
Continuously assessing and improving
software quality with software analytics tools: a
case study

Silverio Martínez-Fernández1, Anna Maria Vollmer1, Andreas Jedlitschka1, Xavier Franch2,
Lidia López2, Prabhat Ram3, Pilar Rodríguez3, Sanja Aaramaa4, Alessandra Bagnato5,
Michał Choraś6-7, and Jari Partanen8
1Fraunhofer IESE, Kaiserslautern, Germany
2UPC-BarcelonaTech, Barcelona, Spain
3University of Oulu, Oulu, Finland
4Nokia, Oulu, Finland
5Softeam, Paris, France
6ITTI, Poznan, Poland
7UTP Univ. of Science and Technology, Bydgoszcz, Poland
8Bittium, Oulu, Finland

Corresponding author: Silverio Martínez-Fernández (email: Silverio.Martinez@iese.fraunhofer.de).

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 732253 (Q-Rapids: Quality-
Aware Rapid Software Development).

ABSTRACT In the last decade, modern data analytics technologies have enabled the creation of software

analytics tools offering real-time visualization of various aspects related to software development and

usage. These tools seem to be particularly attractive for companies doing agile software development.

However, the information provided by the available tools is neither aggregated nor connected to higher

quality goals. At the same time, assessing and improving software quality has also been a key target for the

software engineering community, yielding several proposals for standards and software quality models.

Integrating such quality models into software analytics tools could close the gap by providing the

connection to higher quality goals. This study aims at understanding whether the integration of quality

models into software analytics tools provides understandable, reliable, useful, and relevant information at

the right level of detail about the quality of a process or product, and whether practitioners intend to use it.

Over the course of more than one year, the four companies involved in this case study deployed such a tool

to assess and improve software quality in several projects. We used standardized measurement instruments

to elicit the perception of 22 practitioners regarding their use of the tool. We complemented the findings

with debriefing sessions held at the companies. In addition, we discussed challenges and lessons learned

with four practitioners leading the use of the tool. Quantitative and qualitative analyses provided positive

results; i.e., the practitioners’ perception with regard to the tool’s understandability, reliability, usefulness,

and relevance was positive. Individual statements support the statistical findings and constructive feedback

can be used for future improvements. We conclude that potential for future adoption of quality models

within software analytics tools definitely exists and encourage other practitioners to use the presented seven

challenges and seven lessons learned and adopt them in their companies.

INDEX TERMS agile software development, case study, quality model, software analytics, software

analytics tool, software quality

I. INTRODUCTION

Nowadays, a company’s ability to innovate is increasingly

driven by software. Digital technologies play a key role in

the transformation of many industrial companies [1],

especially in sectors like the automotive industry, where

software (together with electronics) is responsible for over

90% of all innovations [2], [3]. In this context, software

quality makes the difference and is an essential competitive

factor for company success.

Companies use modern scalable data ingestion

technologies (e.g., Apache Kafka1, ActiveMQ2) together with

data visualization and analytics technologies (e.g., Tableau3,

Microsoft Power BI4) to learn more about their businesses

[4]. These technologies have enabled the concept of the real-

time enterprise, which uses up-to-date information and acts

on events as they happen [5]. This is also the case in software

engineering, where software analytics aims at data-driven

software development based on software, process, and usage

data [6]–[9]. Software analytics has particular potential in the

context of modern software development processes such as

Agile Software Development (ASD) due to the incremental

nature of these processes, which produce continuous sources

of data (e.g., continuous integration system and customer

feedback). More importantly, we can observe an increased

interest in software analytics by different players, from large

companies like Microsoft and Google [10], [11] to SMEs and

startups offering software analytics services (e.g., Tasktop5,

Kovair6, Kiuwan7) and even research projects (e.g.,

GrimoireLab8, Q-Rapids9, CodeFeedr10).

As reported by Forrester, companies are interested in

connecting “an organization’s business to its software

delivery capability” by getting “a view into planning, health

indicators, and analytics, helping them collaborate more

effectively to reduce waste and focus on work that delivers

value to the customer and the business” [12]. This is where a

research gap still exists: While modern software analytics

tools outperform traditional tools when it comes to gathering

and visualizing data, they still fall short of using this data to

create quality-related strategic indicators [13].

According to this state of the practice, we focus on the

aforementioned need to connect an organization’s business to

its software delivery capability in the context of ASD by

continuously assessing and improving quality-related

strategic indicators (e.g., product quality, product readiness,

and process performance) in software analytics tools. We

propose using the well-known concept of Quality Model

1 https://kafka.apache.org/
2 https://activemq.apache.org/
3 https://www.tableau.com/
4 https://powerbi.microsoft.com
5 https://www.tasktop.com/
6 https://www.kovair.com/
7 https://www.kiuwan.com/
8 https://chaoss.github.io/grimoirelab/
9 https://www.q-rapids.eu/
10 http://codefeedr.org/

(QM) [13]–[16] in software analytics tools as the instrument

to bridge the gap between low-level quality concepts related

to development and usage and high-level quality-related

strategic indicators. Therefore, the goal of this research is to

understand practitioners’ perception regarding the

integration of QMs in software analytics tools in ASD

companies in order to effectively assess and improve

quality-related strategic indicators.

Since we address the perception of practitioners, our aim

was to conduct an empirical study in industry. To this end,

we needed a tool implementing the concept we wanted to

evaluate. Given that no such tool is freely available on the

market, we opted for the Q-Rapids tool. The Q-Rapids tool,

developed as part of the Q-Rapids project [17], offers

software analytics capabilities that integrate QMs to assess

and improve software quality in the context of ASD. Its main

functionalities are: (a) real-time gathering of various types of

data related to the development and usage of a software

system, which are the input for a QM; (b) real-time modeling

of this data in terms of a QM in order to reason about

aggregated quality-related strategic indicators; (c) presenting

this QM and data to decision makers in a multi-dimensional

and navigational dashboard for use during ASD events, such

as sprint planning or daily stand-up meetings.

In order to understand the practitioners’ view regarding

our goal, we conducted a case study across four

companies, involving 26 practitioners, to investigate the

following key aspects related to the Q-Rapids tool:

 Its understandability, reliability, and usefulness to

assess software quality;

 Its level of detail, relevance, perceived usefulness, and

behavioral intention to improve software quality;

 Its challenges and lessons learned, as seen by adopters

in realistic settings.

This paper is structured as follows. Section II presents the

background and related work. Section III presents the object

of study in this case study across four companies: the

integration of a QM within a software analytics tool (i.e., the

Q-Rapids tool). Moreover, it provides details on how the tool

can be used to assess and improve software quality. Section

IV describes the research methodology of our case study.

Section V presents the results with respect to the participants’

perceptions on exploring the tool to assess and improve

software quality. Section VI discusses challenges and lessons

learned as seen by adopters in ASD settings using the Q-

Rapids tool. Section VII reports the limitations of this work.

Finally, Section VIII concludes the article and presents future

work.

II. BACKGROUND AND RELATED WORK

The objective of this section is twofold: (a) to provide a

background on QMs, software analytics, and ASD; and (b) to

discuss related work on software analytics tools in ASD

companies.

A. BACKGROUND

Quality is defined by ISO 8042 [18] as “the totality of

characteristics of an entity that bear on its ability to satisfy

stated and implied needs”. This definition is too abstract to

be operationalized directly, and is one of the reasons why

there has been a multitude of software QMs proposed in the

last four decades (e.g., [19]–[23]) that refine high-level

concepts of “quality” (like reliability or efficiency) down to

the level of metrics (as number of bugs or response time).

One popular example widely adopted in industry is the

ISO/IEC 25010 standard [14], which determines the quality

aspects to be taken into account when evaluating the

properties of a software product. Two more recent examples

well known in industry are Quamoco and SQALE [24].

Quamoco [16] is a QM integrating abstract quality aspects

and concrete quality measurements. SQALE [25] computes

technical debt indexes based on the violations of quality rules

in the source code. Other works propose refactoring models

to improve a particular quality aspect of the existing model or

code, and different extensions to the traditional concept of

quality (such as incorporation of non-technical criteria into

ISO/IEC 9126-1 QM [26]).

Software analytics is defined as “analytics on software

data for managers and software engineers with the aim of

empowering software development individuals and teams to

gain and share insight from their data to make better

decisions” [6]. In this context, analytics results should

include some actionable knowledge that can be used to

improve software quality. Software analytics is used in

various scenarios to assess concrete problems, e.g., use of

process data to predict overall project effort [27], use of

security data to identify indicators for software vulnerabilities

[28], or classification of app reviews [29]. In this context,

software analytics tools provide features for specifically

visualizing software development aspects. In our view, some

notable examples are SonarQube11, Kiuwan, Bitergia12, and

Tasktop, all of which have been discussed in related work.

ASD relies on short feedback cycles as a way to provide

flexibility and rapid adaptation to market fluctuations. In this

context, decisions are also made more frequently. For

instance, product releases and the related decisions take place

in short intervals, instead of months/years as was the case

with traditional software development approaches such as the

waterfall model. Popular agile practices such as continuous

integration [30] provide a tight connection to development to

ensure errors are detected and fixed as soon as possible. The

current tendency to shorten feedback cycles even further

(e.g., continuously getting feedback from customers and

being able to react on that) enhances the potential for

software analytics. Continuous software engineering [31],

which has its roots in ASD, represents a holistic approach to

providing tight connections among all software development

11 https://www.sonarqube.org/
12 https://bitergia.com/

activities, including not only integration but also aspects such

as business and development (BizDez) and development and

operations (DevOps).

Our work aims to further understand the challenges

limiting industrial uptake of QM-based software analytics

tools in ASD companies, as seen by practitioners. In our

research, we build on previous research on software quality

modeling, integrating a QM into a software analytics tool to

assess and improve software quality (see Section III).

B. RELATED WORK

Software analytics plays a major role in ASD and continuous

software engineering since, properly used, the enormous

amounts of data from different systems (e.g., continuous

integration system, management tools, etc.) have proved

increasingly useful for guiding (almost) real-time decision-

making [32]–[34]. Indeed, companies like Microsoft are

hiring data scientists for their software teams [35]. ASD and

continuous software engineering have created numerous new

opportunities for observing user behavior and monitoring

how systems and services are being used; for identifying

unexpected patterns and runtime issues; for monitoring

system quality attributes; and for collecting real-time data to

feed both business and technical planning [36], [37]. The

main objective is to constantly monitor and measure both

business indicators and infrastructure-related metrics in order

to facilitate and improve business and technical decision-

making [38]. In the specific case of software quality,

continuous quality monitoring enables transparency to

foresee, trace, and understand important aspects of product

quality in real time [38], [39]. Support for product quality

management is particularly relevant in ASD, since it tends to

overlook quality aspects in favor of product functionality

[17]. Although the literature reports on promising advances

regarding the use of analytics in continuous software

engineering [32]–[34], many challenges still exist, with the

lack of software analytics tools being among the most

relevant ones [33].

