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ABSTRACT In the last decade, modern data analytics technologies have enabled the creation of software 

analytics tools offering real-time visualization of various aspects related to software development and 

usage. These tools seem to be particularly attractive for companies doing agile software development. 

However, the information provided by the available tools is neither aggregated nor connected to higher 

quality goals. At the same time, assessing and improving software quality has also been a key target for the 

software engineering community, yielding several proposals for standards and software quality models. 

Integrating such quality models into software analytics tools could close the gap by providing the 

connection to higher quality goals. This study aims at understanding whether the integration of quality 

models into software analytics tools provides understandable, reliable, useful, and relevant information at 

the right level of detail about the quality of a process or product, and whether practitioners intend to use it. 

Over the course of more than one year, the four companies involved in this case study deployed such a tool 

to assess and improve software quality in several projects. We used standardized measurement instruments 

to elicit the perception of 22 practitioners regarding their use of the tool. We complemented the findings 

with debriefing sessions held at the companies. In addition, we discussed challenges and lessons learned 

with four practitioners leading the use of the tool. Quantitative and qualitative analyses provided positive 

results; i.e., the practitioners’ perception with regard to the tool’s understandability, reliability, usefulness, 

and relevance was positive. Individual statements support the statistical findings and constructive feedback 

can be used for future improvements. We conclude that potential for future adoption of quality models 

within software analytics tools definitely exists and encourage other practitioners to use the presented seven 

challenges and seven lessons learned and adopt them in their companies. 

INDEX TERMS agile software development, case study, quality model, software analytics, software 

analytics tool, software quality 

 

 



 

 

I. INTRODUCTION 

Nowadays, a company’s ability to innovate is increasingly 

driven by software. Digital technologies play a key role in 

the transformation of many industrial companies [1], 

especially in sectors like the automotive industry, where 

software (together with electronics) is responsible for over 

90% of all innovations [2], [3]. In this context, software 

quality makes the difference and is an essential competitive 

factor for company success. 

Companies use modern scalable data ingestion 

technologies (e.g., Apache Kafka1, ActiveMQ2) together with 

data visualization and analytics technologies (e.g., Tableau3, 

Microsoft Power BI4) to learn more about their businesses 

[4]. These technologies have enabled the concept of the real-

time enterprise, which uses up-to-date information and acts 

on events as they happen [5]. This is also the case in software 

engineering, where software analytics aims at data-driven 

software development based on software, process, and usage 

data [6]–[9]. Software analytics has particular potential in the 

context of modern software development processes such as 

Agile Software Development (ASD) due to the incremental 

nature of these processes, which produce continuous sources 

of data (e.g., continuous integration system and customer 

feedback). More importantly, we can observe an increased 

interest in software analytics by different players, from large 

companies like Microsoft and Google [10], [11] to SMEs and 

startups offering software analytics services (e.g., Tasktop5, 

Kovair6, Kiuwan7) and even research projects (e.g., 

GrimoireLab8, Q-Rapids9, CodeFeedr10). 

As reported by Forrester, companies are interested in 

connecting “an organization’s business to its software 

delivery capability” by getting “a view into planning, health 

indicators, and analytics, helping them collaborate more 

effectively to reduce waste and focus on work that delivers 

value to the customer and the business” [12]. This is where a 

research gap still exists: While modern software analytics 

tools outperform traditional tools when it comes to gathering 

and visualizing data, they still fall short of using this data to 

create quality-related strategic indicators [13]. 

According to this state of the practice, we focus on the 

aforementioned need to connect an organization’s business to 

its software delivery capability in the context of ASD by 

continuously assessing and improving quality-related 

strategic indicators (e.g., product quality, product readiness, 

and process performance) in software analytics tools. We 

propose using the well-known concept of Quality Model 

                                                 
1 https://kafka.apache.org/ 
2 https://activemq.apache.org/ 
3 https://www.tableau.com/ 
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(QM) [13]–[16] in software analytics tools as the instrument 

to bridge the gap between low-level quality concepts related 

to development and usage and high-level quality-related 

strategic indicators. Therefore, the goal of this research is to 

understand practitioners’ perception regarding the 

integration of QMs in software analytics tools in ASD 

companies in order to effectively assess and improve 

quality-related strategic indicators. 

Since we address the perception of practitioners, our aim 

was to conduct an empirical study in industry. To this end, 

we needed a tool implementing the concept we wanted to 

evaluate. Given that no such tool is freely available on the 

market, we opted for the Q-Rapids tool. The Q-Rapids tool, 

developed as part of the Q-Rapids project [17], offers 

software analytics capabilities that integrate QMs to assess 

and improve software quality in the context of ASD. Its main 

functionalities are: (a) real-time gathering of various types of 

data related to the development and usage of a software 

system, which are the input for a QM; (b) real-time modeling 

of this data in terms of a QM in order to reason about 

aggregated quality-related strategic indicators; (c) presenting 

this QM and data to decision makers in a multi-dimensional 

and navigational dashboard for use during ASD events, such 

as sprint planning or daily stand-up meetings. 

In order to understand the practitioners’ view regarding 

our goal, we conducted a case study across four 

companies, involving 26 practitioners, to investigate the 

following key aspects related to the Q-Rapids tool: 

 Its understandability, reliability, and usefulness to 

assess software quality; 

 Its level of detail, relevance, perceived usefulness, and 

behavioral intention to improve software quality; 

 Its challenges and lessons learned, as seen by adopters 

in realistic settings. 

This paper is structured as follows. Section II presents the 

background and related work. Section III presents the object 

of study in this case study across four companies: the 

integration of a QM within a software analytics tool (i.e., the 

Q-Rapids tool). Moreover, it provides details on how the tool 

can be used to assess and improve software quality. Section 

IV describes the research methodology of our case study. 

Section V presents the results with respect to the participants’ 

perceptions on exploring the tool to assess and improve 

software quality. Section VI discusses challenges and lessons 

learned as seen by adopters in ASD settings using the Q-

Rapids tool. Section VII reports the limitations of this work. 

Finally, Section VIII concludes the article and presents future 

work. 

 
II.  BACKGROUND AND RELATED WORK 

The objective of this section is twofold: (a) to provide a 

background on QMs, software analytics, and ASD; and (b) to 

discuss related work on software analytics tools in ASD 

companies. 



 

 

A.  BACKGROUND 

Quality is defined by ISO 8042 [18] as “the totality of 

characteristics of an entity that bear on its ability to satisfy 

stated and implied needs”. This definition is too abstract to 

be operationalized directly, and is one of the reasons why 

there has been a multitude of software QMs proposed in the 

last four decades (e.g., [19]–[23]) that refine high-level 

concepts of “quality” (like reliability or efficiency) down to 

the level of metrics (as number of bugs or response time). 

One popular example widely adopted in industry is the 

ISO/IEC 25010 standard [14], which determines the quality 

aspects to be taken into account when evaluating the 

properties of a software product. Two more recent examples 

well known in industry are Quamoco and SQALE [24]. 

Quamoco [16] is a QM integrating abstract quality aspects 

and concrete quality measurements. SQALE [25] computes 

technical debt indexes based on the violations of quality rules 

in the source code. Other works propose refactoring models 

to improve a particular quality aspect of the existing model or 

code, and different extensions to the traditional concept of 

quality (such as incorporation of non-technical criteria into 

ISO/IEC 9126-1 QM [26]). 

Software analytics is defined as “analytics on software 

data for managers and software engineers with the aim of 

empowering software development individuals and teams to 

gain and share insight from their data to make better 

decisions” [6]. In this context, analytics results should 

include some actionable knowledge that can be used to 

improve software quality. Software analytics is used in 

various scenarios to assess concrete problems, e.g., use of 

process data to predict overall project effort [27], use of 

security data to identify indicators for software vulnerabilities 

[28], or classification of app reviews [29]. In this context, 

software analytics tools provide features for specifically 

visualizing software development aspects. In our view, some 

notable examples are SonarQube11, Kiuwan, Bitergia12, and 

Tasktop, all of which have been discussed in related work. 

ASD relies on short feedback cycles as a way to provide 

flexibility and rapid adaptation to market fluctuations. In this 

context, decisions are also made more frequently. For 

instance, product releases and the related decisions take place 

in short intervals, instead of months/years as was the case 

with traditional software development approaches such as the 

waterfall model. Popular agile practices such as continuous 

integration [30] provide a tight connection to development to 

ensure errors are detected and fixed as soon as possible. The 

current tendency to shorten feedback cycles even further 

(e.g., continuously getting feedback from customers and 

being able to react on that) enhances the potential for 

software analytics. Continuous software engineering [31], 

which has its roots in ASD, represents a holistic approach to 

providing tight connections among all software development 
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activities, including not only integration but also aspects such 

as business and development (BizDez) and development and 

operations (DevOps). 

Our work aims to further understand the challenges 

limiting industrial uptake of QM-based software analytics 

tools in ASD companies, as seen by practitioners. In our 

research, we build on previous research on software quality 

modeling, integrating a QM into a software analytics tool to 

assess and improve software quality (see Section III). 

B.  RELATED WORK 

Software analytics plays a major role in ASD and continuous 

software engineering since, properly used, the enormous 

amounts of data from different systems (e.g., continuous 

integration system, management tools, etc.) have proved 

increasingly useful for guiding (almost) real-time decision-

making [32]–[34]. Indeed, companies like Microsoft are 

hiring data scientists for their software teams [35]. ASD and 

continuous software engineering have created numerous new 

opportunities for observing user behavior and monitoring 

how systems and services are being used; for identifying 

unexpected patterns and runtime issues; for monitoring 

system quality attributes; and for collecting real-time data to 

feed both business and technical planning [36], [37]. The 

main objective is to constantly monitor and measure both 

business indicators and infrastructure-related metrics in order 

to facilitate and improve business and technical decision-

making [38]. In the specific case of software quality, 

continuous quality monitoring enables transparency to 

foresee, trace, and understand important aspects of product 

quality in real time [38], [39]. Support for product quality 

management is particularly relevant in ASD, since it tends to 

overlook quality aspects in favor of product functionality 

[17]. Although the literature reports on promising advances 

regarding the use of analytics in continuous software 

engineering [32]–[34], many challenges still exist, with the 

lack of software analytics tools being among the most 

relevant ones [33]. 

