
ResilientStore: A Heuristic-based Data Format
Selector for Intermediate Results

Rana Faisal Munir1, Oscar Romero1, Alberto Abelló1, Besim Bilalli1, Maik
Thiele2, and Wolfgang Lehner2

1 Universitat Politécnica de Catalunya (UPC), Barcelona, Spain
{fmunir,oromero,aabello,bbilalli}@essi.upc.edu

2 Technische Universität Dresden (TUD), Dresden, Germany
{maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. Large-scale data analysis is an important activity in many
organizations that typically requires the deployment of data-intensive
workflows. As data is processed these workflows generate large inter-
mediate results, which are typically pipelined from one operator to the
following. However, if materialized, these results become reusable, hence,
subsequent workflows need not recompute them. There are already many
solutions that materialize intermediate results but all of them assume a
fixed data format. A fixed format, however, may not be the optimal
one for every situation. For example, it is well-known that different data
fragmentation strategies (e.g., horizontal and vertical) behave better or
worse according to the access patterns of the subsequent operations. In
this paper, we present ResilientStore, which assists on selecting the most
appropriate data format for materializing intermediate results. Given a
workflow and a set of materialization points, it uses rule-based heuris-
tics to choose the best storage data format based on subsequent access
patterns. We have implemented ResilientStore for HDFS and three differ-
ent data formats: SequenceFile, Parquet and Avro. Experimental results
show that our solution gives 18% better performance than any solution
based on a single fixed format.

Keywords: Big data, data-intensive workflows, intermediate results,
data format, HDFS

1 Introduction
Large-scale data analysis is an important activity for many organizations. It

is typically performed by deploying pipelined workflows (known as Data Inten-
sive Workflows (DIW)) on Hadoop3 clusters. Many high-level languages (namely
as Hive4 and Pig5) have been introduced to facilitate the execution of analysis
tasks on Hadoop. These languages aim at decomposing the tasks into multiple
pipelined MapReduce [4] jobs. Each task produces results that are commonly

3 https://hadoop.apache.org
4 http://hive.apache.org
5 http://pig.apache.org



referred to as intermediate results. Intermediate results are used by multiple
subsequent tasks. An in-depth study of MapReduce workloads for seven enter-
prises [3] shows that 80% of intermediate results are re-accessed in different parts
of DIWs. This study demonstrates the importance of materializing the right in-
termediate results for speeding up the flows that re-access them. However, the
study gives rise to two questions as well: ”What to materialize?” and ”How to
materialize?”.

Answers to the first question have already been given. In [6, 16], they provide
tools which help in choosing what to materialize. However, these solutions do
not provide help in terms of how to materialize the intermediate results. They
typically store them directly on HDFS [10], where I/O operations are expensive.
Hence, unnecessary reads and writes performed, increase the execution costs of
DIWs.

Researchers have come up with different data formats that help in reducing
the amount of read and write operations. The proposed data formats are built on
top of HDFS and are designed for fast loading, fast query processing and efficient
storage utilization. Among the most popular formats, we find: Record Columnar
File (RCFile) [11], Optimized Row Columnar (ORC)6, Avro7, Parquet8 and
SequenceFile9. They differ from each other in terms of their layout. Avro, for
instance, uses a horizontal layout, whereas Parquet uses a hybrid layout. None
of them is the universal best choice; different workloads require different layouts
to achieve optimal performance [2].

Note also that, none of the solutions that answer the first question consider
different formats and they store intermediate results using a single fixed format.
A single fixed format though, is not appropriate for all types of workloads10

and this is already identified in previous works [2, 13, 9]. These works clearly
demonstrate the importance of the second question. Ideally, the materialized
results should be stored in the most appropriate format for their later reuse.