When we look for software analytics tools typically used

in ASD, we find a large number of commercial and academic

software analytics tools that are available on the market.

Examples of commercial tools focusing on concrete quality

aspect are SonarQube, Kiuwan, Bitergia, New Relic13,

Datadog14, and Taktop. SonarQube focuses on continuous

code quality based on static code analysis, including

assessment of code smells, bugs, and vulnerabilities. Kiuwan

products focus on the detection of code security

vulnerabilities, also offering a tool specifically for Open

Source Software (OSS) risk analysis. Bitergia provides

actionable and customizable dashboards for analyzing OSS.

New Relic allows developers to install monitoring agents and

gather real-time insights from users such as software failures

13 https://newrelic.com/
14 https://www.datadoghq.com/

and performance improvements. Datadog monitors cloud-

scale applications; provides monitoring of servers, databases,

tools, and services; and supports the full DevOps stack.

Tasktop aims to integrate and coordinate value streams

across the DevOps stack. In addition to these commercial

software analytics tools, it is worth mentioning value stream

management tools for capturing, visualizing, and analyzing

critical indicators related to software product development

[12]. Some of these tools even strongly support the creation

of new dashboards from data and advanced data analytics

(e.g., machine learning). With respect to tools in academia,

we find CodeFeedr [40], Perceval [41], and SQuAVisiT [42].

CodeFeedr is a real-time query engine. Perceval performs

automatic and incremental data gathering from almost any

tool related to open source development, which can be used

in Bitergia dashboards. SQuAVisiT is a generic framework

supporting maintainability assessment.

Based on the aforementioned software analytics tools, we

can see that the data analytics trend has had a great impact on

software engineering as well (i.e., software analytics),

particularly in the short feedback cycles of ASD and

continuous software engineering. However, application of

QMs in the software analytics tools used in industry is not

widespread, despite the need for “a view into planning,

health indicators, and analytics, helping them collaborate

more effectively to reduce waste and focus on work that

delivers value to the customer and the business” [12]. A

notable exception is the SQALE QM within SonarQube.

However, its limitation is that its main functionality of static

analysis of the source code is limited to a single data source

(i.e., the source code). We can conclude that the

aforementioned software analytics tools do not offer full

capabilities, including an integrated QM, to provide quality-

related strategic indicators by using software analytics

results. Therefore, at the beginning of the Q-Rapids project,

we decided to build the Q-Rapids tool, which integrates

highly customizable (instead of pre-defined) QMs.

Some researchers have investigated the success factors as

well as the needs and challenges related to the application of

software analytics in industry [6], [43]. Huijgens et al.

conducted an empirical study to identify success and

obstruction factors regarding the implementation of software

analytics in the context of continuous delivery as a service

(e.g., defining and communicating the aims upfront,

standardizing data at an early stage, and building efficient

visualizations). Buse and Zimmermann proposed several

guidelines for analytics tools in software development (e.g.,

ease-of-use and measurement of many artifacts using many

indicators). In our work, we focus on the key aspects needed

for practitioners to adopt QMs integrated into software

analytics tools in the context of ASD.

The novelty of our work is twofold: (a) Based on input

from practitioners, it explores the integration of QMs into

software analytics tools in ASD companies, leveraging

software, process, and usage data; and (b) it provides an

understanding of what is needed in the aforementioned tools

to enable them to be widely accepted in industry as well as

challenges and lessons learned from their adoption in four

ASD companies.

III. INTEGRATING A QUALITY MODEL INTO A
SOFTWARE ANALYTICS TOOL

This section includes: (a) the description of the QM we

propose in our work; (b) the Q-Rapids software analytics tool

integrating the aforementioned QM; and (c) how the Q-

Rapids tool can be used to assess and improve software

quality in ASD.

A. THE Q-RAPIDS QUALITY MODEL

Both academic and industry partners of the Q-Rapids project

have iteratively created a QM for software analytics, whose

main characteristic is that it offers tool-supported

customization (integration into software analytics tools) to

define strategic indicators related to the quality of software

product and development processes based on company

needs. This QM aims at enabling decision makers to improve

identified quality deficiencies.

In the following, we will present the elements of the QM

and how these elements are computed from automatically

ingested raw data. For details on the initial creation and

previous iterations, the reader is referred to [44], [45].

Following common approaches, we defined the QM for

the Q-Rapids tool as a hierarchical structure composed of

five types of entities, each of them serving a well-defined

purpose (see Figure 1):

 Strategic Indicator - Quality-related aspect that a

company considers relevant for its decision-making

processes. It represents an organization-wide goal,

e.g., product quality or process performance. A

strategic indicator can be influenced by numerous

product/process factors.

 Product/Process Factor - The attributes of parts of a

product/process that are concrete enough to be

measured [16], e.g., code quality, issue velocity,

delivery performance. A product/process factor may

be composed of numerous assessed metrics.

 Assessed Metric - Concrete description of how a

specific product/process factor is quantified for a

specific context, e.g., code duplication, test success.

 Raw Data - Data that comes from different data

sources without undergoing any modification, e.g.,

files, unit tests, pending issues. Typically, this data

cannot be decomposed further into smaller units.

 Data Source - Each of the different tools the

companies use for extracting raw data, e.g.,

SonarQube, Jira, Jenkins, Gerrit.

Figure 1 shows an excerpt of the elements of the Q-Rapids

QM. A detailed QM (i.e., with definitions of all elements and

formulas of the assessed metrics) is available in the

Appendix.

FIGURE 1. Excerpt of the generic Q-Rapids QM (details in Appendix).

To enable assessment of continuously updated strategic

indicators, there is a bottom-up calculation process, starting

from the data sources, which is detailed in [44].

B. THE Q-RAPIDS SOFTWARE ANALYTICS TOOL

The Q-Rapids tool15 provides continuous assessment, which

could be real-time, of the strategic indicators to decision

makers based on the Q-Rapids QM. Figure 2 shows an

excerpt of the conceptual architecture of the Q-Rapids tool,

depicting its modules related to data analytics capabilities

and its data flow, which adopts the idea of the lambda

architecture approach used for Big Data solutions [46]. The

main modules of the tool are Data Gathering, Data Modeling

and Analysis, and Strategic Decision Making.

FIGURE 2. Q-Rapids software analytics tool architecture.

The Data Gathering module is composed of different

Apache Kafka connectors to gather data from heterogeneous

external data sources, such as static code analysis (e.g.,

SonarQube), continuous integration tools (e.g., Jenkins),

code repositories (e.g., SVN, Git, GitLab), issue tracking

tools (e.g., Redmine, GitLab, JIRA, Mantis), and software

usage logs.

The Data Modeling and Analysis module uses the

gathered data and the QM definition to assess software

quality. The QM is highly customizable to support any

company’s needs. For instance, users of the Q-Rapids tool

15 The tool source code and documentation are available at:

https://github.com/q-rapids

can define new strategic indicators, product/process factors,

assessed metrics, and their relationships, as well as the

frequency of execution of the QM assessment (e.g., daily,

hourly). Another example: Since the QM works as a plug-in,

it can also be defined from data mining and analysis.

The Strategic Decision Making module is responsible for

the end-user interface and provides two different types of

dashboards: (a) the Strategic Dashboard, providing

homogeneous visualization for assessing the higher-level

elements of the QM; and (b) the Raw Data Dashboards,

providing specific visualizations for the data gathered from

the source tools.

On the one hand, the Strategic Dashboard supports

decision makers in their decisions related to the assessed

quality of their products (e.g., does our product have the

quality to be released?). It uses the same kind of charts for

visualizing the assessment of the three most abstract levels of

the QM (strategic indicators, factors, and assessed metrics).

These most abstract levels (strategic indicators, factors, and

assessed metrics) work like “traffic lights”, i.e., red stands for

risky quality, orange for neutral, and green for good quality.

These generic visualizations unify the quality visualization

and hide the heterogeneity of the data and source tools. This

also allows navigating through the different elements, which

provides traceability and helps to understand the assessment.

On the other hand, the Raw Data Dashboards allow

decision makers to take concrete actions to address a

particular issue and improve quality (e.g., which concrete

files are too complex?). They are customized for concrete

QM elements, e.g., the metric Blocking files used in the

Blocking strategic indicator. Therefore, they allow the user to

link the quality issue (e.g., Non-Blocking files) to the

concrete elements from the data source tools (concrete files

violating the quality rules).

C. THE Q-RAPIDS TOOL FOR ASSESSING AND
IMPROVING SOFTWARE QUALITY

This section describes two scenarios where the Q-Rapids tool

can be used by decision makers to assess or improve the

quality of their products. We follow the definitions of

“assessing” and “improving” software quality specified by

Kläs et al. [23]. Assessment refers to the process in which “a

concept is quantified, measured and compared to defined

evaluation criteria to check the fulfillment of the criteria”

[23]. Improvement refers to the process in which “relevant

factors (i.e., variation factors) influencing the concept of

interest are known. Therefore, the concept of interest can be

improved by improving its influencing factors” [23].

1) ASSESSMENT SCENARIO WITH Q-RAPIDS

The (infamous) ACME company needs to deliver the next

release of one of their higher-quality products, NeverLate, on

time. Therefore, Bob, the product manager in charge of

https://github.com/q-rapids

NeverLate, decides to use the Q-Rapids tool in order to

assess and monitor Blocking situations16.

At the beginning of the sprint, Bob receives an alert

because the Blocking strategic indicator has dipped below

some predefined threshold. The Q-Rapids tools visualizes

this event by changing the traffic light related to this

indicator from green (good quality) to orange (neutral) in the

Strategic Indicators View (Figure 3, needle in the radar chart

on the left). He delves deeper into the QM to analyze the

situation. Taking up the QM, the Blocking strategic indicator

is impacted by two product factors: Blocking code and

Testing status. The Detailed Strategic Indicators View

reveals that the Testing status assessment is good, while the

Blocking code assessment is not so good (value around 0.5

on the radar chart’s corresponding axis). Bob explores the

assessed metrics impacting this factor by using the Factors

View, where the Non-blocking files metric has a low assessed

value (below 0.5 on the corresponding axis of the radar

chart). Finally, using the Metrics Historical View (the line

chart on the right), Bob verifies that the Non-Blocking files

metric has been deteriorating since the last sprint. Based on

this assessment, Bob decides to improve the software quality

by tackling the Blocking files problem.

FIGURE 3. Strategic Dashboard navigation schema.