When we look for software analytics tools typically used 

in ASD, we find a large number of commercial and academic 

software analytics tools that are available on the market. 

Examples of commercial tools focusing on concrete quality 

aspect are SonarQube, Kiuwan, Bitergia, New Relic13, 

Datadog14, and Taktop. SonarQube focuses on continuous 

code quality based on static code analysis, including 

assessment of code smells, bugs, and vulnerabilities. Kiuwan 

products focus on the detection of code security 

vulnerabilities, also offering a tool specifically for Open 

Source Software (OSS) risk analysis. Bitergia provides 

actionable and customizable dashboards for analyzing OSS. 

New Relic allows developers to install monitoring agents and 

gather real-time insights from users such as software failures 
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and performance improvements. Datadog monitors cloud-

scale applications; provides monitoring of servers, databases, 

tools, and services; and supports the full DevOps stack. 

Tasktop aims to integrate and coordinate value streams 

across the DevOps stack. In addition to these commercial 

software analytics tools, it is worth mentioning value stream 

management tools for capturing, visualizing, and analyzing 

critical indicators related to software product development 

[12]. Some of these tools even strongly support the creation 

of new dashboards from data and advanced data analytics 

(e.g., machine learning). With respect to tools in academia, 

we find CodeFeedr [40], Perceval [41], and SQuAVisiT [42]. 

CodeFeedr is a real-time query engine. Perceval performs 

automatic and incremental data gathering from almost any 

tool related to open source development, which can be used 

in Bitergia dashboards. SQuAVisiT is a generic framework 

supporting maintainability assessment. 

Based on the aforementioned software analytics tools, we 

can see that the data analytics trend has had a great impact on 

software engineering as well (i.e., software analytics), 

particularly in the short feedback cycles of ASD and 

continuous software engineering. However, application of 

QMs in the software analytics tools used in industry is not 

widespread, despite the need for “a view into planning, 

health indicators, and analytics, helping them collaborate 

more effectively to reduce waste and focus on work that 

delivers value to the customer and the business” [12]. A 

notable exception is the SQALE QM within SonarQube. 

However, its limitation is that its main functionality of static 

analysis of the source code is limited to a single data source 

(i.e., the source code). We can conclude that the 

aforementioned software analytics tools do not offer full 

capabilities, including an integrated QM, to provide quality-

related strategic indicators by using software analytics 

results. Therefore, at the beginning of the Q-Rapids project, 

we decided to build the Q-Rapids tool, which integrates 

highly customizable (instead of pre-defined) QMs. 

Some researchers have investigated the success factors as 

well as the needs and challenges related to the application of 

software analytics in industry [6], [43]. Huijgens et al. 

conducted an empirical study to identify success and 

obstruction factors regarding the implementation of software 

analytics in the context of continuous delivery as a service 

(e.g., defining and communicating the aims upfront, 

standardizing data at an early stage, and building efficient 

visualizations). Buse and Zimmermann proposed several 

guidelines for analytics tools in software development (e.g., 

ease-of-use and measurement of many artifacts using many 

indicators). In our work, we focus on the key aspects needed 

for practitioners to adopt QMs integrated into software 

analytics tools in the context of ASD. 

The novelty of our work is twofold: (a) Based on input 

from practitioners, it explores the integration of QMs into 

software analytics tools in ASD companies, leveraging 

software, process, and usage data; and (b) it provides an 

understanding of what is needed in the aforementioned tools 

to enable them to be widely accepted in industry as well as 

challenges and lessons learned from their adoption in four 

ASD companies. 

III.  INTEGRATING A QUALITY MODEL INTO A 
SOFTWARE ANALYTICS TOOL 

This section includes: (a) the description of the QM we 

propose in our work; (b) the Q-Rapids software analytics tool 

integrating the aforementioned QM; and (c) how the Q-

Rapids tool can be used to assess and improve software 

quality in ASD. 
 
A.  THE Q-RAPIDS QUALITY MODEL 

Both academic and industry partners of the Q-Rapids project 

have iteratively created a QM for software analytics, whose 

main characteristic is that it offers tool-supported 

customization (integration into software analytics tools) to 

define strategic indicators related to the quality of software 

product and development processes based on company 

needs. This QM aims at enabling decision makers to improve 

identified quality deficiencies. 

In the following, we will present the elements of the QM 

and how these elements are computed from automatically 

ingested raw data. For details on the initial creation and 

previous iterations, the reader is referred to [44], [45]. 

Following common approaches, we defined the QM for 

the Q-Rapids tool as a hierarchical structure composed of 

five types of entities, each of them serving a well-defined 

purpose (see Figure 1): 

 Strategic Indicator - Quality-related aspect that a 

company considers relevant for its decision-making 

processes. It represents an organization-wide goal, 

e.g., product quality or process performance. A 

strategic indicator can be influenced by numerous 

product/process factors.  

 Product/Process Factor - The attributes of parts of a 

product/process that are concrete enough to be 

measured [16], e.g., code quality, issue velocity, 

delivery performance. A product/process factor may 

be composed of numerous assessed metrics. 

 Assessed Metric - Concrete description of how a 

specific product/process factor is quantified for a 

specific context, e.g., code duplication, test success. 

 Raw Data - Data that comes from different data 

sources without undergoing any modification, e.g., 

files, unit tests, pending issues. Typically, this data 

cannot be decomposed further into smaller units.  

 Data Source - Each of the different tools the 

companies use for extracting raw data, e.g., 

SonarQube, Jira, Jenkins, Gerrit. 

 

Figure 1 shows an excerpt of the elements of the Q-Rapids 

QM. A detailed QM (i.e., with definitions of all elements and 

formulas of the assessed metrics) is available in the 

Appendix. 



 

 

 

FIGURE 1.  Excerpt of the generic Q-Rapids QM (details in Appendix). 

 

To enable assessment of continuously updated strategic 

indicators, there is a bottom-up calculation process, starting 

from the data sources, which is detailed in [44]. 

 
B.  THE Q-RAPIDS SOFTWARE ANALYTICS TOOL 

The Q-Rapids tool15 provides continuous assessment, which 

could be real-time, of the strategic indicators to decision 

makers based on the Q-Rapids QM. Figure 2 shows an 

excerpt of the conceptual architecture of the Q-Rapids tool, 

depicting its modules related to data analytics capabilities 

and its data flow, which adopts the idea of the lambda 

architecture approach used for Big Data solutions [46]. The 

main modules of the tool are Data Gathering, Data Modeling 

and Analysis, and Strategic Decision Making.  

 

FIGURE 2.  Q-Rapids software analytics tool architecture. 

 

The Data Gathering module is composed of different 

Apache Kafka connectors to gather data from heterogeneous 

external data sources, such as static code analysis (e.g., 

SonarQube), continuous integration tools (e.g., Jenkins), 

code repositories (e.g., SVN, Git, GitLab), issue tracking 

tools (e.g., Redmine, GitLab, JIRA, Mantis), and software 

usage logs. 

The Data Modeling and Analysis module uses the 

gathered data and the QM definition to assess software 

quality. The QM is highly customizable to support any 

company’s needs. For instance, users of the Q-Rapids tool 

                                                 
15 The tool source code and documentation are available at: 

https://github.com/q-rapids  

can define new strategic indicators, product/process factors, 

assessed metrics, and their relationships, as well as the 

frequency of execution of the QM assessment (e.g., daily, 

hourly). Another example: Since the QM works as a plug-in, 

it can also be defined from data mining and analysis. 

The Strategic Decision Making module is responsible for 

the end-user interface and provides two different types of 

dashboards: (a) the Strategic Dashboard, providing 

homogeneous visualization for assessing the higher-level 

elements of the QM; and (b) the Raw Data Dashboards, 

providing specific visualizations for the data gathered from 

the source tools. 

On the one hand, the Strategic Dashboard supports 

decision makers in their decisions related to the assessed 

quality of their products (e.g., does our product have the 

quality to be released?). It uses the same kind of charts for 

visualizing the assessment of the three most abstract levels of 

the QM (strategic indicators, factors, and assessed metrics). 

These most abstract levels (strategic indicators, factors, and 

assessed metrics) work like “traffic lights”, i.e., red stands for 

risky quality, orange for neutral, and green for good quality. 

These generic visualizations unify the quality visualization 

and hide the heterogeneity of the data and source tools. This 

also allows navigating through the different elements, which 

provides traceability and helps to understand the assessment. 

On the other hand, the Raw Data Dashboards allow 

decision makers to take concrete actions to address a 

particular issue and improve quality (e.g., which concrete 

files are too complex?). They are customized for concrete 

QM elements, e.g., the metric Blocking files used in the 

Blocking strategic indicator. Therefore, they allow the user to 

link the quality issue (e.g., Non-Blocking files) to the 

concrete elements from the data source tools (concrete files 

violating the quality rules). 

 
C.  THE Q-RAPIDS TOOL FOR ASSESSING AND 
IMPROVING SOFTWARE QUALITY 

This section describes two scenarios where the Q-Rapids tool 

can be used by decision makers to assess or improve the 

quality of their products. We follow the definitions of 

“assessing” and “improving” software quality specified by 

Kläs et al. [23]. Assessment refers to the process in which “a 

concept is quantified, measured and compared to defined 

evaluation criteria to check the fulfillment of the criteria” 

[23]. Improvement refers to the process in which “relevant 

factors (i.e., variation factors) influencing the concept of 

interest are known. Therefore, the concept of interest can be 

improved by improving its influencing factors” [23]. 