We contend that a properly chosen data format reduces the load time of the
intermediate results in their subsequent use, and overall, reduces the execution
cost of DIW. That is why, in this paper we present ResilientStore, which decides
the most appropriate data format for intermediate results using heuristic rules
and considering the subsequent access characteristics. The contributions of this
paper are as follows:

– We show the performance bottleneck of data formats in different workloads.

– We define a set of heuristic rules to select the appropriate data format based
on the access characteristics of the workloads.

– We show that by using ResilientStore in selecting the data format we can
reduce the load time of the intermediate results.

6 https://orc.apache.org
7 http://avro.apache.org
8 http://parquet.apache.org
9 http://wiki.apache.org/hadoop/SequenceFile

10 http://www.svds.com/how-to-choose-a-data-format



The remainder of this paper is organized as follows. In Section 2, we discuss
the Hadoop data formats and provide the motivating example of our work. In
Sections 3 and 4, we discuss the heuristic rules, the architecture of ResilientStore
and its implementation. In Section 5, we show our experiment results. In Section
6, we have a discussion of the related work. Finally in Section 7, we conclude
the paper and discuss our future work.

2 Background and Motivating Example
In this section, we discuss different storage layouts and their Hadoop repre-

sentative formats. Moreover, we present an example to show the performance of
different formats for different workloads. This example motivates our work and
shows the importance of considering different formats for the materialization of
intermediate results. Note that, in the context of this paper, layout refers to the
fragmentation strategy (e.g., horizontal, vertical) and format refers to the file
format (e.g., Avro, Parquet, SequenceFile).

2.1 Hadoop Data Formats

One of the most commonly used formats in Hadoop is the raw format. De-
spite its extensive use, it suffers from many problems. For instance, it is not
splittable after compression or it does not store schema information. Different
binary formats have been proposed in order to overcome these problems [9] and
they can be classified according to the layout they follow: horizontal, vertical or
hybrid.

Avro

Header

101,201,301,401

Avro Schema

{

“type” : “record”,

“name” : “Table 1”,

“fields”: [

{“name”:“A" “type”:“int”},

{“name”:“B" “type”:“int”},

{“name”:“C" “type”:“int”},

{“name”:“D" “type”:“int”}

]

}

102,202,302,402

103,203,303,403

Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Sequence File

Header

Key : 101

Value : 201,301,401

Key : 103

Value : 203,303,403

Key : 102

Value : 202,302,402

(a) (b)

Fig. 1: High level representation of SequenceFile and Avro

Horizontal Layout. A format implementing a horizontal layout organizes data
in rows. These formats excel when workloads require full scans. If all the columns
are not required, they perform unnecessary reads from disk, since non-required
columns will be read anyway. However, these formats are good for data insertion.
In Hadoop, the SequenceFile and Avro formats implement a horizontal layout.
Figure 1 shows an example table and its corresponding format in SequenceFile
(i.e., Figure 1a) and Avro (i.e., Figure 1b).

Vertical Layout. Formats following a vertical layout organize data in columns
and each row is split into different groups of columns. Each group consists of
multiple columns stored together. This kind of structure helps on reading less
data when a query requires only a subset of columns (i.e., improves the effective



Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Yahoo Zebra

Header

Group1
sync marker

Group2
sync marker

Group3
sync marker

Group2 Group3

Group1

301 401

402

403

302

303

101,201

102,202

103,203
Yahoo Zebra Schema

[A : int, B : int] as Group1

[C : int] as Group2

[D : int] as Group3

Fig. 2: High level representation of Yahoo Zebra

read ratio). In Hadoop, Yahoo Zebra11 implements a vertical layout. Figure 2
exemplifies the Yahoo Zebra format.

Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Parquet

Header

Row Group 1
sync marker

Row Group 2
sync marker

Footer

Parquet Schema

message Table1 {

require int32 A;

require int32 B;

require int32 C;

require int32 D;

}

101,102

201,202

301,302

401,402

103

203

303

403

Row Group 1

Row Group 2

(Schema + Row Groups

+ Statistics)

(Version)

Fig. 3: High level representation of Parquet

Hybrid Layout. A hybrid layout combines the horizontal and vertical layouts.
Data stored is divided into row groups and each row inside the row group is
further divided into columns. Implementations following a hybrid layout, such
as ORC and Parquet, are available for Hadoop. Parquet format is depicted in
Figure 3.