2) IMPROVEMENT SCENARIO WITH Q-RAPIDS

Following the Blocking problem above, Bob calls a

meeting with Jane, a senior developer working on NeverLate,

to discuss concrete actions to improve the Blocking files

problem. Using the concrete Raw Data Dashboard

corresponding to Non-blocking files, Joe and Jane learn that

in the last sprint, the classes of a specific directory were

changed many times by the same developer, Brandon (Figure

4, list of blocker and critical issues at the bottom). Moreover,

the classes contain five blocker quality rule violations

regarding code smells. Raw data visualization offers

actionable analytics to refactor the classes of the problematic

directory, clearly indicating which classes have been heavily

modified and explaining the violated quality rules.

Consequently, Bob could take the concrete action of adding a

new issue to the backlog so that Brandon can solve these

problems. Table I gives a summary of the actions that can be

taken to improve software quality based on Blocking. It also

indicates at which point in time during the ASD process the

actions can be taken.

16 “Blocking”, as defined and customized by the companies of our case

study, refers to situations that negatively influence the regular progress of

the software development.

FIGURE 4. Raw Data Dashboard for blocking and critical files.

TABLE I

EXAMPLES OF ACTIONS TO IMPROVE SOFTWARE QUALITY FOR THE

“BLOCKING” STRATEGIC INDICATOR

Factors Action Points When in ASD?

Blocking
code

Resolving blocker
quality rule violations or

refactoring highly

changed files (e.g., God
objects or configuration

files)

Refactoring-related tasks are
included in the product

backlog and selected during

sprint planning. Developers
continuously perform

refactoring.

Testing
status

Improving tests that do
not detect critical bugs

during development.

Improving the
performance of the test

pipeline.

Test suite improvement tasks
are included in the product

backlog during sprint

planning and assigned to
testers based on their priority.

IV. EVALUATION METHODOLOGY

This section reports the methodology of our case study.

A. RESEARCH SETTING

Our research context consisted of four pilot projects in the

four companies participating in the Q-Rapids project. As

reported in Table II, the companies ranged from small and

medium-sized enterprises with up to ten products on the

market to very large corporations with more than 1,000

products on the market. They develop products using ASD

for various application domains such as telecommunications,

security, military, transport, health, and public

administration.

The companies’ pilot projects had three essential things in

common that made it possible to run a case study [47] across

them: They had an ASD (Scrum-like) way of working; the

stakeholders (i.e., product owners, managers, and developers)

were interested in having tool support to assess and improve

software quality in their setting; and the Q-Rapids tool

presented in Section III was deployed and used by these

stakeholders in such settings.

TABLE II
SETTING OF THE FOUR COMPANIES’ PILOT PROJECTS

Setting Company 1 Company 2 Company 3 Company 4

Id UC1 UC2 UC3 UC4

Product Tool for

model-based
software

development

Distributed

system in
telecommun

ication

networks

Distributed

system in
public safety

Risk

analysis
system

Context Single long

lifetime

software
product line

Multiple

product

lines

Multiple

product lines

Multiple

software

products

Product

size

[KLOC] >

1000

500 – 1000

[KLOC]

1 – 100

[MLOC]

[KLOC] >

200
of

releases

Up to 100 13 16 1

1st
release

1991 2011 2013 2017

ASD

since

2006 2011 2005 2017

Program

ming

language

Java, Eclipse

RCP, JEE for

Web tools

C Java, C/C++ Java,

JavaScript,

HTML5/CS
S3

In the following, we will briefly describe the context of the

four use cases. One common characteristic is that the four

companies had already used Q-Rapids in earlier pilot projects

than the ones evaluated in this case study (i.e., UC1, UC2,

UC3, and UC4 from Table II).

UC1. Company 1 used Q-Rapids in its main product

Modelio 3.8 and in Modelio NG (UC1), which is a

customization for a customer. Modelio is the latest

generation of a 25-year-old product line of a model-driven

tool suite dedicated to expressing and managing

requirements, modeling software architectures, building

accurate UML models, generating a full range of

documentation, and automating application code production

for several languages. In UC1, Company 1 used Q-Rapids

with the aim of improving the quality of Modelio NG by

leveraging QRs during the development phase of new

versions of the product line. This involved the early detection

of anomalies, which helped to improve their ability to release

the product on time by reducing the number of anomalies

discovered during the pre-release validation phase. Company

1 used its experts’ knowledge to identify new strategic

indicators not provided directly by the Q-Rapids tool.

UC2. Company 2 deployed Q-Rapids in two different

contexts, applying two different strategies. For case one,

Company 2 used a kind of research-oriented approach, where

the research partners facilitated or collaborated on multiple

sessions to define the QM and the strategic indicators based

on high-level strategic goals, to derive factors and metrics,

and to identify relevant data sources. This was done to realize

a proof of concept. Company 2 assumed that it had learned

the necessary methods and deployment process in such detail

that they could replicate it on their own in another use case

(i.e., UC2). In UC2, Company 2 decided to use their expert

knowledge to identify interesting strategic indicators not

provided by other tools to be presented from different

viewpoints by the Q-Rapids tool. The reported challenges

and lessons learned are based mainly on the deployment

experience with UC2.

UC3. Company 3 implemented the solution in two

contexts. For the first context, the focus was on the use of a

proof of concept of the Q-Rapids solution by a production

test software team in the public safety domain. The research

partners facilitated or collaborated on multiple sessions to

determine the strategic indicators as well as process factors

and metrics. This included the company's internal

development of the software lifecycle development process

as well as the identification of necessary data sources and

alignment of the development tool chain with the Q-Rapids

solution. For the second context, identified as UC3,

Company 3 expanded the approach to a multi-context

information tool development project related to product

development, manufacturing, and maintenance. In

comparison to the first context, UC3 involved several teams.

The identified improvement issues regarding development

tool chains, metrics, and the Q-Rapids solution from the first

context were very useful for UC3.

UC4. Company 4 first (during the proof of concept phase)

used the solution in almost finished projects in the

maintenance phase, and in the software part of a research

(non-commercial) project, where more experiments and a

research-oriented approach were possible. After those initial

tests, Company 4 decided to use the solution in practice to

measure quality- and process-related metrics in the largest,

most active, and most important commercial software

product deployment project, here referred to as UC4 (where

the solution is still being used by the Product Owner).

B. RESEARCH QUESTIONS

As stated in Section I, our research goal was to understand

practitioners’ perception of the integration of QMs into

software analytics tools in ASD companies in order to

effectively assess and improve quality-related strategic

indicators. We split this research goal into three Research

Questions (RQs):

RQ1. What is the practitioners’ perception regarding the

integration of QMs into software analytics tools

when assessing software quality in ASD?

RQ2. What is the practitioners’ perception regarding the

integration of QMs into software analytics tools

when improving software quality in ASD?

RQ3. What are the challenges and lessons learned that

practitioners face when integrating QMs into

software analytics tools for assessing and improving

software quality in ASD?

With RQ1, we investigated the assessment scenario

presented in Section III, while RQ2 focused on the

improvement scenario presented. Transversal to the

assessment and improvement scenarios, RQ3 was used to

investigate the challenges and lessons learned as seen by

adopters in realistic settings. RQ3 was addressed after RQ1

and RQ2 (see details in Section IV.C).

For the assessment and improvement scenarios (i.e., RQ1

and RQ2), we specified relevant sub-RQs for practitioners

(see Table III). First, we considered that a QM within a

software analytics tool for assessing software quality needs to

be understandable, reliable, and useful in order to be used by

practitioners, based on our experiences with the proof of

concept of the Q-Rapids project (see [48]). Second, we

considered that a QM within a software analytics tool for

improving software quality has to contain the right level of

detail; it has to provide relevant and perceived useful actions;

and practitioners should intend to use it.

Table III shows the mapping between the sub-RQs and the

constructs used to address them. Examples of constructs are

‘Perceived usefulness’ and ‘Behavioral intention’ [49]. The

table has four columns: (a) an identifier for the sub-RQ; (b)

the sub-RQ; (c) the construct that the sub-RQ is dealing with;

and (d) the literature used to define the construct.

TABLE III

SUB-RESEARCH QUESTIONS. EACH SUB-RESEARCH QUESTION IS MAPPED TO

A CONSTRUCT.

Id. Sub-research question Construct Reference

of the

construct a

RQ1.1 Do practitioners find QMs
within a software analytics

tool understandable when

using them to assess software
quality?

Understand-
ability

McKinney
et al. 2002:

[50]

RQ1.2 Do practitioners find QMs

within a software analytics

tool reliable when using them

to assess software quality?

Reliability McKinney

et al. 2002:

[50]

RQ1.3 Do practitioners find QMs
within a software analytics

tool useful when using them to

assess software quality?

Usefulness McKinney
et al. 2002:

[50]

RQ2.1 Do practitioners find QMs

within a software analytics

tool traceable when using
them to improve software

quality?

Right level

of detail

Goodhue

and

Thompson
1995: [51]

RQ2.2 Can practitioners take relevant
actions when using QMs

within a software analytics
tool to improve software

quality?

Relevance Lee and
Strong,

2003: [52]

RQ2.3 Can practitioners take usable
actions when using QMs

within a software analytics

tool to improve software
quality?

Perceived
usefulness

Venkatesh
and Bala,

2008: [49]

RQ2.4 Do practitioners intend to use

a QM within a software
analytics tool to improve

software quality?

Behavioral

intention

Venkatesh

and Bala,
2008: [49]

a All the constructs from the selected references have already been
validated in practice.

1) HYPOTHESIS REGARDING THE INTEGRATION OF
QMs WITHIN SOFTWARE ANALYTICS TOOLS

The main hypothesis of this work is that QMs within

software analytics tools can be used by practitioners to assess

and improve software quality. This main hypothesis was

refined into seven sub-hypothesis, one for each sub-RQ:

 Practitioners are able to understand a QM within a

software analytics tool to assess software quality (H1:

understandability).

 Practitioners find that using a QM within a software

analytics tool is reliable for assessing software quality

(H2: reliability).

 Practitioners find that using a QM within a software

analytics tool is useful for assessing software quality

(H3: usefulness).

 Practitioners find the traceability between abstract

quality aspects and raw data of a QM within a

software analytics tool to be at the right level of detail

to improve software quality (H4: right level of detail).

 Practitioners are able to take relevant actions to

improve software quality based on the information

provided about a QM presented in a software

analytics tool (H5: relevance).

 Practitioners are able to take perceived useful actions

to improve software quality based on the information

provided about a QM presented within a software

analytics tool (H6: perceived usefulness).

 Practitioners intend to use a QM within a software

analytics tool to improve software quality rather than

using a human approach (H7: behavioral intention).

C. RESEARCH DESIGN AND SAMPLING

This study was initiated by the Q-Rapids project members.

The authors were organized into two teams. The first seven

authors constituted the researcher team. The researcher team

was composed of the leading team (first three authors from

Fraunhofer IESE) and another four authors from two

universities (Technical University of Catalonia and

University of Oulu). The last four authors, from the four

companies, constituted the practitioner team. Their

responsibility was to use Q-Rapids in the setting described in

Section IV.A. In addition, there were 22 other participants in

the study from the four companies. In the following, we will

briefly discuss the research design, sampling, and execution.

