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Universitat Politècnica de Catalunya

Xavier de Palol

Dept. de Llenguatges i Sistemes Informàtics
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Abstract

The WWW contains a huge amount of documents. Some of them share the subject, but are generated by

different people or even organizations. To guarantee the interchange of such documents, we can use XML. This

allows to share documents that do not have the same structure. However, it makes difficult to understand the core

of such heterogeneous documents (in general, schema is not available). In this paper, we offer a characterization and

algorithm to obtain the midpoint (in terms of a resemblance function) of a set of semi-structured, heterogeneous

documents without optional elements. The trivial case of midpoint would be the common elements to all documents.

Nevertheless, in cases with several heterogeneous documents this may result in an empty set. Thus, we consider

that those elements present in a given amount of documents belong to the midpoint. Once we have such midpoint,

the algorithm is generalized for the obtaining of repetitions and optional elements. Thus, a exact schema can always

be found generating optional elements. However, the exact schema of the whole set may result in overspecialization

(lots of optional elements), which would make it useless.

1 Introduction

The web is a powerful medium for human communication and dissemination of information. Consequently, the web

has become a popular knowledge base, where people add documents (private, educational and organizational) and

navigate through its content. The rapid growth of information makes it sheer impossible to find, organize, access and

maintain the information as the users require. There is a clear need for the web to become semantically richer. The

aim of this semantic enrichment of the web is to enhance web searches and to introduce logical reasoning on the web

contents [EL02]. The general trend towards Semantic Web (SW) is the use of ontologies to incorporate such semantics

to existing and new documents.

For scalability reasons, one important aspect of SW consists in distilling the existing documents and extract valuable

knowledge from them. There exist multiple formats for information sources, ranging from unstructured data to highly

structured. The term semi-structured data has emerged to describe data that has some structure but neither regular,

nor known a-priori to the system. It is precisely for this reason that semi-structured documents are self-describing.
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The importance of knowing the structure (or schema) of a set of documents have been largely described in the

literature. For example, [BGM04] outlines its importance on integrating and analyzing structure of the WWW. On

the other hand, [ABS00] points out that a known structure would also facilitate the storage (by compressing and

exploiting the commonalities) and it would also encourage the queries on these commonalities. It is key to improve

the access methods to the data, thus availing query optimization. Moreover, one could use the structure to derive a

new ontology or identify (map) the concepts in the documents into an existing ontology; an ontology establishes a

common vocabulary for a given domain, which can be used to data interchange among companies. Ontologies are also

used for documentation purposes, since they provide an structured view of a domain.

Here we consider a certain kind of semi-structured data, in particular, XML documents. XML has been adopted as

standard for data interchange, availing the integration of heterogeneous information sources. A well-formed XML

document is a document that conforms to the XML syntax rules in [W3C04] (roughly, markups nest properly and

attributes are unique). Moreover, a valid XML document is a document that is well-formed and also conforms to the

rules of its DTD. A DTD contains the declarations that provide a grammar for a class of documents. It determines

the elements and attributes that appear in a document, i.e., the name, type and constraints on every element and

attribute.

As defined in [W3C04], an XML document primarily consists of a nested hierarchy of elements with a single root.

Elements can contain character data (concepts) and child elements, where both can have attributes. Child elements

consist either of a sequence list of elements or a choice list of elements. The standard states that elements in a

sequence must be ordered. From a practical point of view, an application deals better with a well-known structure

and a fixed appearing order, but in general the order of the different subelements among them is not relevant, that

is, we can change the order of these subelements without changing the meaning of the overall document. In fact,

many interfaces have been developed to access and manipulate an XML document (probably the most popular ones

are DOM1 and SAX2), and most of them do not consider the order among subelements.

The choice construct in a DTD indicates that one, and only one, element in the choice list of contents should appear in

the document. The choice construct is the key to find a perfect typing. In the rare case that all the documents belong

to the same class and use the same terms, the choice construct is not needed to find a perfect typing. Otherwise, in

a grammar that lacks the choice construct we cannot find a common schema, so we have to approximate it. Such

approximated schemas are called inexact schemas, whose usefulness was already pointed out in [Wid99].

If we use the choice construct, finding the schema is reduced to find the best grammar expression for each element (for

example following a normal form like [AGW01]), so that all elements in the document belong to the corresponding

grammar. Nevertheless, a perfect schema, one DTD that is followed by all the documents, may arise an overspecial-

ization problem. Some works have overcome overspecialization by using clustering techniques to approximate typing

[NAM98, SPBA03].

We aim at finding a common schema for a set of correct semi-structured documents. We take an inexact approach

based on the resemblance of documents, thus using the structure similarity among the documents under study. We call

this common schema the midpoint. We use the resemblance family of functions in [BGM04], which take into account

extra elements both in the document and in the DTD. We could then redefine valid XML document as a document

whose resemblance to its DTD is above a given threshold. The main contribution of this paper is the characterization

of the midpoint in terms of a resemblance function and offer an efficient algorithm to obtain it. Although our approach
1http://www.w3.org/DOM
2http://www.saxproject.org/
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deals with DTDs, it also applies to XML schemas.

The structure of the paper is as follows. In the next section we review the work related with our method. Section 3

presents the formalization of XML into DL that we propose. Section 4 characterizes the midpoint. Section 5 shows an

efficient algorithm to obtain the midpoint. Section 6 shows how to deal with optional and repeated elements. Finally,

section 7 gives the general conclusions and points out our future work.

2 Related work

As pointed out in [Wid99], everything needs to scale to web proportion. However, human mind cannot. Nobody

would catch at once the essence of thousands of documents. Some kind of schema (i.e. either structured or semi-

structured) should be available, summarizing the contents of every set of documents. Thus, several authors worked

on the generation of DTDs from XML data.

A relevant result is [NAM98], which explains how we can get a well structured schema (i.e. not a DTD) approximating

the documents. [JOKA02] describes an implementation of an algorithm to generate a DTD followed by an XML

document. [SPBA03] classifies the documents in different classes and gets one DTD per class of documents. This

is a good solution if there are a few classes with not many documents or elements each. However, it may result in

lots of different classes or optional elements for every class, if we are dealing with a huge amount of heterogeneous

documents.

On the other hand, [NAM98] pays attention to inexact schemas, outlining that the size of a perfect typing may be

the order of the data set, prohibiting its use for query optimization and interfaces. Therefore, we are not searching

a perfect typing but a human-friendly, computationally-tractable, and graphically-representable approximation. To

this end, we should use some kind of resemblance or distance. The first option would be tree edit distance (like in

[BdR04]), but it results in high complexity (see [ZS89]). Therefore, the most promising option is that of structure

similarity. [NAM98] uses Manhattan distance (i.e. the number of different descendants/ancestors of two elements),

and explains that there are several domain dependent ways to weight it. [BB95] shows different resemblance mea-

sures. Among those, [SPBA03] uses |elem(d1)∩elem(d2)|
max(|elem(d1)|,|elem(d2)|) (being d1 and d2 two documents), while [BGM04] uses

|elem(d1)∩elem(d2)|
|elem(d1)∩elem(d2)|+α·|elem(d1)\elem(d2)|,β·|elem(d2)\elem(d1)|) . We took this last measure, because it is more general, and

allows to distinguish lack of elements in one side or another.

Regarding costs, that of [NAM98] is quadratic for its first step and NP-hard (approximated by a logarithmic greedy

algorithm) for its second one. On the other hand, obtaining the schema of every class in [SPBA03] (which corresponds

to a exact DTD for all documents in the class) is linear in the number of elements in the representatives, while finding

the class of every document is worse case quadratic in the number of documents (we may need to check every document

against every other document).

