
4: attsPerWrapper Ð Map(key:W Ñ val:A)
5: F Ð xc, hasFeature, ?Fypϕq
6: if F “ H then
7: W1 Ð tw P W | c P pattpMpwqq.vertexSet()u
8: for w P W1 do
9: attsPerWrapperrws Ð H

10: for f P F do
11: W1 Ð tw P W | xc, hasFeature, f y P pattpMpwqqu

147

2. Intra-concept generation

12: for w P W1 do
13: a Ð x?a, sameAs, f y ^ xw, hasAttribute, ?aypGq
14: attsPerWrapperrws Ð attsPerWrapperrws Y tau
15: candidateCQs ÐH

16: for w P attsPerWrapper do
17: Q Ð CQ(xattsPerWrapperrws,H, twuy)
18: candidateCQsY“Q
19: coveringCQs ÐH

20: while candidateCQs ‰ H do
21: Q Ð any(candidateCQs)
22: candidateCQs z“Q
23: coveringCQs(cˆthasFeatureuˆ F, c, Q, candidateCQs, coveringCQs)
24: partialCQsGraph.findVertex(c)Ð coveringCQs
25: return partialCQsGraph

Identify queried features (lin. 3-5). The intra-concept generation performs
the same logic for each concept c in the graph of query related concepts. We
first define a function that maps wrappers to sets of attributes (i.e., the map
attsPerWrapper). This identifies the attributes that each wrapper covers for
the queried features in c. Next, the pattern in line 5 stores the set of features F
for c specified by the user’s query ϕ.

Example 2.1
Focusing on the concept InfoMonitor, the set F would contain tlagRatiou.

Process featureless concepts (lin. 6-9). Next, we process the case where
the set of requested features for c is empty. This is commonly the case of
specialization concepts, or other intermediate concepts that provide semantics
to G but no data. In this case, we need to generate partial CQs identifying its
participating wrappers but with no projected attributes. Hence, we look for
the set of wrappers W1 whose LAV subgraph cover c. Each of this wrappers
is added as a new key in the map attsPerWrapper with an empty set of
attributes.

Example 2.2
If we focus on the Monitor concept (which is featureless), here we would
add the keys wmon, w1, w2 and w3 to attsPerWrapper, all with empty sets
of attributes.

Resolve LAV mappings (lin. 10-14). Alternatively, when concepts have
queried features, we iterate on each feature in F looking for the set of wrappers

148

2. Intra-concept generation

W1 such that its LAV subgraph covers f . For each w P W1, we follow its sameAs
semantic annotation to identify its respective attribute name a in S . Thus,
such attribute name a is added to the set of attributes for w in the map
attsPerWrapper.

Example 2.3
Going back to InfoMonitor, we would add new entries for w1, w2 and w3 all
with the set tlagRatiou.

Generate covering CQs (lin. 16-24). Once we have populated the mapping
function attsPerWrapper for a concept c, we can generate combinations of
CQs that are covering. Initially, for each wrapper w we generate a new
CQ (depicted by the constructor CQ(xattsPerWrapperrws,H, twuy)), which is
added to the set of candidateCQs (i.e., the set of candidate queries with one
wrapper and the requested attributes they contribute to). While the set of
candidate queries is not empty, we pick a query Q from this set, which can be
done randomly or in order of most covered features for c (i.e., selecting first
the most covering features can ensure more pruning of the set of candidate
queries). Next, we systematically find covering CQs calling the recursive
algorithm coveringCQs (see Algorithm 16).

Example 2.4
The output of Algorithm 15 in the example would be a graph (for the sake
of simplicity here we show the vertex set) with the following pairs xc, CQy
(note that, due to the succinctness of the running example, no combinations
of CQ have been generated here).

• Hour ´ xhID,H, wtimey, xtime,H, w1y

• InfoMonitor ´ xlagRatio,H, w1y, xlagRatio,H, w2y, xlagRatio,H, w3y

• Monitor ´ xH,H, wmony, xH,H, w1y, xH,H, w2y, xH,H, w3y

• DataCollector ´ xidMon,H, wmony, xidMonitor,H, w1y, xidMonitor,H, w2y,
xidMonitor,H, w3y

• SoftwareApp ´ xidApp, name,H, wappsy

• MobileApp ´ xH,H, w1y, xH,H, w2y, xH,H, w3y

• AndroidApp ´ xH,H, w1y

149

3. Inter-concept generation

Finding covering CQs

Finding a set of covering CQs for a concept consists of recursively generating
valid combinations from the set of candidate CQs. We only consider those
combinations such that adding a wrapper contributes with new features, oth-
erwise it will not be minimal. In this case, we look for all valid combinations
of both CQs (i.e., ways to join the wrappers) calling method combineCQs (see
Algorithm 18). We recursively call coveringCQs with each legal combination.
If any of such combinations is covering, it is added to the set of resulting
coveringCQs.

Algorithm 16 Get covering CQs

Input G is the graph to check coverage, c is the concept at hand, currentCQ is a CQ, candidateCQs
is a set of CQs, coveringCQs is empty

Output the set candidateCQs is empty, all potential combinations of covering CQs with respect
to G are in coveringCQs

1: function coveringCQs(G, c, currentCQ, candidateCQs)
2: coveringCQs ÐH

3: if covering(currentCQ, G) then
4: coveringCQs Ð currentCQ
5: else if candidateCQs ‰ H then
6: for CQ P candidateCQs do
7: currentFeatures ÐH

8: for a P attspcurrentCQq do
9: f Ð xa, sameAs, ? f y, xc, hasFeature, ? f y

10: currentFeaturesY“ f
11: contributedFeatures ÐH

12: for a P attspcurrentCQ‘ CQq do
13: f Ð xa, sameAs, ? f y, xc, hasFeature, ? f y
14: contributedFeaturesY“ f
15: if currentFeatures Ă contributedFeatures then
16: CQs Ð combineCQs(currentCQ, CQ, c, c)
17: coveringCQsY“ coveringCQs(G, c, Q1, candidateCQszCQ)
18: return coveringCQs

3 Inter-concept generation

In this section, we first depict the main algorithm for inter-concept generation
(see Algorithm 17). The algorithm systematically chooses an edge e in the
graph of partial CQs in order to find valid combinations among the queries in
both ends of e using method combineCQ. The algorithm finishes when there
are no more edges in the graph.

Algorithm 17 Inter-concept generation

Input partialCQsGraph is the graph of partial CQs per concept
Output UCQ is a set of CQs (i.e., a union of CQs)
1: function InterConceptGeneration(partialCQsGraph)
2: while partialCQsGraph.edgeSet() ‰ H do

150

3. Inter-concept generation

3: e Ð chooseEdge(partialCQs)
4: s Ð source(e, partialCQsGraph), t Ð target(e, partialCQsGraph)
5: CQs Ð s._2, CQt Ð t._2
6: UCQ Ð combineCQs(CQs, CQt, s, e, t)
7: Remove s and t from partialCQsGraph, and add a new vertex (s` t) with the set CQ

preserving the graph structure.
8: return anyVertex(partialCQs)

Example 3.1
Using the input from the previous phase, the output from Algorithm 17
would be a set containing the following expression:

πwapps .name,wtime .hId,w1.lagRatiopw1 ˆwmon ˆwapps ˆwtimeq|

w1.idMonitor “ wmon.idMon^wmon.app “ wapps.idApp^w1.time “ wtime.hIdq

Combining sets of CQs

Combining two sets of CQs (CQs and CQt) consists of finding all possible
combinations amongst the cartesian product of both sets. However, such sets
can be initially pruned by splitting the combination in two phases. First, we
can process those queries that share wrappers, because they do not require
discovering equi join conditions. In this case the problem is reduced to
merging the cartesian product of all minimal queries (lines 3-20). Otherwise,
we need to find joins which entails looking for all pairs of queries whose
wrappers cover any of the available IDs (i.e., from cs or ct) as explained in
Section 4.4 (lines 21-39).

