
Data-Driven Elicitation, Assessment and Documentation of

Quality Requirements in Agile Software Development1

Xavier Franch1, Cristina Gómez1, Andreas Jedlitschka2, Lidia López1,

Silverio Martínez-Fernández2, Marc Oriol1, Jari Partanen3

1Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{franch, cristina, llopez, moriol}@essi.upc.edu

2Fraunhofer IESE, Kaiserslautern, Germany
{silverio.martinez, andreas.jedlitschka}@iese.fraunhofer.de

3Bittium Wireless Ltd., Oulu, Finland
jari.partanen@bittium.com

Abstract. Quality Requirements (QRs) are difficult to manage in agile software

development. Given the pressure to deploy fast, quality concerns are often sacri-

ficed for the sake of richer functionality. Besides, artefacts as user stories are not

particularly well-suited for representing QRs. In this exploratory paper, we en-

visage a data-driven method, called Q-Rapids, to QR elicitation, assessment and

documentation in agile software development. Q-Rapids proposes: 1) The col-

lection and analysis of design and runtime data in order to raise quality alerts; 2)

The suggestion of candidate QRs to address these alerts; 3) A strategic analysis

of the impact of such requirements by visualizing their effect on a set of indica-

tors rendered in a dashboard; 4) The documentation of the requirements (if finally

accepted) in the backlog. The approach is illustrated with scenarios evaluated

through a questionnaire by experts from a telecom company.

Keywords: quality requirement; NFR; agile software development.

1 Introduction

Software quality is an essential competitive factor for the success of IT companies to-

day [1]. Recent technological breakthroughs as cloud technologies, IoT and 5G, pose

new quality challenges in software development. These challenges include quality as-

pects such as availability, reliability, security, performance, and scalability, which sig-

nificantly influence the success of current and future software systems. Many well-

known cases, which are worth millions of euros in losses, were due to bad quality or

defective software (see an example in [2]).

Optimal management of software quality demands the appropriate integration of

quality requirements into the software life cycle. Quality Requirements (QRs; also

known as non-functional requirements) are the artefact that software engineers use to

1 This work is a result of the Q-Rapids project, which has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 732253.

mailto:franch,%20cristina,%20llopez,%20moriol%7d@essi.upc.edu
mailto:andreas.jedlitschka%7d@iese.fraunhofer.de
martinez
Typewritten Text
This is an Author’s Accepted Manuscript consisting of a post-peer-review, pre-copyedit versionof a paper to be published by Springer in "30th International Conference on Advanced InformationSystems Engineering" (CAiSE'2018). The final authenticated version will be available online.

state conditions on, and analyse compliance of, software quality [3]. QRs are as generic

as “The software service shall provide optimal response time” (in fact, more of a goal

than a requirement) or as detailed as “Once the user completes the request, logging into

the system should not take more than 3 seconds 95% of the time”. This level of detail

will normally depend on the development stage. However, despite the competitive ad-

vantage of ensuring and maintaining high quality levels, software development meth-

odologies still provide limited support to QR management [4].

One example is agile software development (ASD). Quality is essential in rapid soft-

ware development processes happening in ASD: faster and more frequent release cycles

should not compromise software quality. Still, a lack of mechanisms to support contin-

uous quality assurance exists throughout the whole development process in the context

of rapid releases [5]. Empirical studies conducted in the last few years in ASD have

identified as a major challenge the consideration of QRs [6] whose deficient manage-

ment was recently qualified as a reason for massive lapses and rework [7].

Given this situation, the present work addresses the following research goal:

Research goal: To formulate a tooled method supporting the effec-

tive management of QRs in agile software development.

We decompose this goal into four research questions, see Table 1. As a first step for

managing QRs, we need to detect that some quality concern is not well covered in the

current release of the system (RQ1). We adopt a data-driven approach in which we

gather and analyse data from different sources to detect the need to improve any quality

concern currently compromised. This identified need requires to be expressed in the

form of one or more QRs (RQ2). We follow here a reuse-based approach in which a

catalogue of QR patterns compiles the usual forms in which a QR can be specified. The

implications of such QRs over the software system need to be assessed (RQ3) so that

decision-makers may decide to accept or discard the QR. With this goal, we use a stra-

tegic dashboard that visualizes the effect of accepting the QR over several strategic

indicators like product quality, customer satisfaction and team productivity. In case that

the QR is finally accepted to be part of the system specification, it needs to be added to

the backlog (RQ4). The way in which it is added may change from an epic, a user story

or an acceptance condition.

Table 1. Research questions

Id Question

RQ1 When is it necessary to improve some quality concern of a software system?