Design: The first two authors created an evaluation

guideline with two objectives: (a) to provide experimenters

and observers with a detailed description of the evaluation

procedures and guidance for managing potential confounding

factors; and (b) to ensure equal treatment between different

evaluation steps independent of the experimenter. These

guidelines included the design of our evaluation, with two

key researcher roles: an experimenter and at least one

observer. On the day of the evaluation, the researcher team

performed the following steps at the premises of the four

companies:

(1) The experimenter explained the evaluation goals and

the procedure to the participants and asked them to sign the

informed consent.

(2) The experimenter performed a live demo in the

company setting to introduce the software quality assessment

and improvement scenarios of the Q-Rapids tool. Showing

the same live demo at all four companies served to ensure

equal treatment and to reduce experimenter bias. At the end

of the training, the experimenter asked the participants to

clarify any doubts about the use of Q-Rapids tool before

advancing to the next step in the evaluation.

(3) The participants individually explored the Q-Rapids

tool by working on assigned tasks. The experimenter

encouraged them to use a form to write down positive and

negative aspects of the Q-Rapids tool. This served to get a

better understanding of the participants’ perceptions

regarding the Q-Rapids tool.

(4) The experimenter collected responses to our sub-RQs

by using a structured questionnaire based on the constructs of

Table III, answered individually. These constructs had

already been validated in practice in terms of item reliability

score of the construct or Cronbach’s alpha, which are

objective measures of reliability [53]. Reliability is

concerned with the ability of an instrument to measure

consistently [53]. All selected constructs were reported to

have an item reliability score greater than 0.8. Each construct

included up to four items to be rated using a five-point rating

scale from 1 “strongly disagree” to 5 “strongly agree” (where

3 was “neutral”) and an additional “I don’t know” option. We

instantiated the selected questions according to the purpose

and content of the assessment and improvement usage

scenarios of the Q-Rapids tool. This served to collect the

practitioners’ perception on these two scenarios.

(5) The experimenter asked the participants about the

strengths of the Q-Rapids tool and any suggestions for

improvements during debriefing sessions with all

participants. In these sessions, the participants individually

used cards to record the results, posted them on the wall, and

presented them to the rest of the group. Then the

experimenter, together with the participants, created clusters

of the cards and asked the participants to prioritize strengths

and weaknesses by individual voting. The goal was to

complement the data from the questionnaire and understand

why the participants reported those perceptions.

(6) In parallel to the five sequential steps above, at least

one observer documented the progress of each activity using

a predefined observation protocol. The observer kept records

of the participants’ comments and questions on the Q-Rapids

tool and of any deviations from the prescribed evaluation

procedures. This activity was intended to facilitate later

analysis of possible threats to validity, such as experimenter

bias. There were different experimenters and observers

during each company’s evaluation.

The instruments used to support these steps will be

described in Section IV.D.

Finally, after the evaluation and once the research team

had finalized the analysis, the research team presented the

results to the practitioner team, who were the ‘champions’ of

applying Q-Rapids in the four companies. The goal was

twofold: to validate the results and to discuss RQ3. With

respect to RQ3, we performed the following two additional

actions:

 We asked the four UC champions to summarize their

challenges and the lessons they learned regarding the

use of the Q-Rapids tool in their companies. We

instructed them to provide this description in free text

in order to avoid any unnecessary constraint on their

communication.

 The research team consolidated the responses by

categorizing them while respecting the provided text

as much as possible. The result was presented to the

UC champions, who provided their feedback (in the

form of comments to the proposed text and new

insights with additional information), yielding the

final input for answering RQ3, reported in Section VI.

Population and Sampling: There were three types of

target users of the Q-Rapids tool: product owners, managers,

and developers. The researchers informed the companies

about the target sample and the companies’ champions

proposed a list of participants based on their suitability and

contacted them. Then we drew a convenient sampling

including product owners, managers, and developers of the

companies involved [54]. At the time of the evaluation, the

participants were team members of the pilot project selected

in each company for the evaluation of the Q-Rapids tool.

In total, 22 persons from the four companies participated

in the evaluation conducted for RQ1 and RQ2 (see Table IV).

Among these participants were two product owners, seven

project managers, seven managers (including quality and

technical managers), three developers, and three participants

who did not indicate their role in the demographics part of

the questionnaire, but who belonged to one of these

categories. All participants had at least eight months of work

experience in their companies (Mdn = 10 years, Min = 0.75

years, Max = 32 years) and at least nine months of work

experience in their current role (Mdn = 5 years, Min = 0.8

years, Max = 30 years) at the time of this evaluation.

Execution: Between July 2018 and October 2018, we

deployed the Q-Rapids tool in each company. This was the

second major release of the Q-Rapids tool, whose first

prototype had already been deployed in January 2018.

Therefore, data collected by the Q-Rapids tool reached back

to January 2018. In parallel, the first two authors trained the

experimenters and observers responsible for performing the

evaluation at each company. Then the experimenters and

observers executed this study following the aforementioned

procedures between mid-October and November 2018. We

scheduled each evaluation session for up to 7 hours including

breaks, taking into consideration the availability of the

participants.

TABLE IV
DEMOGRAPHIC INFORMATION OF PARTICIPANTS

Participants UC1 UC2 UC3 UC4

Number 4 10 6 2

Roles 1

Developer,
3 Project

Managers

2 Developers,

3 Managers, 2
Project

Managers, 3

Others

4

Managers,
2 Project

Managers

2

Product
Owners

Work

experience

in the
company

13.5 years

(1 year - 30

years)

15.3 years (2

years - 32

years)

9.25 years

(9 months -

19 years)

6.25

years

(2.5
years –

10 years)

Work
experience

in the

current role

10.5 years
(1 year - 30

years)

3.6 years (3
months - 15

years)

7.05 years
(2 years -

15 years)

3.5 years
(2 years

- 5

years)

D. DATA COLLECTION INSTRUMENTS

To support the aforementioned evaluation design, the

researchers used the following six instruments (available in

the Appendix) during the evaluation:

1. Slides with evaluation goals, agenda, and the

informed consent and demographics forms.

2. Scripts for a live demo of the Q-Rapids tool

assessment and improvement scenarios to give

researchers a common artifact to show to the users of

the Q-Rapids tool (similar to the examples in Section

III). In addition, a document comprising the

specification of the QM (e.g., strategic indicators).

3. The task description, consisting of specific scenarios

for assessing and improving the software quality of

the products in which the participants were involved

on a daily basis.

4. A questionnaire, to collect the practitioners’

perception regarding the use of the Q-Rapids tool,

using the constructs of Table III.

5. Presentation and moderation guidelines for the

researchers to conduct a debriefing session about the

strengths of the current tool and any suggestions for

improvement.

6. The observation protocol, where the observers

recorded start time, attendees, end time,

activities/events/deviations/disruptions, timestamp,

and memos.

E. DATA ANALYSIS

The experimenter and the observer transcribed the

participants’ answers (regarding the tasks, the questionnaires,

and the cards from the debriefing sessions) and the

observation protocol into three standardized Excel templates.

This served to keep the data analysis consistent among the

four companies.

We first carried out within-case analyses of the

quantitative and qualitative data collected for each company.

Then we compared, correlated, and integrated the results

among the companies (cross-case analyses) [55].

Quantitative analysis. We report descriptive statistics

including the sample size (N), minimum (Min), maximum

(Max), median (Mdn), and modal value (Mode) for the

quantitative analyses. If a participant answered more than

half of the questions of one construct with “I don’t know”

(see the questionnaire in the fourth item of Section IV.D), we

did not include his/her rating of this construct for our

quantitative analysis. This happened on four occasions.

We performed a One-Sample Wilcoxon Signed Ranks

Test17 [56], as it is suitable for testing hypotheses with small

samples. This served to test whether the participants

significantly rated the QM more positively or more

negatively, i.e., to check whether or not the answers are

significantly lower or greater than a selected middle point in

the five-point rating scale data of the questionnaire, i.e., H0:

median (X) = θ where θ was set to 3 (the neutral point). If we

were able to reject the null hypothesis (i.e., p < α with α =

0.05), we checked for the standardized test statistic (T*) from

which we derived whether the result was positive (i.e., Mdn

(X)>θ if T*>0) or negative (Mdn (X)<θ if T*<0). Therefore,

we also report the significance levels p and the standardized

test statistics of the One-Sample Wilcoxon Signed Ranks Test

(see Table V). We used IBM SPSS Statistics 19 (including

IBM SPSS Exact Tests for analyzing small samples) and set

the confidence level of the test at 95% (i.e., α = 0.05).

Qualitative analysis. We used thematic analysis [57] to

analyze the participants’ feedback on the Q-Rapids tool. At

least two researchers derived themes inductively by coding

and interpreting all observation protocols, independent of

each other. Then these researchers compared their results and

resolved any deviations. Moreover, we performed several

peer review meetings, which included all experimenters,

observers, and analysts, to review the interpretations of the

elicited qualitative data. This served to keep the qualitative

analyses grounded on the collected evidence and ensured

rigor.

V. RESULTS

In this section, we will present our results according to the

RQs. The results are combined from the quantitative analysis

(see descriptive analytics and hypothesis testing in Table V)

and the qualitative analysis (thematic analysis).

A. RQ1: WHAT IS THE PRACTITIONERS’ PERCEPTION
REGARDING THE INTEGRATION OF QMs INTO
SOFTWARE ANALYTICS TOOLS WHEN ASSESSING
SOFTWARE QUALITY IN ASD?

FINDING 1 - THE PARTICIPANTS UNDERSTOOD THE
QM WHILE ASSESSING SOFTWARE QUALITY.

17

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_22.0.0/com.
ibm.spss.statistics.algorithms/alg_nonparametric_onesample_wilcoxon.ht

m

All participants claimed that the strategic indicators,

product factors, and process factors provided in the QM were

understandable (see Table V: N=20, Min = 3, Max = 5, Mdn

= 4, Mode = 4, p = 0.000, T* = 4.167). For our hypothesis

H1: understandability, the One-Sample Wilcoxon Signed

Ranks Test revealed that the participants rated the

understandability of the QM significantly higher than the

neutral point (Mdn(x)= 3). Therefore, the null hypothesis

H01: understandability, i.e., that the participants’ perception

is neutral towards the understandability of a QM within a

software analytics tool for assessing software quality, can be

rejected.