Algorithm 18 Combine CQs

Input CQs and CQt are sets of CQs, cs and cs are the concepts (e their edge) covered respectively
by CQs and CQt

Output CQ is a set of valid combinations of CQs and CQt
1: function combineCQs(CQs, CQt, cs, e, ct)
2: CQ ÐH Ź This set will hold all valid combinations
3: wrapperss ÐH

4: for CQ P CQs do
5: wrapperss Y“wrappCQq
6: wrapperst ÐH

7: for CQ P CQt do
8: wrapperst Y“wrappCQq
9: wrappersInBothSides Ð wrapperss Xwrapperst

10: CQsshared ÐH

11: for CQ P CQs do
12: if wrappCQq XwrappersInBothSides ‰ H then
13: CQsshared Ð CQ
14: CQt shared ÐH

151

3. Inter-concept generation

15: for CQ P CQt do
16: if wrappCQq XwrappersInBothSides ‰ H then
17: CQt shared Ð CQ
18: for xCQs, CQty P CQsshared ˆ CQt shared do
19: if minimal(wrappCQs ‘ CQtq, cs ˆ eˆ ct) then
20: CQY“ CQs ‘ CQt

21: CQsnotShared Ð CQs z CQsshared
22: CQtnotShared Ð CQt z CQt shared
23: IDs Ð x?IDs, subClass, IDy ^ xcs, hasFeature, ?IDsypGq
24: IDt Ð x?IDt, subClass, IDy ^ xct, hasFeature, ?IDtypGq
25: CQs´IDs ÐH, CQs´IDt ÐH

26: for CQ P CQsnotShared do
27: for w P wrappCQq do
28: if IDs P pattpMpwqq then
29: CQs´IDs Y“ CQ
30: if IDt P pattpMpwqq then
31: CQs´IDt Y“ CQ

32: CQt´IDs ÐH, CQt´IDt ÐH

33: for CQ P CQtnotShared do
34: for w P wrappCQq do
35: if IDs P pattpMpwqq then
36: CQt´IDs Y“ CQ
37: if IDt P pattpMpwqq then
38: CQt´IDt Y“ CQ

39: for xCQs, CQty P CQs´IDs ˆ CQt´IDs do
40: CQY“ findJoins(CQs, CQt)
41: for xCQs, CQty P CQs´IDt ˆ CQt´IDt do
42: CQY“ findJoins(CQs, CQt)
43: return CQ

Example 3.2
Taking pairs of connected concepts from the previous phase, for instance
the pair InfoMonitor-Monitor will detect that all wrappers from InfoMonitor
have to be joined with wmon from Monitor. Other combinations (e.g., two
involving w1 would be directly combined). Using the previous pair of
concepts, we would generate three new CQs joining wmon with w1, w2 and
w3. Assume another iteration taking such resulting set of queries and trying
to join them with the CQs in SoftwareApp. All except the query involving
wmon would be discarded as there is no way to join them with wapps.

Discovering joins for two CQs

Algorithm 19 Find joins

Input Qs and Qt are CQs, ID is an identifier feature
Output CQ is a combination of Qs and Qt with equi join conditions
1: function findJoins(Qs, Qt, ID)

152

3. Inter-concept generation

2: Ws ÐH

3: for w P wrappQsq do
4: if ID P pattpMpwqq then
5: Ws Y“w
6: Wt ÐH

7: for w P wrappQtq do
8: if ID P pattpMpwqq then
9: Wt Y“w

10: CQ Ð Qs ‘Qt
11: for xws, wty P Ws ˆWt do
12: as Ð xws, hasAttribute, ?asy ^ x?as, sameAs, IDypGq
13: at Ð xwt, hasAttribute, ?aty ^ x?at, sameAs, IDypGq
14: CQ Ð CQ‘ Pred(as “ at)
15: return CQ

153

Appendix B

Extended Experiments for
Rewriting Conjunctive
Queries

In this appendix we exhaustively report on the experimental results of rewriteCQ.
We assume the same experimental setting as described in Section 6.1.

1 Evolution of response time based on wrappers

We first analyse how the response time evolves based on the number of
wrappers. To this end we plot the evolution of R for different values of |W|, as
depicted in Figures B.1, B.2 and B.3 (which respectively correspond to |F| “ 5,
|F| “ 10 and |F| “ 20). In all figures, the horizontal axis contain combinations
of |EW |, FracW and |W|, while the vertical axis contain FracQ, and the colored
legend corresponds to different values of |EQ|. Note that there are no charts
where |EW | ą |EQ| (i.e., wrappers cover only the graph associated with the
query).

From the previous results we observe that in all cases there is an exponen-
tial trend for R as the number of available sources grows. Nonetheless, in
many of the situations, we are capable of handling efficiently 128 wrappers.
The limitation on number of wrappers occurs as the number of edges covered
by the query (i.e., |EQ|) grows . We also observe that the worst case occurs
when FracW « 50%. As expected, this case might generate many combinations
of wrappers intra-concept to cover all the requested features. Contrarily, when
FracW ! 50% it is harder to find combinations covering the requested features
(as wrappers have a smaller coverage). Similarly, when FracW " 50% it is
easier that a single wrapper (or a combination of few) covers the requested

154

1. Evolution of response time based on wrappers

Fig. B.1: Evolution of R w.r.t. |W| for |F| “ 5

Fig. B.2: Evolution of R w.r.t. |W| for |F| “ 10

features.
This worst case fact also reflects on the variability among executions, which

leads to some inconsistencies in the trends. Note, that in some cases for a
higher number of wrappers their response time seems to be reduced. However,
with a closer look, we observe high standard deviations between the three
executions (if they did not crash due to lack of memory as the number of
intermediate results grow). Thus, we conjuncture that with more resources
and a large enough sample of executions the exponential trend would clearly
be reflected.

155

2. Evolution of response time based on edges in the query.

Fig. B.3: Evolution of R w.r.t. |W| for |F| “ 20

2 Evolution of response time based on edges in the
query.

In the second experimental analysis, we are concerned with studying the
impact of the size of the query on the time to perform a rewriting. To this
end, we plot the evolution of R for different values of |EQ|, as depicted in
Figures B.4, B.5 and B.6 (respectively corresponding to |F| “ 5, |F| “ 10 and
|F| “ 20). Similarly as before, all figures contain a horizontal axis with the
different combinations of |EW |, |FracW | and |EQ|, a vertical axis containing
different values of FracQ, and a legend with |W|. Note we have filtered out
|W| “ 128 due to the high variability yield in the results, which hindered the
visual analysis.

The analytical results show how the cost of rewriting is almost linear
regardless of |EQ| for low values of |EW |. This is not a surprising result, as
we can expect a large pruning of candidate solutions in the intra-concept
generation phase. As the number of covered edges by wrappers grows, we
start seeing variability and a more exponential trend. As a matter of fact, we
observe the same trend as in the previous case (i.e., the worst case scenario is
when FracW « 50%).

We also observe that increasing the number of features |F| leads to an ex-
ponential trend faster. Nonetheless, still we are capable of efficiently handling
large number of sources in a matter of few seconds.

156

2. Evolution of response time based on edges in the query.

Fig. B.4: Evolution of R w.r.t. |EQ| for |F| “ 5

Fig. B.5: Evolution of R w.r.t. |EQ| for |F| “ 10

157

2. Evolution of response time based on edges in the query.

Fig. B.6: Evolution of R w.r.t. |EQ| for |F| “ 20

158

Appendix C

MDM: Governing Evolution
in Big Data Ecosystems

This appendix has been published as a paper in the Proceedings of the 21th
International Conference on Extending Database Technology, EDBT 2018.
The layout of the papers has been revised
DOI: https://doi.org/10.5441/002/edbt.2018.84

Open Proceedings copyright / credit notice:
Copyright held by the owner/author(s). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

159

Abstract

On-demand integration of multiple data sources is a critical requirement in many
Big Data settings. This has been coined as the data variety challenge, which refers
to the complexity of dealing with an heterogeneous set of data sources to enable their
integrated analysis. In Big Data settings, data sources are commonly represented by
external REST APIs, which provide data in their original format and continously
apply changes in their structure (i.e., schema). Thus, data analysts face the challenge to
integrate such multiple sources, and then continuosly adapt their analytical processes
to changes in the schema. To address this challenges, in this chapter, we present the
Metadata Management System, shortly MDM, a tool that supports data stewards
and analysts to manage the integration and analysis of multiple heterogeneous sources
under schema evolution. MDM adopts a vocabulary-based integration-oriented
ontology to conceptualize the domain of interest and relies on local-as-view mappings
to link it with the sources. MDM provides user-friendly mechanisms to manage the
ontology and mappings. Finally, a query rewriting algorithm ensures that queries
posed to the ontology are correctly resolved to the sources in the presence of multiple
schema versions, a transparent process to data analysts. On-site, we will showcase
using real-world examples how MDM facilitates the management of multiple evolving
data sources and enables its integrated analysis.