RQ2 How can this need be expressed as a quality requirement?

RQ3 How can the consequences of undertaking such quality requirement be assessed?

RQ4 In case that a quality requirement is accepted, how can it be added to the backlog?

As research method, we adopt a design science approach following the engineering

cycle as described by Wieringa [8]. The research has been conducted in the context of

the Q-Rapids H2020 project (www.q-rapids.eu) which has given us the opportunity to

elicit real scenarios and evaluate the results in the context of a number of company-

provided pilot cases.

http://www.q-rapids.eu/

2 State of the Art

Current approaches to manage QRs are usually inadequate in complex scenarios with

highly-dynamic environments composed of fast-growing software systems. One the

most unresolved challenges concerns their elicitation [9]. Techniques to elicit QRs in-

clude structured and unstructured interviews, quality models, checklists, and prioritiza-

tion questionnaires, among others. These techniques do not exploit runtime data. Re-

cently, data-driven requirements engineering has been advocated as the way to go [10].

In this area, modern approaches like crowdsourcing [11] or mining app stores [12] rely

on feedback given by the user. But explicit feedback can be incomplete, biased or am-

biguous. This contributes to the conceptual gap between user needs and the interpreta-

tion done by the development team of such needs. To overcome such communication

problems, some approaches like Shekhovtsov et al. [13] propose a tool that aims at

improving the communication in the software process development. In particular, their

approach aims at identifying similar information communicated in the past, analyse its

properties and, by using machine learning techniques, suggest communication-related

decisions that would mitigate communication problems.

A different approach that is not affected by these limitations is implicit feedback

(usage data), which has been identified as a promising additional input for requirements

elicitation [9]. Existing approaches to implicit feedback [14] neither aim at generating

QRs, nor consider the possibility to correlate usage data with data gathered from soft-

ware repositories or project management tools. Our positioning is that these correla-

tions may be used to uncover relevant observations in the management of QRs.

Another problem with QRs is their refinement in terms of satisfaction criteria. Dif-

ferently than functional requirements that have clear cut satisfaction criteria, QRs are

initially elicited as “soft goals” [15] and need to be elaborated into measurable condi-

tions. Evidence exists that the knowledge needed to determine these values is closer to

the development team than to the customer, even to the extreme in which the end-user

is not really involved in such process [16]. Some approaches (e.g. QUPER [17]) present

techniques for such elicitation, but they are all based in stakeholder explicit involve-

ment before the product is released. These techniques do not try to inject data once the

project is in use in order to understand the feasibility and appropriateness of the stated

thresholds. We envisage the wide use of different data sources and then complete a

fully empirical-based, data-driven approach to QR elicitation.

Another aspect that needs to be emphasised is the use of QRs in decision making.

Usually, quality aspects are surveyed by tools used by software developers. Current

project management systems deal with scheduling, resource and budget management,

etc., but they do not explicitly include support for QR management [18]. Nevertheless,

some tools exist to support some activities on quality requirements. For instance, tools

to support software architects and developers on decision making that may include

quality aspects (e.g. WISED); tools intended to monitor the productivity of developers

when implementing such QRs (e.g. JIRA); and tools to evaluate the technical debt

based on software quality assessment (e.g. SQALE). Although they may support QRs

to a certain extent, their management is not well integrated with the entire life cycle of

the software process. Furthermore, they do not provide full support to the assessment

of key prioritization criteria for QRs: costs, benefits and risks [19]. For instance, it is

reported that they fail on considering risk factors [20]. We envisage the need to provide

full support to strategic decision making based on the analysis of the impact of QRs in

such key criteria, reconciling: 1) QR-specific universes of discourse with definition of

the concepts that matter in their management and assessment [17], 2) reasoning frame-

works as the NFR framework [15], 3) a highly informative dashboard that provides full

transparency to the decision making process [21].

Last, existing requirements engineering practices fail short regarding QR documen-

tation in ASD. Instead, its reliance on the continuous interaction with customers is

thought to minimize the need for specifying QRs [22]. Another reason is that agile de-

velopers face challenges while using user stories for documenting NFRs such as secu-

rity [23]. A recent industrial study reported QR documentation practices ranging from

scarce documentation to documentation using agile assets (user stories, DoD, ...) and

out-of-the-loop artefacts as wiki pages [24]. Other recent works propose quality criteria

[25] and traceability [26] to improve QR documentation in ASD.

In summary, we advocate that the current state of the art calls for improved methods

for the elicitation, assessment and documentation of QRs especially in ASD.