3 Formalizing XML documents by means of Description Logics

As we can see in [ABS00], an XML document uses to be thought as a rooted tree. A rooted tree is an acyclic graph

(N ,E), that has no more than one root. N is a set of nodes and E a set of edges. An edge e is an ordered pair of nodes
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(nsource, ntarget). A node is a leaf, if it is not the source of any edge in E. Along this paper we will use Description

Logics (DL) notation to formalize those trees.

Since we only take into account element tags, we are not actually interested in XML documents, but in a restricted

class of DTDs that can be automatically generated from one XML document. The problem tackled in this paper is

that of finding a DTD from a set of XML documents. Nevertheless, for the sake of simplicity, from here on, we will

use the DTDs corresponding to the documents instead of the documents themselves. We assume that we have a DTD

exactly matching each document. The DTD of a document can be obtaining just parsing it and eliminating data

(leaving element tags). Thus, these DTDs cannot contain choice, nor unnumbered repetitions, nor optional elements,

nor any, because from one document we are not able to infer such structures. How could we know based only on one

document that a present element may not be present? How could we decide that there is a possibly infinite repetition?

Regarding XML attributes, they could be used to match different element tags. For example, “<a ID=’Id1’>” should

be identified with “<b ID=’Id1’>” in spite of the different tag name. Nevertheless, that is not the aim of this paper.

Representing the information either as an attribute or a child is just a design choice. Thus, from here on, without loss

of generality, we will consider XML attributes as XML child elements without further nesting structure.

As stated in [W3C04], child elements are ordered. Order is an important characteristic for documents. However, in

databases unordered data can be processed more efficiently, so it uses to be considered in that way (for example in

DOM and SAX). Therefore, we will assume that order is not relevant in our case.

[CLN98] already showed the usefulness of DL on conceptual modeling. Thus, we will consider a set of documents as a

knowledge base, which comprises two components, i.e. TBox (the terminology, we could recognize it as the schema)

and ABox (the assertions about individuals, or instances). As explained in [BCM+03], the TBox contains concepts,

and to define a formal semantics of the logic we use an interpretation I. An interpretation is a pair [∆I , ·I ], where

∆I is the domain (a non-empty set), and ·I is an interpretation function that assigns to every atomic concept A a set

(AI ⊆ ∆I) and to every atomic role r a binary relation (rI ⊆ ∆I ×∆I). Inductively, this is extended to non-atomic

concepts by the following definitions (where C and D are concepts, and r is a role):

⊥I = ∅

>I = ∆I

(C uD)I = CI ∩DI

(∃r.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ rI ∧ b ∈ CI}

document 1: <a><b><c>Hello</c></b><d><e>Bye</e></d></a>

document 2: <a><b></b><d></d></a>

document 3: <a><d><e>Bye</e></d></a>

document 4: <a><d><e>Bye bye</e></d></a>

dtd1 = ∃a.(∃b.∃c.> u ∃d.∃e.>)

dtd2 = ∃a.(∃b.⊥ u ∃d.⊥)

dtd3 = ∃a.∃d.∃e.>
dtd4 = ∃a.∃d.∃e.>

element: C (concept)

child element: ∃r.C (existential quantification)

sequence: u (conjunction)

PCDATA or String: > (top)

EMPTY : ⊥ (bottom)

Figure 1: DL representation of an XML document

As exemplified in figure 1, we will represent a document or piece of document by a concept “C”. An unordered sequence
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of pieces of documents will be represented by a conjunction “C uD”. Data types (i.e. PCDATA and string) will be

represented by the top concept “>”, while an empty element (i.e. EMPTY ) will be represented by bottom concept

“⊥”. Finally, children will be represented by means of existential quantification “∃element.C”. Actually, existential

quantification allows the presence of more than one element of the same kind. Nevertheless, as stated before, we do

not consider such repetitions by now (see section 6.2 for the treatment of repetitions).

We did not use a formalization of XML documents like that in [CDL99] because it does not allow to reason. There,

different kinds of elements are represented in the ABox, at the instance level, while reasoning algorithms needed work

at the conceptual level. Our formalization allows the usage of DL algorithms like “Subsumption” and “Least Common

Subsumer”:

Subsumtion (also known as “Query Containment” in other areas and noted “C vD”, if C is subsumed by D) shows

whether one concept is more general than another (i.e. one set contains the other for all interpretations). For

example, dtd1 v dtd3.

C v D ⇔ ∀I : CI ⊆ DI

Least Common Subsumer (“LCS” from here on) results in the subsumer of a set of concepts that is subsumed by

any other subsumer of the set of documents. LCS uses to be applied to learning from examples, and bottom-up

construction of knowledge bases. For example, lcs(dtd2, dtd4) = ∃a.∃d.>.

L = lcs(C1, .., Cn)⇔ ∀i : Ci v L ∧ @D : (∀i : Ci v D ∧D v L)

4 Characterization of the midpoint

Given a set of DTDs, we would like to find the DTD that has the maximum number of common elements wrt the set,

at the same time that minimizes the elements being in the DTD not in the documents and those in the documents

not in the DTD. We will call such DTD the midpoint of the set. In order to characterize the midpoint, we will use

the resemblance family of functions used in [BGM04].

r : (DTD, setOfDTDs) 7→ [0, 1]

r(C,E) =
wc(C,E)

wc(C,E) + α · wp(C,E) + β · wm(C,E)
for α, β ∈ R+

By instantiating α and β we get the concrete function we would like to use (notice that only if α = β the resemblance

will be symmetric). Positive real values can be assigned to these parameters. They weight the importance of finding

plus (elements in some DTD that do not appear in the midpoint) and minus (elements in the midpoint that do not

appear in some DTD) elements respectively. The function relies now on three simpler ones that obtain respectively

the size of common, plus, and minus elements. It is interesting to notice that the sum of common and plus elements

corresponds to the size of all DTDs independently of the concept we are obtaining the distance to.

wc(C,E) =
∑
dtd∈E

size(lcs(C, dtd))

wp(C,E) =
∑
dtd∈E

(size(dtd)− size(lcs(C, dtd)))
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wm(C,E) =
∑
dtd∈E

(size(C)− size(lcs(C, dtd)))

∀C : wc(C,E) + wp(C,E) =
∑
dtd∈E

size(dtd)

Any result in this paper does not depend on how we compute the size of a DTD. We only impose that the size of

a DTD is smaller than the size of adding an element to that DTD. Therefore, from here on, in the examples we

will assume that every element contributes to the size of a DTD with one unit independently of its position in the

document. For example, size(dtd1) = 5 and size(dtd2) = size(dtd3) = 3. A general, more complex and accurate

algorithm for obtaining the size of a DTD is given in [BGM04].

r(∃a.∃d.>, {dtd2, dtd3}) = 4
4+2α+0β = 4

4+4

r(∃a.∃d.∃e.>, {dtd2, dtd3}) = 5
5+α+β = 5

5+2+3

r(∃a.(∃b.> u ∃d.>), {dtd2, dtd3}) = 5
5+α+β = 5

5+2+3

r(∃a.(∃b.> u ∃d.∃e.>), {dtd2, dtd3}) = 6
6+0α+2β = 6

6+6

Figure 2: Example of multiple midpoints

At this point, it is also important to notice that there may exist more than one DTD maximizing the resemblance

(i.e. more than one midpoint). For example, let be α = 2 and β = 3. In this case, r(∃a.∃d.>, {dtd2, dtd3}) =

r(∃a.∃d.∃e.>, {dtd2, dtd3}) = r(∃a.(∃b.>u∃d.>), {dtd2, dtd3}) = r(∃a.(∃b.>u∃d.∃e.>), {dtd2, dtd3}), as we can see in

figure 2. Since this is the maximum resemblance, we can choose the midpoint of {dtd2, dtd3} among those four DTDs.

