
A Temporal Study of Data Sources to
Load a Corporate Data Warehouse

Carme Martín and Alberto Abelló

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya.

Jordi Girona Salgado 1-3. E-08034 Barcelona, Catalunya.
{martin@lsi.upc.es | aabello@lsi.upc.es }

Abstract. The input data of the corporate data warehouse is provided by the
data sources, that are integrated. In the temporal database research area, a
bitemporal database is a database supporting valid time and transaction time.
Valid time is the time when the fact is true in the modeled reality, while
transaction time is the time when the fact is stored in the database. Defining a
data warehouse as a bitemporal database containing integrated and subject-
oriented data in support of the decision making process, transaction time in the
data warehouse can always be obtained, because it is internal to a given storage
system. When an event is loaded into the data warehouse, its valid time is
transformed into a bitemporal element, adding transaction time, generated by
the database management system of the data warehouse. However, depending
on whether the data sources manage transaction time and valid time or not, we
could obtain the valid time for the data warehouse or not. The aim of this paper
is to present a temporal study of the different kinds of data sources to load a
corporate data warehouse, using a bitemporal storage structure.

1 Introduction

As defined in [4], a data warehouse (DW) is an architectural structure that supports
the management of "Subject-oriented", "Integrated", "Time-variant", and "Non-
volatile" data. A temporal database (TDB) is introduced in [9] as a database that
supports "Valid time" (VT) (i.e. the time when the fact becomes effective in reality),
or "Transaction time" (TT) (i.e. the time when the fact is stored in the database), or
both times. Note that this definition excludes "User-defined time", which is an
uninterpreted attribute domain of time directly managed by the user and not by the
database system. A "bitemporal database" is a database that supports VT and TT. The
affinity between both concepts (i.e. DW and TDB) may not be obvious. However,
time references are essential in business decisions, and the dissection of both
definitions shows their closeness.

We consider the accepted definition of DW in [4] could be rewritten in terms of
TDB concepts. Firstly, "Time-variance" simply specifies that every record in the DW
is accurate relative to some moment in time. On the other hand, the definition of VT
in [6] states that it is the time when the fact is true in the modeled reality. Therefore,



both outline the importance of showing when data is correct and exactly corresponds
to reality. Moreover, "Non-volatility" refers to the fact that changes in the DW are
captured in the form of a "time-variant snapshot". Instead of true updates, a new
"snapshot" is added to the DW in order to reflect changes. This concept can be clearly
identified with that of TT, defined in [6] as the time when the fact is current in the
database.

Fig. 1. A Data Warehouse as a Bitemporal Database

In [1], we define a DW as a bitemporal database containing integrated and
subject-oriented data in support of the decision making process, as it is sketched in
figure 1. The first implication of this definition is that TT is entirely maintained by the
system, and no user is allowed to change it. Moreover, the system should also provide
specific management mechanisms for VT. The importance of this temporal
conception is also outlined in [8], which asks DW systems for support of advanced
temporal concepts.

Data in the DW comes from independent heterogeneous sources. Therefore, TT
and, specially, VT, introduced in the DW depend on which times are provided by the
data sources. In [1], we propose a storage structure to implement a bitemporal DW.
We concentrate our previous work is the most common case of data sources, i.e.
specific and logged sources. In this paper, we are going to explain the behaviour of
our bitemporal storage structure for all the different kinds of data sources to show that
it can also be used with all possible data sources.

The paper is organized as follows. Next section describes the bitemporal storage
structure used throughout the paper. Section 3 explains the temporal study of the
different kinds of data sources and the implementation of these in the bitemporal
storage structure. Finally, section 4 provides some conclusions.



2 A Bitemporal Storage Structure

In [1], we present a bitemporal storage structure, named Current/Historical, consisting
of a Current table that reflects current data and a set of Historical tables that show the
historical evolution of the data, as depicted in figure 2. The set of Current tables in
the DW give rise to the Operational Data Store, defined in [4].