3 The Q-Rapids Method

Q-Rapids is a data-driven, quality-aware ASD tooled method in which QRs are identi-

fied from available data and evaluated with respect to some selected strategic indicators

[27]. Q-Rapids aims at increasing software quality through (see Fig. 2):

 Gathering and analyzing data from project management tools, software repo-sito-

ries, quality of service and system usage. Data analysis will permit to systemati-

cally and continuously assess quality and eventually suggest QRs.

 Providing decision makers with a highly informative dashboard to help them mak-

ing data-driven, requirements-related strategic decisions. The dashboard will ag-

gregate the collected data into strategic indicators related to factors as time to mar-

ket, team productivity, customer satisfaction, and overall product quality.

 Extending the ASD process considering the comprehensive integration of QRs and

functional requirements in the product backlog.

Fig. 2 The Q-Rapids method to QR management in ASD.

4 Conceptual Architecture of the Q-Rapids Method

The Q-Rapids method relies on several logical components that together conform a

conceptual solution to the data-driven QR management problem. In this section, we

present the main components of such solution, put together as shown in Fig. 3.

Fig. 3 Main logical components of the Q-Rapids conceptual architecture.

These components are rigorously described using a domain reference model expressed

as a UML class diagram (see Fig. 4; the diagram also includes concepts presented later

on) that is an extension of the decision-making ontology presented in [28]. The core

concept of the reference model is the QR concept. We adopt an ontological interpreta-

tion of QR based on qualities in foundational ontologies [29] as done in [30]. A quality

is defined as a basic perceivable or measurable characteristic that inheres in and exis-

tentially depends on its subject [29]. So, a QR is a need expressed by the stakeholders

about a quality. Class and attribute names appear in italics when referenced in this sec-

tion. A definition of all the concepts appearing in the reference model may be found in

https://tinyurl.com/QRrefmod.

4.1 Strategic Dashboard

In the Q-Rapids method, the Strategic Dashboard is a logical component that visualizes

information about a set of selected Strategic Indicators for a project developed under

an ASD method. A strategic indicator is defined as an aspect that the company consid-

ers relevant for the decision-making process [28]. Examples of strategic indicators are:

product quality, customer satisfaction, time to market and team productivity. They are

measured through a KPI.

The strategic dashboard will also offer some techniques for analysing the indicators,

e.g. trend and what-if analysis, failure prediction and suggestion of mitigation actions.

These aspects are not covered in this paper.

Fig. 4 Domain reference model for the Q-Rapids conceptual architecture (simplified).

4.2 Quality Model

In Q-Rapids, the main purpose of a Quality Model is to link the data gathered from

some Data Sources to the strategic indicators rendered in the dashboard.

We have adopted the Quamoco approach [31] to define Q-Rapids quality models. In

Quamoco, Metrics gather data from data sources using some software data collectors

and are elaborated into Product Factors and ultimately aggregated into Quality Fac-

tors. We distinguish four types of metrics related to categories of data sources:

 Development metrics. Gathering data from software development repositories.

E.g., test coverage gathers data from SonarQube using the SQALE plugin.

 Project management metrics. Gathering data from project management tools. For

instance, personnel availability from Jira and MS Project.

 Feedback metrics. Gathering data from system users, either directly through given

feedback, or indirectly through usage monitoring. For instance, the number of

tweets referring to a particular (system-related) hashtag.

 Quality of service metrics. Gathering data from system behaviour through moni-

toring components. For instance, response time of a given system functionality.

4.3 Requirement Patterns

We envisage the use in Q-Rapids of a catalogue of QR Patterns that act as templates

for deriving the concrete QRs. This QR Pattern Catalogue will be based on the PABRE

approach [32]. Its structure complies the following principles:

 Its natural language template includes Formal Parameters that may have one or

more Parameter Function defined as a set of Function Coordinates.

 QR patterns may present relationships (QR Pattern Relationship) of different types

(e.g., conflict, dependency, synergy, …).

 QR patterns are bound to Quality Model Elements. This binding is fundamental in

order to select the appropriate QR patterns once a quality alert is issued.

A QR pattern is instantiated into a QR by binding Actual Parameters to formal param-

eters. QRs preserve the relationships (QR Relationship) established at the level of the

patterns they are an instantiation of.

5 The Q-Rapids Process

We present below the four phases of the Q-Rapids process already depicted in Fig. 3.

5.1 Raising of Quality Alerts

In the first phase of the Q-Rapids process, we propose the analysis of data gathered

from several sources as to raise quality alerts when some quality factor yields an eval-

uation outside the acceptable thresholds.

In Fig. 5, we exemplify the hierarchy of a quality model already described Fig. 4.