TABLE V

QUANTITATIVE RESULTS OF THE EVALUATION OF THE QM WITHIN A SOFTWARE ANALYTICS TOOL FOR ASSESSING AND IMPROVING SOFTWARE QUALITY

RQ Hypotheses N Min Max Mdn Mode One-Sample Wilcoxon Signed Ranks Test p T*

RQ1.1 H1:

Understandability

20 3 5 4 4

.000 4.167

RQ1.2 H2: Reliability 21 2,5 5 4 4

.000 3.816

RQ1.3 H3: Usefulness 21 2 5 4 4

.002 3.038

RQ2.1 H4: Right level
of detail

20 1 5 4 4

.023 2.266

RQ2.2 H5: Relevance 20 3 5 4 4

.000 3.943

RQ2.3 H6: Perceived

usefulness

20 2 5 4 4

.002 3.160

RQ2.4 H7: Behavioral

Intention

18 3 5 4 4

.000 3.666

Each item of the structured questionnaire was rated using a five-point response scale from 1 “strongly disagree” to 5 “strongly agree” and included the

option “I don’t know”.
One-Sample Wilcoxon Signed Rank Test: H0: Mdn(X) = θ where θ was set to the neutral point (3), with α = 0.05

The participants gave us the following main reasons why

a QM within a software analytics tool is understandable

(and how understandability can be improved):

 Clear structure for users. This was mentioned

explicitly by six participants from two use cases;

e.g., “I understand and like it [the QM view]

simplified” [UC 3]; “[It has a] clear structure”

[UC 2]; “It looks simple!” [UC 3]; “[It] provides

[a] 'common language' from analysis (Product

Owners) to action (Developers)” [UC 3].

 Appropriate visualizations. 15 participants from all

use cases emphasized appropriate visualization and

provided examples such as getting information

where users expect it to be; e.g., for the Q-Rapids

tool, to have the factor calculation rationale in the

detailed strategic indicators view (“At the moment,

the "Detailed strategic indicators" [view] leads

directly to the factors. It would be nice to be able to

see directly what metrics the strategic indicator is

associated with.” [UC 2]).

 Support for customized settings, e.g., having

explanations and descriptions or support for setting

up appropriate thresholds. Another participant

associated the support for setting up appropriate

thresholds with the understandability of the QM and

asked “What are the proper/default values for

thresholds?” [UC 4].

 Including descriptions. Three participants from two

use cases emphasized explanations of elements of

QMs. For the Q-Rapids tool, for example, they

stated that “the descriptions of metrics need to be

better. The factors that are made of the metrics

should also have better descriptions” [UC 3], e.g.,

by “including descriptions of formulas, e.g.,

average of factors” [UC 3]. These are additional

features that would foster understandability.

FINDING 2 - THE PARTICIPANTS FOUND THE QM
ELEMENTS RELIABLE FOR ASSESSING SOFTWARE
QUALITY.

The computed QM elements were perceived as reliable

by the participants (see Table V). The One-Sample

Wilcoxon Signed Ranks Test showed that they considered

the reliability of the QM elements as positive, as the null

hypothesis H02: reliability, i.e., that the participants’

perception is neutral towards the reliability of a QM within

a software analytics tool for assessing software quality, was

rejected by this test.

The reasons given by the participants for why they found

the QM reliable or how reliability can be further improved

can be categorized as follows:

 Stable computations. This was explicitly mentioned

by one participant: “Most of the calculation of [the]

current model is quite stable now and seems to

follow the model” [UC 3]. Furthermore, two

participants from one use case explained that the

existing QM calculates values that can be used to

understand the quality of the software system

(“When [the QM] is producing "weird" values, I

can know something is wrong with the system” [UC

3]).

 Computational transparency, as mentioned by six

participants from two use cases: “In the strategic

indicator view, in order to trust data it is important

to identify who made the threshold changes if there

have been some changes.” [UC 3]. Still, one

participant mentioned that transparency should be

improved: “It is aggregated data from other tools; I

don't know how exactly it is computed.” [UC 4].

 Updated computations, e.g., additional information

about the last time the data was updated. One

participant stated, “If Jenkins was updated 5 min

ago [and this is shown], I know I can trust it.” [UC

3].

 Possibility to customize the QM, e.g., by adjusting

the weights of the QM elements relations. This was

pointed out by three participants from three use

cases and had an influence on their perceptions

regarding reliability. One participant suggested

improving the tool support for these customizations:

“Specifying weights for strategic indicators seem a

bit weak.” [UC 2].

 Support for exceptions/false positives. Another

participant explained this with the following

example: “Some files have to be complex in order to

provide their functionality. It should be possible to

mark them as such, so they don't affect the metrics

and show our perception." [UC 4].

FINDING 3 - THE PARTICIPANTS FOUND THE QM
ELEMENTS USEFUL FOR ASSESSING SOFTWARE
QUALITY.

The participants rated the QM elements as useful (see

Table V). As the One-Sample Wilcoxon Signed Ranks Test

showed that the null hypothesis with respect to the rating of

the participants can be rejected, we can reject our null

hypothesis H03: usefulness, i.e., that the participants’

perception is neutral towards the usefulness of the QM

elements within a software analytics tool for assessing

software quality.

The following categories of reasons were provided by

the participants:

 Gathering and combining data from heterogeneous

sources. This was stated by seven participants from

three use cases; e.g., “Merging information from

different sources is useful." [UC 4], “[The QM

provides a] general view and one entry for many

related tools (SonarQube, Project Manager, etc.).

[There is a] combination of many entries" [UC 1],

“Good combination to direct tools used” [UC 3],

"Good synthesis from a wide set of data" [UC 1].

 Inclusion of product and process quality. This is

also one of the strengths that impact the usefulness

of the QM for assessing software quality

(mentioned explicitly by one participant): “It is

good to see that you included both aspects. Because

from the product owner perspective, the process

perspective is maybe even more interesting. And

there are less tools to assess the process. Indeed,

there are a lot of tools managing the product quality

but there are less tools for the process.” [UC 4].

Furthermore, the possibility to show information

about the product or the process separately was

mentioned by two participants from two use cases.

“It would be good to have on the highest level a

distinction between product quality and process

quality.” [UC 4]. For the Q-Rapids tool, “it is not

clear [at the moment] which ones of the factors

belong to the category product and which to the

process category” [UC 2].

 Different abstraction levels of information for a

variety of stakeholders. This was emphasized by

three participants from two use cases, e.g.,

“Knowing which files are increasing the complexity

is crucial for the developers […] usually the

product owner is not that much interested in these

details.” [UC 4].

 Real-time raw data dashboards. Three participants

from two use cases also perceived the real-time raw

data dashboards as useful because a "better level of

information improves reaction time and agility"

[UC 1]. One of these participants further suggested

adding raw data dashboards that consider multiple

data sources, i.e., enabling raw data aggregation:

"[There is] no raw data aggregation: e.g. separate

ElasticSearch documents for GitLab data and

SonarQube data” [UC 4]. These suggestions could

help to further increase the usefulness of the QM

elements.

 Appropriate terminology in visualizations.

Furthermore, two participants from two use cases

claimed that appropriate visualizations further

improve the usefulness of the QM elements. This

includes process-specific (i.e., agile) terminology

like time tags (e.g., sprints, milestones) in order to

ensure compliant use of terminology.

B. RQ2: WHAT IS THE PRACTITIONERS’
PERCEPTION REGARDING INTEGRATING QMs INTO
SOFTWARE ANALYTICS TOOLS WHEN IMPROVING
SOFTWARE QUALITY IN ASD?

FINDING 4 - THE PARTICIPANTS FOUND THE
TRACEABILITY BETWEEN ABSTRACT QUALITY
ASPECTS AND THE RAW DATA OF THE QM TO BE AT

THE RIGHT LEVEL OF DETAIL TO IMPROVE
SOFTWARE QUALITY.

The participants assessed the right level of detail of the

QM needed to drill down from abstract levels of the quality

model (e.g., strategic indicators) to the raw data (see Table

V). Although three participants from two use cases

considered traceability as strongly positive, one participant

rated the traceability of the QM as strongly negative. The

One-Sample Wilcoxon Signed Ranks Test showed that the

participants rated traceability significantly positively,

although the significance of this finding is the lowest in

comparison to the rest of findings (p = 0.023). Therefore,

our null hypothesis H04: right level of detail, i.e., that the

practitioners’ perception is neutral regarding the right level

of detail to trace between abstract quality aspects and raw

data of a QM within a software analytics tool to improve

software quality, can be rejected.

The participants provided the following reasons

regarding positive traceability:

 Drill-down for in-depth knowledge. Nine

participants from two use cases considered it

positive that the QM aggregates raw data into

abstract quality indicators that are traceable, as “we

need to drill down and be able to trust” [UC 3].

Meaning that “the traceability [from strategic

indicators to raw data] is very useful.” [UC 1]. One

participant further explained: “We have different

levels and you drill down if you miss some

information” [UC 3]. Increased traceability can be

achieved if it is possible to “drill down directly to

the metrics from the visualization of the strategic

indicators view. [This] would be nice.” [UC 2].

Improving the connection from assessed metrics to

raw data dashboards was also mentioned in another

use case, e.g., “from strategic indicators to raw

data in the raw data dashboard seems now to work

[for a subset] very nice” [UC 3].

 Holistic QM view. Five persons from two use cases

stated the need for a holistic view of the complete

QM. They further elaborated it, e.g., “I need to see

the whole hierarchy [as a whole]” [UC 3]; “I

would like to have a direct link from the assessed

metrics in the QM to the correlated raw data in the

raw data dashboard” [UC 4]; “easier access to the

data visualized with the raw data dashboard from

the implemented QM [is required] for a final

product" [UC 4]

 Traceability to source tools. One participant stated

that traceability to the source tools (i.e., data

producers such as GitLab or SonarQube) is another

aspect of the QM’s traceability; e.g., “including the

URL in the metrics textual views" [UC 1]. This

traceability would also provide data to allow users

to understand the rationale behind the computation.

FINDING 5 - THE PARTICIPANTS TOOK RELEVANT
ACTIONS BASED ON THE QM FOR IMPROVING
SOFTWARE QUALITY.

The participants assessed the actions that can be taken

based on the information provided by the QM as relevant

(see Table V). The One-Sample Wilcoxon Signed Ranks

Test supports this finding as the null hypothesis H05:

relevance, i.e., that the participants’ perception is neutral

towards taking relevant actions to improve software quality

based on the information provided by a QM presented in a

software analytics tool, can be rejected.

The participants provided the following explanations:

 The QM supports explicit insights to solve quality

problems. 18 participants from the four companies

stated this. Among the reasons, we can find “it [the

QM] allow us to navigate into concrete real metric

in order to make right decisions.” [UC 1]. For

example, “quality would improve by fixing the 5

errors” [UC 2] and the QM supports to

“concentrate to speed up clarifying the real bugs”

[UC 3]. One of these participants further elaborated:

“Knowing which files are increasing complexity is

crucial for the developers to know; this can be done

by the raw data dashboard because it is great at

pinpointing the issues in the code. Usually [the]

product owner is not that much interested in these

details but for taking actions, the developers need to

know where the problem is.” [UC 4].