160

1. Introduction

1 Introduction

In recent years, a vast number of organizations have adopted data-driven
approaches that align their business strategy with advanced data analysis.
Such organizations leverage Big Data architectures that support the definition
of complex data pipelines in order to process heterogeneous data, from
multiple sources, in their original format. External data (i.e., neither generated
nor under control of the organization) are commonly ingested from third
party data providers (e.g., social networks) via REST APIs with a fixed schema.
This requires data analysts to tailor their processes to the imposed schema for
each source. A second challenge that data analysts face is the adaptation of
such processes upon schema changes (i.e., a release of a new version of the
API), a cumbersome task that needs to be manually dealt with. For instance,
in the last year Facebook’s Graph API1 released four major versions affecting
more than twenty endpoints each, many of them breaking changes. The
maintenance of such data analysis processes is critical in scenarios integrating
tenths of sources and exploiting them in hundreds of analytical processes,
thus its automation is badly needed.

The definition of an integrated view over an heterogeneous set of sources
is a challenging task that Semantic Web technologies are well-suited for to
overcome the data variety challenge [75]. Given the simplicity and flexibility
of ontologies, they constitute an ideal tool to define a unified interface (i.e.,
global vocabulary or schema) for such heterogeneous environments. This
family of systems, that perform data integration using ontologies, propose
to define a global conceptual schema (i.e., by means of an ontology) over the
sources (i.e., by means of mappings) in order to rewrite ontology-mediated
queries (OMQs) to the sources. The state of the art approaches for such
integration-oriented ontologies are based on generic reasoning algorithms,
that rely on certain families of description logics (DLs). Such approaches
rewrite an OMQ, first to an expression in first-order logic and then to SQL.
This approach, commonly referred as ontology-based data access (OBDA) [130],
does not consider the management of changes in the sources, and thus such
variability in their schema would cause OMQs either crash or return partial
results. This issue, which is magnified in Big Data settings, is caused because
OBDA approaches represent schema mappings following the global-as-view
(GAV) approach, where elements of the ontology are characterized in terms
of a query over the source schemata. GAV ensures that the process of query
rewriting is tractable and yields a first-order logic expression, by just unfolding
the queries to the sources, but faulty upon source schema changes [33]. To
overcome this issues a desiderata is to adopt the local-as-view (LAV) approach.
Oppositely to GAV, LAV characterizes elements of the source schemata in

1https://developers.facebook.com/docs/graph-api/changelog

161

https://developers.facebook.com/docs/graph-api/changelog

1. Introduction

terms of a query over the ontology, making it inherently more suitable for
dynamic environments [82]. LAV flexibility, however, comes at the expense of
computational complexity in the query answering process.

To address these challenges, we adopt a vocabulary-based approach for
data integration. These approaches are not necessarily restricted to the ex-
pressiveness of a DL and its generic reasoning algorithms. Such settings rely
on rich metamodels for specific integration tasks, here focused on schema
evolution. Under certain constraints when instantiating the metamodel, it
is possible to define specific efficient algorithms that resolve LAV mappings
without ambiguity. To this end, we created the Metadata Management System,
or shortly MDM2, an end-to-end solution to assist data stewards and data
analysts during the Big Data integration lifecycle. Data stewards are provided
with mechanisms to semi-automatically integrate new sources and accomo-
date schema evolution into a global schema. In turn, data analysts have means
to pose OMQs to such global schema by making transparent the underlying
mechanisms to query the sources with LAV mappings.

MDM implements a vocabulary-based integration-oriented ontology, rep-
resented by means of two RDF graphs, specifically the global graph and
the source graph [98]. The former representing the domain of interest (also
known as domain ontology) and the latter the schema of the sources. The
key concepts are releases, which represent a new source or changes in existing
sources. A relevant element of releases are wrappers (from the well-known
mediator/wrapper architecture in data integration), the mechanism enabling
access to the sources (e.g., an API request or a database query). Upon new
releases the schemata of wrappers are extracted and their RDF-based represen-
tation stored in the source graph. Afterwards, the data steward is aided on the
process of linking such new schemata to the global graph (i.e., define the LAV
mapping). Orthogonally, data analysts pose OMQs to the global graph. The
current de-facto standard to query ontologies is the SPARQL query language,
however to enable non-expert analysts to query the sources MDM offers an
interface where OMQs are graphically posed as subgraph patterns of the
global graph, which are automatically translated to SPARQL. A specific query
rewriting algorithm takes care of how to properly resolve LAV mappings, a
process that consists on the discovery of joins amongst wrappers and their
attributes, regardless of the number of wrappers per source.

1.1 Motivational use case

As motivational use case, and for the sake of understandability, we will analyse
information related to european football teams. This represents the simple
use case that will be demoed on-site amongst others with higher complexity

2http://www.essi.upc.edu/~snadal/mdm.html

162

http://www.essi.upc.edu/~snadal/mdm.html

1. Introduction

(i.e., the SUPERSEDE project). Precisely, we aim to ingest data from four
data sources, in the form of REST APIs, respectively providing information
about players, teams, leagues and countries. The integrated schema of this
scenario is conceptualized in the UML depicted in Figure C.1, which we use
as a starting point to provide a high-level representation of the domain of
interest, used to generate the ontological knowledge captured in the global
graph.

Fig. C.1: UML of the motivational use case

Each of the APIs is independent from each other, and thus they differ in
terms of schema and format. Thus, for instance, the Players API provides
data in JSON format while the Teams API in XML. An excerpt of the content
provided by such two APIs is depicted in Figure C.2. Next, the goal is to enable
data analysts to pose OMQ to the ontology-based representation of the UML
diagram (i.e., global graph) by navigating over the classes. Specifically, we
aim the sources to be automatically accessed under multiple schema versions.
An exemplary query would be, “who are the players that play in a league of their
nationality?”.

{
"id": 6176,
"name": "Lionel Messi",
"height": 170.18,
"weight": 159,
"rating": 94,
"preferred_foot": "left",
"team_id": 25

}

<team>
<id>25</id>
<name>FC Barcelona</name>
<shortName>FCB</shortName>

</team>

Fig. C.2: Sample data for Players API and Teams API

163

2. Demonstrable Features

Outline In the rest of the chapter, we will introduce the demonstrable
features to resolve the motivational and other exploratory queries. We first
provide an overview of MDM and then, we present its core features to be
demonstrated. Lastly, we outline our on-site presentation, involving the
motivational use case and a complex real-world use case.

2 Demonstrable Features

MDM presents an end-to-end solution to integrate and query a set of con-
tinuously evolving data sources. Figure C.4 depicts a high-level overview of
the approach. Its pillar is the Big Data integration (BDI) ontology [120], the
metadata model (i.e., set of design guidelines) that allow data stewards to
semantically annotate the integration constructs that enable automating the
evolution process and unambiguously resolve query answering.

Fig. C.4: High-level overview of our approach

We devise four kinds of interaction with the system, which are in turn the
offered functionalities: (a) definition of the global graph, where data stewards
define the domain of interest for analysts to query; (b) registration of wrappers,
either in the presence of a new source or the evolution of an existing one; (c)
definition of LAV mappings, where LAV mappings between the source and the
global graphs are defined; and (d) querying the global graph, where data analysts
pose OMQs to the global graph which are automatically rewritten over the
wrappers. In the following subsections, we describe how MDM assists on
each of them.

2.1 Definition of the global graph

The global graph, whose elements are prefixed with G, reflects the main
domain concepts, relationships among them and features of analysis. To
this end, we distinguish between two main constructs concepts and features.

164

2. Demonstrable Features

Concepts (i.e., instances of G:Concept) are elements that group features (i.e.,
G:Feature) and do not take concrete values from the sources. Only concepts
can be related to each other using any user-defined property, we also allow
to define taxonomies for them (i.e., rdfs:subClassOf). It is possible to reuse
existing vocabularies to semantically annotate the data at the global graph,
and thus follow the principles of Linked Data. This, enables data to be
self-descriptive as well as it opens the door to publish it on the Web [25].
Furthermore, we restrict features to belong to only one concept.

MDM supports the definition of the global graph avoiding the need to use
external ontology modeling tools (e.g., Protégé). Figure C.5 depicts an excerpt
of the global graph for the demo use case, focusing on the concepts Player
and Team. Like we said, we reuse vocabularies as much as possible, hence
the concept Team is reused from http://schema.org/SportsTeam. When no
reuse is possible, we define the example’s custom prefix ex. As data stewards
interact with MDM to define the global graph, the corresponding RDF triples
are being generated automatically.