We adopt the Quamoco approach [31], which proposes weighted sums to implement

this aggregation. Albeit simple, this makes explicit the knowledge about quality, and

allows transparency of quality-related decisions.

In Fig. 5, the Cyclomatic Complexity and Comments Density metrics are aggregated

into the Analyzability product factor. This product factor is aggregated together with

another one, Adapatibility, into the ISO 25010 Maintainability quality factor. Each

product factor should have a specified weight.

Fig. 5 Example of utility functions to assess the Maintainability quality factor –adapted from Quamoco [31].

Once the quality model is built, the next step is to apply utility functions as the way to

embody knowledge on what is an acceptable level of quality. Utility functions model

the preferences of decision makers with respect to the values of the factors, so that they

can define an alert to be triggered by Q-Rapids when a basic metric or a factor has

exceeded a defined threshold. In Fig. 5, we can see examples of utility functions for

Cyclomatic Complexity, Comments Density and Maintainability. In a normalized value

from 0 to 1, we can see that, in the current state of the system, Maintainability has the

value of 0.44. If the goal had been set to have maintainability at its best value (this

means to be greater than 0.92, as defined in the utility function), the corresponding alert

would be triggered to inform that maintainability of the product should be improved.

Quality alerts are how Q-Rapids identifies the need for new QRs.

5.2 Identification of Candidate Quality Requirements

Quality alerts are bound to elements from the quality model. As the reference model in

Fig. 4 shows, QR patterns in the catalogue are bound to such elements, therefore Q-

Rapids proposes the use of this binding to select the QR patterns whose instantiation

will produce candidate QRs.

Fig. 6 shows an excerpt of a QR pattern that will be used as example in Section 6.

We can see how the link with a factor, the Availability product factor (subfactor of the

ISO 25010 Reliability quality factor), is explicitly written. The template is expressed in

natural language and shows two parameters: the entity (the whole system, a service, a

component, …) and the required availabilityLevel (a percentage). A cost function is

attached to one of its parameters, measuring the relative cost of implementing the re-

quired availability level. This function will be defined as a set of pairs (parameter value,

function value) (see Fig. 4).

Q-Rapids will select all the patterns bound to the factor for which the alert was trig-

gered and for each, will propose one or more instantiations to be rendered to the deci-

sion maker. Having one or more instantiations will depend on the knowledge available

to propose different alternative values to the formal parameters: these values should be

determined smartly in terms of the utility function of the factor, the effect on the stra-

tegic indicators and the available parameter functions.

Pattern Keep Availability Level

 Goal: To determine which is the appropriate

availability level for a given component

of the system

 Bound to: Reliability::Availability

 Template: The <entity> shall have a minimal

 availability rate of <availabilityLevel>

 Parameter functions:

 cost(<availabilityLevel>)

Fig. 6. Requirement pattern Keep Availability Level (left) and cost function of one its parame-

ters (right; graphical representation).

5.3 Assessment of, and Decision on, Candidate Quality Requirements

Once a candidate QR is derived from the pattern catalogue, it will be assessed by the

decision-maker using the dashboard. To assess the impact of the candidate QRs on the

indicators, we plan to use Bayesian networks as proposed in the VALUE framework

[33]. Models are to be built with a mix of expert knowledge and data, so that they will

evolve as the system learns from decisions made. In addition to the indicators, the dash-

board will show those other functions bound to QR (coming from the corresponding

QR pattern, see Fig. 4), e.g. implementation cost, so that it will be possible to visualize

the fluctuation of these functions if the candidate QR were selected.

As an outcome of this assessment, several actions are possible onto the candidate

QR (see state diagram for candidate QRs at Fig. 7):

 Consider in the current iteration. The QR is added into the current iteration back-

log and correctly documented (see next subsection). This action will be applied

only in the case of detecting a critical quality concern violation (e.g., resulting in

massive negative feedback from users in a short period of time).

 Consider in future iterations. Usual action when the QR is accepted but it is moved

to the product backlog waiting for its future inclusion in the iteration backlog. As

in the previous action, the QR should be correctly documented.

 Postpone decision. In this case, the QR is considered plausible but no action is

taken yet. The QR is included in the product backlog but with the minimal possible

metadata (e.g., if it a user story, its effort is not computed) and it may be removed

in the future or even reconsidered using the same casuistic described here.

 Negotiate. A QR that is considered necessary may not be possible to just accept,

but requires joint analysis with conflicting requirements, eventually calling for a

negotiation among involved stakeholders. The QR will not be included in any

backlog until the dependencies are managed, and eventually it may end up slightly

modified or even just rejected.