1)  ASSESSMENT SCENARIO WITH Q-RAPIDS  

The (infamous) ACME company needs to deliver the next 

release of one of their higher-quality products, NeverLate, on 

time. Therefore, Bob, the product manager in charge of 

https://github.com/q-rapids


 

 

NeverLate, decides to use the Q-Rapids tool in order to 

assess and monitor Blocking situations16. 

At the beginning of the sprint, Bob receives an alert 

because the Blocking strategic indicator has dipped below 

some predefined threshold. The Q-Rapids tools visualizes 

this event by changing the traffic light related to this 

indicator from green (good quality) to orange (neutral) in the 

Strategic Indicators View (Figure 3, needle in the radar chart 

on the left). He delves deeper into the QM to analyze the 

situation. Taking up the QM, the Blocking strategic indicator 

is impacted by two product factors: Blocking code and 

Testing status. The Detailed Strategic Indicators View 

reveals that the Testing status assessment is good, while the 

Blocking code assessment is not so good (value around 0.5 

on the radar chart’s corresponding axis). Bob explores the 

assessed metrics impacting this factor by using the Factors 

View, where the Non-blocking files metric has a low assessed 

value (below 0.5 on the corresponding axis of the radar 

chart). Finally, using the Metrics Historical View (the line 

chart on the right), Bob verifies that the Non-Blocking files 

metric has been deteriorating since the last sprint. Based on 

this assessment, Bob decides to improve the software quality 

by tackling the Blocking files problem. 

 

FIGURE 3.  Strategic Dashboard navigation schema. 

 

2)  IMPROVEMENT SCENARIO WITH Q-RAPIDS  

Following the Blocking problem above, Bob calls a 

meeting with Jane, a senior developer working on NeverLate, 

to discuss concrete actions to improve the Blocking files 

problem. Using the concrete Raw Data Dashboard 

corresponding to Non-blocking files, Joe and Jane learn that 

in the last sprint, the classes of a specific directory were 

changed many times by the same developer, Brandon (Figure 

4, list of blocker and critical issues at the bottom). Moreover, 

the classes contain five blocker quality rule violations 

regarding code smells. Raw data visualization offers 

actionable analytics to refactor the classes of the problematic 

directory, clearly indicating which classes have been heavily 

modified and explaining the violated quality rules. 

Consequently, Bob could take the concrete action of adding a 

new issue to the backlog so that Brandon can solve these 

problems. Table I gives a summary of the actions that can be 

taken to improve software quality based on Blocking. It also 

indicates at which point in time during the ASD process the 

actions can be taken. 

                                                 
16 “Blocking”, as defined and customized by the companies of our case 

study, refers to situations that negatively influence the regular progress of 

the software development. 

 

FIGURE 4.  Raw Data Dashboard for blocking and critical files. 

 

 

 
TABLE I 

EXAMPLES OF ACTIONS TO IMPROVE SOFTWARE QUALITY FOR THE 

“BLOCKING” STRATEGIC INDICATOR 

Factors Action Points When in ASD? 

Blocking 
code 

Resolving blocker 
quality rule violations or 

refactoring highly 

changed files (e.g., God 
objects or configuration 

files) 

Refactoring-related tasks are 
included in the product 

backlog and selected during 

sprint planning. Developers 
continuously perform 

refactoring. 

Testing 
status 

Improving tests that do 
not detect critical bugs 

during development. 

Improving the 
performance of the test 

pipeline. 

Test suite improvement tasks 
are included in the product 

backlog during sprint 

planning and assigned to 
testers based on their priority. 

 

IV.  EVALUATION METHODOLOGY 

This section reports the methodology of our case study. 

 
A.  RESEARCH SETTING 

Our research context consisted of four pilot projects in the 

four companies participating in the Q-Rapids project. As 

reported in Table II, the companies ranged from small and 

medium-sized enterprises with up to ten products on the 

market to very large corporations with more than 1,000 

products on the market. They develop products using ASD 

for various application domains such as telecommunications, 

security, military, transport, health, and public 

administration. 

The companies’ pilot projects had three essential things in 

common that made it possible to run a case study [47] across 

them: They had an ASD (Scrum-like) way of working; the 

stakeholders (i.e., product owners, managers, and developers) 

were interested in having tool support to assess and improve 

software quality in their setting; and the Q-Rapids tool 

presented in Section III was deployed and used by these 

stakeholders in such settings. 

 



 

 

TABLE II 
SETTING OF THE FOUR COMPANIES’ PILOT PROJECTS 

Setting Company 1 Company 2 Company 3 Company 4 

Id UC1 UC2 UC3 UC4 

Product  Tool for 

model-based 
software 

development 

Distributed 

system in 
telecommun

ication 

networks 

Distributed 

system in 
public safety  

Risk 

analysis 
system 

Context Single long 

lifetime 

software 
product line 

Multiple 

product 

lines 

Multiple 

product lines 

Multiple 

software 

products 

Product 

size 

[KLOC] > 

1000 

500 – 1000 

[KLOC] 

1 – 100 

[MLOC] 

[KLOC] > 

200 
# of 

releases 

Up to 100 13 16 1 

1st 
release 

1991 2011 2013 2017 

ASD 

since 

2006 2011 2005 2017 

Program

ming 

language 

Java, Eclipse 

RCP, JEE for 

Web tools 

C Java, C/C++ Java, 

JavaScript, 

HTML5/CS
S3 

 

In the following, we will briefly describe the context of the 

four use cases. One common characteristic is that the four 

companies had already used Q-Rapids in earlier pilot projects 

than the ones evaluated in this case study (i.e., UC1, UC2, 

UC3, and UC4 from Table II). 

UC1. Company 1 used Q-Rapids in its main product 

Modelio 3.8 and in Modelio NG (UC1), which is a 

customization for a customer. Modelio is the latest 

generation of a 25-year-old product line of a model-driven 

tool suite dedicated to expressing and managing 

requirements, modeling software architectures, building 

accurate UML models, generating a full range of 

documentation, and automating application code production 

for several languages. In UC1, Company 1 used Q-Rapids 

with the aim of improving the quality of Modelio NG by 

leveraging QRs during the development phase of new 

versions of the product line. This involved the early detection 

of anomalies, which helped to improve their ability to release 

the product on time by reducing the number of anomalies 

discovered during the pre-release validation phase. Company 

1 used its experts’ knowledge to identify new strategic 

indicators not provided directly by the Q-Rapids tool. 

UC2. Company 2 deployed Q-Rapids in two different 

contexts, applying two different strategies. For case one, 

Company 2 used a kind of research-oriented approach, where 

the research partners facilitated or collaborated on multiple 

sessions to define the QM and the strategic indicators based 

on high-level strategic goals, to derive factors and metrics, 

and to identify relevant data sources. This was done to realize 

a proof of concept. Company 2 assumed that it had learned 

the necessary methods and deployment process in such detail 

that they could replicate it on their own in another use case 

(i.e., UC2). In UC2, Company 2 decided to use their expert 

knowledge to identify interesting strategic indicators not 

provided by other tools to be presented from different 

viewpoints by the Q-Rapids tool. The reported challenges 

and lessons learned are based mainly on the deployment 

experience with UC2. 

UC3. Company 3 implemented the solution in two 

contexts. For the first context, the focus was on the use of a 

proof of concept of the Q-Rapids solution by a production 

test software team in the public safety domain. The research 

partners facilitated or collaborated on multiple sessions to 

determine the strategic indicators as well as process factors 

and metrics. This included the company's internal 

development of the software lifecycle development process 

as well as the identification of necessary data sources and 

alignment of the development tool chain with the Q-Rapids 

solution. For the second context, identified as UC3, 

Company 3 expanded the approach to a multi-context 

information tool development project related to product 

development, manufacturing, and maintenance. In 

comparison to the first context, UC3 involved several teams. 

The identified improvement issues regarding development 

tool chains, metrics, and the Q-Rapids solution from the first 

context were very useful for UC3. 

UC4. Company 4 first (during the proof of concept phase) 

used the solution in almost finished projects in the 

maintenance phase, and in the software part of a research 

(non-commercial) project, where more experiments and a 

research-oriented approach were possible. After those initial 

tests, Company 4 decided to use the solution in practice to 

measure quality- and process-related metrics in the largest, 

most active, and most important commercial software 

product deployment project, here referred to as UC4 (where 

the solution is still being used by the Product Owner). 

 
B.  RESEARCH QUESTIONS 

As stated in Section I, our research goal was to understand 

practitioners’ perception of the integration of QMs into 

software analytics tools in ASD companies in order to 

effectively assess and improve quality-related strategic 

indicators. We split this research goal into three Research 

Questions (RQs): 

RQ1. What is the practitioners’ perception regarding the 

integration of QMs into software analytics tools 

when assessing software quality in ASD? 

RQ2. What is the practitioners’ perception regarding the 

integration of QMs into software analytics tools 

when improving software quality in ASD? 

RQ3. What are the challenges and lessons learned that 

practitioners face when integrating QMs into 

software analytics tools for assessing and improving 

software quality in ASD? 

With RQ1, we investigated the assessment scenario 

presented in Section III, while RQ2 focused on the 

improvement scenario presented. Transversal to the 

assessment and improvement scenarios, RQ3 was used to 

investigate the challenges and lessons learned as seen by 



 

 

adopters in realistic settings. RQ3 was addressed after RQ1 

and RQ2 (see details in Section IV.C). 

For the assessment and improvement scenarios (i.e., RQ1 

and RQ2), we specified relevant sub-RQs for practitioners 

(see Table III). First, we considered that a QM within a 

software analytics tool for assessing software quality needs to 

be understandable, reliable, and useful in order to be used by 

practitioners, based on our experiences with the proof of 

concept of the Q-Rapids project (see [48]). Second, we 

considered that a QM within a software analytics tool for 

improving software quality has to contain the right level of 

detail; it has to provide relevant and perceived useful actions; 

and practitioners should intend to use it. 