Fig. C.5: Global graph for the motivational use case. Blue and yellow nodes denote concepts and
features

2.2 Registration of new data sources

New wrappers are introduced either because we want to consider data from
a new data source, or because the schema of an existing source has evolved.
Nevertheless, in both cases the procedure to incorporate them to the source
level, whose elements are prefixed with S, is the same. To this end, we define
the data source (i.e., S:DataSource) and wrapper (i.e., S:Wrapper) metacon-
cepts. Data stewards must provide the definition of the wrapper, as well as
its signature. We work under the assumption that wrappers provide a flat
structure in first normal form, thus the signature is an expression of the form
wpa1, . . . , anq where w is the wrapper name and a1, . . . , an the set of attributes.
With such information, MDM extracts the RDF-based representation of the

165

http://schema.org/SportsTeam

2. Demonstrable Features

wrapper’s schema (i.e., creates elements of type S:Attribute) which are in-
corporated to the existing source level. In the case of a wrapper for an existing
data source, MDM will try to reuse as many attributes as possible from the
previous wrappers for that data source. However, this is not possible among
different data sources as the semantics of attributes might differ. In the case of
attributes in the source graph, as they are not meant to be shared, oppositely
to features in the global graph, there is no need to reuse external vocabularies.

Figure C.6 depicts an excerpt of the source graph for the sources related to
players and teams, the former with a wrapper’s signature w1pid, pName, height,
weight, score, f oot, teamIdq and the latter w2pid, name, , shortNameq. Note that,
for w1, some attribute names differ from the data stored in the source (see
Figure C.2), this is due to the fact that the query contained in the wrapper
might rename (e.g., f oot) or add new attributes (e.g., teamId). The definition
of a wrapper (e.g., a MongoDB query, a Spark job, etc.) is out of the scope of
MDM and should be carried out by the data steward.

Fig. C.6: Source graph for the motivational use case. Red, orange and blue denote data sources,
wrappers and attributes

2.3 Definition of LAV mappings

LAV mappings are encoded as part of the ontology. We represent them as two
components, (a) a subgraph of the global graph, one per wrapper, and (b) a
function linking attributes from the source graph to features in the global. The
former are achieved thanks to RDF named graphs, which allow to identify
subsets of other RDF graphs identified by an URI. In this case, the URI will be
the one for the wrapper. The latter are achieved via the owl:sameAs property.
Note that, traditionally, the definition of LAV mappings was a difficult task
even for IT people. However, in MDM LAV mappings can be easily asserted
through the interface: each wrapper must map to a named graph (i.e., a subset
of the global graph), and a set of owl:sameAs from attributes to features. The
task consists of first selecting a wrapper, and then, with the mouse, drawing a
contour around the set of elements in the global graph that this wrapper is
populating (including concept relations).

Figure C.7 depicts the LAV mappings for wrappers w1 and w2, respectively

166

2. Demonstrable Features

in red and green. Note the intersection in the concept sc:SportsTeam and
its identifier, this will be later used when querying in order to enable joining
such concepts. However, this joins are only restricted to elements that inherit
from sc:identifier.

Fig. C.7: LAV mappings for the motivational use case

2.4 Querying the global graph

To overcome the complexity of writing SPARQL queries over the global graph,
MDM adopts a graph pattern matching approach to enable non-technical data
analysts perform their OMQs. Recall that the WHERE clause of a SPARQL
query consists of a graph pattern. To this end, the analyst can graphically
select a set of nodes of the global graph representing such pattern, we refer
to it as a walk. Then, a specific query rewriting algorithm takes as input a
walk and generates as a result an equivalent union of conjunctive queries over
the wrappers resolving the LAV mappings [120]. Such process consists of
three phases: (a) query expansion, where the walk is automatically expanded to
include concept identifiers that have not been explicitly stated; (b) intra-concept
generation, that generates partial walks per concept indicating how to query
the wrappers in order to obtain the requested features for the concept at hand;
and (c) inter-concept generation, where all partial walks are joined to obtain a
union of conjunctive queries.

167

2. Demonstrable Features

Using the excerpt of the ontology depicted in Figure C.7, we could graphi-
cally pose an OMQ fetching the name of the players and their teams. Figure
C.8 shows how such query can be defined in MDM by drawing a contour (in
red) around the concepts and features of interest in the global graph. On the
right hand side, it is depicted the equivalent SPARQL query, as well as the
generated relational algebra expression over the wrappers. Table C.1 depicts a
sample of the output resulting of the execution of the query.

Fig. C.8: Posing an OMQ in MDM

ex:teamName ex:playerName
FC Barcelona Lionel Messi

Bayern Munich Robert Lewandowski
Manchester United Zlatan Ibrahimovic

Table C.1: Sample output for the exemplary query.

2.5 Implementation details

MDM has been developed at UPC BarcelonaTech in the context of the SUPER-
SEDE3 project using a service-oriented architecture. It is the cornerstorne of
the Big Data architecture supporting the project, and a central component
of its Semantic Layer [117]. On the frontend, MDM provides the web-based
component to assist the management of the Big Data evolution lifecycle. This
component is implemented in JavaScript and resides in a Node.JS web server.
The interface makes heavy use of the D3.js library to render graphs and en-
ables the user to interact with them. Web interfaces are defined using the
Pug template engine, and a number of external libraries are additionally used.
The backend is implemented as a set of REST APIs defined with Jersey for
Java, thus the frontend interacts with the backend by means of HTTP REST

3https://www.supersede.eu

168

https://www.supersede.eu

3. Demonstration overview

calls. This enables extensibility of the system and a separation of concerns
in such big system. The backend makes heavy use of Jena to deal with RDF
graphs, as well as its persistence engine Jena TDB. Additionally, a MongoDB
document store is responsible of storing the system’s metadata. Concerning
the execution of queries, the fragment of data provided by wrappers is loaded
into temporal SQLite tables in order to execute the federated query.

3 Demonstration overview

In the on-site demonstration, we will present the functionality of MDM relying
based on two use cases. First, we will focus on the chapter’s motivational
scenario, in order to comprehensively show the functionalities offered by
MDM. Next we will focus on the SUPERSEDE use case, a real-world scenario
of Big Data integration under schema evolution in order to show the full
potential and benefits of MDM. We will cover the four possible kinds of
interactions with MDM, taking the role of both data steward (definition of the
global graph, registration of new wrappers, definition of LAV mappings) and
data analyst (querying the global graph). We will showcase how MDM aids
on each of the processes, considering as well the input from participants.
Precisely, the following scenarios will be covered:

System setup. In the first scenario we will take the role of a data steward
that has been given a UML diagram (likewise Figure C.1), and assigned the
task of setting up a global schema to enable integrated querying of a disparate
set of sources. Thus, we will show how MDM supports the definition of
its equivalent global graph (likewise Figure C.5) within the interface. Once
finished, we will introduce the four sources (i.e., the players API, teams API,
etc.) and a wrapper for each. We will show how MDM automatically extracts
the schemata of wrappers to automatically generate the source graph (likewise
Figure C.6). Finally, we will show how MDM supports the graphical definition
of named graphs, which are the basis for LAV mappings, and thus properly
maps the source and global graphs (likewise Figure C.7).

Ontology-mediated queries. With the global graph set up and a set of data
sources and wrappers in place, now we can act as data analysts in order
to pose OMQs to the system. We will encourage participants to propose
their queries of interest, this is possible because MDM presents the global
graph and allows to graphically draw a walk around its nodes. This is later
automatically translated to its SPARQL form (likewise Figure C.8), and to
a relational algebra expression derived from the query rewriting process.
MDM presents the execution of the query in tabular form.

169

Bibliography

Governance of evolution. In Big Data ecosystems, changes in the structure
of the data sources will frequently occur. In this scenario, we will release
a new version of one of the APIs including breaking changes that would
cause the previously defined queries to crash. First, we will showcase how
MDM easily supports the inclusion of this new source into the existing global
graph and the definition of its LAV mappings. Next, we will execute again
the queries that were supposed to crash showing how MDM has adapted the
generated relational algebra expressions, where the two schema versions are
now fetched and yield correct results.

Acknowledgments This work was partly supported by the H2020 SUPER-
SEDE project, funded by the EU Information and Communication Technolo-
gies Programme under grant agreement no 644018, and the GENESIS project,
funded by the Spanish Ministerio de Ciencia e Innovación under project
TIN2016-79269-R.

170

References

References

[1] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J.
Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M.
Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish,
D. Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F. Naughton, R. Ra-
makrishnan, V. Markl, C. Olston, B. C. Ooi, C. Ré, D. Suciu, M. Stone-
braker, T. Walter, and J. Widom. The beckman report on database
research. Commun. ACM, 59(2):92–99, 2016.

[2] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón, F. Nau-
mann, T. B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis, and G. Vossen.
Fusion Cubes: Towards Self-Service Business Intelligence. IJDWM,
9(2):66–88, 2013.