 Detail. Since the QRs are derived from a pattern catalogue, it may eventually hap-

pen that a template misses some detail that is necessary in the current situation or

even because Q-Rapids has not access to enough knowledge as to generate values

for the formal parameters. In this case, the QR is not ready to be included in the

backlog and further refinement is requested.

 Rephrase. It may happen that the QR is not representing the quality concern in a

valid way. This action asks for an alternative formulation. In this action and the

previous one, the pattern catalogue needs to be examined to decide whether it can

be improved with the knowledge stemming from this candidate QR.

 Discard. The QR analysis using the dashboard concludes that its acceptance would

be harmful because some strategic indicators would be seriously damaged.

 Redefine quality thresholds. Candidate QRs are proposed considering utility func-

tions and thresholds defined by decision makers for the factors. This action is to be

taken when the analysis of the QR points out that the identified quality misbehav-

iours is in fact not such. Therefore, it is necessary changing the utility functions

and thresholds in the QM so that the reason for triggering a QR disappears.

Fig. 7 State diagram of candidate QRs.

5.4 Representation of Quality Requirements

In case the candidate QR is accepted as a valid requirement for the system, it needs to

be correctly included in the backlog (either iteration or product backlog). As stated in

Section 2, the documentation of QRs in ASD is a well-known challenge [7][34].

In [24], we analysed different agile artefacts to represent QRs in ASD: user stories,

epics and acceptance criteria. From a practical perspective, the type of artefact impacts

on the information that is required to determine when entering the QR into the backlog.

For instance, if it is represented as a user story, it will require fixing its priority (accord-

ing to its business value and effort required), determining its acceptance criteria, etc.

6 Example Scenarios

The following scenarios are inspired on real-based challenges and problems the com-

panies in the Q-Rapids project’s consortium face. The scenarios aim at illustrating sit-

uations in which a company using ASD would eventually benefit from using Q-Rapids.

They are presented with increasing ambition. In the first scenario, the quality alert is

not automatically triggered by Q-Rapids but it is the quality expert who raises it through

inspection of the dashboard. In the second scenario, the process is automatized. In the

third scenario, in order to identify the root cause of the quality alert, two sources of data

need to be correlated. Fig. 8 shows the indicators, factors and metrics used.

Fig. 8 Strategic indicators and quality model elements used in the three scenarios.

6.1 Scenario 1: Test Coverage

Context. ACME is a software-intensive company continually evolving its software

products, with rapid release environment. Currently, they are releasing software every

four weeks. To improve time-to-market, the company decides reducing the release pe-

riod from four to three weeks. They enter the new release time in the Q-Rapids tool.

Raising of quality alerts. All elements of the ACME quality model are regularly moni-

tored, assessed and visualized through the dashboard. Using the Q-Rapids’ dashboard,

release engineers see the impact of the release decision on the quality model assess-

ment: On-time delivery strategic indicator is positively impacted whereas Product

Quality is negatively impacted, even under the targeted threshold.

Identification of candidate QRs. By browsing patterns in the catalogue related to factors

that influence Product Quality, Q-Rapids finds Keep High Coverage Tests, linked to

Test Coverage, whose template is: The <entity> shall have a test coverage not lower

than <percentage>. The parameter <percentage> is key for assessing the benefit of

executing a test. Given his domain knowledge, the engineer predicts a solution to re-

duce testing time without dramatically decreasing product quality: the prioritization of

test cases with greater coverage that cover a greater number of potential bugs [35].

Assessment of, and decision on, candidate QRs. With the support of the platform, the

engineer generates the QR from the pattern: The prioritized tests shall have a minimal

condition coverage rate of 70%. The engineer can visualize the effect of this QR using

the drill down feature of the dashboard, allowing to see prioritized tests and their char-

acteristics (i.e., Test Coverage, Test Duration, …). Release engineers can use this in-

formation to postpone the execution of tests with lower or redundant test coverage.

Representation of the QR. Three QRs may be inserted into the backlog. First, an issue

indicating the reduced set tests to be executed by release engineers because they poten-

tially cover more bugs. Second, the improvement of tests with low quality levels. Third,

the test quality product factor also shows the untested code. As Martin Fowler’s argue:

“It's worth running coverage tools every so often and looking at these bits of untested

code” (https://martinfowler.com/bliki/TestCoverage.html). Therefore, another QR

should be inserted: manually check the parts of code that are untested.

6.2 Scenario 2: Availability

Context. ACME provides regular over-the-air (OTA) updates of the software installed

in their smartphones. However, due to scalability problems, the service that provides

such updates, the update service, may experience availability issues. This is especially

true when there is a critical update and multiple devices try to download such update at

the same time. These problems may lead to customer dissatisfaction. The availability

rate of the update service is monitored through a data collector that regularly checks if

the service is up-and-running. Unfortunately, the current implementation of the system

has not considered a QR related to availability specific for this functionality; just a

system-wide availability requirement exists, used to design the utility function.