As stated by theorem 1, one of the possible midpoints of the set can be obtained by a conjunction of LCS of the

documents.

Theorem 1. Given a set of DTDs E = {dtd1,...,dtdn}, and being Bi branches of the form ∃r1
Bi
.∃r2

Bi
...∃rliBi .> with

li ≥ 1

∃S1, ..., Sp ∈P(E) : ∀B1, ..., Bq : r(
l

i=1..q

Bi, E) ≤ r(
l

j=1..p

lcs(Sj), E)

Proof. By hypothesis, let’s suppose that there is a concept M =
d
i=1..mBi that maximizes the resemblance and it is

not a conjunction of LCSs. We will divide the proof in three steps:

EC = {dtd ∈ E | dtd v C}

Step 1: ∀i = 1..q : EBi 6= ∅
Let’s suppose not, i.e. ∃i = 1..q : EBi = ∅. We can remove the last k existentials from it until there exists

some DTD d with a branch matching B′i (being B′i = ∃r1
Bi
.∃r2

Bi
...∃rli−kBi

.>). Now, d v B′i. Let be M ′ =

B1 u ... uBi−1 uB′i uBi+1 u ... uBq. It is easy to see that wc(M,E) = wc(M ′, E), wp(M,E) = wp(M ′, E), and

wm(M,E) ≥ wm(M ′, E). Thus,

r(M,E) ≤ r(M ′, E)

which means they are equal (if β = 0) or contradicts the hypothesis. Therefore, we can assume that ∀i = 1..q :

EBi 6= ∅.
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Step 2: Bi is exactly a branch of lcs(EBi)

Let’s suppose not, because the corresponding chain of existentials in lcs(EBi) is longer than Bi (notice that it

can never be shorter, by definition of the LCS). Let’s call BL to ∃r1
Bi
.∃r2

Bi
...∃rliBi ...∃r

li+k
BL

.> so that it is a branch

of lcs(EBi). Let be M ′ = B1u ...uBi−1uBLuBi+1u ...uBq. Notice that ∀dtd ∈ E \EBi : size(lcs(dtd,BL)) =

size(lcs(dtd,Bi)), because if exists a DTD with a branch B′ so that BL v B′ @ Bi, by definition it belongs to

EBi . Therefore, it is easy to see that:

wc(M ′, E) = wc(M,E)+ | EBi | ·(size(BL)− size(Bi))

wp(M ′, E) = wp(M,E)+ | EBi | ·(size(Bi)− size(BL))

wm(M ′, E) = wm(M,E)+ | E \ EBi | ·(size(BL)− size(Bi))
By hypothesis, r(M,E) ≥ r(M ′, E). Thus,

wc(M,E)

wc(M,E) + α · wp(M,E) + β · wm(M,E)
≥

wc(M,E)+ | EBi | ·(size(BL) − size(Bi))

(wc(M,E) + α · wp(M,E) + β · wm(M,E)) + (| EBi | −α | EBi | +β | E \ EBi |) · (size(BL) − size(Bi))

Let be B′i = ∃r1
Bi
.∃r2

Bi
...∃rli−1

Bi
.>. Since, by hypothesis, Bi is not exactly a branch of any DTD, ∀dtd ∈ E \EBi :

size(lcs(dtd,B′i)) = size(dtd,Bi)). Therefore, defining M ′′ = B1 u ... uBi−1 uB′i uBi+1 u ... uBq:

wc(M ′′, E) = wc(M,E)+ | EBi | ·(size(B′i)− size(Bi))

wp(M ′′, E) = wp(M,E)+ | EBi | ·(size(Bi)− size(B′i))

wm(M ′′, E) = wm(M,E)+ | E \ EBi | ·(size(B′i)− size(Bi))
and given that by hypothesis r(M,E) is the maximum:

wc(M,E)

wc(M,E) + α · wp(M,E) + β · wm(M,E)
≥

wc(M,E)− | EBi | ·(size(Bi) − size(B
′
i))

(wc(M,E) + α · wp(M,E) + β · wm(M,E)) − (| EBi | −α | EBi | +β | E \ EBi |) · (size(Bi) − size(B
′
i
))

However, both inequalities cannot be possible at the same time, because size(BL) − size(Bi) and size(Bi) −
size(B′i) are both positive numbers. Therefore, the hypothesis is not true and Bi must be exactly a branch of

lcs(EBi).

Step 3: M v lcs(EBL)

As before, let be M ′ = B1 u ... uBi−1 uBL uBi+1 u ... uBq. We already showed that

r(M,E) ≤ r(M ′, E)

wc(M,E)

wc(M,E) + α · wp(M,E) + β · wm(M,E)
≤

wc(M,E)+ | EBi | ·(size(BL) − size(Bi))

(wc(M,E) + α · wp(M,E) + β · wm(M,E)) + (| EBi | −α | EBi | +β | E \ EBi |) · (size(BL) − size(Bi))

Being a, b, c, d ∈ R+ \ {0} : ab ≤
a+c
b+d ⇔

a
b ≤

c
d . Therefore,

wc(M,E)

wc(M,E) + α · wp(M,E) + β · wm(M,E)
≤

| EBi | ·(size(BL) − size(Bi))

(| EBi | −α | EBi | +β | E \ EBi |) · (size(BL) − size(Bi))
=

| EBi |

| EBi | −α | EBi | +β | E \ EBi |

In our case, functions (i.e. wc, wp, and wm) are always positive (which makes a and b also positive). If a (i.e.

wc) is zero, inequality is still true, because any other DTD would never worsen the resemblance. On the other

hand, b (i.e. wc(M,E) +α ·wp(M,E) +β ·wm(M,E)) being zero means that E = ∅ (we do not have any DTD).

In some cases, depending on α and β, d (i.e. | EBi | −α | EBi | +β | E \ EBi |) may be negative or zero. If so,
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it is easy to see that r(M,E) ≤ r(M ′, E), which would contradict the hypothesis. Therefore, from here on, we

can assume that | EBi | −α | EBi | +β | E \ EBi | is strictly positive.

Let’s suppose that B′L is branch of lcs(EBL) so that ¬(M v B′L). Let be M ′′ = B1 u ... u Bq u B′L, and

Bj = lcs(M,B′L).

wc(M ′′, E) = wc(M,E) +
∑
dtd∈E

(size(lcs(B′L, dtd))− size(lcs(Bj , dtd)))

wp(M ′′, E) = wp(M,E) +
∑
dtd∈E

(size(lcs(Bj , dtd))− size(lcs(B′L, dtd)))

wm(M ′′, E) = wm(M,E) +
∑
dtd∈E

(size(B′L)− size(Bj)− size(lcs(B′L, dtd)) + size(lcs(Bj , dtd)))

Therefore,

r(M,E) ≤ r(M′′, E) ⇔ r(M,E) ≤
wc(M′′, E) − wc(M,E)

wc(M′′, E) − wc(M,E) + α · (wp(M′′, E) − wp(M,E)) + β · (wm(M′′, E) − wm(M,E))

wc(M′′, E) − wc(M,E)

wc(M′′, E) − wc(M,E) + α · (wp(M′′, E) − wp(M,E)) + β · (wm(M′′, E) − wm(M,E))

=

∑
dtd∈E(size(lcs(B′L, dtd)) − size(lcs(Bj, dtd)))