Table III shows the mapping between the sub-RQs and the 

constructs used to address them. Examples of constructs are 

‘Perceived usefulness’ and ‘Behavioral intention’ [49]. The 

table has four columns: (a) an identifier for the sub-RQ; (b) 

the sub-RQ; (c) the construct that the sub-RQ is dealing with; 

and (d) the literature used to define the construct. 

 
TABLE III 

SUB-RESEARCH QUESTIONS. EACH SUB-RESEARCH QUESTION IS MAPPED TO 

A CONSTRUCT. 

Id. Sub-research question Construct Reference 

of the 

construct a 

RQ1.1 Do practitioners find QMs 
within a software analytics 

tool understandable when 

using them to assess software 
quality? 

Understand-
ability 

McKinney 
et al. 2002: 

[50] 

RQ1.2 Do practitioners find QMs 

within a software analytics 

tool reliable when using them 

to assess software quality? 

Reliability McKinney 

et al. 2002: 

[50] 

RQ1.3 Do practitioners find QMs 
within a software analytics 

tool useful when using them to 

assess software quality? 

Usefulness McKinney 
et al. 2002: 

[50] 

RQ2.1 Do practitioners find QMs 

within a software analytics 

tool traceable when using 
them to improve software 

quality? 

Right level 

of detail 

Goodhue 

and 

Thompson 
1995: [51] 

RQ2.2 Can practitioners take relevant 
actions when using QMs 

within a software analytics 
tool to improve software 

quality? 

Relevance Lee and 
Strong, 

2003: [52] 

RQ2.3 Can practitioners take usable 
actions when using QMs 

within a software analytics 

tool to improve software 
quality? 

Perceived 
usefulness 

Venkatesh 
and Bala, 

2008: [49] 

RQ2.4 Do practitioners intend to use 

a QM within a software 
analytics tool to improve 

software quality? 

Behavioral 

intention 

Venkatesh 

and Bala, 
2008: [49] 

a All the constructs from the selected references have already been 
validated in practice. 

 

1)  HYPOTHESIS REGARDING THE INTEGRATION OF 
QMs WITHIN SOFTWARE ANALYTICS TOOLS 

The main hypothesis of this work is that QMs within 

software analytics tools can be used by practitioners to assess 

and improve software quality. This main hypothesis was 

refined into seven sub-hypothesis, one for each sub-RQ: 

 Practitioners are able to understand a QM within a 

software analytics tool to assess software quality (H1: 

understandability). 

 Practitioners find that using a QM within a software 

analytics tool is reliable for assessing software quality 

(H2: reliability).  

 Practitioners find that using a QM within a software 

analytics tool is useful for assessing software quality 

(H3: usefulness). 

 Practitioners find the traceability between abstract 

quality aspects and raw data of a QM within a 

software analytics tool to be at the right level of detail 

to improve software quality (H4: right level of detail). 

 Practitioners are able to take relevant actions to 

improve software quality based on the information 

provided about a QM presented in a software 

analytics tool (H5: relevance). 

 Practitioners are able to take perceived useful actions 

to improve software quality based on the information 

provided about a QM presented within a software 

analytics tool (H6: perceived usefulness). 

 Practitioners intend to use a QM within a software 

analytics tool to improve software quality rather than 

using a human approach (H7: behavioral intention). 

 
C.  RESEARCH DESIGN AND SAMPLING 

This study was initiated by the Q-Rapids project members. 

The authors were organized into two teams. The first seven 

authors constituted the researcher team. The researcher team 

was composed of the leading team (first three authors from 

Fraunhofer IESE) and another four authors from two 

universities (Technical University of Catalonia and 

University of Oulu). The last four authors, from the four 

companies, constituted the practitioner team. Their 

responsibility was to use Q-Rapids in the setting described in 

Section IV.A. In addition, there were 22 other participants in 

the study from the four companies. In the following, we will 

briefly discuss the research design, sampling, and execution. 

Design: The first two authors created an evaluation 

guideline with two objectives: (a) to provide experimenters 

and observers with a detailed description of the evaluation 

procedures and guidance for managing potential confounding 

factors; and (b) to ensure equal treatment between different 

evaluation steps independent of the experimenter. These 

guidelines included the design of our evaluation, with two 

key researcher roles: an experimenter and at least one 

observer. On the day of the evaluation, the researcher team 

performed the following steps at the premises of the four 

companies:  



 

 

(1) The experimenter explained the evaluation goals and 

the procedure to the participants and asked them to sign the 

informed consent. 

(2) The experimenter performed a live demo in the 

company setting to introduce the software quality assessment 

and improvement scenarios of the Q-Rapids tool. Showing 

the same live demo at all four companies served to ensure 

equal treatment and to reduce experimenter bias. At the end 

of the training, the experimenter asked the participants to 

clarify any doubts about the use of Q-Rapids tool before 

advancing to the next step in the evaluation. 

(3) The participants individually explored the Q-Rapids 

tool by working on assigned tasks. The experimenter 

encouraged them to use a form to write down positive and 

negative aspects of the Q-Rapids tool. This served to get a 

better understanding of the participants’ perceptions 

regarding the Q-Rapids tool. 

(4) The experimenter collected responses to our sub-RQs 

by using a structured questionnaire based on the constructs of 

Table III, answered individually. These constructs had 

already been validated in practice in terms of item reliability 

score of the construct or Cronbach’s alpha, which are 

objective measures of reliability [53]. Reliability is 

concerned with the ability of an instrument to measure 

consistently [53]. All selected constructs were reported to 

have an item reliability score greater than 0.8. Each construct 

included up to four items to be rated using a five-point rating 

scale from 1 “strongly disagree” to 5 “strongly agree” (where 

3 was “neutral”) and an additional “I don’t know” option. We 

instantiated the selected questions according to the purpose 

and content of the assessment and improvement usage 

scenarios of the Q-Rapids tool. This served to collect the 

practitioners’ perception on these two scenarios. 

(5) The experimenter asked the participants about the 

strengths of the Q-Rapids tool and any suggestions for 

improvements during debriefing sessions with all 

participants. In these sessions, the participants individually 

used cards to record the results, posted them on the wall, and 

presented them to the rest of the group. Then the 

experimenter, together with the participants, created clusters 

of the cards and asked the participants to prioritize strengths 

and weaknesses by individual voting. The goal was to 

complement the data from the questionnaire and understand 

why the participants reported those perceptions. 

(6) In parallel to the five sequential steps above, at least 

one observer documented the progress of each activity using 

a predefined observation protocol. The observer kept records 

of the participants’ comments and questions on the Q-Rapids 

tool and of any deviations from the prescribed evaluation 

procedures. This activity was intended to facilitate later 

analysis of possible threats to validity, such as experimenter 

bias. There were different experimenters and observers 

during each company’s evaluation. 

The instruments used to support these steps will be 

described in Section IV.D. 

Finally, after the evaluation and once the research team 

had finalized the analysis, the research team presented the 

results to the practitioner team, who were the ‘champions’ of 

applying Q-Rapids in the four companies. The goal was 

twofold: to validate the results and to discuss RQ3. With 

respect to RQ3, we performed the following two additional 

actions: 

 We asked the four UC champions to summarize their 

challenges and the lessons they learned regarding the 

use of the Q-Rapids tool in their companies. We 

instructed them to provide this description in free text 

in order to avoid any unnecessary constraint on their 

communication. 

 The research team consolidated the responses by 

categorizing them while respecting the provided text 

as much as possible. The result was presented to the 

UC champions, who provided their feedback (in the 

form of comments to the proposed text and new 

insights with additional information), yielding the 

final input for answering RQ3, reported in Section VI. 

Population and Sampling: There were three types of 

target users of the Q-Rapids tool: product owners, managers, 

and developers. The researchers informed the companies 

about the target sample and the companies’ champions 

proposed a list of participants based on their suitability and 

contacted them. Then we drew a convenient sampling 

including product owners, managers, and developers of the 

companies involved [54]. At the time of the evaluation, the 

participants were team members of the pilot project selected 

in each company for the evaluation of the Q-Rapids tool. 

In total, 22 persons from the four companies participated 

in the evaluation conducted for RQ1 and RQ2 (see Table IV). 

Among these participants were two product owners, seven 

project managers, seven managers (including quality and 

technical managers), three developers, and three participants 

who did not indicate their role in the demographics part of 

the questionnaire, but who belonged to one of these 

categories. All participants had at least eight months of work 

experience in their companies (Mdn = 10 years, Min = 0.75 

years, Max = 32 years) and at least nine months of work 

experience in their current role (Mdn = 5 years, Min = 0.8 

years, Max = 30 years) at the time of this evaluation. 

Execution: Between July 2018 and October 2018, we 

deployed the Q-Rapids tool in each company. This was the 

second major release of the Q-Rapids tool, whose first 

prototype had already been deployed in January 2018. 

Therefore, data collected by the Q-Rapids tool reached back 

to January 2018. In parallel, the first two authors trained the 

experimenters and observers responsible for performing the 

evaluation at each company. Then the experimenters and 

observers executed this study following the aforementioned 

procedures between mid-October and November 2018. We 

scheduled each evaluation session for up to 7 hours including 

breaks, taking into consideration the availability of the 

participants. 