[3] A. Abelló, O. Romero, T. B. Pedersen, R. B. Llavori, V. Nebot, M. J. A.
Cabo, and A. Simitsis. Using semantic web technologies for exploratory
OLAP: A survey. IEEE Trans. Knowl. Data Eng., 27(2):571–588, 2015.

[4] F. N. Afrati and P. G. Kolaitis. Answering aggregate queries in data
exchange. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008, June
9-11, 2008, Vancouver, BC, Canada, pages 129–138, 2008.

[5] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in a Map-
Reduce Environment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298,
2011.

[6] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[7] D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud computing:
current state and future opportunities. In EDBT 2011, 14th International
Conference on Extending Database Technology, Uppsala, Sweden, March 21-24,
2011, Proceedings, pages 530–533, 2011.

[8] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya, and
M. Syamala. Database tuning advisor for microsoft SQL server 2005. In
VLDB, pages 1110–1121, 2004.

[9] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J.
Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover,
Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J.
Tsotras, R. Vernica, J. Wen, and T. Westmann. Asterixdb: A scalable,
open source BDMS. PVLDB, 7(14):1905–1916, 2014.

171

References

[10] S. Angelov, P. W. P. J. Grefen, and D. Greefhorst. A framework for
analysis and design of software reference architectures. Information &
Software Technology, 54(4):417–431, 2012.

[11] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc.
Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50(5):68:1–68:40, 2017.

[12] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data
Exchange. Cambridge University Press, 2014.

[13] M. Arenas, L. E. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. P.
Spinrad. Scalar aggregation in inconsistent databases. Theor. Comput.
Sci., 296(3):405–434, 2003.

[14] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Za-
kharyaschev. Reasoning over extended ER models. In Conceptual Mod-
eling - ER 2007, 26th International Conference on Conceptual Modeling,
Auckland, New Zealand, November 5-9, 2007, Proceedings, pages 277–292,
2007.

[15] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, and
M. Zakharyaschev. First-order rewritability of temporal ontology-
mediated queries. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 2706–2712, 2015.

[16] A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal
description logic for ontology-based data access. In IJCAI 2013, Pro-
ceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 711–717, 2013.

[17] M. Aufaure. What’s up in business intelligence? A contextual and
knowledge-based perspective. In Conceptual Modeling - 32th International
Conference, ER 2013, Hong-Kong, China, November 11-13, 2013. Proceedings,
pages 9–18, 2013.

[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 3-5, Madison, Wisconsin, USA, pages 1–16, 2002.

[19] P. B. Baeza. Querying graph databases. In PODS, pages 175–188. ACM,
2013.

[20] C. Batini, A. Rula, M. Scannapieco, and G. Viscusi. From data quality to
big data quality. J. Database Manag., 26(1):60–82, 2015.

172

References

[21] R. Bean. Variety, not volume, is driving big data initiatives, March 2016.

[22] B. Behkamal, M. Kahani, and M. K. Akbari. Customizing ISO 9126
Quality Model for Evaluation of B2B Applications. Information & Software
Technology, 51(3):599–609, 2009.

[23] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. San-
toro, and E. Tsamoura. Benchmarking the chase. In Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 37–52,
2017.

[24] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel. Towards intelligent
data analysis: The metadata challenge. In Proceedings of the International
Conference on Internet of Things and Big Data, IoTBD 2016, Rome, Italy,
April 23-25, 2016, pages 331–338, 2016.

[25] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web Information Systems, 5(3):1–22, 2009.

[26] T. Bleifuß, L. Bornemann, T. Johnson, D. V. Kalashnikov, F. Naumann,
and D. Srivastava. Exploring change - a new dimension of data analytics.
PVLDB, 12(2):85–98, 2018.

[27] E. Botoeva, D. Calvanese, B. Cogrel, J. Corman, and G. Xiao. A general-
ized framework for ontology-based data access. In AI*IA, volume 11298
of Lecture Notes in Computer Science, pages 166–180. Springer, 2018.

[28] E. A. Brewer. Towards robust distributed systems (abstract). In Proceed-
ings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, July 16-19, 2000, Portland, Oregon, USA., page 7, 2000.

[29] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the
expressive power of data integration systems. In Conceptual Modeling
- ER 2002, 21st International Conference on Conceptual Modeling, Tampere,
Finland, October 7-11, 2002, Proceedings, pages 338–350, 2002.

[30] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[31] D. Calvanese, E. Kharlamov, W. Nutt, and C. Thorne. Aggregate queries
over ontologies. In Proceedings of the 2nd International Workshop on On-
tologies and Information Systems for the Semantic Web, ONISW 2008, Napa
Valley, California, USA, October 30, 2008, pages 97–104, 2008.

173

References

[32] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink™: Stream and batch processing in a sin-
gle engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[33] L. Caruccio, G. Polese, and G. Tortora. Synchronization of queries and
views upon schema evolutions: A survey. ACM Trans. Database Syst.,
41(2):9:1–9:41, 2016.

[34] C. L. P. Chen and C. Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Inf. Sci., 275:314–347,
2014.

[35] Y. Chen, S. Alspaugh, and R. H. Katz. Interactive Analytical Processing
in Big Data Systems: A Cross-Industry Study of MapReduce Workloads.
PVLDB, 5(12):1802–1813, 2012.

[36] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF
mapping language. W3C recommendation, W3C, Sept. 2012.
https://www.w3.org/TR/r2rml/.

[37] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-
sharing peer-to-peer systems. In ICDT, volume 2572 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2003.

[38] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[39] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration.
Morgan Kaufmann, 2012.

[40] X. L. Dong and D. Srivastava. Big Data Integration. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2015.

[41] P. Downey. XML Schema Patterns for Common Data Structures. W3.org,
2005.

[42] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans
for data integration. J. Log. Program., 43(1):49–73, 2000.

[43] J. O. e Sá, C. Martins, and P. Simões. Big data in cloud: A data archi-
tecture. In New Contributions in Information Systems and Technologies -
Volume 1 [WorldCIST’15, Azores, Portugal, April 1-3, 2015]., pages 723–732,
2015.

[44] I. Elghandour and A. Aboulnaga. ReStore: Reusing Results of MapRe-
duce Jobs. PVLDB, 5(6):586–597, 2012.

174

References

[45] D. Esteban. Interoperability and standards in the european data econ-
omy - report on EC workshop. European Commission, 2016.

[46] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[47] R. C. Fernandez, P. Pietzuch, J. Kreps, N. Narkhede, J. Rao, J. Koshy,
D. Lin, C. Riccomini, and G. Wang. Liquid: Unifying nearline and
offline big data integration. In CIDR 2015, Seventh Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2015,
Online Proceedings, 2015.

[48] G. Fox and W. Chang. NIST Big Data Interoperability Framework:
Volume 3, Use Case and General Requirements. NIST Special Publication,
(1500-3), 2015.

[49] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational plans for
data integration. In Proceedings of the IJCAI-99 Workshop on Intelligent
Information Integration, Held on July 31, 1999 in conjunction with the Six-
teenth International Joint Conference on Artificial Intelligence City Conference
Center, Stockholm, Sweden, 1999.

[50] M. Galster and P. Avgeriou. Empirically-grounded reference architec-
tures: a proposal. In 7th International Conference on the Quality of Software
Architectures, QoSA 2011 and 2nd International Symposium on Architect-
ing Critical Systems, ISARCS 2011. Boulder, CO, USA, June 20-24, 2011,
Proceedings, pages 153–158, 2011.

[51] A. Gani, A. Siddiqa, S. Shamshirband, and F. Hanum. A survey on
indexing techniques for big data: taxonomy and performance evaluation.
Knowl. Inf. Syst., 46(2):241–284, 2016.

[52] S. García, O. Romero, and R. Raventós. DSS from an RE perspective: A
systematic mapping. Journal of Systems and Software, 117:488–507, 2016.

[53] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[54] B. Geerdink. A reference architecture for big data solutions - introducing
a model to perform predictive analytics using big data technology. IJBDI,
2(4):236–249, 2015.

[55] A. Giacometti, P. Marcel, and E. Negre. A framework for recommending
OLAP queries. In DOLAP 2008, ACM 11th International Workshop on Data
Warehousing and OLAP, Napa Valley, California, USA, October 30, 2008,
Proceedings, pages 73–80, 2008.

175

References

[56] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan. Data integration:
After the teenage years. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago,
IL, USA, May 14-19, 2017, pages 101–106, 2017.

[57] I. Gorton and J. Klein. Distribution, data, deployment: Software ar-
chitecture convergence in big data systems. IEEE Software, 32(3):78–85,
2015.