Features
Horizontal Vertical Hybrid
Sequence Files Avro Yahoo Zebra ORC Parquet

Schema No Yes Yes Yes Yes

Column Pruning No No Yes Yes Yes

Predicate Pushdown No No No Yes Yes

Indexing Information No No No Yes Yes

Statistics Information No No No Yes Yes

Nested Records No No Yes Yes Yes

Table 1: Comparison of data formats

In Table 1, a comparison of all the layouts and their representative formats
is given. This allows to look at their features side by side. As it can be noted
from the table, all formats except SequenceFile, store the schemas of data. The
schema information helps during the data serialization and de-serialization phase
by avoiding the need to cast the data at the application level - which is a costly

11 http://pig.apache.org/docs/r0.9.1/zebra pig.html



Fig. 4: Table is created by materializing join of Lineitem and Part tables of TPC-H
(Scale Factor: 4)

operation. Moreover, the table shows that both vertical and hybrid layouts pro-
vide support for column pruning. It means, they only read the required columns
and do not perform unnecessary reads. Hybrid layouts can also push down the
selection predicates into the storage layer because they store indexing informa-
tion that helps in filtering the records while reading. Furthermore, since hybrid
layouts store statistical information for each column, they enable easier compu-
tation of aggregates. Additionally, vertical and hybrid layouts have support for
nested records which helps in storing bag, map and custom user data types. It
can also be noted that hybrid layouts have more features but they also have a
significant overhead when writing and therefore when reading the same amount
of data (due to the amount of metadata stored with data).

In summary, these formats have different features that make them perform
better or worse for different workloads. Generally, hybrid layouts perform well
if a subset of data is read. On the other hand, horizontal layouts perform well if
all, or most of the data is read.

2.2 Motivating Example

In this section we present the results drawn by storing the intermediate re-
sults of a DIW in different formats. Note that we do not consider the raw format
because of the drawbacks mentioned in the previous section. Consequently, nowa-
days, mostly binary formats are used in real-world scenarios [2]. The results show
that the different features of each binary format prevents them from being a uni-
versal solution for all types of workloads. Even more now, when mixed workloads
are present, consisting of reporting, interactive, or data mining queries. For in-
stance, Parquet is good for reporting and interactive queries whereas Avro is
good for data mining queries where most data is read. Different types of queries
can be found in different parts of DIWs. As a matter of fact, queries must be
analyzed in order to find the proper format for the materialization.

In this example we create a DIW from the TPC-H benchmark12 queries and
materialize in different Hadoop formats a join between the Lineitem and Part
tables. In Figure 4, results of our example are shown for SequenceFile, Parquet
and Avro. We present now the results of reading such materialization by consid-
ering two subsequent operators in the DIW: Projection and Selection. Figures
4a and 4b depict the case when a Projection follows with different numbers of
columns to be read from HDFS. In 4a we measure the size of the data read

12 http://www.tpc.org/tpch



and in 4b we measure the needed time to read the data. Note that Parquet is
performing better in the first 20 columns but after that SequenceFile and Avro
take the lead. Similarly, Figure 4c and 4d show the same type of experiment but
for Selection.

From the results of this example, we can observe that performance depends
on the data format and the subsequent operation in the DIW (i.e., the kind
of workload). As a matter of fact, this supports our proposed hypothesis that
different formats must be chosen depending on the workload characteristics.