(1 − α) · (
∑
dtd∈E(size(lcs(B′

L
, dtd)) − size(lcs(Bj, dtd)))) + β · (

∑
dtd∈E(size(B′

L
) − size(Bj) − size(lcs(B′

L
, dtd)) + size(lcs(Bj, dtd))))

=
1

(1 − α) + β · (
∑
dtd∈E(size(B′

L
)−size(Bj))∑

dtd∈E(size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd)))

− 1)

=
1

(1 − α) + β · (
|E|·(size(B′

L
)−size(Bj))∑

dtd∈E(size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd)))

− 1)

=
1

(1 − α) + β · ( |E|∑
dtd∈E

size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd))

size(B′
L

)−size(Bj)

− 1)

Since B′L @ Bj , then ∀dtd ∈ E \ EBj : lcs(B′L, dtd)) = lcs(Bj , dtd). Therefore,

1

(1− α) + β · ( |E|∑
dtd∈E

size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd))

size(B′
L

)−size(Bj)

− 1)
=

1

(1− α) + β · ( |E|∑
dtd∈EBj

size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd))

size(B′
L

)−size(Bj)

− 1)

Moreover, ∀dtd ∈ EBj : lcs(Bj , dtd) = Bj , ∀dtd ∈ EB′L : lcs(B′L, dtd) = B′L, and ∀dtd ∈ EBj \ EB′L : size(B′L) >

size(lcs(B′L, dtd)) > size(Bj). Therefore,

1

(1− α) + β · ( |E|∑
dtd∈EBj

size(lcs(B′
L
,dtd))−size(lcs(Bj,dtd))

size(B′
L

)−size(Bj)

− 1)
≥ 1

(1− α) + β · ( |E||EBj |
− 1)

=
1

(1− α) + β
|E\EBj |
|EBj |

Finally, since | EBj |≥| EB′L |≥| EBL |=| EBi |, then

1

(1− α) + β
|E\EBj |
|EBj |

≥ 1

(1− α) + β
|E\EBi |
|EBi |

| EBj |

| EBj | −α | EBj | +β | E \ EBj |
≥

| EBi |

| EBi | −α | EBi | +β | E \ EBi |
≥

wc(M,E)

wc(M,E) + α · wp(M,E) + β · wm(M,E)

Therefore, if adding Bi improves the resemblance, adding Bj improves the resemblance even more. So, every

branch of lcs(EBL) subsumes M, which means that M v lcs(EBL).
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Lemma 2. There exists a DTD of the form
d
k=1..p lcs(Sk) maximizing the resemblance, so that ∀1 ≤ i, j ≤ p : (Si *

Sj).

Proof. If ∃i, j : Si ⊂ Sj , then ∀dtd ∈ E : lcs(
d
k=1..p lcs(Sk), dtd) = lcs(

d
k=1..j−1 lcs(Sk)u

d
k=j+1..p lcs(Sk), dtd) and

size(
d
k=1..p lcs(Sk)) = size(

d
k=1..j−1 lcs(Sk) u

d
k=j+1..p lcs(Sk)). Therefore,

r(
l

k=1..p

lcs(Sk), E) = r(
l

k=1..j−1

lcs(Sk) u
l

k=j+1..p

lcs(Sk), E)

Corollary 3. There exists a DTD of the form
d
k=1..p lcs(Sk) maximizing the resemblance, so that p ≤

(
| E |
|E|
2

)

5 Obtaining the midpoint of a set of DTD

First of all, it is important to notice that depending on the values of α and β there are some trivial cases (as shown

in table 1). If α = 0, we do not mind having extra elements in the DTDs wrt the midpoint. Therefore, among the

multiple solutions to the problem, we find ∃element.> (where “element” is the most frequent root element in the

documents). If β = 0, we do not mind having extra elements in the midpoint wrt every individual DTD. Therefore,
d
dtd∈E dtd is among the solutions. Both equaling zero means that just by matching some elements in some DTD we

get maximum resemblance (i.e. ∀wc 6= 0 : wc
wc+0wp+0wm

= 1). Thus, from here on, we will only consider the non-trivial

case where α 6= 0 and β 6= 0.

Midpoint β = 0 β 6= 0

α = 0 any ∃element.>
α 6= 0

d
dtd∈E dtd ?

Table 1: Trivial cases on finding a midpoint

In this section we analyze three different possibilities to obtain the midpoint of a set of DTDs. Section 5.1 explores

the behaviour of a blind search in the space of candidate DTDs. Section 5.2 tries to get benefit from the knowledge

of the structure of the midpoint by restricting the search to those DTDs being LCS of some DTDs. Finally, section

5.3 shows how we could find the midpoint just looking at the number of appearances of each element.

5.1 Blind search

The first possibility to find the midpoint of a set of documents is generating the whole search space and compare every

point to the documents until we find the maximum resemblance.

Firstly, as we can see in figure 3, we need to get all elements in the set of documents, which needs linear time on

the number of elements (assuming there is a small number of children or they are ordered). After that, we need to

generate all possible points in the search space (i.e. the parts of the set of elements), which is exponential in the

9



BSET := ∅;
foreach dtd ∈ E do

foreach branch w dtd do

if not branch ∈ BSET then

BSET := BSET ∪ {branch};
endif;

endforeach;

endforeach;

M := >;

max := 0;

foreach bset ∈P(BSET )

C :=
d
B∈bsetB;

if r(C,E) > max then

M := C;

max := r(C,E);

endif;

endforeach;

Figure 3: Blind search algorithm

number of elements (without repetitions). Moreover, for each one of this points we need to calculate its resemblance

to the set of documents. It is clear that this approach is prohibitive in terms of time cost.

Based on the four DTDs in figure 1, figure 4 shows the nine candidates in the search space (generated by blind search)

and their distances to the set of documents. If we take α = β = 1, then the best solution would be C8, whose

resemblance is 13
17 .

5.2 Finding the combination of LCSs

From section 4, we know that the midpoint is composed by a set of LCS. The idea of this section is to restrict the

search space, by limiting it to those DTDs that are LCS of some subset of DTDs.

Figure 5 sketches the algorithm. We can see that it consists of two phases. The first one generates all LCSs of

the documents. The number of LCSs is exponential in the number of documents, and generating one of them can

be considered linear in the number of elements in one document (for small number of children or ordered children).

Afterwards, we need to generate all possible combinations of LCSs (exponential in the number of LCS) and get the

resemblance from each one of them to the set of documents. The maximum resemblance would result in the midpoint.

As before, we consider the four DTDs in figure 1. Figure 6 shows the five different candidates (the other ten candidates

coincide with one of those) and their distances to the set of documents. If we take α = β = 1, then the best solution

would be C5, whose resemblance is 13
17 . One may think that the midpoint should be composed by the LCSs with

highest resemblance. Nevertheless, in this example, we can see that lcs(dtd2) participates in the midpoint, while

lcs(dtd1) does not, in spite of r(lcs(dtd1), E) > r(lcs(dtd2), E). The problem is that the contribution of one LCS to

the resemblance of the midpoint depends on the other LCS belonging to the midpoint.