[58] N. W. Grady, M. Underwood, A. Roy, and W. L. Chang. Big data:
Challenges, practices and technologies: NIST big data public working
group workshop at IEEE big data 2014. In 2014 IEEE International
Conference on Big Data, Big Data 2014, Washington, DC, USA, October
27-30, 2014, pages 11–15, 2014.

[59] B. C. Grau, A. Fokoue, B. Motik, Z. Wu, and I. Horrocks. OWL 2 web on-
tology language profiles (second edition). W3C recommendation, W3C,
Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211.

[60] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, D. J. DeWitt, and
G. Heber. Scientific data management in the coming decade. SIGMOD
Record, 34(4):34–41, 2005.

[61] O. Grodzevich and O. Romanko. Normalization and other topics in
multi-objective optimization. In FMIPW, pages 42–56, 2006.

[62] A. Grosskurth and M. W. Godfrey. A reference architecture for web
browsers. In 21st IEEE International Conference on Software Maintenance
(ICSM 2005), 25-30 September 2005, Budapest, Hungary, pages 661–664,
2005.

[63] M. Grover, T. Malaska, J. Seidman, and G. Shapira. Hadoop Application
Architectures. O’Reilly Media, Inc., 2015.

[64] T. Gruber. Ontology. In Encyclopedia of Database Systems, pages 1963–1965.
2009.

[65] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things
(iot): A vision, architectural elements, and future directions. Future
Generation Comp. Syst., 29(7):1645–1660, 2013.

[66] K. Guo, W. Pan, M. Lu, X. Zhou, and J. Ma. An effective and economical
architecture for semantic-based heterogeneous multimedia big data
retrieval. Journal of Systems and Software, 102:207–216, 2015.

[67] H. Gupta and I. S. Mumick. Selection of Views to Materialize in a Data
Warehouse. IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

176

References

[68] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan. Determining
essential statistics for cost based optimization of an ETL workflow. In
EDBT, pages 307–318. OpenProceedings.org, 2014.

[69] A. Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4):270–294, 2001.

[70] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka. Enterprise information integration: successes,
challenges and controversies. In SIGMOD Conference, pages 778–787.
ACM, 2005.

[71] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The
teenage years. In Proceedings of the 32nd International Conference on Very
Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 9–16, 2006.

[72] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data
Cubes Efficiently. In SIGMOD, pages 205–216, 1996.

[73] M. J. Harry and R. R. Schroeder. Six Sigma: The breakthrough management
strategy revolutionizing the world’s top corporations. Broadway Business,
2005.

[74] V. Herrero, A. Abelló, and O. Romero. NOSQL design for analytical
workloads: Variability matters. In Conceptual Modeling - 35th International
Conference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings, pages
50–64, 2016.

[75] I. Horrocks, M. Giese, E. Kharlamov, and A. Waaler. Using semantic
technology to tame the data variety challenge. IEEE Internet Computing,
20(6):62–66, 2016.

[76] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek,
and K. Tzoumas. Opening the black boxes in data flow optimization.
PVLDB, 5(11):1256–1267, 2012.

[77] M. Interlandi, K. Shah, S. D. Tetali, M. Gulzar, S. Yoo, M. Kim, T. D.
Millstein, and T. Condie. Titian: Data provenance support in spark.
PVLDB, 9(3):216–227, 2015.

[78] B. Ionescu, D. Ionescu, C. Gadea, B. Solomon, and M. Trifan. An
architecture and methods for big data analysis. In Soft Computing
Applications - Proceedings of the 6th International Workshop Soft Computing
Applications, SOFA 2014, Volume 1, Timisoara, Romania, 24-26 July 2014,
pages 491–514, 2014.

177

References

[79] ISO. IEC25010: 2011 Systems and software engineering–Systems and
software Quality Requirements and Evaluation (SQuaRE)–System and
software quality models. 2011.

[80] ISO. ISO/IEC 9075-11:2016: Information technology – Database
languages – SQL – Part 11: Information and definition schemas
(SQL/Schemata). 2016.

[81] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7):86–94, 2014.

[82] P. Jovanovic, O. Romero, and A. Abelló. A Unified View of Data-
Intensive Flows in Business Intelligence Systems: A Survey. T. Large-
Scale Data- and Knowledge-Centered Systems, 29:66–107, 2016.

[83] P. Jovanovic, O. Romero, A. Simitsis, and A. Abelló. Incremental Con-
solidation of Data-Intensive Multi-Flows. IEEE Trans. Knowl. Data Eng.,
28(5):1203–1216, 2016.

[84] P. Jovanovic, O. Romero, A. Simitsis, A. Abelló, H. Candón, and S. Nadal.
Quarry: Digging up the gems of your data treasury. In Proceedings of the
18th International Conference on Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015., pages 549–552, 2015.

[85] P. Jovanovic, A. Simitsis, and K. Wilkinson. Engine independence for
logical analytic flows. In ICDE, pages 1060–1071. IEEE Computer Society,
2014.

[86] V. Kalavri, H. Shang, and V. Vlassov. m2r2: A framework for results
materialization and reuse in high-level dataflow systems for big data.
In CSE, pages 894–901, 2013.

[87] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data
analysis and visualization: An interview study. IEEE Trans. Vis. Comput.
Graph., 18(12):2917–2926, 2012.

[88] R. M. Karp. On the computational complexity of combinatorial problems.
Networks, 5(1):45–68, 1975.

[89] C. M. Keet and E. A. N. Ongoma. Temporal attributes: Status and
subsumption. In 11th Asia-Pacific Conference on Conceptual Modelling,
APCCM 2015, Sydney, Australia, January 2015, pages 61–70, 2015.

[90] J. Kephart, D. Chess, C. Boutilier, R. Das, J. O. Kephart, and W. E. Walsh.
An architectural blueprint for autonomic computing. 2007.

178

References

[91] V. Khatri and C. V. Brown. Designing data governance. Commun. ACM,
53(1):148–152, 2010.

[92] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to
dimensional modeling, 2nd Edition. Wiley, 2002.

[93] T. Kirk, A. Y. Levy, Y. Sagiv, D. Srivastava, et al. The information
manifold. In Proceedings of the AAAI 1995 Spring Symp. on Information
Gathering from Heterogeneous, Distributed Enviroments, volume 7, pages
85–91, 1995.

[94] B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering, 2007.

[95] J. Kontio. A case study in applying a systematic method for COTS
selection. In ICSE 1996, pages 201–209, 1996.

[96] E. V. Kostylev and J. L. Reutter. Complexity of answering counting
aggregate queries over dl-lite. J. Web Sem., 33:94–111, 2015.

[97] J. Kroß, A. Brunnert, C. Prehofer, T. A. Runkler, and H. Krcmar. Stream
processing on demand for lambda architectures. In Computer Performance
Engineering - 12th European Workshop, EPEW 2015, Madrid, Spain, August
31 - September 1, 2015, Proceedings, pages 243–257, 2015.

[98] M. Lenzerini. Data integration: A theoretical perspective. In Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages
233–246, 2002.

[99] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering
queries using views. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25,
1995, San Jose, California, USA, pages 95–104, 1995.

[100] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous
information sources using source descriptions. In 22th International
Conference on Very Large Data Bases (VLDB), pages 251–262, 1996.

[101] J. Li, Y. Xiong, X. Liu, and L. Zhang. How Does Web Service API
Evolution Affect Clients? In 2013 IEEE 20th International Conference on
Web Services, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 300–307,
2013.

[102] W. Litwin. From database systems to multidatabase systems: Why and
how. In BNCOD, pages 161–188. Cambridge University Press, 1988.

179

References

[103] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf. NIST
Cloud Computing Reference Architecture: Recommendations of the National
Institute of Standards and Technology. 2012.

[104] A. Löser, F. Hueske, and V. Markl. Situational business intelligence.
In Business Intelligence for the Real-Time Enterprise - Second International
Workshop, BIRTE 2008, Auckland, New Zealand, August 24, 2008, Revised
Selected Papers, pages 1–11, 2008.

[105] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics:
A survey. In 15th International Symposium on Temporal Representation and
Reasoning, TIME 2008, Université du Québec à Montréal, Canada, 16-18 June
2008, pages 3–14, 2008.

[106] N. H. Madhavji, A. V. Miranskyy, and K. Kontogiannis. Big picture of
big data software engineering: With example research challenges. In
1st IEEE/ACM International Workshop on Big Data Software Engineering,
BIGDSE 2015, Florence, Italy, May 23, 2015, pages 11–14, 2015.