3 System Model and Heuristic Rules
This section presents a formal notation of our problem, which we use to define

the rules used to decide the data format for materialized intermediate results.
As first approach, we opt for heuristics rules. Lightweight approximations have
consistently been used in databases before as they yield a good balance between
the performance gain obtained and the extra overhead introduced. For example,
[6] uses heuristic rules to decide what nodes to materialize given a DIW. The
reason is that, unlike cost-based solutions, heuristic rules do not require to gather
run-time statistics (e.g., selectivity factor per operation) and thus do not yield
any extra performance overhead. Yet, such lightweight approaches can yield
significant improvements.

System Model. We formally define a DIW as follows:

DIW ← DAG(V,E), where

V = {v1, v2, ..., vn} and E = {e1, e2, ..., en}
M ⊆ V and ∀x ∈ M, O(x) ⊆ E

getOP : E → {op1, op2, ..., opn}
getType : E → {Type1, T ype2, ..., T ypen}
getColop : op→ P{col1, col2, ..., coln}
getColv : V → P{col1, col2, ..., coln}
getBest : M → {format1, format2, ..., formatn}

A DIW is a DAG that consists of vertices (V ) and edges (E). A vertex
represents a set of data and an edge represents an operator. More precisely, an
edge represents an operator applied to the data in its starting vertex. The ending
vertex represents the data delivered by the operator after processing the input
data. Note that an edge is adorned with schema information; i.e., the columns
to which the operator applies. Function getOP and getType are used to get
the instance and type of an operator for a given edge, respectively. Additionally,
function getColop is used to get the set of columns on which an operator is
executed. Similarly, the function getColv is used to extract the set of columns
of a vertex. In the above notation, M denotes the materialized nodes, which are a
subset of V . O(x) represent the outgoing edges from a materialized node, which is
a subset of E. Finally, given that our set of rules may decide that more than one
format is suitable for a materialized node. We introduce the function getBest in



order to choose one among them. This function compares the different formats
and chooses the one which has more features.

Heuristic Rules for Format Selection. We now introduce the heuristic rules
used to decide what format to choose for a given materialized node. These rules
derive from the well-known properties of horizontal, vertical and hybrid layouts
and the specific format features presented in Section 2:

∀x ∈M

rule1 : x→ SequenceFile, IF size(getColv(x)) = 2

rule2 : x→ Parquet, IF ∃e ∈ O(x), WHERE getType(e) ∈ {AggregationOps}
rule3 : x→ Parquet, IF ∃e ∈ O(x), WHERE getColop(getOP (e)) ⊆ getColv(x)

rule4 : x→ Avro, IF ∀e ∈ O(x), WHERE getColop(getOP (e)) = getColv(x)

rule5 : x→ Avro, IF ∃e ∈ O(x), WHERE getType(e) ∈ {Join, CartesianProduct,

GroupALL,Distinct}

Rule1 chooses SequenceFile for the materialization of nodes that have ex-
actly two columns. This is an immediate application of the SequenceFile format
(which stores data as key-value pairs). Otherwise, several columns need to be
combined (e.g., with a separator marker such as ”-” or ”;”) either in the key
or the value and parsed at the application level. Rule2 chooses Parquet when
performing aggregations on data. Since Parquet stores statistical information for
each column, it is the most efficient when computing aggregates. Since Parquet
implements a hybrid layout, it is also the best choice when it comes to read
subsets of data or when operators apply on subsets of columns (see Table 1).
This rationale is behind rule3. Oppositely, Avro is chosen when all the data
is read or when the operator does not apply on a certain subset of columns.
This is a consequence of Avro implementing a horizontal layout. Hence, rule4
(the operator affects all columns) and rule5 (the operator requires to read the
whole data without filtering) recommend using Avro in these respective cases.
The heuristic rules defined are mutually exclusive. They can be applied indepen-
dently of each other and without any fixed order. Note that, these rules do not
consider vertical layouts because they are subsumed by hybrid layouts. However,
using our formal notation other formats can be added easily.