 Providing precise information to be able to act on

it. Participants indicated the importance of

actionable information, and also indicated the case

in which it was not precise enough to be able to act

on it; e.g., “It is possible that [the] raw data

dashboard provides enough information in some

cases and for some metrics. But for example, there

is no data for finding the root cause for test success

related information.” [UC 2]. In addition, “this raw

data dashboard will not provide me possible

solutions. For example, you can reduce the bug

density by two methods. Either you don’t include

these identified bugs in the current or next planned

Sprint [i.e. postpone it] or the second way how to

handle bug density is to hire more […] developers

to increase the resources.” [UC 4].

FINDING 6 - THE PARTICIPANTS TOOK PERCEIVED
USEFUL ACTIONS BASED ON THE QM FOR
IMPROVING SOFTWARE QUALITY.

The participants perceived the actions that can be taken

based on the information provided by the QM as useful for

improving software quality (see Table V). This finding is

supported by the rejected null hypothesis of the One-

Sample Wilcoxon Signed Ranks Test, which showed that

the participants gave positive ratings. Therefore, our null

hypothesis H06: perceived usefulness, i.e., that the

participants’ perception is neutral towards taking perceived

useful actions for improving software quality based on the

information provided by a QM presented in a software

analytics tool, can be rejected.

The reasons given by the participants can be categorized

as follows:

 Useful for improving quality deficiencies. As the

participants perceived that the QM provides explicit

insights to solve quality problems, they explained

why the actions taken based upon the QM could

support them in practice; e.g., “I can use [the QM]

to identify problems” [UC 4]; "better information

related to the status of the project allows us to take

more accurate decisions during meeting plan" [UC

1]. The information provided by the QM enables

“better detection of quality issues which arrives to

the customer” [UC 1]. Moreover, one participant

was concerned that “the quality of the commits need

to be reviewed because of high trend of error

identification.” [UC 3]. Another person claimed: “I

don't have needed information how to use this in

[practice] to improve quality but I guess this could

be useful and can be used to improve quality” [UC

3], for example by “[putting] more people to work

on issues” [UC 3].

 Early detection of quality issues. Two participants

from two use cases claimed that the real-time

information improves reaction time and agility as

“the more information about the environment [is

there,] the more possible adjustments for the project

[are feasible]” [UC 4]. Furthermore, one

participant explained that “early detection of issues

[implies issues that are consequently] more simple

to fix” [UC 1].

 Combination of different data providers in a single

tool. Furthermore, the combination of many data

providers in a single tool is useful for their work.

One participant summarized this with: “Giving

developers additional tools increases their work

time. It takes more effort and time, more overload

that they don't have. Having everything in one

single tool is easier to convince them.” [UC 4].

However, convincing practitioners to use a tool is

still challenging; e.g., “But we had also challenges

to convince them to use even SonarQube.” [UC 4].

FINDING 7 - THE PARTICIPANTS INTEND TO USE THE
QM TO IMPROVE SOFTWARE QUALITY.

With our final question, we asked the participants

whether they would use the QM within a software analytics

tool to improve software quality or not; i.e., whether they

would prefer manual/ad-hoc assessment and improvement

without tool support. The participants had the intention to

further use the implemented QM (see Table V). For our

hypothesis H7: behavioral intention, again the One-Sample

Wilcoxon Signed Ranks Test revealed that their null

hypothesis H07: behavioral intention, i.e., that the

participants’ perception is neutral towards intending to use

a QM within a software analytics tool to improve software

quality rather than using a human approach, can be

rejected.

The participants gave us the following main reasons:

 Raw data dashboard. One of the participants

explicitly highlighted this twice: “I would include it

[the raw data visualization] in my daily work." [UC

4]; "In the current state I would use Kibana [the

raw data dashboard].” [UC4].

 QM assesses quality at every lifecycle point. This

was mentioned by nine participants from four use

cases because the Q-Rapids tool “would allow to

evaluate the impact of new features and the quality

of the project at every lifecycle point” [UC 1]. One

of these participants continued: “It is based on

concrete metrics which allow to measure and

evaluate [...] the quality of our product during the

development life cycle; [and] has a significant

progress in the software development industry.”

[UC 1].

 Customization of the QM. Three participants from

one use case emphasized the possibility to

customize the QM, e.g., to add new strategic

indicators, as a strength of using the QM. “[There is

the] possibility to add new strategic indicators”

[UC 3] and “the feature of removing metrics from

the graph” [UC 3]. “We love it!” [UC 3]. This

allows practitioners to customize the QM according

to their needs, which is an explicit prerequisite of

using the QM for one participant, who stated that “if

the QM is improved to provide me more detail, I'd

probably use it.” [UC 4]. In general, additional

customizations would increase the behavioral

intention, as stated by three participants from three

use cases. For instance, they suggested for the Q-

Rapids tool to specify a “different mechanism to

assess weights for the quality factors while

assessing the strategic indicators” [UC 2] because

one of them additionally asked: “Is there not a way

to define weights for the strategic indicators’

factors?” [UC 1].

VI. DISCUSSION: CHALLENGES AND LESSONS
LEARNED

This section presents the discussion about RQ3: What are

the challenges and lessons learned that practitioners face

when integrating QMs into software analytics tools for

assessing and improving software quality in ASD?

As a final step, based on their own experience, the

practitioner team of this study reflected on the challenges

and lessons learned when using the Q-Rapids tool to assess

and improve software quality. As mentioned in Section IV,

they provided written feedback, which was processed by

means of a thematic analysis [57]. The resulting topics are

presented below, with a distinction made between

challenges and lessons learned.

A. CHALLENGES REGARDING THE USE OF THE Q-
RAPIDS TOOL

Challenge #1. Need for tailoring to the company. A

software analytics tool like the Q-Rapids tool requires a

comprehensive understanding of the company’s software

development or lifecycle process to be able to extract a

solid QM as required by the tool. Although the tool can be

used from the beginning with common strategic indicators,

it requires extra effort to completely adapt its QM to the

needs of each company’s business.

Challenge #2. Need for a shared language. One aspect

experienced by companies to date is the need to use a

language already known and understood by the potential

users. Here, the QM (names for metrics, factors, strategic

indicators) has to be clear and based on the practical

language known and used by product owners and

developers. Of course, this will improve with time,

although it also requires a customization process for each

company (the language and terms might not be

standardized across all software houses in Europe).

Challenge #3. Need to be informative for the user. A

challenge with tools such as the Q-Rapids tool is how to

interpret the information that is rendered. From an end-

user’s perspective, they need to understand whether a

certain value of an indicator/factor is good or bad, and how

it relates to the previous stage in the project or to other

projects (a benchmark needs to be established and known

to the users, and the ‘delta’ needs to be shown clearly).

Challenge #4. Need for integration with other tools.

Currently, in many software development companies and

software houses, teams are already using some common

tools (such as Jira, GitLab, and SonarQube) to manage the

development process and the quality of their code and

products. Such tools are now embedded into developers’

way of working, and into the processes used in companies.

Therefore, when introducing the Q-Rapids tool, it has to be

clear when it is going to be used to assess and improve

software quality, e.g., before checking the status of the

project in GitLab or Jira or afterwards. It needs to be

clarified when exactly in the agile (or any other) process

this new tool should be used.

Challenge #5. Need for transparency and more

clarity on actions. While automatic data gathering from

data sources can be seen as an advantage, some end-users

(i.e., product owners) may have a need to understand from

which raw data the factors and indicators are computed and

how. For instance, for one of the companies, this was the

case for the product quality indicator: What data is

aggregated to arrive at a single value? One of the crucial

aspects for future adoption is the clarity regarding possible

decisions and courses of actions. The Q-Rapids tool should

be able to propose a catalog of suggested decisions (as in a

typical decision support system), but the user should also

be aware (either by training, through practice, or supported

by a clear manual) of which decisions can be made and

why. One of the possible obstacles to successful adoption

would be offering solutions without any clear indication

and information of how the tool can be used, for what

decisions, etc. – the potential user would be lost and

discouraged from further usage. Results should be

connected to the process (e.g., allowing users to visualize

the assessment for the last sprint, including the next

milestone, as an informative field to provide some context

for better understand the results).

Challenge #6. Simplify tool installation. A general

comment was that the deployment of the Q-Rapids tool in

the companies was complex and cumbersome. However, a

closer look at this statement shows two sides of the coin.

On the one hand, although the tool included a wide variety

of connectors for the most popular data sources in the

software industry, companies needed additional ones,

which was not trivial in terms of knowledge required. One

company reported that choosing the appropriate factors,

defining the metrics, and finding the best data sources for

this purpose turned out to be extremely challenging due to

several factors (e.g., access to relevant databases). This

raised the issue of which competencies are needed in the

process, such us knowledge on data protection regulations

(e.g., EU GDPR). On the other hand, adding new strategic

indicators appears to be much easier. To sum up, software

analytics tools should offer easy deployment options such

as dockers, and facilitate as much as possible the setting up

of the tool (e.g., user interface for the configuration of the

different elements to decrease the technological knowledge

required).

Challenge #7. Need for an efficient tool configuration

process. Some situations make the adoption of the Q-

Rapids tool (and other software analytics tools) challenging

from a technological perspective. The first of these is the

configuration of the connectors. One constraint is that

connector configuration parameters (such as user name,

password and end-point) need to be set up per project, even

though the data sources are the same across projects (e.g.,

data sources may have multiple deployments). In other

words, for each data source in each case, the connectors for

mining the data as well as for the feedback loop back to the

backlog must be customized. To increase the feasibility of

any software analytics tool, it is necessary to provide

configurable connectors via a file or user interface, as this

decreases the need for specific coding skills and decreases

the overall adoption time. Second, some of the techniques

may require additional tooling to address the subsequent

challenges regarding technological integration and licenses

(e.g., tools for Bayesian networks provide limited facilities

for such scaling, so any business-relevant purpose would

require purchasing a license for the tool).

B. LESSONS LEARNED FROM THE USE OF THE Q-
RAPIDS TOOL

Lesson learned #1. Embrace an incremental adoption

approach. It usually takes some time for any new solution

to be fully embedded into a company’s software

development style, and any new process is usually based

on some play&try in practice sessions. We recommend

adopting the Q-Rapids tool in a company for a smaller-

scale product or solution being developed in order to

enable extension of the solution to a wider number of

products later on. This will allow adjusting the QM as well

as potentially tailoring the data connectors used.

Lesson learned #2. Boost transparency as a business

value. Incremental adoption also helps to get an overview

and enable fruitful discussions among developers and

related stakeholders of the product regarding valuable

indicators. For instance, one of the companies reported

that, after the experiences with two solutions using the Q-

Rapids tool, the user teams clearly recognized the added

value provided by the good visibility of the company-

defined strategic indicators and quality factors through

real-time aggregated and transparent data.

