
Adoption of OSS components: a goal-oriented approach

Lidia Lópeza, Dolors Costala*, Claudia P. Ayalaa, Xavier Francha, Maria

Carmela Annosib, Ruediger Glottc, Kirsten Haalandc
aUniversitat Politècnica de Catalunya, Ed. Omega, Jordi Girona 1-3, 08034 Barcelona, Spain

bEricsson Telecomunicazioni, Via Madonna di Fatima, 2, 84016 Pagani, Salerno, Italy
c UNU-MERIT, Keizer Karelplein 19, Maastricht, The Netherlands

Abstract

Open Source Software (OSS) has become a strategic asset for a number of reasons, such as

short time-to-market software delivery, reduced development and maintenance costs, and its
customization capabilities. Therefore, organizations are increasingly becoming OSS adopters,
either as a result of a strategic decision or because it is almost unavoidable nowadays, given the
fact that most commercial software also relies at some extent in OSS infrastructure. The way in
which organizations adopt OSS affects and shapes their businesses. Therefore, knowing the
impact of different OSS adoption strategies in the context of an organization may help improving
the processes undertaken inside this organization and ultimately pave the road to strategic moves.
In this paper, we propose to model OSS adoption strategies using a goal-oriented notation, in
which different actors state their objectives and dependencies on each other. These models
describe the consequences of adopting one such strategy or another: which are the strategic and
operational goals that are supported, which are the resources that emerge, etc. The models rely on
an OSS ontology, built upon a systematic literature review, which comprises the activities and
resources that characterise these strategies. Different OSS adoption strategy models arrange these
ontology elements in diverse ways. In order to assess which is the OSS adoption strategy that
better fits the organization needs, the notion of model coverage is introduced, which allows to
measure the degree of concordance among every strategy with the model of the organization by
comparing the respective models. The approach is illustrated with an example of application in a
big telecommunications company.

Keywords: Open Source Software; OSS adoption; Ontologies; Conceptual Modelling; i-star.

1. Introduction

Open Source Software (OSS) has become a driver for the primary and secondary
information technology (IT) sector. Estimates exist that in 2016, as high as 95% of all
commercial software packages will include OSS components [1]. Nevertheless, IT
companies and organizations still face numerous difficulties and challenges when making
the strategic move to the OSS way of working. Like any new technology, OSS is aligned
with new challenges, which mainly derive from the way OSS is produced and the culture
and values of OSS communities

In fact, OSS adoption impacts far beyond technology, because it requires a change in
the organizational culture and reshaping IT decision-makers mindset. The way in which
OSS adoption affects and shapes business models [2][3] is becoming object of increasing

*Corresponding author. Tel. +34 934137892
 Email addresses: llopez@essi.upc.edu (L.López), dolors@essi.upc.edu (D. Costal),

cayala@essi.upc.edu (C.P. Ayala), mariacarmela.annosi@ericsson.com (M.C. Annosi),
glott.ruediger@gmail.com (R. Glott), kirstenhaaland@gmail.com (K. Haaland)

Preprint submitted to Data & Knowledge Engineering

2

attention, and as a result, several OSS business models have been identified so far
[4][5][6].

Leveraging OSS adoption strategies with the organization context is a challenging task
per se, as it implies reconciling them from very different perspectives [7]. Organizational
modelling can provide a way to define the organization’s goals and to serve as the context
in which processes operate and business is done. However, an important aspect needs to
be taken into account: OSS-based solutions are not developed, and do not exist, in
isolation. Instead, they exist in the wider context of an organization or a community, in
larger OSS-based business ecosystems, which include groups of projects, companies that
may be competitors, OSS communities, regulatory bodies, etc. Any approach to
organizational modelling for OSS ecosystems needs to consider this collaborative
dimension.

In this paper, in order to support organizations that would like to adopt OSS (hereafter,
OSS adopter) and analyse the implications of such adoption, we propose the use of goal-
oriented models using the i* approach. Organizations can be described as actors, strategic
and operational goals that appear in their rationale decomposition, and collaborative
needs can be represented through dependencies. We describe six different OSS adoption
strategies in terms of models that can be used as a reference for understanding and
assessing the impact of the OSS adoption strategies on the OSS adopter organization, as
well as complementing the OSS adopter organizational model.