After applying the heuristic rules, there exist some cases where multiple
choices are suitable. In order to circumvent this problem, we have defined the
function getBest. This function gives highest priority to Parquet owing to the
fact that Parquet has more features and a more flexible behavior. The second
highest priority is assigned to Avro because it stores schema information about
the data which speeds up the reading. Finally, the lowest rank belongs to Se-
quenceFile which is only chosen for key-value data.

4 ResilientStore
In this section, we first discuss about the materialization of intermediate

results. Then, we discuss the architecture of our system and its implementation.
Finally, we discuss its format selection algorithm.



4.1 Materialization of Intermediate Results

In previous sections, we mentioned that re-accessing of data occurs very
often (i.e., 80% of the time [3]), and there are already available solutions [6,
16] for deciding on the materialization of intermediate results. Hence, we use
one of these solutions for the materialization phase, namely, ReStore [6]. How-
ever, any other solution can be used as long as it provides the nodes to be
materialized. The heuristics used in ReStore are categorized into conservative
and aggressive. Conservative heuristics refer to the materialization of the out-
puts from PROJECT and FILTER operators, because they reduce the size of
data. Whereas, aggressive heuristics are used to materialize the outputs of JOIN,
GROUP and CoGROUP13 operators, because they are computation intensive.
These heuristics are used to decide about the materialization of the results to
be reused by subsequent operators in DIWs. However, note that ReStore does
not consider the data format to be used for the materialization. Our approach
fills this gap by using the aforementioned heuristic rules for selecting the most
appropriate data format when materializing intermediate results.

4.2 System Architecture

In Figure 5, we depict the architecture of ResilientStore. It takes a workflow
(DIW) as input and returns a DIW where the nodes to be materialized are
tagged and the most appropriate data format is selected. First, ResilientStore
applies the ReStore heuristic rules to choose the best nodes for materialization
and then applies format selection heuristic rules (Section 3) to decide the most
suitable data format.

ReStore system

Format enumerator

Input Workflow

Output Workflow

ReStore

Heuristic

Rules

Resilient-

Store

Heuristic

Rules

Fig. 5: System Architecture

Our prototype is implemented using Pig as this is the most popular language
for executing DIWs on a Hadoop cluster [3] and also because of compatibil-
ity reasons with ReStore. Thus, we first instantiated the conceptual operations
mentioned in our format selection heuristic rules with Pig Operators. The Aggre-
gation Ops (see rule2) provided by Pig include SUM, MIN, MAX and COUNT.
The set of Pig operations to be considered in rule5 are JOIN, CROSS (Carte-
sian Product), COGROUP, GROUPALL and DISTINCT. However, our rules
are independent of Pig. We can use any other language (e.g., Apache Drill or
Apache Hive) just by instantiating the conceptual operators with the operators
of that language.

13 A Pig operation combining GROUP BY and JOIN



Algorithm 1 ResilientStore data format selection algorithm

1: procedure RS–Format(x)
2: ruleSet = getResilientStoreRules()
3: formatSet = ∅
4: for each rule ∈ ruleSet do
5: format = rule(x)
6: formatSet.append(format)
7: end for
8: bestFormat = getBest(formatSet)
9: return bestFormat

10: end procedure

In order to choose the nodes to be materialized, our solution first applies the
heuristic rules of ReStore on each Pig script. Then, once the nodes to be mate-
rialized are chosen, the scripts containing them are further analyzed using our
heuristic rules to decide the most appropriate data format. Note that, our heuris-
tic rules only consider the first operator of subsequent scripts which are reading
these materialized nodes. The reason is that, only the first operator has effect
on reading the data from the disk and subsequent operators read the data from
the memory. After the data format is decided, the serialization in the selected
format needs to be carried out. The serialization process is straightforward for
Avro and Parquet because they automatically infer the tuples’ schema during
the serialization and de-serialization phases. SequenceFile, however, requires ex-
plicit key-value pairs for the serialization and de-serialization. Hence, our system
automatically converts each tuple into a key-value pair (one attribute is set as
key, and the other as value).