 

 

TABLE IV 
DEMOGRAPHIC INFORMATION OF PARTICIPANTS 

Participants UC1 UC2 UC3 UC4 

Number 4 10 6 2 

Roles 1 

Developer, 
3 Project 

Managers 

2 Developers, 

3 Managers, 2 
Project 

Managers, 3 

Others 

4 

Managers, 
2 Project 

Managers 

2 

Product 
Owners 

Work 

experience 

in the 
company 

13.5 years 

(1 year - 30 

years) 

15.3 years (2 

years - 32 

years) 

9.25 years 

(9 months - 

19 years) 

6.25 

years 

(2.5 
years – 

10 years)  

Work 
experience 

in the 

current role 

10.5 years 
(1 year - 30 

years) 

3.6 years (3 
months - 15 

years) 

7.05 years 
(2 years - 

15 years) 

3.5 years 
(2 years 

- 5 

years) 

 

 
D.  DATA COLLECTION INSTRUMENTS 

To support the aforementioned evaluation design, the 

researchers used the following six instruments (available in 

the Appendix) during the evaluation: 

1. Slides with evaluation goals, agenda, and the 

informed consent and demographics forms. 

2. Scripts for a live demo of the Q-Rapids tool 

assessment and improvement scenarios to give 

researchers a common artifact to show to the users of 

the Q-Rapids tool (similar to the examples in Section 

III). In addition, a document comprising the 

specification of the QM (e.g., strategic indicators). 

3. The task description, consisting of specific scenarios 

for assessing and improving the software quality of 

the products in which the participants were involved 

on a daily basis. 

4. A questionnaire, to collect the practitioners’ 

perception regarding the use of the Q-Rapids tool, 

using the constructs of Table III.  

5. Presentation and moderation guidelines for the 

researchers to conduct a debriefing session about the 

strengths of the current tool and any suggestions for 

improvement.  

6. The observation protocol, where the observers 

recorded start time, attendees, end time, 

activities/events/deviations/disruptions, timestamp, 

and memos. 
 
E.  DATA ANALYSIS 

The experimenter and the observer transcribed the 

participants’ answers (regarding the tasks, the questionnaires, 

and the cards from the debriefing sessions) and the 

observation protocol into three standardized Excel templates. 

This served to keep the data analysis consistent among the 

four companies. 

We first carried out within-case analyses of the 

quantitative and qualitative data collected for each company. 

Then we compared, correlated, and integrated the results 

among the companies (cross-case analyses) [55]. 

Quantitative analysis. We report descriptive statistics 

including the sample size (N), minimum (Min), maximum 

(Max), median (Mdn), and modal value (Mode) for the 

quantitative analyses. If a participant answered more than 

half of the questions of one construct with “I don’t know” 

(see the questionnaire in the fourth item of Section IV.D), we 

did not include his/her rating of this construct for our 

quantitative analysis. This happened on four occasions. 

We performed a One-Sample Wilcoxon Signed Ranks 

Test17 [56], as it is suitable for testing hypotheses with small 

samples. This served to test whether the participants 

significantly rated the QM more positively or more 

negatively, i.e., to check whether or not the answers are 

significantly lower or greater than a selected middle point in 

the five-point rating scale data of the questionnaire, i.e., H0: 

median (X) = θ where θ was set to 3 (the neutral point). If we 

were able to reject the null hypothesis (i.e., p < α with α = 

0.05), we checked for the standardized test statistic (T*) from 

which we derived whether the result was positive (i.e., Mdn 

(X)>θ if T*>0) or negative (Mdn (X)<θ if T*<0). Therefore, 

we also report the significance levels p and the standardized 

test statistics of the One-Sample Wilcoxon Signed Ranks Test 

(see Table V). We used IBM SPSS Statistics 19 (including 

IBM SPSS Exact Tests for analyzing small samples) and set 

the confidence level of the test at 95% (i.e., α = 0.05). 

Qualitative analysis. We used thematic analysis [57] to 

analyze the participants’ feedback on the Q-Rapids tool. At 

least two researchers derived themes inductively by coding 

and interpreting all observation protocols, independent of 

each other. Then these researchers compared their results and 

resolved any deviations. Moreover, we performed several 

peer review meetings, which included all experimenters, 

observers, and analysts, to review the interpretations of the 

elicited qualitative data. This served to keep the qualitative 

analyses grounded on the collected evidence and ensured 

rigor. 

V. RESULTS 

In this section, we will present our results according to the 

RQs. The results are combined from the quantitative analysis 

(see descriptive analytics and hypothesis testing in Table V) 

and the qualitative analysis (thematic analysis). 

A.  RQ1: WHAT IS THE PRACTITIONERS’ PERCEPTION 
REGARDING THE INTEGRATION OF QMs INTO 
SOFTWARE ANALYTICS TOOLS WHEN ASSESSING 
SOFTWARE QUALITY IN ASD? 

FINDING 1 - THE PARTICIPANTS UNDERSTOOD THE 
QM WHILE ASSESSING SOFTWARE QUALITY. 

                                                 
17 

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_22.0.0/com.
ibm.spss.statistics.algorithms/alg_nonparametric_onesample_wilcoxon.ht
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All participants claimed that the strategic indicators, 

product factors, and process factors provided in the QM were 

understandable (see Table V: N=20, Min = 3, Max = 5, Mdn 

= 4, Mode = 4, p = 0.000, T* = 4.167). For our hypothesis 

H1: understandability, the One-Sample Wilcoxon Signed 

Ranks Test revealed that the participants rated the 

understandability of the QM significantly higher than the 

neutral point (Mdn(x)= 3). Therefore, the null hypothesis 

H01: understandability, i.e., that the participants’ perception 

is neutral towards the understandability of a QM within a 

software analytics tool for assessing software quality, can be 

rejected. 
 

TABLE V 

QUANTITATIVE RESULTS OF THE EVALUATION OF THE QM WITHIN A SOFTWARE ANALYTICS TOOL FOR ASSESSING AND IMPROVING SOFTWARE QUALITY 

RQ  Hypotheses N Min Max Mdn Mode One-Sample Wilcoxon Signed Ranks Test p T* 

RQ1.1 H1: 

Understandability 

20 3 5 4 4 

 

.000 4.167 

RQ1.2 H2: Reliability 21 2,5 5 4 4 

 

.000 3.816 

RQ1.3 H3: Usefulness 21 2 5 4 4 

 

.002 3.038 

RQ2.1 H4: Right level 
of detail 

20 1 5 4 4 

 

.023 2.266 

RQ2.2 H5: Relevance 20 3 5 4 4 

 

.000 3.943 

RQ2.3 H6: Perceived 

usefulness 

20 2 5 4 4 

 

.002 3.160 

RQ2.4 H7: Behavioral 

Intention 

18 3 5 4 4 

 

.000 3.666 

Each item of the structured questionnaire was rated using a five-point response scale from 1 “strongly disagree” to 5 “strongly agree” and included the 

option “I don’t know”. 
One-Sample Wilcoxon Signed Rank Test: H0: Mdn(X) = θ where θ was set to the neutral point (3), with α = 0.05 



 

 

The participants gave us the following main reasons why 

a QM within a software analytics tool is understandable 

(and how understandability can be improved): 

 Clear structure for users. This was mentioned 

explicitly by six participants from two use cases; 

e.g., “I understand and like it [the QM view] 

simplified” [UC 3]; “[It has a] clear structure” 

[UC 2]; “It looks simple!” [UC 3]; “[It] provides 

[a] 'common language' from analysis (Product 

Owners) to action (Developers)” [UC 3].  

 Appropriate visualizations. 15 participants from all 

use cases emphasized appropriate visualization and 

provided examples such as getting information 

where users expect it to be; e.g., for the Q-Rapids 

tool, to have the factor calculation rationale in the 

detailed strategic indicators view (“At the moment, 

the "Detailed strategic indicators" [view] leads 

directly to the factors. It would be nice to be able to 

see directly what metrics the strategic indicator is 

associated with.” [UC 2]). 

 Support for customized settings, e.g., having 

explanations and descriptions or support for setting 

up appropriate thresholds. Another participant 

associated the support for setting up appropriate 

thresholds with the understandability of the QM and 

asked “What are the proper/default values for 

thresholds?” [UC 4]. 

 Including descriptions. Three participants from two 

use cases emphasized explanations of elements of 

QMs. For the Q-Rapids tool, for example, they 

stated that “the descriptions of metrics need to be 

better. The factors that are made of the metrics 

should also have better descriptions” [UC 3], e.g., 

by “including descriptions of formulas, e.g., 

average of factors” [UC 3]. These are additional 

features that would foster understandability. 

 

FINDING 2 - THE PARTICIPANTS FOUND THE QM 
ELEMENTS RELIABLE FOR ASSESSING SOFTWARE 
QUALITY. 

The computed QM elements were perceived as reliable 

by the participants (see Table V). The One-Sample 

Wilcoxon Signed Ranks Test showed that they considered 

the reliability of the QM elements as positive, as the null 

hypothesis H02: reliability, i.e., that the participants’ 

perception is neutral towards the reliability of a QM within 

a software analytics tool for assessing software quality, was 

rejected by this test. 

The reasons given by the participants for why they found 

the QM reliable or how reliability can be further improved 

can be categorized as follows: 

 Stable computations. This was explicitly mentioned 

by one participant: “Most of the calculation of [the] 

current model is quite stable now and seems to 

follow the model” [UC 3]. Furthermore, two 

participants from one use case explained that the 

existing QM calculates values that can be used to 

understand the quality of the software system 

(“When [the QM] is producing "weird" values, I 

can know something is wrong with the system” [UC 

3]). 

 Computational transparency, as mentioned by six 

participants from two use cases: “In the strategic 

indicator view, in order to trust data it is important 

to identify who made the threshold changes if there 

have been some changes.” [UC 3]. Still, one 

participant mentioned that transparency should be 

improved: “It is aggregated data from other tools; I 

don't know how exactly it is computed.” [UC 4]. 

 Updated computations, e.g., additional information 

about the last time the data was updated. One 

participant stated, “If Jenkins was updated 5 min 

ago [and this is shown], I know I can trust it.” [UC 

3]. 