[107] P. Manousis, P. Vassiliadis, and G. Papastefanatos. Impact analysis and
policy-conforming rewriting of evolving data-intensive ecosystems. J.
Data Semantics, 4(4):231–267, 2015.

[108] R. T. Marler and J. S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization,
26(6):369–395, 2004.

[109] S. Martínez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa. A
survey on the benefits and drawbacks of autosar. In Proceedings of the
First International Workshop on Automotive Software Architecture, WASA
’15, pages 19–26, New York, NY, USA, 2015. ACM.

[110] M. A. Martínez-Prieto, C. E. Cuesta, M. Arias, and J. D. Fernández. The
solid architecture for real-time management of big semantic data. Future
Generation Comp. Syst., 47:62–79, 2015.

[111] N. Marz and J. Warren. Big Data: Principles and Best Practices of Scalable
Realtime Data Systems. Manning Publications Co., Greenwich, CT, USA,
1st edition, 2015.

[112] P. McBrien and A. Poulovassilis. Data integration by bi-directional
schema transformation rules. In Proceedings of the 19th International
Conference on Data Engineering, March 5-8, 2003, Bangalore, India, pages
227–238, 2003.

[113] E. Meijer and G. M. Bierman. A co-relational model of data for large
shared data banks. Commun. ACM, 54(4):49–58, 2011.

180

References

[114] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. G.
Stephan, and J. V. den Bussche. The open provenance model core
specification (v1.1). Future Generation Comp. Syst., 27(6):743–756, 2011.

[115] R. F. Munir, O. Romero, A. Abelló, B. Bilalli, M. Thiele, and W. Lehner.
Resilientstore: A heuristic-based data format selector for intermediate
results. In Model and Data Engineering - 6th International Conference,
MEDI 2016, Almería, Spain, September 21-23, 2016, Proceedings, pages
42–56, 2016.

[116] S. Nadal, V. Herrero, O. Romero, A. Abelló, X. Franch, and S. Van-
summeren. Details on Bolster - State of the Art (www.essi.upc.edu/
~snadal/Bolster_SLR.html), 2016.

[117] S. Nadal, V. Herrero, O. Romero, A. Abelló, X. Franch, S. Vansummeren,
and D. Valerio. A software reference architecture for semantic-aware
big data systems. Information & Software Technology, 90:75–92, 2017.

[118] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, and S. Vansum-
meren. Wordpress Evolution Analysis www.essi.upc.edu/~snadal/
wordpress_evol.txt, 2016.

[119] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, and S. Vansummeren. An
integration-oriented ontology to govern evolution in big data ecosystems.
In Proceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference
(EDBT/ICDT 2017), Venice, Italy, March 21-24, 2017., 2017.

[120] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, and S. Vansummeren. An
integration-oriented ontology to govern evolution in big data ecosystems.
Inf. Syst., 79:3–19, 2019.

[121] T. Nguyen, S. Bimonte, L. d’Orazio, and J. Darmont. Cost models for
view materialization in the cloud. In EDBT/ICDT Workshops, pages
47–54, 2012.

[122] N. F. Noy and M. C. A. Klein. Ontology evolution: Not the same as
schema evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.

[123] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MRShare:
Sharing Across Multiple Queries in MapReduce. PVLDB, 3(1):494–505,
2010.

[124] C. Ordonez. Statistical model computation with udfs. IEEE Trans. Knowl.
Data Eng., 22(12):1752–1765, 2010.

[125] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems,
Third Edition. Springer, 2011.

181

www.essi.upc.edu/~snadal/Bolster_SLR.html
www.essi.upc.edu/~snadal/Bolster_SLR.html
www.essi.upc.edu/~snadal/wordpress_evol.txt
www.essi.upc.edu/~snadal/wordpress_evol.txt

References

[126] P. Pääkkönen and D. Pakkala. Reference architecture and classification
of technologies, products and services for big data systems. Big Data
Research, 2(4):166–186, 2015.

[127] P. Panov, S. Dzeroski, and L. N. Soldatova. Ontodm: An ontology of data
mining. In Workshops Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pages
752–760, 2008.

[128] C. Pautasso, O. Zimmermann, and F. Leymann. Restful Web Services
vs. "Big" Web Services: Making The Right Architectural Decision. In
Proceedings of the 17th International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, 2008, pages 805–814, 2008.

[129] D. L. Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth. A
middleware framework for scalable management of linked streams. J.
Web Sem., 16:42–51, 2012.

[130] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati. Linking data to ontologies. Journal on Data Semantics, 10:133–
173, 2008.

[131] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for
answering queries using views. VLDB Journal, 10(2-3):182–198, 2001.

[132] S. Qanbari, S. M. Zadeh, S. Vedaei, and S. Dustdar. Cloudman: A
platform for portable cloud manufacturing services. In 2014 IEEE In-
ternational Conference on Big Data, Big Data 2014, Washington, DC, USA,
October 27-30, 2014, pages 1006–1014, 2014.

[133] W. Qu and S. Dessloch. A Real-time Materialized View Approach for
Analytic Flows in Hybrid Cloud Environments. Datenbank-Spektrum,
14(2):97–106, 2014.

[134] M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap it! A wrapper
architecture for legacy data sources. In VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, pages 266–275, 1997.

[135] A. Roukh, L. Bellatreche, A. Boukorca, and S. Bouarar. Eco-DMW:
Eco-Design Methodology for Data warehouses. In DOLAP, pages 1–10,
2015.

[136] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. In SIGMOD Conference, pages
249–260. ACM, 2000.

182

References

[137] P. Russom. Big data analytics. TDWI Best Practices Report, Fourth Quarter,
page 6, 2011.

[138] K. Sattler. Data quality dimensions. In Encyclopedia of Database Systems,
pages 612–615. Springer US, 2009.

[139] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13(1):23–52, 1988.

[140] R. Sharda, D. A. Asamoah, and N. Ponna. Business analytics: Research
and teaching perspectives. In Proceedings of the ITI 2013 35th International
Conference on Information Technology Interfaces, Cavtat / Dubrovnik, Croatia,
June 24-27, 2013, pages 19–27, 2013.

[141] A. P. Sheth and J. A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput.
Surv., 22(3):183–236, 1990.

[142] A. Simitsis and K. Wilkinson. Revisiting ETL Benchmarking: The Case
for Hybrid Flows. In TPCTC, pages 75–91, 2012.

[143] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Qox-driven ETL
design: reducing the cost of ETL consulting engagements. In SIGMOD,
pages 953–960, 2009.

[144] I. Skoulis, P. Vassiliadis, and A. V. Zarras. Growing Up with Stability:
How Open-source Relational Databases Evolve. Inf. Syst., 53:363–385,
2015.

[145] J. Song, C. Guo, Z. Wang, Y. Zhang, G. Yu, and J. Pierson. Haolap: A
hadoop based OLAP system for big data. Journal of Systems and Software,
102:167–181, 2015.

[146] J. Stefanowski, K. Krawiec, and R. Wrembel. Exploring complex and big
data. Applied Mathematics and Computer Science, 27(4):669–679, 2017.

[147] M. Stonebraker. What does ’big data’ mean? Communications of the ACM,
BLOG@ ACM, 2012.

[148] M. Stonebraker. Why the ’data lake’ is really a ’data swamp’. Communi-
cations of the ACM, BLOG@ ACM, 2014.

[149] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic
Alignment of Relations, Instances, and Schema. PVLDB, 5(3):157–168,
2011.

183

References

[150] R. Tan, R. Chirkova, V. Gadepally, and T. G. Mattson. Enabling query
processing across heterogeneous data models: A survey. In 2017 IEEE
International Conference on Big Data, BigData 2017, Boston, MA, USA,
December 11-14, 2017, pages 3211–3220, 2017.

[151] H. J. ter Horst. Extending the RDFS entailment lemma. In The Semantic
Web - ISWC 2004: Third International Semantic Web Conference,Hiroshima,
Japan, November 7-11, 2004. Proceedings, pages 77–91, 2004.

[152] I. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino. Data wrangling:
The challenging yourney from the wild to the lake. In CIDR 2015,
Seventh Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings, 2015.

[153] D. Theodoratos and M. Bouzeghoub. A general framework for the view
selection problem for data warehouse design and evolution. In Third
ACM International Workshop on Data Warehousing and OLAP (DOLAP
2000), Washington, DC, USA, November 10, 2000, pages 1–8, 2000.

[154] D. Theodoratos and T. K. Sellis. Data warehouse configuration. In VLDB,
pages 126–135. Morgan Kaufmann, 1997.

[155] D. Theodoratos and T. K. Sellis. Dynamic data warehouse design. In
DaWaK, volume 1676 of Lecture Notes in Computer Science, pages 1–10.
Springer, 1999.