4.3 Format Enumerator Algorithm
Our algorithm is shown in Algorithm 1. The algorithm, takes a materialized

node as input and finds the best storage format for it. In lines 4 to 7, it iteratively
applies all the ResilientStore rules which we have defined in Section 3 and gets
their suggested formats. Then, in line 8 it gets the best format among the ones
that were suggested. Finally, in line 9 it returns the chosen format. Note that,
this algorithm is then iteratively run on every materialized node in order to
choose the best format for each one of them.

5 Experiments
This section reports on our experimental findings. Note, first, that we are

not considering compression for a fairer comparison between different formats.
Second, we are assuming data is uniformly distributed.

5.1 Setup and Dataset
Our experiments are performed on a 8-machine cluster14. Each machine has

a Xeon E5-2630L v2 @2.40GHz CPU, 128GB of main memory and 1TB SATA-3
of hard disk. Each machine runs Hadoop 2.6.0 and Pig 0.15.0 on Ubuntu 14.04
(64 bit). We have dedicated one machine for the name node and the remaining
seven machines for data nodes.
14 http://www.ac.upc.edu/serveis-tic/altas-prestaciones



Fig. 6: DIW of six TPC-H queries

We use the TPC-H12 benchmarking tool to generate datasets and queries. In
order to create a complex DIW, we use Quarry [15]. Quarry is used to combine
all TPC-H queries into one integrated DIW as shown in Figure 6. We are using
TPC-H because it is a standard benchmarking tool and it contains queries which
cover all possible cases.

In order to perform more realistic experiments, we generate data with scale
factor ranging from 1GB to 128GB. In our experiments, ReStore chooses 8 nodes
to be materialized after applying both its aggressive and conservative heuristics.
The aggressive heuristics decide the materialization of the output of 6 JOINs
and the conservative heuristics decide to materialize that of 2 FOREACH oper-
ations. We then apply our heuristic rules (see Section 3) to choose the format
of the materialized nodes. For the 6 JOINs, we choose Parquet, while Avro and
SequenceFile are chosen, respectively, for the first and second FOREACH. Re-
silientStore choose the best format in all cases. For discussion, we choose 4 nodes
which cover the three formats, as shown in Figure 6. The DIW used in our ex-
periments is available online15. Additionally, we choose two metrics to analyze
our approach, namely write time and read time, and measure them for each
materialized node using the following formulas.

– write time = # of HDFS blocks * cost of writing one HDFS block
– read time = (# of HDFS blocks * cost of reading one HDFS block)

+ execution cost of the first operator of the query

We only consider the first operator in read time because the subsequent op-
erators are executed in memory and hence they read from memory instead of
HDFS.

5.2 Results
This section discusses in detail the four materialized nodes chosen in the

previous section. Figure 7 and 8 show the two nodes materialized using Parquet.

15 http://ranafaisal.info/?attachment id=153



Fig. 7: Experiment results for N1 (Q17 & Q19)

Fig. 8: Experiment results for N2 (Q3, Q5 & Q10)

Note that Parquet spends more time in writing (since it writes more metadata;
see Section 2) but performs much better in reading (since it predicates to the
storage layer). Figure 7 (b and c) and 8 (b, c and d) show the reading time
for the intermediate results in different queries. The metadata writing overhead
(e.g., schema) proves beneficial when reading is performed.

Fig. 9: Experiment results for N3 (Q19) and N4 (Q11)

Furthermore, as it can be noted from Figure 9a and 9b, SequenceFile is a
better choice for N3. For all the other nodes SequenceFile takes more time in
writing than Avro, because it stores data as key-value pairs and for columns
stored in the value it needs markers to separate them. However, in N3 Sequence-
File writes less data since two columns are written (one as key, the other as
value) and no marker is necessary. In N3, SequenceFile performs also good when
reading because it does not need to convert key-value pairs back to tuples.