The remainder of the paper is organized as follows. Section 2 introduces the basic
concepts needed in the paper. Section 3 presents the research method followed. Sections
4 to 6 develop the main contributions of the paper: the OSS ontology used, the
arrangement of its elements into models for the OSS adoption strategies and the
application of such models. Section 7 provides details on how the resulting approach fits
to the case of one of the RISCOSS EU-funded project industrial partners
(www.riscoss.eu). Last, Section 8 provides conclusions and future work.

2. Background

This section presents a set of strategies regarding the way organizations can adopt OSS.
We also introduce the main concepts of the i* modelling framework used for the OSS
adoption strategy models.

2.1. OSS Adoption Strategies

Business models are abstract conceptual models that represent the business and money
earning logic of a company in a structured way [8]. There is a vast array of OSS business
models and business model types that have been identified by numerous authors. For
instance, Chang et al. [9] have distinguished four models that secure sustainability of OSS
organizations:

 3

• community: the cost of sustaining the product or service is covered by building a

community of users and industry partners who agree to cooperate on development
work and maintenance

• subscription: requires users to pay subscription costs to a company in order to
obtain maintenance and support

• dual license (commercial): the users have the choice between a free version of a
software that gets no support and a version that must be paid but comes along with
guaranteed support, maintenance and service models or with additional features
that are only available as proprietary software

• central support: refers to a central body that provides robust releases and support
for open source products that are of strategic importance to its community

Daffara [10] has identified six basic OSS business models and one remainder group,
largely coinciding with the five business models Dornan [11] has spotted in the OSS
market:
• product specialists: the code is completely open and revenues are achieved through

services related to using, maintaining and adapting the software
• build (or run) hardware: this business model aims at making hardware more

profitable through installing OSS on commodity components
• propietary components: combines proprietary and open-source code, essentially

holding back some functionality from what is released for free
• dual licensing: as above
• badgeware: reinvention/extension of a previous license constraint
• platform provision: companies that provide selection, support, integration and

services on a set of projects, collectively forming a tested and verified platform
These and similar classifications of OSS business models rely on the concrete way in

which OSS components are adopted in the organization. That is, each organization should
define its own OSS adoption goals and determine the actions involved to achieve these
goals (i.e., to define the strategy to be followed to fulfil its OSS business model). We have
investigated this issue in the FP7 RISCOSS project (www.riscoss.eu) and we have
identified some OSS adoption strategies usually followed by the industry. These
strategies are described below. They are the ones considered in the rest of the paper:
• OSS Acquisition means to use existing OSS code without contributing to the

underlying OSS project/community.
• OSS Integration means the active participation of an organization in an OSS

community with the purpose to share and co-create OSS. In this case, being part of
the community in order to benefit from the commonly created OSS components is
the key goal of the OSS strategy; it is not necessary for the adopter organization to
play a leading role within the community.

• OSS Initiative means to initiate an OSS project and to establish a community around
it. Usually, the key goal of this strategy is to create community support, but in
contrast to the OSS Integration strategy, the adopter establishes the community as
a resource that directly serves the company’s business strategy and model. As a

4

consequence, exercising control over the OSS community is typical for this
strategy.

• OSS Takeover means to take over an existing OSS project/community and to
control it. The main difference from the OSS Initiative strategy is that the OSS
community already exists.

• OSS Fork means to create an own independent version of the software that is
available from an existing OSS project or community. This strategy is usually
followed when an OSS community on which the adopter organization depends
develops in directions that contradict or hamper the organization’s business goals.
Exercising control over the forked community is not necessary, as the forked
community should consist of developers that share the adopter organization’s view
on how the community and the software should evolve.

• OSS Release implies that the organization releases bespoke software as OSS but
does not care whether an OSS community takes it up or forms around it. This
strategy can, for instance, be observed in the public sector, when software owned
by public bodies is released under an OSS license and made available to other
public bodies via a repository.