 Possibility to customize the QM, e.g., by adjusting 

the weights of the QM elements relations. This was 

pointed out by three participants from three use 

cases and had an influence on their perceptions 

regarding reliability. One participant suggested 

improving the tool support for these customizations: 

“Specifying weights for strategic indicators seem a 

bit weak.” [UC 2]. 

 Support for exceptions/false positives. Another 

participant explained this with the following 

example: “Some files have to be complex in order to 

provide their functionality. It should be possible to 

mark them as such, so they don't affect the metrics 

and show our perception." [UC 4]. 

 

FINDING 3 - THE PARTICIPANTS FOUND THE QM 
ELEMENTS USEFUL FOR ASSESSING SOFTWARE 
QUALITY. 

The participants rated the QM elements as useful (see 

Table V). As the One-Sample Wilcoxon Signed Ranks Test 

showed that the null hypothesis with respect to the rating of 

the participants can be rejected, we can reject our null 

hypothesis H03: usefulness, i.e., that the participants’ 

perception is neutral towards the usefulness of the QM 

elements within a software analytics tool for assessing 

software quality. 

The following categories of reasons were provided by 

the participants: 

 Gathering and combining data from heterogeneous 

sources. This was stated by seven participants from 

three use cases; e.g., “Merging information from 

different sources is useful." [UC 4], “[The QM 

provides a] general view and one entry for many 

related tools (SonarQube, Project Manager, etc.). 

[There is a] combination of many entries" [UC 1], 



 

 

“Good combination to direct tools used” [UC 3], 

"Good synthesis from a wide set of data" [UC 1]. 

 Inclusion of product and process quality. This is 

also one of the strengths that impact the usefulness 

of the QM for assessing software quality 

(mentioned explicitly by one participant): “It is 

good to see that you included both aspects. Because 

from the product owner perspective, the process 

perspective is maybe even more interesting. And 

there are less tools to assess the process. Indeed, 

there are a lot of tools managing the product quality 

but there are less tools for the process.” [UC 4]. 

Furthermore, the possibility to show information 

about the product or the process separately was 

mentioned by two participants from two use cases. 

“It would be good to have on the highest level a 

distinction between product quality and process 

quality.” [UC 4]. For the Q-Rapids tool, “it is not 

clear [at the moment] which ones of the factors 

belong to the category product and which to the 

process category” [UC 2]. 

 Different abstraction levels of information for a 

variety of stakeholders. This was emphasized by 

three participants from two use cases, e.g., 

“Knowing which files are increasing the complexity 

is crucial for the developers […] usually the 

product owner is not that much interested in these 

details.” [UC 4]. 

 Real-time raw data dashboards. Three participants 

from two use cases also perceived the real-time raw 

data dashboards as useful because a "better level of 

information improves reaction time and agility" 

[UC 1]. One of these participants further suggested 

adding raw data dashboards that consider multiple 

data sources, i.e., enabling raw data aggregation: 

"[There is] no raw data aggregation: e.g. separate 

ElasticSearch documents for GitLab data and 

SonarQube data” [UC 4]. These suggestions could 

help to further increase the usefulness of the QM 

elements. 

 Appropriate terminology in visualizations. 

Furthermore, two participants from two use cases 

claimed that appropriate visualizations further 

improve the usefulness of the QM elements. This 

includes process-specific (i.e., agile) terminology 

like time tags (e.g., sprints, milestones) in order to 

ensure compliant use of terminology. 

 

B.  RQ2: WHAT IS THE PRACTITIONERS’ 
PERCEPTION REGARDING INTEGRATING QMs INTO 
SOFTWARE ANALYTICS TOOLS WHEN IMPROVING 
SOFTWARE QUALITY IN ASD? 

FINDING 4 - THE PARTICIPANTS FOUND THE 
TRACEABILITY BETWEEN ABSTRACT QUALITY 
ASPECTS AND THE RAW DATA OF THE QM TO BE AT 

THE RIGHT LEVEL OF DETAIL TO IMPROVE 
SOFTWARE QUALITY. 

The participants assessed the right level of detail of the 

QM needed to drill down from abstract levels of the quality 

model (e.g., strategic indicators) to the raw data (see Table 

V). Although three participants from two use cases 

considered traceability as strongly positive, one participant 

rated the traceability of the QM as strongly negative. The 

One-Sample Wilcoxon Signed Ranks Test showed that the 

participants rated traceability significantly positively, 

although the significance of this finding is the lowest in 

comparison to the rest of findings (p = 0.023). Therefore, 

our null hypothesis H04: right level of detail, i.e., that the 

practitioners’ perception is neutral regarding the right level 

of detail to trace between abstract quality aspects and raw 

data of a QM within a software analytics tool to improve 

software quality, can be rejected. 

The participants provided the following reasons 

regarding positive traceability: 

 Drill-down for in-depth knowledge. Nine 

participants from two use cases considered it 

positive that the QM aggregates raw data into 

abstract quality indicators that are traceable, as “we 

need to drill down and be able to trust” [UC 3]. 

Meaning that “the traceability [from strategic 

indicators to raw data] is very useful.” [UC 1]. One 

participant further explained: “We have different 

levels and you drill down if you miss some 

information” [UC 3]. Increased traceability can be 

achieved if it is possible to “drill down directly to 

the metrics from the visualization of the strategic 

indicators view. [This] would be nice.” [UC 2]. 

Improving the connection from assessed metrics to 

raw data dashboards was also mentioned in another 

use case, e.g., “from strategic indicators to raw 

data in the raw data dashboard seems now to work 

[for a subset] very nice” [UC 3]. 

 Holistic QM view. Five persons from two use cases 

stated the need for a holistic view of the complete 

QM. They further elaborated it, e.g., “I need to see 

the whole hierarchy [as a whole]” [UC 3]; “I 

would like to have a direct link from the assessed 

metrics in the QM to the correlated raw data in the 

raw data dashboard” [UC 4]; “easier access to the 

data visualized with the raw data dashboard from 

the implemented QM [is required] for a final 

product" [UC 4] 

 Traceability to source tools. One participant stated 

that traceability to the source tools (i.e., data 

producers such as GitLab or SonarQube) is another 

aspect of the QM’s traceability; e.g., “including the 

URL in the metrics textual views" [UC 1]. This 

traceability would also provide data to allow users 

to understand the rationale behind the computation. 

 



 

 

FINDING 5 - THE PARTICIPANTS TOOK RELEVANT 
ACTIONS BASED ON THE QM FOR IMPROVING 
SOFTWARE QUALITY. 

The participants assessed the actions that can be taken 

based on the information provided by the QM as relevant 

(see Table V). The One-Sample Wilcoxon Signed Ranks 

Test supports this finding as the null hypothesis H05: 

relevance, i.e., that the participants’ perception is neutral 

towards taking relevant actions to improve software quality 

based on the information provided by a QM presented in a 

software analytics tool, can be rejected. 

The participants provided the following explanations: 

 The QM supports explicit insights to solve quality 

problems. 18 participants from the four companies 

stated this. Among the reasons, we can find “it [the 

QM] allow us to navigate into concrete real metric 

in order to make right decisions.” [UC 1]. For 

example, “quality would improve by fixing the 5 

errors” [UC 2] and the QM supports to 

“concentrate to speed up clarifying the real bugs” 

[UC 3]. One of these participants further elaborated: 

“Knowing which files are increasing complexity is 

crucial for the developers to know; this can be done 

by the raw data dashboard because it is great at 

pinpointing the issues in the code. Usually [the] 

product owner is not that much interested in these 

details but for taking actions, the developers need to 

know where the problem is.” [UC 4]. 

 Providing precise information to be able to act on 

it. Participants indicated the importance of 

actionable information, and also indicated the case 

in which it was not precise enough to be able to act 

on it; e.g., “It is possible that [the] raw data 

dashboard provides enough information in some 

cases and for some metrics. But for example, there 

is no data for finding the root cause for test success 

related information.” [UC 2]. In addition, “this raw 

data dashboard will not provide me possible 

solutions. For example, you can reduce the bug 

density by two methods. Either you don’t include 

these identified bugs in the current or next planned 

Sprint [i.e. postpone it] or the second way how to 

handle bug density is to hire more […] developers 

to increase the resources.” [UC 4]. 

 

FINDING 6 - THE PARTICIPANTS TOOK PERCEIVED 
USEFUL ACTIONS BASED ON THE QM FOR 
IMPROVING SOFTWARE QUALITY. 

The participants perceived the actions that can be taken 

based on the information provided by the QM as useful for 

improving software quality (see Table V). This finding is 

supported by the rejected null hypothesis of the One-

Sample Wilcoxon Signed Ranks Test, which showed that 

the participants gave positive ratings. Therefore, our null 

hypothesis H06: perceived usefulness, i.e., that the 

participants’ perception is neutral towards taking perceived 

useful actions for improving software quality based on the 

information provided by a QM presented in a software 

analytics tool, can be rejected. 

The reasons given by the participants can be categorized 

as follows: 

 Useful for improving quality deficiencies. As the 

participants perceived that the QM provides explicit 

insights to solve quality problems, they explained 

why the actions taken based upon the QM could 

support them in practice; e.g., “I can use [the QM] 

to identify problems” [UC 4]; "better information 

related to the status of the project allows us to take 

more accurate decisions during meeting plan" [UC 

1]. The information provided by the QM enables 

“better detection of quality issues which arrives to 

the customer” [UC 1]. Moreover, one participant 

was concerned that “the quality of the commits need 

to be reviewed because of high trend of error 

identification.” [UC 3]. Another person claimed: “I 

don't have needed information how to use this in 

[practice] to improve quality but I guess this could 

be useful and can be used to improve quality” [UC 

3], for example by “[putting] more people to work 

on issues” [UC 3]. 

 Early detection of quality issues. Two participants 

from two use cases claimed that the real-time 

information improves reaction time and agility as 

“the more information about the environment [is 

there,] the more possible adjustments for the project 

[are feasible]” [UC 4]. Furthermore, one 

participant explained that “early detection of issues 

[implies issues that are consequently] more simple 

to fix” [UC 1]. 