In Figure 9c and 9d, we show the performance for N4, which chooses Avro.
Note that Avro writes less data for all nodes except for N3. This is the reason
why Avro performs well in N4, since all the data needs to be read. However, in
the other nodes, Avro does not perform that well because of the column pruning
applied by Parquet.

The experiments show that our rules work well in realistic scenarios such
that of TPC-H. In Figure 10 the overall execution time of a DIW when a single



Fig. 10: Single Fixed Format vs ResilientStore

fixed format is chosen is compared against ResilientStore. Figure 10a shows the
overall performances in the TPC-H queries. For these queries our approach on
average provides 32% speedup over fixed SequenceFile, 19% speedup over fixed
Avro, 4% speedup over fixed Parquet and overall, it provides 18% speedup.
However, these queries have a very low selectivity factor (i.e., the median is
0.8%) [1], which benefits Parquet. To exemplify a scenario where full-scans would
dominate (e.g., for computing data mining algorithms), we modified the TPC-H
queries to transform them into scan-based ones (i.e., 100% selectivity factor). In
such scenario, ResilientStore chooses Avro for N1 and N2 instead of Parquet.
Figure 10b shows the overall performances for the modified queries of TPC-H.
In average, our approach provides a 9% speedup over fixed SequenceFile, 1.5%
speedup over fixed Avro, 21% speedup over fixed Parquet and overall, it provides
10% speedup. Moreover, this figure also shows that our rules have chosen the
right format for all the materialized nodes.

6 Related Work
The fixed format problem has been identified by the research community

and many solutions have been proposed. The existing solutions allow using mul-
tiple layouts together. For instance, the in-memory DBMS SAP HANA [8] uses
horizontal and vertical layouts for On-line Transaction Processing (OLTP) and
On-line Analytical Processing (OLAP) workloads, respectively. In a similar way,
in DB2 [17] horizontal and vertical layouts can be used for the same table-space.
However, these layouts are fixed and non-modifiable at runtime. There are also
solutions that consider workloads in order to decide for the most suitable lay-
out. These systems, however, work in multi-database environments. Polybase
[5] for instance, is a system that uses both a Hadoop cluster and a DBMS for
data storage. Based on the workloads, it dynamically decides which solution is
the best. According to this decision, it also moves the data from one system to
another for executing queries. This solution focuses on utilizing the processing
power of the Hadoop cluster and it always uses an horizontal layout to store
data on Hadoop. Similar to Polybase, there is a hybrid system [12], which can
read raw files directly and choose the layout based on the input queries. How-
ever, they propose to keep multiple copies of the same data in different formats.
But this might not be feasible when the size of the data is huge. In addition,
there are two systems [7, 18] that store the data inside different storage engines



by taking into account the data access patterns. These systems work like medi-
ators, they analyze the characteristics of the data and then route them to the
most suitable storage engine. In [7], the system requires training in order to take
the right decision in choosing the best storage engine. This training runs every
query in all available systems to see which system fits best each query. Hence,
this requires extra processing and adds extra cost. In [18], the solution relies
on annotations which are defined by the user during the requirements definition
process of an application. These annotations help the mediator to decide where
to store the application data. The annotations, however cannot be defined at
run-time. Moreover, this solution mainly focuses on choosing a storage engine
according to the application requirements without considering the data format.

H2O [2] can dynamically decide the layout of the data based on the current
workload. However, it only considers vertical layouts by creating different column
groups. As discussed in [2], creating column groups is a NP-hard problem and it is
not feasible for tables with many columns. Similarly, Trojan [13] is an adaptable
column storage for Hadoop, which takes advantage of the data replication feature
of HDFS. It analyzes the workload access patterns and stores different column
groups on each replica according to the different access patterns. Then, it routes
a query to the most suitable replica format. However, it only considers vertical
layouts. Finally, WWHow [14] proposes a data layer which is independent of
the physical storage. This layer enables an adaptable physical storage engine by
analyzing the application needs. However, they are considering general storage
systems such as file-systems, databases and cloud storage without considering
the physical formats. Moreover, once decided, the storage system remains fixed.