Raising of quality alerts. In this context, ACME releases a critical OTA update, and the

data collector detects that the update service availability goes down from 95% to 60%.

This value is checked against the quality model, which links this gathered data to the

quality factors and strategic indicators. To do so, the availability is normalized using

the utility function: availability of 60% corresponds to a utility value of 0.35. Such

utility value is used to compute the quality factor Reliability, and ultimately the strate-

gic indicator Customer Satisfaction, whose value falls below the required threshold.

Identification of candidate QRs. Due to the indicator’s violation, Q-Rapids browses the

pattern catalogue and finds the Keep Availability Level pattern (see Fig. 6) linked to the

factor whose utility function is failing. In this case, the parameter <system> is instan-

tiated as update service. For the instantiation of <availabilityLevel>, Q-Rapids uses the

cost information embodied in the pattern and selects 3 alternatives, 99%, 90% and 80%,

which yields to 3 different candidate requirements, one for each value.

Assessment of, and decision on, candidate QRs. The Q-Rapids dashboard offers the

three QRs so that the decision-maker can analyse the consequences of each of them by

inspecting the fluctuations of the Customer Satisfaction strategic indicator value. The

decision maker can see that availability of 80% reaches adequate results in terms of

Customer Satisfaction and cost. Availability of 90% improves significantly the Cus-

tomer Satisfaction with a minimum increase of cost compared to the first option. The

last option (availability of 99%) provides a Customer Satisfaction only slightly better

than the previous option but doubling the cost. After considering these facts, the deci-

sion maker selects the QR with 90% availability rate and discards the other two.

Representation of the QR. Q-Rapids considers that the update service was implemented

in response to a user story identified in some past iteration and marked as “done”: “As

a user, I want to download OTA updates so that the smartphone is secure”. The QR

refers to this user story and no other functionality, therefore Q-Rapids adds the QR as

new acceptance criteria. By adding a new (unsatisfied) acceptance criteria, such user

story is ready to go back to a backlog. Given the importance to fix quickly this problem,

Q-Rapids suggest to include it in the current iteration backlog.

6.3 Scenario 3: Usability

Context. ACME has just released a major update on the user interface of an e-commerce

platform used to sell their mobile phones and they expect that this update will improve

the user experience and hence increase the number of sales.

Raising of quality alerts. In this context, the data collector detects a significant amount

of users who get stuck in a particular step of the process and quit without buying the

phone. The data collector informs that the Smooth Navigation metric (which measures

how many users can complete the process of buying the phone smoothly) goes from

90% down to 80%. This metric is normalized using the utility function, yielding to a

utility value of 0.45, which impacts negatively on the upper layers in Understandability,

Usability, and finally, Revenue. Because of this process, the value of the strategic indi-

cator Revenue goes below the required threshold.

Identification of candidate QRs. A drop in the utility value of Smooth Navigation causes

the violation of the Revenue indicator. However, this information does not suffice to

identify a candidate QR. This is because a drop in Smooth Navigation could be caused

by several factors (e.g., is there a problem related to the browser of the user? Or is it

related to an issue in the internet connection?). In this scenario, the violation of the

indicator triggers Q-Rapids to correlate Smooth Navigation with other metrics to detect

the cause of the problem. After inspecting different metrics from the multiple data

sources under monitoring, Q-Rapids detects a strong correlation between Smooth Nav-

igation and the user device type. In particular, it detects that the device of those users

who present that problem is a smartphone. Q-Rapids browses the pattern catalogue and

finds the Interface Type pattern: The <system> shall be supported by <device-types>

devices, which is linked to the Understandability factor. The instantiation yields to the

candidate QR: The e-commerce platform shall be supported by smartphone devices.

Assessment of, and decision on, candidate QRs. The Q-Rapids dashboard offers the QR

so that the decision-maker can analyse the consequences of applying it by inspecting

the fluctuations of Revenue and other impacted indicators, e.g. On-Time delivery. Q-

Rapids shows that considering the QR would return the utility value of Smooth Navi-

gation close to 1, and hence a very good Revenue. On-Time delivery would worsen but,

by computing different metrics, Q-Rapids demonstrates that not significantly. After

considering these implications, the decision-maker decides to apply the QR.