Fig. 2. Current and Historical tables in the bitemporal DW

A bitemporal event occurs at a starting VT and is true until an ending VT.
However, if the ending VT is not known at this moment, since data is currently valid
in the sources, we use the special VT value "Now", whose semantics are explained in
[3]. For example, if we hire an employee, the starting VT will be her/his starting
hiring data, and the ending VT will be the value "Now", until s/he is fired. DW
insertions initialize the starting TT to the current TT and the ending TT to the value
"Until_changed" (UC). As the current time inexorably advances, the value of UC
always reflects the current time. Moreover, the current TT is denoted by “Current”.

The Current table only contains two different temporal values for each attribute
(Ai), i.e. the starting VT (Vis) and the starting TT (Tis). The other time values for
current data always contain “Now” for ending VT and “UC” for ending TT, so they
do not need to be stored. Moreover, we have one Historical table for each set of
attributes with the same temporal behaviour. In this way, each Historical table
contains only one semantic concept, and all attributes change at a time. For example,
if we store employee information (only one subject), we should use a different
structure for home address and telephone, and another one for work address and
telephone (two different temporal behaviours). If the company reallocates somebody
in a new room, only her/his job data will change. If s/he moves to a bigger house,
only home data will change. Even though all data regards the same subject, it shows a
different time behaviour. Without loss of generality, in this paper, we will assume that
every table contains at most one attribute. Therefore, Historical tables contain the
history for each attribute, with the starting VT (Vs), the ending VT (Ve), the TT when
the insert was processed (Ti) and the TT when the delete was processed (Td). From
these four temporal values, we can easily reconstruct the whole history of the value.

In TDB research area, insertion, deletion, and modification operations, are defined
in [7]. In addition, in [10], temporal insertion, deletion, and modification operations
are explained for relational databases with time support. However, in our bitemporal
storage structure, we require a redefinition of TDB insertion, deletion and



modification operations. On loading the DW, all we need to do to process an insert is
add a new record to the Current table. The processing of a delete is not much more
difficult: the corresponding record is removed from the Current table, and a new one
is added to each one of the Historical tables. The modification changes the old values
of the Current table with the new values and adds a new record in the corresponding
Historical table of the modified attribute. This behaviour can be easily inferred from
deletion and insertion behaviours.

3 Temporal Study of Data Sources

The input data of the DW is provided by the data sources, that are integrated.
Depending on whether the data sources manage TT and VT or not, we could obtain
the VT for the DW or not. TT in the DW can always be obtained, because it is
internal to a given storage system. When an event is loaded into the DW, its VT,
supplied by the "Extraction, Transformation and Load" (ETL) module, is transformed
into a bitemporal element, adding TT, generated by the DW DBMS. In the next
sections, let us study the different kinds of data sources proposed in [5] to be
implemented in our bitemporal storage structure.

We consider throughout the paper, as example, a bitemporal DW with a courses
relation with an OID, a Name and a Cost attributes.

3.1 Snapshot and Queryable Sources

Snapshot sources are sources that the only way to access to the data source content is
through a dump of its data. A queryable source is a data source that offers a query
interface. From snapshot and queryable sources that do not keep any kind of time, we
can only store the TT in the DW. From snapshot and queryable sources, if they do not
have any temporal information, we can only consider timestamping the data while we
extract them. In the absence of true VT, all we can do is approximate it by the DW
TT.

Fig. 3. The databases course insertion in snapshot and queryable sources



In figure 3, we show the insertion of a databases course with a 100 euros cost, for
the course relation. Inserting this course into the bitemporal DW, the starting TT is
recorded. Given the bitemporal nature of the DW, all we can do in this case is
approximate the starting VT by means of TT information. The best approximation we
could obtain for the starting VT is the starting point of the "update window", because
all we know is that the event occurred before the beginning of the DW load.
Moreover, since during the "update window" queries are not allowed, we can consider
that the load is atomic, in the sense that there is no temporal order among the
operations. Therefore, the TT can also be fixed at the beginning of the "update
window". Thus, TT and VT will have the same value.

Fig. 4. The databases course deletion in snapshot and queryable sources

In figure 4, the deletion process of the databases course is described. The deletion
operation eliminates the bitemporal element of the Current table and adds a new one
in each Historical table. Similar to the insertion operation, we approximate now the
ending VT by means of TT.