10



BSET = {∃a.>,∃a.∃b.>,∃a.∃b.∃c.>,∃a.∃d.>,∃a.∃d.∃e.>}

C1 = ∃a.> r(C1, E) = 4
4+10α+0β

C2 = ∃a.∃b.> r(C2, E) = 6
6+8α+2β

C3 = ∃a.∃d.> r(C3, E) = 8
8+6α+0β

C4 = ∃a.∃b.∃c.> r(C4, E) = 7
7+7α+5β

C5 = ∃a.(∃b.> u ∃d.>) r(C5, E) = 10
10+4α+2β

C6 = ∃a.∃d.∃e.> r(C6, E) = 11
11+3α+1β

C7 = ∃a.(∃b.∃c.> u ∃d.>) r(C7, E) = 11
11+3α+5β

C8 = ∃a.(∃b.> u ∃d.∃e.>) r(C8, E) = 13
13+1α+3β

C9 = ∃a.(∃b.∃c.> u ∃d.∃e.>) r(C9, E) = 14
14+0α+6β

Figure 4: Candidate DTDs generated in a blind search

LCS := ∅;
foreach S ∈P(E)

LCS := LCS ∪ lcs(S);

endforeach;

M := >;

max := 0;

foreach L ∈P(LCS)

C :=
d
l∈L l

if r(C,E) > max then

M := C;

max := r(C,E);

endif;

endforeach;

Figure 5: Algorithm by using LCS

5.3 Picking up based on appearance

This section shows the possibility of finding a midpoint just based on the appearances of each element in the set of

documents. The first question to answer is how we could know whether the point in the search space we are treating is

better than another candidate or not. Surprisingly, it is not necessary to get all plus and minus elements. By theorem

4, we know that all we need is the number of common elements between each of both DTDs and the set of DTDs E.

Theorem 4. To decide whether the resemblance of a DTD C against a set of DTDs is better than that of another

DTD C ′, it is only necessary to consider the common elements (neither plus, nor minus).

Proof.

r(C,E) ≥ r(C ′, E)

wc(C,E)

wc(C,E) + α · wp(C,E) + β · wm(C,E)
≥

wc(C′, E)

wc(C′, E) + α · wp(C′, E) + β · wm(C′, E)
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lcs(dtd1) = ∃a.(∃b.∃c.> u ∃d.∃e.>)

lcs(dtd2) = lcs(dtd2, dtd1) = ∃a.(∃b.> u ∃d.>)

lcs(dtd3) = lcs(dtd4) = lcs(dtd1, dtd3) = lcs(dtd1, dtd4) = lcs(dtd1, dtd3, dtd4) = ∃a.∃d.∃e.>
lcs(dtd2, dtd3) = lcs(dtd1, dtd2, dtd3) = lcs(dtd2, dtd4) = lcs(dtd1, dtd2, dtd4) = lcs(dtd1, dtd2, dtd3, dtd4) = ∃a.∃d.>

C1 = lcs(dtd1) = ∃a.(∃b.∃c.> u ∃d.∃e.>) r(C1, E) = 14
14+0α+6β

C2 = lcs(dtd2) = ∃a.(∃b.> u ∃d.>) r(C2, E) = 10
10+4α+2β

C3 = lcs(dtd3) = ∃a.∃d.∃e.> r(C3, E) = 11
11+3α+1β

C4 = lcs(dtd2, dtd3) = ∃a.∃d.> r(C4, E) = 8
8+6α+0β

C5 = lcs(dtd2) u lcs(dtd3) = ∃a.(∃b.> u ∃d.∃e.>) r(C5, E) = 13
13+1α+3β

Figure 6: Candidate DTDs generated in a search using LCSs

∑
dtd∈E size(lcs(C, dtd))∑

dtd∈E size(lcs(C, dtd)) + α ·
∑
dtd∈E(size(dtd) − size(lcs(C, dtd))) + β ·

∑
dtd∈E(size(C) − size(lcs(C, dtd)))

≥∑
dtd∈E size(lcs(C′, dtd))∑

dtd∈E size(lcs(C′, dtd)) + α ·
∑
dtd∈E(size(dtd) − size(lcs(C′, dtd))) + β ·

∑
dtd∈E(size(C′) − size(lcs(C′, dtd)))

(
∑

dtd∈E
size(lcs(C, dtd)))(

∑
dtd∈E

size(lcs(C′, dtd)) + α ·
∑

dtd∈E
(size(dtd) − size(lcs(C′, dtd))) + β ·

∑
dtd∈E

(size(C′) − size(lcs(C′, dtd))))

≥

(
∑

dtd∈E
size(lcs(C′, dtd)))(

∑
dtd∈E

size(lcs(C, dtd)) + α ·
∑

dtd∈E
(size(dtd) − size(lcs(C, dtd))) + β ·

∑
dtd∈E

(size(C) − size(lcs(C, dtd))))

(
∑

dtd∈E
size(lcs(C, dtd)))(α ·

∑
dtd∈E

size(dtd) + β ·
∑

dtd∈E
size(C′)) ≥ (

∑
dtd∈E

size(lcs(C′, dtd)))(α ·
∑

dtd∈E
size(dtd) + β ·

∑
dtd∈E

size(C))

∑
dtd∈E size(lcs(C, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C)

≥
∑
dtd∈E size(lcs(C′, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′)

Once we know that it is only necessary to compare the common elements, the next question is how we could improve

the resemblance of a point in the search space. By theorem 5, we know that if adding a branch to the midpoint

improves resemblance, all branches appearing the same number of times also improve it independently of their sizes.

We may have thought that we have a set of possible improvements to investigate. Nevertheless, the branches with the

same number of appearances do not generate alternative solutions, but all together belong to the same solution.

Lemma 5. If adding a branch b to a concept increases its resemblance to the set, adding all branches appearing in

the same number of DTDs than b will also improve its resemblance.

Proof. Let’s suppose that C @ C ′ and r(C,E) ≥ r(C ′, E).
∑
dtd∈E size(lcs(C, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C)

≥
∑
dtd∈E size(lcs(C′, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′)

∑
dtd∈E(size(lcs(C′, dtd)) + (size(lcs(C, dtd)) − size(lcs(C′, dtd))))

α ·
∑
dtd∈E size(dtd) + β· | E | ·(size(C′) + (size(C) − size(C′)))

≥
∑
dtd∈E size(lcs(C′, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′)

∑
dtd∈E size(lcs(C′, dtd)) +

∑
dtd∈E((size(lcs(C, dtd)) − size(lcs(C′, dtd))))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′) + β· | E | ·((size(C) − size(C′)))

≥
∑
dtd∈E size(lcs(C′, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′)
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Which is true if and only if

∑
dtd∈E((size(lcs(C, dtd)) − size(lcs(C′, dtd))))

β· | E | ·((size(C) − size(C′)))
≥

∑
dtd∈E size(lcs(C′, dtd))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C′)

Since C @ C ′ and it does not matter in which DTD the elements appear, but whether they appear or not, then∑
dtd∈E((size(lcs(C,dtd))−size(lcs(C′,dtd))))

β·|E|·((size(C)−size(C′))) can be seen as #appearance·size(newElement)
β·|E|·size(newElement) . Therefore, either adding an element

or not does not depend on the size of the element, but on the number of times it appears in the DTDs. Thus, if adding

an element is worthwhile, so it is adding any other element appearing the same number of times.

Finally, in theorem 6, we show that elements appearing more times result in higher improvement of resemblance. As

a special case of this, if an element improves resemblance, its parents improve resemblance even more. Thus, before

adding an element to the result, all its parents should have been added (which otherwise could not have been avoided).

Corollary 6. Independently of the size of the elements, a branch b1 appearing k1 times in E improves the resemblance

more than another branch b2 appearing k2 times if k1 > k2.