Representation of the QR. Since the QR is asking for a well-defined implementation

task, Q-Rapids suggests a new user story: “As a user, I want to be able to use the e-

commerce platform using my smartphone in order to ensure user’s experience for this

kind of device”. Finally, Q-Rapids adds the user story to the product backlog, ready to

be scheduled for the next iteration.

7 Evaluation

In order to get early feedback from our exploratory ideas, we ran a questionnaire in one

of the companies of the Q-Rapids consortium, Bittium Wireless Ltd. We simplified the

TAM evaluation questionnaire [36] since the technology is not available; the-refore,

we asked them to evaluate their vision on the scenarios, using the questions in Table 2,

scored from 1 (strongly disagree) to 7 (strongly agree). We got 3 responses.

All the responses, without exceptions, score positively. In addition, we got free text

for most responses. Among the feedback, we can mention: 1) acknowledgment that a

lot of knowledge needs to be managed inside Q-Rapids (“When thinking about all pos-

sible scenario in real life, quite a “machine” is needed!”); 2) statement that even if the

system behaves well, decision-makers want to have the opportunity to confirm them-

selves the recommendations by “digging deeper in the data manually”; 3) Scenario 3 is

really valuable (“the third scenario is really genuine, if it works”).

Table 2. Questions to practitioners for evaluating Q-Rapids.

Criteria Question R1 R2 R3

Perceived

usefulness

Using Q-Rapids for eliciting, deciding upon and documenting QRs

as described in the scenarios above, could be useful for my job

6 5 7

Perceived

ease of use

I find easy using Q-Rapids for eliciting, deciding upon and docu-

menting QRs as described in the scenarios above

6 6 7

Output

quality

The output given by Q-Rapids as described in the scenarios above, is

high

7 6 7

Result demo-

nstrability

It would be easy for me telling others about the results of using Q-

Rapids as described in the scenarios above

5 6 7

Feasibility I find that the scenarios described above can be implemented in my

work environment

7 5 6

8 Final Discussion

In this exploratory paper, we have presented a data-driven method, Q-Rapids, for im-

proving QR management in ASD. Q-Rapids argues for the intensive use of data to de-

tect quality misbehaviours, then to use the knowledge embedded in the method to pro-

pose candidate QRs, to visualize the consequences of their acceptance in a dashboard

and, if the decision-maker accepts them, to document them in a backlog.

We are aware that the main goal of the method is very ambitious and can be the case

that not all QRs can be detected as proposed in Q-Rapids; one of the main results of the

method evaluation will be to understand its limitations and identify which QR types are

the best suited for this data-driven analysis. The Scenario 1 has tried to illustrate this

eventual need of putting the human in the loop, which in fact has been one of the points

highlighted in the preliminary evaluation presented in Section 7. Other threats also ex-

ist: e.g., privacy issues are always delicate in data-driven approaches.

Q-Rapids has been conceived to focus on QRs. However, as the project progresses,

we see that the main concepts could eventually be used both for suggesting new features

and for dealing not only with product factors, but process factors (e.g., factors affecting

team performance). This can become a further goal in later stages of our research. Also,

the implementation, validation and a complete evaluation of the proposed method are

planned for the near future. Last, the adoption of Q-Rapids beyond ASD (e.g., in or-

ganizations adopting DevOps) is part of our research agenda.

References

[1] Capgemini: World Quality Report 2015-16, 7th Edition. Available at https://www.capgem-

ini.com/thoughtleadership/world-quality-report-2015-16.

[2] Reuters: http://www.reuters.com/article/us-hsbc-it-idUSKBN0UJ0ZB20160105, 2015.

[3] Pohl, K.: Requirements engineering: fundamentals, principles and techniques. 2010.

[4] Wagner, S.: Software Product Quality Control. Springer, 2013.

[5] Rodríguez, P. et al.: Continuous Deployment of Software Intensive Products and Services:

A Systematic Mapping Study. Journal of Systems and Software, 123, 2017.

[6] Ramesh, B., Baskerville, R., Cao, L.: Agile Requirements Engineering Practices and Chal-

lenges: An Empirical Study. Information Systems Journal, 20(5), 2010.

[7] Inayat, I. et al.: A Systematic Literature Review on Agile Requirements Engineering Prac-

tices and Challenges. Computers in Human Behavior, 51(B), 2014.

[8] Wieringa, R.: Design Science Methodology for Information Systems and Software Engineer-

ing. Springer, 2014.

[9] Berntsson-Svensson, R., Host, M., Regnell, B.: Managing Quality Requirements: A Sys-

tematic Review. SEAA 2010.

[10] Maalej, M., Nayebi, M., Johann, T., Ruhe, G.: Toward Data-Driven Requirements Engi-

neering. IEEE Software 33(1), 2016.