7 Conclusion and Future Work

Analytical querying introduces variable types of workloads that co-exist in
the same system, and a fixed data format does not yield the best performance
for all types of workloads. Thus, we discussed the need to introduce flexibility
in the data format and decide it based on the characteristics of the subsequent
operators accessing data. Specifically, we have shown for the Hadoop ecosys-
tem that selecting the data format according to the access patterns helps in
reducing the load time of the intermediate results. In this paper we introduced
ResilientStore a tool to assist on selecting the most appropriate data format.
ResilientStore analyzes the access patterns of intermediate results and chooses a
format by applying heuristic rules. Our experiments on the Hadoop ecosystem
show the benefits on performance. In the future work we plan to combine our
approach with a cost-based one in a two-phase approach. In the first phase, we
use our rule-based approach to choose a format, so we can immediately react
to new flows with no overhead. In the second phase, we plan to refine our first
decision by gathering the needed statistics (e.g., the operators selectivity factor)
and follow an off-line cost-based approach. This way, for future executions of
these intermediate results we can refine the rule-based decision made once the
needed statistics have been gathered.



Acknowledgments
This research has been funded by the European Commission through the

Erasmus Mundus Joint Doctorate ”Information Technologies for Business Intel-
ligence - Doctoral College” (IT4BI-DC).

References
1. A. Abelló, J. Ferrarons, and O. Romero. Building Cubes with MapReduce. In

DOLAP, 2011.
2. I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A Hands-free Adaptive Store. In

SIGMOD, 2014.
3. Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical Processing in Big Data

Systems: A Cross-Industry Study of MapReduce Workloads. In VLDB, 2012.
4. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In OSDI, 2004.
5. D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes,

M. Flasza, and J. Gramling. Split Query Processing in Polybase. In SIGMOD,
2013.

6. I. Elghandour and A. Aboulnaga. ReStore: Reusing Results of MapReduce Jobs.
In VLDB, 2012.

7. A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, V. Gadepally, J. Heer,
B. Howe, J. Kepner, T. Kraska, S. Madden, D. Maier, T. Mattson, S.Papadopoulos,
J. Parkhurst, N. Tatbul, M. Vartak, and S. Zdonik. A Demonstration of the Big-
DAWG Polystore System. In VLDB, 2015.

8. F. Färber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and W. Lehner. SAP
HANA Database - Data Management for Modern Business Applications. In SIG-
MOD Record, 2011.

9. A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-Oriented Storage
Techniques for MapReduce. In VLDB, 2011.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In SOSP,
2003.

11. Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile: A Fast
and Space-efficient Data Placement Structure in MapReduce-based Warehouse Sys-
tems. In ICDE, 2011.

12. S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my Data Files.
Here are my Queries. Where are my Results? In CIDR, 2011.

13. A. Jindal, J.-A. Quian-Ruiz, and J. Dittrich. Trojan Data Layouts: Right Shoes
for a Running Elephant. In SOCC, 2011.

14. A. Jindal, J.-A. Quian-Ruiz, and J. Dittrich. WWHow! Freeing Data Storage from
Cages. In CIDR, 2013.

15. P. Jovanovic, O. Romero, A. Simitsis, and A. Abelló. Incremental Consolidation
of Data-Intensive Multi-flows. In TKDE, 2016.

16. V. Kalavri, H. Shang, and V. Vlassov. m2r2: A Framework for Results Material-
ization and Reuse. In BDSE, 2013.

17. V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pan-
dis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2 with BLU
Acceleration: So Much More than Just a Column Store. In VLDB, 2013.

18. M. Schaarschmidt, F. Gessert, and N. Ritter. Towards Automated Polyglot Per-
sistence. In BTW, 2015.