Proof. Since, k1 > k2, then k1
β·|E| >

k2·size(b2)
β·|E|·size(b2) . Therefore, if b2 improved the resemblance (i.e. we know that

k2
β·|E| ≥

∑
dtd∈E size(lcs(C,dtd))

α·
∑
dtd∈E size(dtd)+β·|E|·size(C) ), then b1 improves the resemblance even more.

k1

β· | E |
≥

∑
dtd∈E size(lcs(C, dtd)) + (k2 · size(b2))

α ·
∑
dtd∈E size(dtd) + β· | E | ·size(C) + (β· | E | ·size(b2))

WDTD := ∅;
foreach dtd ∈ E do

foreach branch w dtd do

if [branch, k] ∈WDTD

then WDTD := WDTD \ {[branch, k]} ∪ {[branch, k + 1]};
else WDTD := WDTD ∪ {[branch, 1]};
endif;

endforeach;

endforeach;

M := >;

m :=| E |;
while ( m

β·|E| ≥
∑
dtd∈E size(lcs(M,dtd))

α·
∑
dtd∈E size(dtd)+β·|E|·size(M)

)

foreach branch ∈ getSubsetByWeight(WDTD,m) do

M := M u branch;

endforeach;

m := m− 1;

endwhile;

Figure 7: Algorithm based on appearance

From theorems 4, 5, and 6, we infer that we can build the midpoint of a set of DTDs from >, by iteratively adding the

most frequent element in the set of DTDs. Firstly, as we can see in figure 7, we build a weighted DTD (i.e. WDTD),

13



whose contents are
d
dtd∈E dtd, where each piece of branch is weighted depending on its number of appearances in the

set of DTDs. Once we have the weight of each branch, we take the maximum possible weight (i.e. | E |) and check

if it would improve resemblance from > (i.e. PCDATA) to the set of DTDs. If this maximum weight improves the

resemblance, we add all branches having such weight to the result and get the next weight smaller than that. We loop

adding another subset of branches while their weight improves resemblance.

The first phase of the algorithm is really cheap in terms of complexity. Taking into account that the number of possible

children of an element should be small, building the weighted tree is linear in the number of elements in the set of

documents, because we can find a piece of branch in “WDTD” just searching the children of the previous piece of

branch we modified/added to “WDTD” (assuming a deep first search of the document we are treating). Regarding the

second phase of the algorithm, all calls to “getSubsetByWeight” can be done in linear time in the number of different

elements, if we kept the elements with the same weight in a list. Therefore, the space we need is linear in the number

of different elements (not counting repetitions), while the time is also linear in the number of elements in the set of

documents (counting repetitions).

WDTD = {[∃a.>, 4], [∃a.∃b.>, 2], [∃a.∃b.∃c.>, 1], [∃a.∃d.>, 4], [∃a.∃d.∃e.>, 3]}
M0 = > 4

4β ≥ 0

M1 = ∃a.∃d.> 3
4β ≥

8
14α+2·4β

M2 = ∃a.∃d.∃e.> 2
4β ≥

11
14α+3·4β

M3 = ∃a.(∃b.> u ∃d.∃e.>) 1
4β <

13
14α+4·4β

Figure 8: Candidate DTDs generated in a construction based on appearance

If we run this algorithm on the DTDs in figure 1, it would result in the “WDTD” in figure 8 (each dupla consists

of a branch and the number of documents that contain it). Thus, in the first loop, condition evaluates true (for

α = β = 1, and every element contributing by one to the size), and we add the branches appearing four times. Since

it still evaluates true, we add those appearing three times, and eventually twice. Since the condition evaluates false

for weight equal one, the corresponding branch does not belong to the solution.

WDTD = {[∃a.>, {dtd1, dtd2, dtd3, dtd4}], [∃a.∃b.>, {dtd1, dtd2}], [∃a.∃b.∃c.>, {dtd1}], [∃a.∃d.>, {dtd1, dtd2, dtd3, dtd4}], [∃a.∃d.∃e.>, {dtd1, dtd3, dtd4}]}

M = lcs(dtd1, dtd2) u lcs(dtd1, dtd3, dtd4)

Figure 9: Obtaining the sets of documents that generate the midpoint

Obtaining the sets of documents that generate the midpoint (see theorem 1) a posteriori (once we know the midpoint)

is easy with a small modification of the algorithm. All we need is that “WDTD” keep the identifiers of the documents

that contain every branch instead of just a counter of them. Thus, it is trivial to see that the conjunction of the LCS

of the documents containing the leafs of the midpoint result in the midpoint. Figure 9 shows how this would result in

our example.

6 Generalizations

Along this paper, we have simplified the class of DTDs we treated. This section is devoted to study the two ignored

cases, i.e. that of optional elements (section 6.1) and repeated elements (section 6.2).
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6.1 Optional elements

Until now, we assumed that we do not had the choice XML construct (i.e. disjunction “t” in terms of DL) . In this

section, we will study the possibility of using it. Thus, resemblance needs to be redefined as follows:

M =
k⊔
i=1

M i

Ei = {dtd ∈ E | ∀j 6= i, r(dtd,M i) > r(dtd,M j)}

r(M,E) =
∑k
i=1 wc(M

i, Ei)∑k
i=1 wc(M i, Ei) + α

∑k
i=1 wp(M i, Ei) + β

∑k
i=1 wm(M i, Ei)

As explained in [NAM98], the size of a perfect typing (which is always possible if using choice) may be quite large

(roughly the order of the data set), which would prohibit its use for query optimization and render it impractical

for graphical query interfaces. Therefore, we want to improve the resemblance by allowing only a limited number of

optional elements, limiting the size of the schema and avoiding its overspecialization. Sections 6.1.1 and 6.1.2 show,

respectively, how wp and wm can be reduced by adding optional elements.

6.1.1 Reducing plus elements (those in the documents, not in the midpoint)

We want to improve the resemblance to the whole set of documents by adding elements to the midpoint. Nevertheless,

since we already reached the maximum resemblance, we could only worsen it. To solve this, we may consider those

elements as optional. Thus, they will improve the resemblance to those documents containing them, while never

worsening the resemblance to those that do not contain them.

It is easy to see that by just extending (strictly adding elements) the midpoint with optional elements, we will increase

wc, reduce wp, and preserve wm. Since we already showed that wc + wp is constant, it is only necessary to consider

how much wc increases, i.e. how many documents match the optional elements and how big these are. The more

documents matching that elements, the better; and the bigger the elements, also the better. Therefore, optional

elements should be big and present in a set of documents of high cardinality.

...

branch = nextByWeightT imesSize(WDTD,m));

while (r(M,E) < target and branch 6= ⊥)

M := M t (M u branch);

branch = nextByWeightT imesSize(WDTD,m));

endwhile;

Figure 10: Algorithm for the selection of optional elements

Figure 10 shows the third phase of the algorithm in figure 7. Once we got the DTD of maximum resemblance, without

any optional element, we may add optional elements also based on the number of appearance until we get the target

resemblance (target = 1 would result in overspecialization, while target = 0 would result in the absence of optional

elements). Priorizing small or big elements would depend on the sorting criterion used to get the branches. There

are several possibilities to choose the best element to be optional among those of high appearance. We may want

the smallest one first (to get several small optional elements) or the biggest one first (to get few big optional parts
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WDTD = {[∃a.>, 4], [∃a.∃b.>, 2], [∃a.∃b.∃c.>, 1], [∃a.∃d.>, 4], [∃a.∃d.∃e.>, 3]}
M4 = ∃a.(∃b.> u ∃d.∃e.>) t (∃a.(∃b.∃c.> u ∃d.∃e.>))

E1 = {dtd2, dtd3, dtd4};E2 = {dtd1}
r(M4, E) = wc(M

1
4 ,E

1)+wc(M
2
4 ,E

2)

wc(M1
4 ,E

1)+wc(M1
4 ,E

2)+α·(wp(M1
4 ,E

1)+wp(M1
4 ,E

2))+β·(wm(M1
4 ,E

1)+wm(M1
4 ,E

2))
= 9+5

9+5+α·(0+0)+β·(3+0) = 14
17

Figure 11: Improvement reducing plus elements

of the document). In this case, we decided to pick elements up sorted by “#appearance · size(element)”, because it

increases resemblance faster (minimizing the number of elements in the midpoint).