 Combination of different data providers in a single 

tool. Furthermore, the combination of many data 

providers in a single tool is useful for their work. 

One participant summarized this with: “Giving 

developers additional tools increases their work 

time. It takes more effort and time, more overload 

that they don't have. Having everything in one 

single tool is easier to convince them.” [UC 4]. 

However, convincing practitioners to use a tool is 

still challenging; e.g., “But we had also challenges 

to convince them to use even SonarQube.” [UC 4].  

 

FINDING 7 - THE PARTICIPANTS INTEND TO USE THE 
QM TO IMPROVE SOFTWARE QUALITY. 

With our final question, we asked the participants 

whether they would use the QM within a software analytics 

tool to improve software quality or not; i.e., whether they 

would prefer manual/ad-hoc assessment and improvement 

without tool support. The participants had the intention to 

further use the implemented QM (see Table V). For our 

hypothesis H7: behavioral intention, again the One-Sample 



 

 

Wilcoxon Signed Ranks Test revealed that their null 

hypothesis H07: behavioral intention, i.e., that the 

participants’ perception is neutral towards intending to use 

a QM within a software analytics tool to improve software 

quality rather than using a human approach, can be 

rejected.  

The participants gave us the following main reasons: 

 Raw data dashboard. One of the participants 

explicitly highlighted this twice: “I would include it 

[the raw data visualization] in my daily work." [UC 

4]; "In the current state I would use Kibana [the 

raw data dashboard].” [UC4]. 

 QM assesses quality at every lifecycle point. This 

was mentioned by nine participants from four use 

cases because the Q-Rapids tool “would allow to 

evaluate the impact of new features and the quality 

of the project at every lifecycle point” [UC 1]. One 

of these participants continued: “It is based on 

concrete metrics which allow to measure and 

evaluate [...] the quality of our product during the 

development life cycle; [and] has a significant 

progress in the software development industry.” 

[UC 1].  

 Customization of the QM. Three participants from 

one use case emphasized the possibility to 

customize the QM, e.g., to add new strategic 

indicators, as a strength of using the QM. “[There is 

the] possibility to add new strategic indicators” 

[UC 3] and “the feature of removing metrics from 

the graph” [UC 3]. “We love it!” [UC 3]. This 

allows practitioners to customize the QM according 

to their needs, which is an explicit prerequisite of 

using the QM for one participant, who stated that “if 

the QM is improved to provide me more detail, I'd 

probably use it.” [UC 4]. In general, additional 

customizations would increase the behavioral 

intention, as stated by three participants from three 

use cases. For instance, they suggested for the Q-

Rapids tool to specify a “different mechanism to 

assess weights for the quality factors while 

assessing the strategic indicators” [UC 2] because 

one of them additionally asked: “Is there not a way 

to define weights for the strategic indicators’ 

factors?” [UC 1]. 

VI.  DISCUSSION: CHALLENGES AND LESSONS 
LEARNED 

This section presents the discussion about RQ3: What are 

the challenges and lessons learned that practitioners face 

when integrating QMs into software analytics tools for 

assessing and improving software quality in ASD? 

As a final step, based on their own experience, the 

practitioner team of this study reflected on the challenges 

and lessons learned when using the Q-Rapids tool to assess 

and improve software quality. As mentioned in Section IV, 

they provided written feedback, which was processed by 

means of a thematic analysis [57]. The resulting topics are 

presented below, with a distinction made between 

challenges and lessons learned. 

A.  CHALLENGES REGARDING THE USE OF THE Q-
RAPIDS TOOL 

Challenge #1. Need for tailoring to the company. A 

software analytics tool like the Q-Rapids tool requires a 

comprehensive understanding of the company’s software 

development or lifecycle process to be able to extract a 

solid QM as required by the tool. Although the tool can be 

used from the beginning with common strategic indicators, 

it requires extra effort to completely adapt its QM to the 

needs of each company’s business. 

Challenge #2. Need for a shared language. One aspect 

experienced by companies to date is the need to use a 

language already known and understood by the potential 

users. Here, the QM (names for metrics, factors, strategic 

indicators) has to be clear and based on the practical 

language known and used by product owners and 

developers. Of course, this will improve with time, 

although it also requires a customization process for each 

company (the language and terms might not be 

standardized across all software houses in Europe). 

Challenge #3. Need to be informative for the user. A 

challenge with tools such as the Q-Rapids tool is how to 

interpret the information that is rendered. From an end-

user’s perspective, they need to understand whether a 

certain value of an indicator/factor is good or bad, and how 

it relates to the previous stage in the project or to other 

projects (a benchmark needs to be established and known 

to the users, and the ‘delta’ needs to be shown clearly). 

Challenge #4. Need for integration with other tools. 

Currently, in many software development companies and 

software houses, teams are already using some common 

tools (such as Jira, GitLab, and SonarQube) to manage the 

development process and the quality of their code and 

products. Such tools are now embedded into developers’ 

way of working, and into the processes used in companies. 

Therefore, when introducing the Q-Rapids tool, it has to be 

clear when it is going to be used to assess and improve 

software quality, e.g., before checking the status of the 

project in GitLab or Jira or afterwards. It needs to be 

clarified when exactly in the agile (or any other) process 

this new tool should be used. 

Challenge #5. Need for transparency and more 

clarity on actions. While automatic data gathering from 

data sources can be seen as an advantage, some end-users 

(i.e., product owners) may have a need to understand from 

which raw data the factors and indicators are computed and 

how. For instance, for one of the companies, this was the 

case for the product quality indicator: What data is 

aggregated to arrive at a single value? One of the crucial 

aspects for future adoption is the clarity regarding possible 

decisions and courses of actions. The Q-Rapids tool should 



 

 

be able to propose a catalog of suggested decisions (as in a 

typical decision support system), but the user should also 

be aware (either by training, through practice, or supported 

by a clear manual) of which decisions can be made and 

why. One of the possible obstacles to successful adoption 

would be offering solutions without any clear indication 

and information of how the tool can be used, for what 

decisions, etc. – the potential user would be lost and 

discouraged from further usage. Results should be 

connected to the process (e.g., allowing users to visualize 

the assessment for the last sprint, including the next 

milestone, as an informative field to provide some context 

for better understand the results). 

Challenge #6. Simplify tool installation. A general 

comment was that the deployment of the Q-Rapids tool in 

the companies was complex and cumbersome. However, a 

closer look at this statement shows two sides of the coin. 

On the one hand, although the tool included a wide variety 

of connectors for the most popular data sources in the 

software industry, companies needed additional ones, 

which was not trivial in terms of knowledge required. One 

company reported that choosing the appropriate factors, 

defining the metrics, and finding the best data sources for 

this purpose turned out to be extremely challenging due to 

several factors (e.g., access to relevant databases). This 

raised the issue of which competencies are needed in the 

process, such us knowledge on data protection regulations 

(e.g., EU GDPR). On the other hand, adding new strategic 

indicators appears to be much easier. To sum up, software 

analytics tools should offer easy deployment options such 

as dockers, and facilitate as much as possible the setting up 

of the tool (e.g., user interface for the configuration of the 

different elements to decrease the technological knowledge 

required). 

Challenge #7. Need for an efficient tool configuration 

process. Some situations make the adoption of the Q-

Rapids tool (and other software analytics tools) challenging 

from a technological perspective. The first of these is the 

configuration of the connectors. One constraint is that 

connector configuration parameters (such as user name, 

password and end-point) need to be set up per project, even 

though the data sources are the same across projects (e.g., 

data sources may have multiple deployments). In other 

words, for each data source in each case, the connectors for 

mining the data as well as for the feedback loop back to the 

backlog must be customized. To increase the feasibility of 

any software analytics tool, it is necessary to provide 

configurable connectors via a file or user interface, as this 

decreases the need for specific coding skills and decreases 

the overall adoption time. Second, some of the techniques 

may require additional tooling to address the subsequent 

challenges regarding technological integration and licenses 

(e.g., tools for Bayesian networks provide limited facilities 

for such scaling, so any business-relevant purpose would 

require purchasing a license for the tool). 

B.  LESSONS LEARNED FROM THE USE OF THE Q-
RAPIDS TOOL 

Lesson learned #1. Embrace an incremental adoption 

approach. It usually takes some time for any new solution 

to be fully embedded into a company’s software 

development style, and any new process is usually based 

on some play&try in practice sessions. We recommend 

adopting the Q-Rapids tool in a company for a smaller-

scale product or solution being developed in order to 

enable extension of the solution to a wider number of 

products later on. This will allow adjusting the QM as well 

as potentially tailoring the data connectors used.  

Lesson learned #2. Boost transparency as a business 

value. Incremental adoption also helps to get an overview 

and enable fruitful discussions among developers and 

related stakeholders of the product regarding valuable 

indicators. For instance, one of the companies reported 

that, after the experiences with two solutions using the Q-

Rapids tool, the user teams clearly recognized the added 

value provided by the good visibility of the company-

defined strategic indicators and quality factors through 

real-time aggregated and transparent data. 

Lesson learned #3. Use strategic indicators as an 

asset for monitoring progress. Strategic indicators are 

useful not only for knowing current values but also for 

understanding the progress of a project. One of the 

companies stated explicitly that Q-Rapids end-users need 

to know how a particular indicator’s value relates to the 

previous stage in the project or to other projects (a 

benchmark needs to be established and known to users, and 

the ‘delta’ needs to be shown clearly). 

Lesson learned #4. Have a single access point to 

software-quality-related data. With the Q-Rapids tool, 

the project manager no longer needs to know which tools 

provide which metrics and to connect to them in order to 

understand the various measurement processes and to link 

and synchronize results from different tools. The various 

indicators give the project manager a very easy and fast 

way to analyze and understand a potentially complex 

situation. This aspect is completely built into the Q-Rapids 

QM and its associated dashboards where the various 

aspects collected by the different software development 

lifecycle metrics are analyzed. 