3.2 Specific and Logged Sources

Specific sources are able to write "delta files" that describe the system actions.
Logged sources have a "log file" where all their actions are registered. From specific
and logged (those able to keep track of the performed operations) sources, if they
timestamp the entries with the source TT, we can approximate the VT by means of it.
If no other information exists, the data can be considered valid while it is current in
the operational database. This is the most usual environment for a DW.

In figure 5, we show the insertion of a databases course with a 100 euros cost and
with a source TT value of 1. We can see that source TT is converted into VT, and we
also have the TT of the DW.



Fig. 5. The databases course insertion in specific and logged sources

In figure 6, the deletion process of the databases course is described. When a
deletion operation comes from the data source, it has an ending TT value to be
converted in an ending VT value in the DW. As it is shown, a logical deletion
generates the physical removal of the existing bitemporal element in the Current
table. The ending TT of the Historical table is the TT of the DW. However, this is not
enough and a new bitemporal element is added to the Historical tables, which
expresses that from now on we know the ending VT value, i.e. the timestamp of the
data source.

Fig. 6. The databases course deletion in specific and logged sources

3.3 Callback and Internal Action Sources

Callback sources are sources that provide triggers or other active capabilities. Internal
action sources are similar to callback sources, except that to define triggers in the data



source requires to create auxiliary relations called "delta tables". In these
"cooperative" sources, the TT in the sources needs to be used again to approximate
the VT. However, this kind of data sources offer two different kinds of DW load:

Deferred load. The most common possibility is to use the triggers to generate "delta
files", and later on use these files to load the DW. Thus, the temporal information in
the "delta files" will be the source TT. We have already described this case in section
3.2.

Real-time load. Another possibility would be that both repositories (i.e. the data
source and the DW) are updated at the same time. Then, the TT of the DW
corresponds to source TT. Notice that, it is the same assumption that we have
considered for snapshot and queryable sources. Therefore, this case has the same
temporal behaviour than snapshot and queryable sources, explained in section 3.1.
Nevertheless, they do not have the same temporal knowledge. In callback and internal
action sources we really have a source TT to approximate the VT, while in snapshot
and queryable sources we have no temporal information in the source, so this is a
better approximation.

3.4 Bitemporal Data Sources

Bitemporal data sources are sources whose data are stored in a bitemporal database.
From bitemporal data sources (not considered in [5]), we could obtain true VT
besides TT. Moreover, we also know the TT of the DW. Therefore, we should choice
one temporal attribute out of those two of the sources to be used as VT in the DW (the
other one will be managed as a user-defined time attribute):

Source TT used as VT. If the VT of the DW is obtained from the source TT, the
source VT could be an additional user-defined time attribute to be considered. In this
case, bitemporal data sources will have the same temporal behaviour than specific and
logged sources (explained in section 3.2) with an additional user-defined time
attribute to express true valid time information. The temporal information provided to
the ETL process will be: source TT (that will give rise to the VT of the DW), and
source VT (that will be treated as a user-defined time attribute). Considering temporal
attributes in this way allows to keep using effectively the Current/Historical storage
structure.

Source VT used as VT. If the VT of the DW is obtained from the source VT, the
source TT could be an additional user-defined time attribute to be considered. These
bitemporal sources provide the following temporal information: source VT (that will
give rise to the VT of the DW), and source TT (that will be treated as a user-defined
time attribute). Since VT in the data source is an interval, we need to add another
temporal attribute to the Current table to record the ending VT.



Fig. 7. The databases course insertion in bitemporal sources

Figure 7 presents this new possibility having bitemporal sources. Two new
attributes need to be added to the Current table for every attribute: One for ending VT
and another one for the user-defined time representing source TT. Notice that, the
Current table represents current data in the source. Therefore, the ending source TT
will always be UC so that it is not necessary to record it. In this example, starting and
ending VT are later than the load of the DW.

Fig. 8. The databases course deletion in bitemporal sources



Figure 8 shows the deletion of the databases course inserted in figure 7. Regarding
the Historical tables, also two new user-defined time attributes need to be added to
each table: one for starting source TT and another one for ending TT. We already had
two attributes for starting and ending VT.