Lesson learned #3. Use strategic indicators as an

asset for monitoring progress. Strategic indicators are

useful not only for knowing current values but also for

understanding the progress of a project. One of the

companies stated explicitly that Q-Rapids end-users need

to know how a particular indicator’s value relates to the

previous stage in the project or to other projects (a

benchmark needs to be established and known to users, and

the ‘delta’ needs to be shown clearly).

Lesson learned #4. Have a single access point to

software-quality-related data. With the Q-Rapids tool,

the project manager no longer needs to know which tools

provide which metrics and to connect to them in order to

understand the various measurement processes and to link

and synchronize results from different tools. The various

indicators give the project manager a very easy and fast

way to analyze and understand a potentially complex

situation. This aspect is completely built into the Q-Rapids

QM and its associated dashboards where the various

aspects collected by the different software development

lifecycle metrics are analyzed.

Lesson learned #5. Use QMs integrated into software

analytics tools as a communication space. The Q-Rapids

tool provides effective means for different product

stakeholders to discuss and interact on the basis of a

common dashboard. The various metrics and results are

given on a factual basis and facilitate the interaction

between the various team members and the project

manager in the decision-making process. Having different

levels of abstraction and views (e.g., Strategic Dashboard,

Raw Data Dashboards) opens usability up to a wider range

of users (different roles are interested in different levels of

abstraction).

Lesson learned #6. Enable tailoring to a product or

project. Even within the scope of a single company, the

QM might not be exactly the same. In a normal case, many

of the metrics will persist; however, deviations over the

products being developed or ongoing projects may occur.

These variations need to be identified and incorporated into

the QM (and then into the tool) as some kind of parameter.

In this direction, one of the companies reported that some

Q-Rapids end-users would like the opportunity to play with

the model itself (plug or unplug some input data) and to

assign weights used in the aggregation process. After their

first experience in a pilot project, another company decided

to use their expert knowledge to identify interesting

strategic indicators that are not provided by other tools, or

which would at least be presented from a different

viewpoint by the Q-Rapids tool. In another company, the

person in charge of R&D decided that it was worth

measuring the general management quality of two projects

and independently added a new indicator to measure that.

In a matter of seconds, the customization was achieved on

the company’s common Q-Rapids website, and this new

indicator was then created for all monitored projects.

Therefore, we learned that support for customizing the

QMs in software analytics tools is key to assessing and

improving software quality, which is one of the

characteristics of the Q-Rapids tool.

Lesson learned #7. Involving experts. Putting a

product like the Q-Rapids tool into action requires

knowledge from software engineers, especially technology

experts and data scientists. The companies pointed out

some particular situations. First, to set up the connectors, a

lot of expertise is needed: end-users of the tool who can

identify the relevant data content from the UI; software

engineers who can assess the quality of raw data with

respect to the functionality of the connector; and data

scientists for verifying the relation between UI fields and

the actual structure of the database. Second, some of the

techniques used by the analytics tool, such the option of

Bayesian networks for creating strategic indicators [58],

require specific competence. Last, implementation also

requires knowledge of particular technologies that a

company might not have, e.g. Kafka. To sum up, the role

of a specialist setting up the Q-Rapids tool environment

will be crucial for industry adoption. If no specialist is

available, it may be necessary to hire someone or outsource

the development in order to implement the solution.

VII. THREATS TO VALIDITY

As with any empirical study, there might be limitations to

our research method and findings. This section discusses

possible threats to validity in terms of construct,

conclusion, internal, and external validity [47] and

emphasizes the mitigation actions applied.

Construct validity refers to whether the employed

measures appropriately reflect the constructs they

represent. We used seven validated, reliable instruments

from the literature to correctly operationalize our

evaluation goals and the identified quality aspects. Clearly

defining the constructs reduced the risk of mono-operation

bias. We also included open questions and comment fields

to further collect the participants’ opinion. The open

feedback sessions enabled us to further elaborate the

practical relevance of the strengths and drawbacks of the

Q-Rapids tool with all the participants. The use of

quantitative and qualitative measures and observations

reduced mono-method bias. Furthermore, we aimed at

creating a safe environment, encouraging the participants

to highlight any negative aspects and make suggestions for

the improvement of the Q-Rapids tool. Finally, some of our

results (particularly the challenges) could be caused by a

not optimal Q-Rapids tool implementation rather than by

the integration of QMs into software analytics tools. Still,

these results are useful for others to learn how to build such

an infrastructure in realistic settings.

Conclusion validity refers to whether correct

conclusions are drawn from (correct) statistical analysis.

To ensure the reliability of this evaluation, the

measurement plan and procedure, including the creation of

instruments for the implementation and execution, were

documented in detail. For instance, the instruments were

reviewed by the complete researcher team and by one

member of the practitioner team, and during the analysis

we involved researchers who had not been involved in the

creation of the Q-Rapids tool. In this way, we mitigated

risks such as using poorly designed instruments or fishing

for results during the analysis, which would have led to a

subjective analysis. Another point deserving attention was

the training we provided to the experimenters and

observers to enable all of them to apply the treatment in a

similar way. For instance, the participants in the different

companies received the same training and Q-Rapids tool

version. During the task sessions, the participants

performed concrete tasks aimed at making them use the

main features of the Q-Rapids tool. In order to compare the

results among the companies and due to time constraints,

these tasks had to be the same for all cases. Thus, some

might not have been optimal for all the different projects

involved. Furthermore, this version of the Q-Rapids tool

included real project data from the four use cases.

However, not all available data could be used on the day of

the evaluation, and at least one of the selected projects had

finished before. Therefore, the data had not changed during

the previous weeks. This might have had an influence on

the answers of the participants regarding the practical

experience they gained with the tool for their work. Thus,

the results can only be interpreted as an indication of

appropriateness. Furthermore, we were aware that we

would only get a small sample size (i.e., 22 participants)

and looked for appropriate statistical tests.

Internal validity refers to whether observed

relationships are due to cause-effect relationships, and

whether it is possible to explain unequivocally the changes

in the dependent variable due to the influence of the

independent variables.

We evaluated the Q-Rapids tool by drawing a

convenient sample of product owners, managers, and

developers working in several application domains and

software development environments. One limitation of our

work is that we were not able to get a random sample of

participants in the pilot projects of the companies.

In addition, we defined an evaluation protocol in

advance, which included a specific description of our

planned procedure and the order of using the materials, i.e.,

a script of the demonstrations to the participants, the tasks,

the questionnaire, and an explanation with all the steps that

had to be performed by the experimenter and the observer.

We distributed all the materials to the researchers as well as

to the use case representatives (who did not participate) to

collect feedback in order to further improve our design.

After all the partners had agreed on the final version of the

evaluation guidelines, we executed the evaluation

accordingly. This should mitigate the fact that we needed

to split the work of conducting the evaluation among

different researchers and partners. Some of the eight

researchers who conducted the evaluation were involved in

developing the Q-Rapids tool modules. To minimize that

bias, we made sure that in each case there were at least two

researchers present, one acting as the

moderator/experimenter and one as the observer, to

emphasize that the participants could speak freely. After

inspecting and analyzing all the collected data, including

the observation protocol, we could not identify any

influence by these researchers on the participants’

perceptions.

External validity refers to whether findings of the study

can be generalized. Our results are tied to the context of the

companies involved in the Q-Rapids project. Our goal was

to better understand practitioners’ perception. We

characterized the environment as realistically as possible

and studied the suitability of our sampling (see Section IV).

This case study could be the input for further meta-analysis

aimed at generalizing the results (e.g., [59]).

VIII. CONCLUSIONS

Agile software development companies need tools to

continuously assess and improve software quality. For this

study, we conducted a case study across four European

ASD companies to explore practitioners’ perceptions on

the integration of QMs into software analytics tools. We

aimed at exploring key aspects needed for the widespread

adoption of these tools in industry, namely

understandability, reliability, usefulness, right level of

detail, relevance, perceived usefulness, and behavioral

intention.

Twenty-two practitioners involved in the study agreed

that they understood the integration of QMs into software

analytics tools and found the QM elements reliable and

useful for assessing software quality. In addition, the

practitioners found the QMs to be at the right level of detail

and the actions taken from the QMs to be relevant and

perceived useful, and they intend to use QMs within

software analytics tools. These findings are complemented

with reasons for how these qualities were achieved in the

four companies and for how they can be improved further.

Taking into account that the introduction of a new tool

and its measurable impact usually takes several months to

years, the results are very promising. For future adoption,

we reported seven challenges and seven lessons learned

from four practitioners leading the application of QMs

within software analytics tools in their ASD companies.

One hope we associate with our work is that it will not only

contribute directly to the existing body of knowledge on

the use of QMs within software analytics tools in industry

– which currently is still weak – but that it will also

encourage other practitioners to join us in exploring this

promising solution for the problem of software quality

assessment and improvement in industry.

Future work will consist of further supporting

practitioners in meeting software quality challenges:

 We observed that the definition of QMs varies

among companies. In addition to offering tool

support for QMs as plug-ins in software analytics

tools, ongoing work is aimed at generating QMs not

only from expert knowledge but using more cost-

effective data mining and analysis algorithms (e.g.,

identifying QM elements interrelations), and at

creating a QM repository.

 Building a complete software analytics

infrastructure in a company (e.g., all data available

from a single point) requires time and should be

done incrementally. Based on the current

infrastructure in the four companies of this study,

other software quality scenarios are being explored,

such as prediction and simulation of quality, and

semi-automatic generation of quality requirements.

 We believe that software analytics can provide

greater value in ASD companies by mining usage

data to understand the behavior of users, which is

another direction for future work.

 Companies need clarity about the process for

deploying and applying software analytics tools in

their environments. A next step is a process

describing software analytics tools deployment and

customization for new companies.

APPENDIX

The appendix contains the instruments used during the

evaluation: https://figshare.com/s/217851eed7ec1da7ab86

https://figshare.com/s/217851eed7ec1da7ab86

ACKNOWLEDGMENT

We thank all members of Bittium, ITTI, Nokia, and

Softeam who participated in the evaluation of the Q-Rapids

software analytics tool. We also thank Axel Wickenkamp

for implementing the Q-Rapids quality model, Liliana

Guzmán for her support for previous evaluation activities,

and Sonnhild Namingha for proofreading this article.

REFERENCES
[1] M. Ardolino, M. Rapaccini, N. Saccani, P. Gaiardelli, G. Crespi,

and C. Ruggeri, “The role of digital technologies for the service
transformation of industrial companies,” Int. J. Prod. Res., vol.

56, no. 6, pp. 2116–2132, Mar. 2018.

[2] S. F. Wiesbaden, “AUTOSAR — The Worldwide Automotive
Standard for E/E Systems,” ATZextra Worldw., vol. 18, no. 9, pp.

5–12, Oct. 2013.

[3] J. Bosch, “Speed, Data, and Ecosystems: The Future of Software
Engineering,” IEEE Softw., vol. 33, no. 1, pp. 82–88, Jan. 2016.