What really matters is that only branches with less than m appearance are returned (those of higher appearance

already belong to the midpoint).

Figure 11 shows how we can improve the resemblance. In figure 8, we stopped the iteration before adding those

branches appearing only one time. Therefore, m = 1 and the next branch to be added is “∃a.∃b.∃c.>”. Thus, we get a

new midpoint being the disjunction of two parts, and we calculate the resemblance taking into account the best part

for each document. In this way, denominator does not change, while numerator increases, improving resemblance.

6.1.2 Reducing minus elements (those in the midpoint, not in the documents)

Notice that, by using the algorithm in figure 10 we do not modify wm (which may not be zero after the second phase).

Thus, in general, we will not reach the maximum resemblance, because the midpoint contains non-optional elements

that are not present in all documents. The more heterogeneous the documents are, the worse will be the result, if

we try to obtain only one midpoint. In order to solve this, we should divide the documents into several classes, and

obtain separately the midpoint of each of these classes. In this way, at the extreme, each of these midpoints would only

contain elements that are present in all its corresponding documents. The midpoint of the whole set of documents

will be the disjunction of these partial midpoints M i.

Therefore, we should detect the presence of different clusters of documents, and treat them separately. We may trigger

this phase of the algorithm, if after the third phase we did not reach the target resemblance; we may also trigger it,

if we cannot reach the target resemblance after a given number of iterations of phase three (i.e. a given number of

optional elements); or if wp
wm

after phase two is below a threshold; or we may even trigger it based on the number of

appearances of elements at first level (i.e. if |E|
getMaxWeight(WDTD) is above a threshold).

For this clustering, we may use an algorithm like “k-means” which is considered to need linear time (see [ECY00]).

If we take k =| E |, the problem becomes trivial taking M =
⊔
dtd∈E dtd. Therefore, we are looking for a small k so

that maximizes r(M,E). For example, we could assume that there should be, at least, |E|
getMaxWeight(WDTD) different

kinds of documents, and generate such number of optional blocks of elements.

Figure 12 sketches the algorithm. In our case, we could benefit from the existence of “WDTD” to improve performance,

if it keeps the sets of documents that contain every branch instead of just counting them. We can codify every set Ei as

a list of bits b1b2..b|E|, where bit j shows whether the corresponding DTD contains the branch or not (dtdj v branch).

In this way, we could take k random disjoint chains of bits as seeds (si) for “k-means”. Then, we can find the midpoint

corresponding to each seed by running the second phase of our algorithm on “WDTD” using the corresponding mask

of bits. Finally, we could also get the resemblance from each DTD to one midpoint also going through “WDTD” one
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Choose k initial seeds (may be randomly)

do

Assign each document to its nearest center

For each cluster get a new center

while (centers changed)

Figure 12: K-means algorithm

more time (by keeping all | E | resemblances in memory).

Figure 13 shows an example for clustering documents into two sets, and how this improves the resemblance. As initial

seeds, we take odd and even documents (i.e. {dtd1, dtd3} vs {dtd2, dtd4}). For each one of them, we obtain the

midpoint (i.e. “∃a.(∃b.∃c.> u ∃d.∃e.>)” and “∃a.(∃b.> u ∃d.∃e.>)” respectively) by applying the algorithm in figure

7, anding the corresponding seed to the sequence of bits of each branch in “WDTD”. Obtaining the resemblance of

each document to both midpoints, we see that “dtd3” is in the wrong class, because its resemblance to the midpoint of

even documents is bigger, while it is an odd one. Therefore, we perform a second iteration with one cluster for “dtd1”

and another one for the rest of the documents. This time, we detect that “dtd2” is in the wrong class, we move it and

perform the third iteration. Now every document is in the right class, so we have finished. The midpoint of E is the

disjunction of both midpoints, and overall resemblance improves by reducing the denominator. It is easy to see that

with three clusters we had obtained the exact DTD.

Notice also that all resemblances can be obtained from WDTD, by crossing only once it in parallel with the cor-

responding midpoint. For example, let’s see how to obtain in the first iteration of figure 13 the resemblances from

“∃a.(∃b.> u ∃d.∃e.>)” to each document (i.e. “r(M2, dtd1)”, “r(M2, dtd2)”, “r(M2, dtd3)”, and “r(M2, dtd4)”). At

the first step, we would take “∃a.>” that belongs to the midpoint. Since the sequence of bits indicates that it be-

longs to the four documents, it would increase all four common elements counters (i.e. wc(M2, dtd1), wc(M2, dtd2),

wc(M2, dtd3), and wc(M2, dtd4)). At the second step, we would take “∃a.∃b.>” that also belong to the midpoint.

Since the sequence of bits indicates that it belongs to the first two documents, it would increment common elements

of these and minus of the others (i.e. wc(M2, dtd1), wc(M2, dtd2), wm(M2, dtd3), and wm(M2, dtd4)). At the third

step, we would take “∃a.∃b.∃c.>” that does not belong to the midpoint. Since the sequence of bits indicates that it

belongs only to the first document, it would just increment plus elements of this (i.e. wp(M2, dtd1)). We would follow

this way for the other two elements in “WDTD”.

6.2 Repeated elements

It is possible that the same element appears at different places (i.e. different levels, or just having a different parent)

in the same document (or even in different documents). If we consider that in this case all elements share the same

DTD internal structure independently of their position in the document, we should start a previous process to find

the midpoint of such element (i.e. we should consider it a whole document, get its internal structure, and treat it as a

black box). This section does not deal with this kind of repetitions, but with one element that contains several others

of the same kind in a sequence.

First of all, on talking about repetitions, it is important to distinguish between unnumbered repetitions (i.e. + in

XML notation) or numbered repetitions (i.e. a fixed number of children of the same kind). The point is that we

cannot decide that there exists an unnumbered repetition without human participation. How could we decide (based
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WDTD = {[∃a.>, {1111}], [∃a.∃b.>, {1100}], [∃a.∃b.∃c.>, {1000}], [∃a.∃d.>, {1111}], [∃a.∃d.∃e.>, {1011}]}

Iteration 1:

s1 = 1010, s2 = 0101

WDTD1 = {[∃a.>, {1010}], [∃a.∃b.>, {1000}], [∃a.∃b.∃c.>, {1000}], [∃a.∃d.>, {1010}], [∃a.∃d.∃e.>, {1010}]}
M1

0 = > 2
2β ≥ 0

M1
1 = ∃a.∃d.∃e.> 1

2β ≥
6

8α+3·2β
M1

2 = ∃a.(∃b.∃c.> u ∃d.∃e.>) 0
2β < 8

8α+5·2β
WDTD2 = {[∃a.>, {0101}], [∃a.∃b.>, {0100}], [∃a.∃b.∃c.>, {0000}], [∃a.∃d.>, {0101}], [∃a.∃d.∃e.>, {0001}]}