[11] Groen, E.C. et al.: The Crowd in Requirements Engineering: The Landscape and Chal-

lenges. IEEE Software 34(2), 2017.

[12] Kurtanovic, Z., Maalej, W.: Mining User Rationale from Software Reviews. RE 2017.

[13] Shekhovtsov, V.A., Mayr, H.C., Kucko, M.: Implementing Tool Support for Analyzing

Stakeholder Communications in Software Development. ICSTW 2015.

https://www.capgemini.com/thoughtleadership/world-quality-report-2015-16
https://www.capgemini.com/thoughtleadership/world-quality-report-2015-16
http://www.reuters.com/article/us-hsbc-it-idUSKBN0UJ0ZB20160105

[14] Liu, X. et al.: Deriving User Preferences of Mobile Apps from Their Management Activi-

ties. ACM Transactions on Information Systems 35(4), 2017.

[15] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Springer, 2000.

[16] Ameller, D., Ayala, C.P., Cabot, J., Franch, X.: Non-functional Requirements in

Architectural Decision Making. IEEE Software 30(2), 2013.

[17] Berntsson-Svensson, R., Regnell, B.: A Case Study Evaluation of the Guideline-Supported

QUPER Model for Elicitation of Quality Requirements. REFSQ 2015.

[18] Caracciolo, A., Lungu, L.F.,. Nierstrasz, O.: How Do Software Architects Specify and

Validate Quality Requirements?. ECSA 2014.

[19] Daneva, M. Buglione, L. Herrmann, A.: Software Architects’ Experiences of Quality

Requirements: What We Know and What We Do Not Know? REFSQ 2013.

[20] Letier, E., Stefan, D., Barr, D.T.: Uncertainty, Risk, and Information Value in Software

Requirements and Architecture. ICSE 2014.

[21] Franch, X. et al.: The RISCOSS Platform for Risk Management in Open Source Software

Adoption. OSS 2015.

[22] Sillitti, A., Succi, G.: Requirements Engineering for Agile Methods. In: Engineering and

Managing Software Requirements, Springer, 2005.

[23] Martakis, A., Daneva, M.: Handling Requirements Dependencies in Agile Projects: A Focus

Group with Agile Software Development Practitioners. RCIS 2013.

[24] Behutiye, W. et al.: Non-functional Requirements Documentation in Agile Software

Development: Challenges and Solution Proposal. QUASD@PROFES 2017.

[25] Heck, P., Zaidman, A.: A systematic literature review on quality criteria for agile require-

ments specifications. Software Quality Journal, 2018.

[26] Furtado, F., Zisman, A.: Trace++: A Traceability Approach to Support Transitioning to Ag-

ile Software Engineering. RE 2016.

[27] Guzmán, L. et al.: How Can Quality Awareness Support Rapid Software Development? - A

Research Preview. REFSQ 2017.

[28] Gómez, C. et al.: Towards an Ontology for Strategic Decision Making: The Case of Quality

in Rapid Software Development Projects. MREBA@ER 2017.

[29] Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT, Centre for

Telematics and Information Technology, 2005.

[30] Li, F.-L., Horkoff, J., Mylopoulos, J., Guizzardi, R.S., Guizzardi, G., Borgida, A., Liu, L.:

Non-functional requirements as qualities, with a spice of ontology. RE 2014.

[31] Wagner, S. et al.: Operationalised Product Quality Models and Assessment: The Quamoco

Approach. Information and Software Technology, 62, 2015.

[32] Quer, C. et al.: PABRE: Pattern-Based Requirements Elicitation. RCIS 2009.

[33] Mendes, E. et al.: Towards improving Decision Making and estimating the Value of Deci-

sions in Value-based Software Engineering: The VALUE Framework. Software Quality

Journal (available online).

[34] Heikkilä, V.T., Damian, D., Lassenius, C., Paasivaara, M.: A Mapping Study on Require-

ments Engineering in Agile Software Development. SEAA 2015.

[35] Noor, T.Z., Hemmati, H.: Studying Test Case Failure Prediction for Test Case Prioritization.

PROMISE@ESEM 2017.

[36] Davis, F.F.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-

mation Technology. MIS Quarterly, 13(3), 1989.

http://dblp.uni-trier.de/pers/hd/d/Damian:Daniela
http://dblp.uni-trier.de/pers/hd/l/Lassenius:Casper
http://dblp.uni-trier.de/pers/hd/p/Paasivaara:Maria
https://dl.acm.org/author_page.cfm?id=81472650122&coll=DL&dl=ACM&trk=0&cfid=1011677728&cftoken=14218583