Lesson learned #5. Use QMs integrated into software 

analytics tools as a communication space. The Q-Rapids 

tool provides effective means for different product 

stakeholders to discuss and interact on the basis of a 

common dashboard. The various metrics and results are 

given on a factual basis and facilitate the interaction 

between the various team members and the project 

manager in the decision-making process. Having different 

levels of abstraction and views (e.g., Strategic Dashboard, 

Raw Data Dashboards) opens usability up to a wider range 

of users (different roles are interested in different levels of 

abstraction). 



 

 

Lesson learned #6. Enable tailoring to a product or 

project. Even within the scope of a single company, the 

QM might not be exactly the same. In a normal case, many 

of the metrics will persist; however, deviations over the 

products being developed or ongoing projects may occur. 

These variations need to be identified and incorporated into 

the QM (and then into the tool) as some kind of parameter. 

In this direction, one of the companies reported that some 

Q-Rapids end-users would like the opportunity to play with 

the model itself (plug or unplug some input data) and to 

assign weights used in the aggregation process. After their 

first experience in a pilot project, another company decided 

to use their expert knowledge to identify interesting 

strategic indicators that are not provided by other tools, or 

which would at least be presented from a different 

viewpoint by the Q-Rapids tool. In another company, the 

person in charge of R&D decided that it was worth 

measuring the general management quality of two projects 

and independently added a new indicator to measure that. 

In a matter of seconds, the customization was achieved on 

the company’s common Q-Rapids website, and this new 

indicator was then created for all monitored projects. 

Therefore, we learned that support for customizing the 

QMs in software analytics tools is key to assessing and 

improving software quality, which is one of the 

characteristics of the Q-Rapids tool.  

Lesson learned #7. Involving experts. Putting a 

product like the Q-Rapids tool into action requires 

knowledge from software engineers, especially technology 

experts and data scientists. The companies pointed out 

some particular situations. First, to set up the connectors, a 

lot of expertise is needed: end-users of the tool who can 

identify the relevant data content from the UI; software 

engineers who can assess the quality of raw data with 

respect to the functionality of the connector; and data 

scientists for verifying the relation between UI fields and 

the actual structure of the database. Second, some of the 

techniques used by the analytics tool, such the option of 

Bayesian networks for creating strategic indicators [58], 

require specific competence. Last, implementation also 

requires knowledge of particular technologies that a 

company might not have, e.g. Kafka. To sum up, the role 

of a specialist setting up the Q-Rapids tool environment 

will be crucial for industry adoption. If no specialist is 

available, it may be necessary to hire someone or outsource 

the development in order to implement the solution. 

VII.  THREATS TO VALIDITY 

As with any empirical study, there might be limitations to 

our research method and findings. This  section  discusses 

possible  threats  to  validity  in  terms  of  construct, 

conclusion, internal, and external validity [47] and  

emphasizes the mitigation actions applied. 

Construct validity refers to whether the employed 

measures appropriately reflect the constructs they 

represent. We used seven validated, reliable instruments 

from the literature to correctly operationalize our 

evaluation goals and the identified quality aspects. Clearly 

defining the constructs reduced the risk of mono-operation 

bias. We also included open questions and comment fields 

to further collect the participants’ opinion. The open 

feedback sessions enabled us to further elaborate the 

practical relevance of the strengths and drawbacks of the 

Q-Rapids tool with all the participants. The use of 

quantitative and qualitative measures and observations 

reduced mono-method bias. Furthermore, we aimed at 

creating a safe environment, encouraging the participants 

to highlight any negative aspects and make suggestions for 

the improvement of the Q-Rapids tool. Finally, some of our 

results (particularly the challenges) could be caused by a 

not optimal Q-Rapids tool implementation rather than by 

the integration of QMs into software analytics tools. Still, 

these results are useful for others to learn how to build such 

an infrastructure in realistic settings. 

Conclusion validity refers to whether correct 

conclusions are drawn from (correct) statistical analysis. 

To ensure the reliability of this evaluation, the 

measurement plan and procedure, including the creation of 

instruments for the implementation and execution, were 

documented in detail. For instance, the instruments were 

reviewed by the complete researcher team and by one 

member of the practitioner team, and during the analysis 

we involved researchers who had not been involved in the 

creation of the Q-Rapids tool. In this way, we mitigated 

risks such as using poorly designed instruments or fishing 

for results during the analysis, which would have led to a 

subjective analysis. Another point deserving attention was 

the training we provided to the experimenters and 

observers to enable all of them to apply the treatment in a 

similar way. For instance, the participants in the different 

companies received the same training and Q-Rapids tool 

version. During the task sessions, the participants 

performed concrete tasks aimed at making them use the 

main features of the Q-Rapids tool. In order to compare the 

results among the companies and due to time constraints, 

these tasks had to be the same for all cases. Thus, some 

might not have been optimal for all the different projects 

involved. Furthermore, this version of the Q-Rapids tool 

included real project data from the four use cases. 

However, not all available data could be used on the day of 

the evaluation, and at least one of the selected projects had 

finished before. Therefore, the data had not changed during 

the previous weeks. This might have had an influence on 

the answers of the participants regarding the practical 

experience they gained with the tool for their work. Thus, 

the results can only be interpreted as an indication of 

appropriateness. Furthermore, we were aware that we 

would only get a small sample size (i.e., 22 participants) 

and looked for appropriate statistical tests. 



 

 

Internal validity refers to whether observed 

relationships are due to cause-effect relationships, and 

whether it is possible to explain unequivocally the changes 

in the dependent variable due to the influence of the 

independent variables.  

We evaluated the Q-Rapids tool by drawing a 

convenient sample of product owners, managers, and 

developers working in several application domains and 

software development environments. One limitation of our 

work is that we were not able to get a random sample of 

participants in the pilot projects of the companies. 

In addition, we defined an evaluation protocol in 

advance, which included a specific description of our 

planned procedure and the order of using the materials, i.e., 

a script of the demonstrations to the participants, the tasks, 

the questionnaire, and an explanation with all the steps that 

had to be performed by the experimenter and the observer. 

We distributed all the materials to the researchers as well as 

to the use case representatives (who did not participate) to 

collect feedback in order to further improve our design. 

After all the partners had agreed on the final version of the 

evaluation guidelines, we executed the evaluation 

accordingly. This should mitigate the fact that we needed 

to split the work of conducting the evaluation among 

different researchers and partners. Some of the eight 

researchers who conducted the evaluation were involved in 

developing the Q-Rapids tool modules. To minimize that 

bias, we made sure that in each case there were at least two 

researchers present, one acting as the 

moderator/experimenter and one as the observer, to 

emphasize that the participants could speak freely. After 

inspecting and analyzing all the collected data, including 

the observation protocol, we could not identify any 

influence by these researchers on the participants’ 

perceptions. 

External validity refers to whether findings of the study 

can be generalized. Our results are tied to the context of the 

companies involved in the Q-Rapids project. Our goal was 

to better understand practitioners’ perception. We 

characterized the environment as realistically as possible 

and studied the suitability of our sampling (see Section IV). 

This case study could be the input for further meta-analysis  

aimed at generalizing the results (e.g., [59]). 

VIII.  CONCLUSIONS 

Agile software development companies need tools to 

continuously assess and improve software quality. For this 

study, we conducted a case study across four European 

ASD companies to explore practitioners’ perceptions on 

the integration of QMs into software analytics tools. We 

aimed at exploring key aspects needed for the widespread 

adoption of these tools in industry, namely 

understandability, reliability, usefulness, right level of 

detail, relevance, perceived usefulness, and behavioral 

intention. 

Twenty-two practitioners involved in the study agreed 

that they understood the integration of QMs into software 

analytics tools and found the QM elements reliable and 

useful for assessing software quality. In addition, the 

practitioners found the QMs to be at the right level of detail 

and the actions taken from the QMs to be relevant and 

perceived useful, and they intend to use QMs within 

software analytics tools. These findings are complemented 

with reasons for how these qualities were achieved in the 

four companies and for how they can be improved further. 

Taking into account that the introduction of a new tool 

and its measurable impact usually takes several months to 

years, the results are very promising. For future adoption, 

we reported seven challenges and seven lessons learned 

from four practitioners leading the application of QMs 

within software analytics tools in their ASD companies. 

One hope we associate with our work is that it will not only 

contribute directly to the existing body of knowledge on 

the use of QMs within software analytics tools in industry 

– which currently is still weak – but that it will also 

encourage other practitioners to join us in exploring this 

promising solution for the problem of software quality 

assessment and improvement in industry. 

Future work will consist of further supporting 

practitioners in meeting software quality challenges: 

 We observed that the definition of QMs varies 

among companies. In addition to offering tool 

support for QMs as plug-ins in software analytics 

tools, ongoing work is aimed at generating QMs not 

only from expert knowledge but using more cost-

effective data mining and analysis algorithms (e.g., 

identifying QM elements interrelations), and at 

creating a QM repository. 

 Building a complete software analytics 

infrastructure in a company (e.g., all data available 

from a single point) requires time and should be 

done incrementally. Based on the current 

infrastructure in the four companies of this study, 

other software quality scenarios are being explored, 

such as prediction and simulation of quality, and 

semi-automatic generation of quality requirements. 

 We believe that software analytics can provide 

greater value in ASD companies by mining usage 

data to understand the behavior of users, which is 

another direction for future work. 

 Companies need clarity about the process for 

deploying and applying software analytics tools in 

their environments. A next step is a process 

describing software analytics tools deployment and 

customization for new companies. 

APPENDIX 

The appendix contains the instruments used during the 

evaluation: https://figshare.com/s/217851eed7ec1da7ab86  

https://figshare.com/s/217851eed7ec1da7ab86
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