M2
0 = > 2

2β ≥ 0

M2
1 = ∃a.∃d.> 1

2β ≥
4

6α+2·2β
M2

2 = ∃a.(∃b.> u ∃d.∃e.>) 0
2β < 6

6α+4·2β
r(M1, dtd1) = 5

5+0α+0β r(M2, dtd1) = 4
4+1α+0β

r(M1, dtd2) = 3
3+0α+2β r(M2, dtd2) = 3

3+0α+1β
r(M1, dtd3) = 3

3+0α+2β r(M2, dtd3) = 3
3+0α+1β

r(M1, dtd4) = 3
3+0α+2β r(M2, dtd4) = 3

3+0α+1β

Iteration 2:

s1 = 1000, s2 = 0111

WDTD1 = {[∃a.>, {1000}], [∃a.∃b.>, {1000}], [∃a.∃b.∃c.>, {1000}], [∃a.∃d.>, {1000}], [∃a.∃d.∃e.>, {1000}]}
M1

0 = > 1
1β ≥ 0

M1
1 = ∃a.(∃b.∃c.> u ∃d.∃e.>) 0

1β < 5
5α+5·1β

WDTD2 = {[∃a.>, {0111}], [∃a.∃b.>, {0100}], [∃a.∃b.∃c.>, {0000}], [∃a.∃d.>, {0111}], [∃a.∃d.∃e.>, {0011}]}
M2

0 = > 3
3β ≥ 0

M2
1 = ∃a.∃d.> 2

3β ≥
6

9α+2·3β
M2

2 = ∃a.∃d.∃e.> 1
3β < 8

9α+3·3β
r(M1, dtd1) = 5

5+0α+0β r(M2, dtd1) = 3
3+2α+0β

r(M1, dtd2) = 3
3+0α+2β r(M2, dtd2) = 2

2+1α+1β
r(M1, dtd3) = 3

3+0α+2β r(M2, dtd3) = 3
3+0α+0β

r(M1, dtd4) = 3
3+0α+2β r(M2, dtd4) = 3

3+0α+0β

Iteration 3:

s1 = 1100, s2 = 0011

WDTD1 = {[∃a.>, {1100}], [∃a.∃b.>, {1100}], [∃a.∃b.∃c.>, {1000}], [∃a.∃d.>, {1100}], [∃a.∃d.∃e.>, {1000}]}
M1

0 = > 2
2β ≥ 0

M1
1 = ∃a.(∃b.> u ∃d.>) 1

2β ≥
6

8α+3·2β
M1

2 = ∃a.(∃b.∃c.> u ∃d.∃e.>) 0
2β < 8

8α+5·2β
WDTD2 = {[∃a.>, {0011}], [∃a.∃b.>, {0000}], [∃a.∃b.∃c.>, {0000}], [∃a.∃d.>, {0011}], [∃a.∃d.∃e.>, {0011}]}

M2
0 = > 2

2β ≥ 0

M2
1 = ∃a.∃d.∃e.> 1

2β ≥
6

6α+3·2β
M2

2 = ∃a.∃d.∃e.> 0
2β < 6

6α+3·2β
r(M1, dtd1) = 5

5+0α+0β r(M2, dtd1) = 3
3+2α+0β

r(M1, dtd2) = 3
3+0α+2β r(M2, dtd2) = 2

2+1α+1β
r(M1, dtd3) = 3

3+0α+2β r(M2, dtd3) = 3
3+0α+0β

r(M1, dtd4) = 3
3+0α+2β r(M2, dtd4) = 3

3+0α+0β

M = (∃a.(∃b.∃c.> u ∃d.∃e.>)) t (∃a.∃d.∃e.>)

E1 = {dtd1, dtd2};E2 = {dtd3, dtd4}

r(M,E) =
wc(M1, E1) + wc(M2, E2)

wc(M1, E1) + wc(M2, E2) + α · (wp(M1, E1) + wp(M2, E2)) + β · (wm(M1, E1) + wm(M2, E2))
=

8 + 6

8 + 6 + α · (0 + 0) + β · (2 + 0)
=

14

16

Figure 13: Clustering the documents

on a finite set of finite documents) that there is a possibly infinite repetition of elements? We cannot. Therefore, we

should decide a priori if we are interested on generating numbered or unnumbered repetitions.

If we want to generate numbered repetitions, we should just consider that each sibling element is a completely

different one and we can use again the same algorithms. For example, in order to be able to treat the XML document

“<a><b>brother</b><b>sister</b></a>”, we should translate it into ∃a.(∃b1.> u ∃b2.>). This would work

specially well for ordered elements, because their position indicates which sibling they are. In the example, the first

one would always be identified as b1, and the second as b2. Doing it this way, a different position indicates different

internal structure.

If we are treating unordered documents, repeated elements result in undistinguishable twins with the same intensional

internal structure. Otherwise, if they have a different schema, there is a design problem in the document. Even when

dealing with semi-structured data, two elements of the same (undistinguishable) class should share the same (semi-

structured) schema. Thus, we have two different problems. The first one is deciding when there exists a unnumbered

repetition, and the second is how to find the internal structure of the repeated elements.

18



To be able to handle repeated elements, we should modify the parser of XML documents that generates the DTDs. If

the parser finds a repetition it should use a special mark showing the presence of sibling elements, and indicating the

number t of them existing in the corresponding parent. Since XML documents are deep-first written, we would visit

the children before we know the number of twins. Therefore, we should keep in memory the branches of each DTD,

to generate t.

In order to decide whether there is a repetition or not, if the first phase of the algorithm in figure 7 finds the mark,

“branch” and “branch+” should both be increased in “WDTD”. During the second phase, on adding “branch+”,

we should remove “branch” from M . Notice that the appearance of “branch” will always be higher than that of

“branch+”, because we always increase the counter of the first, while only increase the latter if there is a repetition.

Regarding the problem of finding the internal structure of repeated elements, we treat the subelements in only one

pass. When, during the first phase of the algorithm, we find a subelement in any of the repetitions, we should just

increase the counter of the corresponding branch in 1
t , where t is the number of twins. By doing this, we avoid

overweighting the subelements of repetitions, and keep the basic idea of the algorithm still true (i.e. a child cannot

appear more times in the documents that its parent).

document 5: <a><b>Single</b></a>

document 6: <a><b>Twin2</b><b> Twin1 </b></a>

document 7: <a><b>PlainTwin</b><b><c>ComposedTwin</c></b></a>

WDTD = {[∃a.>, 3], [∃a.∃.b.>, 3], [∃a.∃b+ .>, 2], [∃a.∃b.∃c.>, 0.5]}

Figure 14: Example of documents with repetitions

Figure 14 exemplifies how repetitions should be treated by the algorithm. In this case, “∃a.>” weights three, be-

cause appears in three documents. The same happens for “∃a.∃.b.>”, because three documents contain such branch.

Moreover, there are two documents containing repetitions of “b”, which is recorded by the appearance of “∃a.∃b+”.

Finally, “∃a.∃b.∃c.>” appears once in one document. Nevertheless, it is part of a repetition of two twins. Therefore,

its weight is 1
2 = 0.5.

7 Conclusions and future work

Along this paper, we have studied the possibility of approximating the schema (DTD) of a set of XML documents.

Based on a given measure of resemblance, we are able to find the midpoint of the set. This midpoint have been

characterized in terms of conjunction of Least Common Subsumers of the documents. Moreover different algorithms

(of different costs) have also been presented to obtain it. We begun by considering only a restricted class of DTDs

(without repetition nor choice), and it has been generalized to any DTD. Thus, we are able to approximate the schema

as much as we want to the set of documents (eventually until we get an exact matching) in linear time.

In order to get integrated access to several XML sources, first of all we should guarantee that a given element uses

the same tag name everywhere, i.e. they share the same vocabulary. Therefore, as future work, we plan to deal with

the problem of matching tag names, where ontologies can be used. The presence of optional elements in the schema

may lead to the identification of equivalent tags from different sources.
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