[156] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos. Big data analytics:
a survey. Journal of Big Data, 2(1):1–32, 2015.

[157] B. Twardowski and D. Ryzko. Multi-agent architecture for real-time big
data processing. In 2014 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw,
Poland, August 11-14, 2014 - Volume III, pages 333–337, 2014.

[158] T. Vanhove, G. van Seghbroeck, T. Wauters, F. D. Turck, B. Vermeulen,
and P. Demeester. Tengu: An experimentation platform for big data ap-
plications. In IEEE 35th International Conference on Distributed Computing
Systems Workshops, ICDCS Workshops 2015, Columbus, OH, USA, June 29 -
July 2, 2015, pages 42–47, 2015.

[159] J. Varga, O. Romero, T. B. Pedersen, and C. Thomsen. Towards next
generation BI systems: The analytical metadata challenge. In Data Ware-
housing and Knowledge Discovery - 16th International Conference, DaWaK
2014, Munich, Germany, September 2-4, 2014. Proceedings, pages 89–101,
2014.

184

References

[160] M. Villari, A. Celesti, M. Fazio, and A. Puliafito. Alljoyn lambda: An
architecture for the management of smart environments in iot. In
International Conference on Smart Computing, SMARTCOMP Workshops
2014, Hong Kong, November 5, 2014, pages 9–14, 2014.

[161] G. Wang and C. Chan. Multi-Query Optimization in MapReduce Frame-
work. PVLDB, 7(3):145–156, 2013.

[162] S. Wang, I. Keivanloo, and Y. Zou. How Do Developers React to REST-
ful API Evolution? In Service-Oriented Computing - 12th International
Conference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceedings,
pages 245–259, 2014.

[163] Y. Wang, L. Kung, C. Ting, and T. A. Byrd. Beyond a technical perspec-
tive: Understanding big data capabilities in health care. In 48th Hawaii
International Conference on System Sciences, HICSS 2015, Kauai, Hawaii,
USA, January 5-8, 2015, pages 3044–3053, 2015.

[164] M. Weyrich and C. Ebert. Reference architectures for the internet of
things. IEEE Software, 33(1):112–116, 2016.

[165] G. Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer, 25(3):38–49, 1992.

[166] D. Wood, R. Cyganiak, and M. Lanthaler. RDF 1.1 concepts
and abstract syntax. W3C recommendation, W3C, Feb. 2014.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225.

[167] P. T. Wood. Query languages for graph databases. SIGMOD Record,
41(1):50–60, 2012.

[168] Z. Xie, Y. Chen, J. Speer, T. Walters, P. A. Tarazaga, and M. Kasarda.
Towards use and reuse driven big data management. In Proceedings of
the 15th ACM/IEEE-CE Joint Conference on Digital Libraries, Knoxville, TN,
USA, June 21-25, 2015, pages 65–74, 2015.

[169] F. Yang, G. Merlino, and X. Léauté. The radstack: Open source lambda
architecture for interactive analytics, 2015.

[170] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica. Apache spark: a unified engine for big data
processing. Commun. ACM, 59(11):56–65, 2016.

[171] A. V. Zarras, P. Vassiliadis, and I. Dinos. Keep Calm and Wait for the
Spike! Insights on the Evolution of Amazon Services. In Advanced
Information Systems Engineering - 28th International Conference, CAiSE

185

References

2016, Ljubljana, Slovenia, June 13-17, 2016. Proceedings, pages 444–458,
2016.

[172] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph
engine for web scale RDF data. PVLDB, 6(4):265–276, 2013.

[173] R. Zhang, I. Manotas, M. Li, and D. Hildebrand. Towards a big data
benchmarking and demonstration suite for the online social network
era with realistic workloads and live data. In Big Data Benchmarks,
Performance Optimization, and Emerging Hardware - 6th Workshop, BPOE
2015, Kohala, HI, USA, August 31 - September 4, 2015. Revised Selected
Papers, pages 25–36, 2015.

[174] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and
OLAP multidimensional networks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens,
Greece, June 12-16, 2011, pages 853–864, 2011.

[175] Y. Zhuang, Y. Wang, J. Shao, L. Chen, W. Lu, J. Sun, B. Wei, and J. Wu.
D-ocean: an unstructured data management system for data ocean
environment. Frontiers of Computer Science, 10(2):353–369, 2016.

186

	Front page
	Curriculum Vitae
	Abstract
	Resum
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	Thesis Details
	1 Introduction
	1 Background and Motivation
	2 Data Integration
	2.1 Supporting end-to-end data integration
	2.2 Virtual integration
	2.3 Materialized integration
	2.4 Activities in data integration: state of the art and challenges

	3 Structure of the Thesis
	4 Thesis Overview
	4.1 Chapter 2: A software reference architecture for semantic-aware data-intensive systems
	4.2 Chapter 3: An integration-oriented ontology to govern evolution in data-intensive ecosystems
	4.3 Chapter 4: Answering queries using views under semantic heterogeneities and evolution
	4.4 Chapter 5: SLA-driven selection of intermediate results to materialize

	5 Contributions

	2 A Software Reference Architecture for Semantic-Aware Data-Intensive Systems
	1 Introduction
	2 Big Data Definition and Dimensions
	2.1 Volume
	2.2 Velocity
	2.3 Variety
	2.4 Variability
	2.5 Veracity
	2.6 Summary

	3 Related Work
	3.1 Selection of papers
	3.2 Analysis
	3.3 Discussion

	4 99993em.5Bolster: a Semantic Extension for the -Architecture
	4.1 The design of Bolster
	4.2 Adding semantics to the -architecture
	4.3 Bolster components

	5 Exemplar Use Case
	5.1 Semantic representation
	5.2 Data ingestion
	5.3 Data processing and analysis

	6 Bolster Instantiation
	6.1 Available tools
	6.2 Component selection
	6.3 Tool evaluation

	7 Industrial Experiences
	7.1 Use cases and instantiation
	7.2 Validation

	8 Conclusions

	3 An Integration-Oriented Ontology to Govern Evolution in Data-Intensive Ecosystems
	1 Introduction
	2 Overview
	2.1 Running example
	2.2 Notation

	3 Big Data Integration Ontology
	3.1 Global graph
	3.2 Source graph
	3.3 Mapping graph

	4 Handling Evolution
	4.1 Releases
	4.2 Release-based ontology evolution

	5 Evaluation
	5.1 Functional evaluation
	5.2 Industrial applicability
	5.3 Ontology evolution

	6 Related Work
	7 Conclusions

	4 Answering Queries Using Views Under Semantic Heterogeneities and Evolution
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Case study
	3.2 Formal background
	3.3 Case study (cont.)

	4 Rewriting Conjunctive Queries
	4.1 Preliminaries
	4.2 Rewriting algorithm
	4.3 Intra-concept generation
	4.4 Inter-concept generation
	4.5 Discussion

	5 Rewriting Conjunctive Aggregate Queries
	5.1 The aggregation graph
	5.2 Generating CAQs
	5.3 Discussion

	6 Experimental evaluation
	6.1 Experimental setting
	6.2 Experimental results

	7 Conclusions

	5 SLA-driven Selection of Intermediate Results to Materialize
	1 Introduction
	1.1 Motivational example

	2 Formal Building Blocks and Problem Statement
	2.1 Multiquery AND/OR DAGs and data-intensive flows
	2.2 Components
	2.3 Problem statement

	3 Cost Model for Intermediate Results Materialization Selection
	3.1 Data-intensive flow statistics
	3.2 Metrics
	3.3 Cost functions

	4 State Space Search Algorithm
	4.1 Actions
	4.2 Initial state
	4.3 Heuristic
	4.4 Searching the solution space

	5 Experiments
	5.1 Intermediate results selection evaluation

	6 Related Work
	7 Conclusions

	6 Conclusions and Future Directions
	1 Conclusions
	2 Future directions

	Appendices
	A Detailed Algorithms for Rewriting Conjunctive Queries
	1 Preliminaries
	2 Intra-concept generation
	3 Inter-concept generation

	B Extended Experiments for Rewriting Conjunctive Queries
	1 Evolution of response time based on wrappers
	2 Evolution of response time based on edges in the query.

	C MDM: Governing Evolution in Big Data Ecosystems
	1 Introduction
	1.1 Motivational use case

	2 Demonstrable Features
	2.1 Definition of the global graph
	2.2 Registration of new data sources
	2.3 Definition of LAV mappings
	2.4 Querying the global graph
	2.5 Implementation details

	3 Demonstration overview

	Bibliography
	References