The main problem in this case (not taking into account the increase in the number
of attributes of the different tables) is that the OID is no more an identifier by itself
for the Current table. Even more, we cannot guarantee that there are the same number
of current values for each attribute, so that we should divide the Current table into
independent tables for every attribute. Thus, we would have the same number of
Current and Historical tables, which would worsen the performance of this storage
technique.

In this kind of sources, in order to reduce storage space, when two time intervals
overlap or are adjacent, the coalescing operation of TDB [2] could be applied either to
Current or Historical tables. When either VT or TT intervals have identical non-
temporal attribute values in two different tuples, then the coalescing operation can
obtain only one tuple from both if the other time interval that do not coincide overlap
or the ending point of one of them is the starting point of the other. Even if the
bitemporal source uses the coalescing operation, we can still find in the DW tuples to
be coalesced, if they come from different sources.

Fig. 9. A coalescing example

As example, in figure 9, we see that the databases course information could be
coalesced in only one tuple.

4 Conclusions

In this paper, we have presented a temporal study of the different kinds of data
sources to load a DW. The correspondences between temporal attributes in the data
sources and those in the DW have been analyzed. In the corporate DW, we have
identified the two existing orthogonal temporal dimensions: valid time dimension and



transaction time dimension. In this bitemporal DW environment, we have used our
bitemporal storage structure [1] to represent all the temporal data source knowledge
obtained by the different kinds of data sources. Analyzing these different data
sources, presented in [5] with an additional type, i.e. bitemporal source, we found that
in some cases snapshot and queryable sources could have the same temporal
behaviour than callback and internal action sources (just the latter being more
precise). In general, these "cooperative" sources would behave like specific and
logged sources. Regarding bitemporal data sources, they are more difficult to manage
and, in general, would need an ad hoc storage structure. However, using an
appropriate interpretation, they can also be treated as specific and logged sources.
Thus, we can use the Current/Historical bitemporal storage structure to warehouse
any kind of data sources.

Acknowledgments

The authors would like to thank Núria Castell for the support she has given to this
work. This work has been partially supported by the Spanish Research Program
PRONTIC under project TIC2000-1723-C02-01.

References

1. Abelló, A.; Martín, C. "A Bitemporal Storage Structure for a Corporate Data
Warehouse". Proc. of the 5th. Int. Conf. on Enterprise Information Systems (ICEIS).
pages 177-183, 2003.

2. Böhlen, M.; Snodgrass, R.T.; Soo, M.D. "Coalescing in Temporal Databases". In Proc. of
the 22nd. Int. Conf. on Very Large Data Bases (VLDB). pages 180-191, 1996.

3. Clifford, J.; Dyreson, C.; Isakowitz, T.; Jensen, C.S., Snodgrass, R.T. "On the Semantics
of 'Now' in Databases". ACM Transactions on Database Systems. 22(2):171-214, 1997.

4. Inmon, W. H., Imhoff, C.; Sousa, R. "Corporate Information Factory". John Wiley &
Sons, second edition, 1998.

5. Jarke, M.; Lenzerini, M.; Vassilious, Y.; Vassiliadis, P., editors, "Fundamentals of Data
Warehousing". Springer-Verlag, 2000.

6. Jensen, C.S.; Clifford, J.; Gadia, S.K.; Segev, A.; Snodgrass, R.T. "A Glossary of
Temporal Database Concepts". ACM SIGMOD Record. 21(3):35-43, 1992.

7. Jensen, C.S.; Soo, M.D.; Snodgrass R.T. “Unifying Temporal Data Models via a
Conceptual Model". Information Systems. 19(7):513-547, 1994.

8. Pedersen, T.B.; Jensen, C.S. "Research Issues in Clinical Data Warehousing". In Proc. of
the 10th. Int. Conf. on Statistical and Scientific Database Management (SSDBM). pages
43-52, 1998.

9. Snodgrass, R.T.; Ahn, I. "Temporal Databases". IEEE Computer. 19(9):35-42, 1986.
10. Snodgrass, R.T. "Developing Time-Oriented Database Applications in SQL". Morgan

Kaufmann Publishers, 2000.