[4] “Magic Quadrant for Business Intelligence and Analytics

Platforms.” [Online]. Available:
https://www.gartner.com/doc/3611117/magic-quadrant-business-

intelligence-analytics. [Accessed: 14-Apr-2019].

[5] C. Bussler and BIRTE (Conference), Business intelligence for the
real-time enterprises : first international workshop, BIRTE 2006,

Seoul, Korea, September 11, 2006 : revised selected papers.

Springer, 2007.
[6] R. P. L. Buse and T. Zimmermann, “Information needs for

software development analytics,” in 2012 34th International

Conference on Software Engineering (ICSE), 2012, pp. 987–996.
[7] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie,

“Software Analytics in Practice,” IEEE Softw., vol. 30, no. 5, pp.

30–37, Sep. 2013.
[8] H. Gall, T. Menzies, L. Williams, and T. Zimmermann,

“Software Development Analytics (Dagstuhl Seminar 14261),”

DROPS-IDN/4763, vol. 4, no. 6, 2014.
[9] T. Menzies, “The Unreasonable Effectiveness of Software

Analytics,” IEEE Softw., vol. 35, no. 2, pp. 96–98, Mar. 2018.

[10] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy,
“CODEMINE: Building a Software Development Data Analytics

Platform at Microsoft,” IEEE Softw., vol. 30, no. 4, pp. 64–71,

Jul. 2013.
[11] C. Sadowski, J. van Gogh, C. Jaspan, E. Soderberg, and C.

Winter, “Tricorder: Building a Program Analysis Ecosystem,” in

2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, 2015, pp. 598–608.

[12] C. Condo and B. Seguin, “The Forrester New WaveTM: Value

Stream Management Tools, Q3 2018,” 2018. [Online]. Available:
https://www.forrester.com/report/The+Forrester+New+Wave+Va

lue+Stream+Management+Tools+Q3+2018/-/E-RES141538.

[Accessed: 11-Mar-2019].
[13] V. Basili et al., Aligning Organizations Through Measurement.

Cham: Springer International Publishing, 2014.

[14] International Organization For Standardization Iso, “ISO/IEC
25010:2011,” Software Process: Improvement and Practice,

2011. [Online]. Available:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_deta

il.htm?csnumber=35733.

[15] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML
scheme: A classification scheme for comprehensive quality

model landscapes,” Conf. Proc. EUROMICRO, pp. 243–250,

2009.
[16] S. Wagner et al., “Operationalised product quality models and

assessment: The Quamoco approach,” Inf. Softw. Technol., vol.

62, pp. 101–123, Jun. 2015.
[17] L. Guzmán, M. Oriol, P. Rodríguez, X. Franch, A. Jedlitschka,

and M. Oivo, “How Can Quality Awareness Support Rapid

Software Development? – A Research Preview,” Springer, Cham,
2017, pp. 167–173.

[18] “ISO 8402:1994 - Quality management and quality assurance --

Vocabulary.” [Online]. Available:

https://www.iso.org/standard/20115.html. [Accessed: 14-Apr-
2019].

[19] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. Macleod,

and M. Merrit, “Characteristics of Software Quality.,” 1978.
[20] V. Basili and H. D. Rombach, “TAME: Integrating Measurement

into Software Environments,” 1987.

[21] C. Ebert and R. Dumke, Software measurement : establish,
extract, evaluate, execute. Springer, 2007.

[22] N. Fenton, J. Bieman, and J. Bieman, Software Metrics. CRC

Press, 2014.
[23] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML

Scheme: A Classification Scheme for Comprehensive Quality

Model Landscapes,” in 2009 35th Euromicro Conference on
Software Engineering and Advanced Applications, 2009, pp.

243–250.

[24] C. Izurieta, I. Griffith, and C. Huvaere, “An Industry Perspective
to Comparing the SQALE and Quamoco Software Quality

Models,” in 2017 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM),
2017, pp. 287–296.

[25] J.-L. Letouzey and T. Coq, “The SQALE Analysis Model: An

Analysis Model Compliant with the Representation Condition for
Assessing the Quality of Software Source Code,” in 2010 Second

International Conference on Advances in System Testing and

Validation Lifecycle, 2010, pp. 43–48.
[26] J. P. Carvallo, X. Franch, and C. Quer, “Managing Non-Technical

Requirements in COTS Components Selection,” in 14th IEEE
International Requirements Engineering Conference (RE’06),

2006, pp. 323–326.

[27] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the Value of
Ensemble Effort Estimation,” IEEE Trans. Softw. Eng., vol. 38,

no. 6, pp. 1403–1416, Nov. 2012.

[28] R. Wettel, M. Lanza, and R. Robbes, “Software systems as
cities,” in Proceeding of the 33rd international conference on

Software engineering - ICSE ’11, 2011, p. 551.

[29] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the
automatic classification of app reviews,” Requir. Eng., vol. 21,

no. 3, pp. 311–331, Sep. 2016.

[30] D. Ståhl and J. Bosch, “Modeling continuous integration practice

differences in industry software development,” J. Syst. Softw.,

vol. 87, pp. 48–59, Jan. 2014.

[31] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan.

2017.

[32] A. Vetro, R. Dürre, M. Conoscenti, D. M. Fernández, and M.
Jørgensen, “Combining Data Analytics with Team Feedback to

Improve the Estimation Process in Agile Software Development,”

oundations Comput. Decis. Sci., vol. 43, no. 4, pp. 305–334,
2018.

[33] M. Kuruba, P. Shenava, and J. James, “Real-time DevOps

Analytics in Practice,” in QuASoQ, 2018, p. 40.
[34] B. Snyder and B. Curtis, “Using Analytics to Guide Improvement

during an Agile–DevOps Transformation,” IEEE Softw., vol. 35,

no. 1, pp. 78–83, Jan. 2018.
[35] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data

Scientists in Software Teams: State of the Art and Challenges,”

IEEE Trans. Softw. Eng., vol. 44, no. 11, pp. 1024–1038, Nov.
2018.

[36] D. Cukier and Daniel, “DevOps patterns to scale web applications

using cloud services,” in Proceedings of the 2013 companion
publication for conference on Systems, programming, &

applications: software for humanity - SPLASH ’13, 2013, pp.

143–152.
[37] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development

and Deployment at Facebook,” IEEE Internet Comput., vol. 17,

no. 4, pp. 8–17, Jul. 2013.
[38] P. Rodríguez et al., “Continuous deployment of software

intensive products and services: A systematic mapping study,” J.

Syst. Softw., vol. 123, pp. 263–291, Jan. 2017.
[39] S. Neely and S. Stolt, “Continuous Delivery? Easy! Just Change

Everything (Well, Maybe It Is Not That Easy),” in 2013 Agile

Conference, 2013, pp. 121–128.

[40] E. L. Vargas, J. Hejderup, M. Kechagia, M. Bruntink, and G.
Gousios, “Enabling Real-Time Feedback in Software

Engineering,” in ICSE, 2018.

[41] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-
Barahona, “Perceval,” in Proceedings of the 40th International

Conference on Software Engineering Companion Proceeedings -

ICSE ’18, 2018, pp. 1–4.
[42] M. van den Brand, S. Roubtsov, and A. Serebrenik, “SQuAVisiT:

A Flexible Tool for Visual Software Analytics,” in 2009 13th

European Conference on Software Maintenance and
Reengineering, 2009, pp. 331–332.

[43] H. Huijgens, D. Spadini, D. Stevens, N. Visser, and A. van

Deursen, “Software analytics in continuous delivery,” in
Proceedings of the 12th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM ’18,

2018, pp. 1–10.
[44] S. Martínez-Fernández, A. Jedlitschka, L. Guzman, and A. M.

Vollmer, “A Quality Model for Actionable Analytics in Rapid

Software Development,” in 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2018,

pp. 370–377.

[45] P. Ram, P. Rodriguez, and M. Oivo, “Software Process
Measurement and Related Challenges in Agile Software

Development: A Multiple Case Study,” Springer, Cham, 2018,

pp. 272–287.
[46] N. Marz and J. Warren, Big data: principles and best practices of

scalable real-time data systems. Manning Publications, 2013.
[47] P. Runeson and M. Höst, “Guidelines for conducting and

reporting case study research in software engineering,” Empir.

Softw. Eng., vol. 14, no. 2, pp. 131–164, Apr. 2009.
[48] L. López et al., “Q-Rapids Tool Prototype: Supporting Decision-

Makers in Managing Quality in Rapid Software Development,”

Springer, Cham, 2018, pp. 200–208.
[49] V. Venkatesh and H. Bala, “Technology Acceptance Model 3 and

a Research Agenda on Interventions,” Decis. Sci., vol. 39, no. 2,

pp. 273–315, May 2008.
[50] V. McKinney, K. Yoon, and F. “Mariam” Zahedi, “The

Measurement of Web-Customer Satisfaction: An Expectation and

Disconfirmation Approach,” Inf. Syst. Res., vol. 13, no. 3, pp.

296–315, Sep. 2002.

[51] D. L. Goodhue and R. L. Thompson, “Task-Technology Fit and

Individual Performance,” MIS Q., vol. 19, no. 2, p. 213, Jun.
1995.

[52] Y. W. Lee and D. M. Strong, “Knowing-Why About Data

Processes and Data Quality,” J. Manag. Inf. Syst., vol. 20, no. 3,
pp. 13–39, Dec. 2003.

[53] M. Tavakol and R. Dennick, “Making sense of Cronbach’s

alpha,” Int. J. Med. Educ., vol. 2, pp. 53–55, Jun. 2011.
[54] J. Daniel, Sampling Essentials: Practical Guidelines for Making

Sampling Choices. 2455 Teller Road, Thousand

Oaks California 91320 United States : SAGE Publications, Inc.,
2012.

[55] M. B. Miles, A. M. Huberman, and J. Saldaña, Qualitative data

analysis : a methods sourcebook. .
[56] F. Wilcoxon, “Individual Comparisons by Ranking Methods,”

Biometrics Bull., vol. 1, no. 6, p. 80, Dec. 1945.

[57] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, Jan.

2006.

[58] M. Manzano, E. Mendes, C. Gómez, C. Ayala, and X. Franch,
“Using Bayesian Networks to estimate Strategic Indicators in the

context of Rapid Software Development,” in Proceedings of the

14th International Conference on Predictive Models and Data
Analytics in Software Engineering - PROMISE’18, 2018, pp. 52–

55.

[59] S. Martínez-Fernández, P. S. Medeiros Dos Santos, C. P. Ayala,
X. Franch, and G. H. Travassos, “Aggregating Empirical

Evidence about the Benefits and Drawbacks of Software

Reference Architectures,” in International Symposium on
Empirical Software Engineering and Measurement, 2015, vol.

2015–Novem, pp. 154–163.