2.2. The i* Goal-Oriented Framework

i* [12] is a goal and agent oriented framework formulated for representing, modelling
and reasoning about socio-technical systems. It offers a good response to our needs of
representing expectations of OSS adopters that characterize OSS adoption strategies. Its
modelling language (the i* language) is composed basically of a set of constructs which
can be used in two types of models described below.

The Strategic Dependency (SD) model, allows the representation of organizational
Actors, specialized on Roles, Positions and Agents. Actors can be related by is-a, is-part-
of, covers, instance-of, plays and occupies relationships. Actors can also have social
dependencies. A Dependency is a relationship among two actors: one of them, named
Depender, depends for the accomplishment of some internal intention on a second actor,
named Dependee. The dependency is then characterized by an intentional element
(Dependum) which represents the dependency’s element and the Strengths associated to
each actor, representing the importance of achieving the dependum (at the depender’s
side) and the difficulty of producing it (at the dependee’s side). The primary Intentional
Elements are: Resource, Task, Goal and Softgoal. A softgoal represents a goal that can be
partially satisfied, or a goal that requires additional agreement about how it is satisfied.

The Strategic Rationale (SR) model represents the internal actors’ rationale. The
separation between the external and internal actor’s worlds is represented by the actor’s
Boundary. Inside this boundary, the rationality of each actor is represented using the same
types of intentional elements described above. Additionally these intentional elements
can be interrelated by using one of the following relationships: Means-end (e.g., a task
can be a mean to achieve a goal), Contributions (e.g., some resource could contribute to

 5

reach a quality concern or softgoal) and Decompositions (e.g., a task can be divided into
subtasks).

3. Research Approach

This research has been performed in the context of the European FP7 RISCOSS project
[13], which aims to support OSS adopter organizations to understand, manage and
mitigate the risks associated to OSS adoption. The consortium includes 5 industrial
partners from public and private sectors, with diverse OSS adoption contexts, which have
served to formulate the results presented here (as described below). In line with this
objective, this paper focuses on supporting organizations in analysing the implications of
adopting a particular OSS adoption strategy. With this aim, our research approach was
based on 3 complementary stages corresponding to 3 research questions:

RQ1: How to characterise OSS projects?

This is aimed to understand the relevant practices (mainly in terms of activities and
resources) taking place in the context of OSS projects, especially related to software
development and community management. We conducted a Systematic Literature
Review (SLR) in order to identify existing ontologies on the field. We analysed them with
respect to our objectives and complemented the results with knowledge coming from
RISCOSS industrial partners. The ontology is described in Section 4.

RQ2: How do OSS elements map to OSS adoption strategies?

In this question, we wanted to inquiry about how the elements emerging from RQ1
map into the different OSS adoption strategies enumerated in Section 2.1. Our aim was
mainly to emphasize and represent the different effects that each OSS adoption strategy
has over the OSS adopter organization. As a result, the detailed definition of the different
adoption models, one for strategy, was obtained. See Section 5 for details.

RQ3: How do OSS adoption strategies relate to the goals of the OSS adopter

organization?

OSS adoption strategies’ models resulting from RQ2 were mostly focused, as
mentioned in the context of RQ1, on software development and community management
activities and resources. However, in order to understand the impact of the activities and
resources enclosed in each adoption strategy model, we needed to understand their
relationship to the OSS adopter’s organizational goals. Therefore, we held some off-line
workshops with the five RISCOSS industrial partners, and ended up with a set of related
goals that were integrated into the models. Furthermore, we have devised some guidelines
to support the matching process of the proposed OSS adoption strategies’ models with
the models of the OSS adopter organization. We have formalized the application of these
guidelines to operationalize the usage of the OSS adoption strategies models in the
context of any OSS adopter organization.

6

It is important to highlight that these three RQs and their corresponding stages have a

formative character as they were aimed to conceive the OSS adoption strategies models.
In all the stages, the industrial partners of the RISCOSS project have been involved to
shape and endorse our approach in their respective contexts. In this paper, as a proof-of-
concept, we provide details on how the resulting approach fits to the case of Ericsson
Telecomunicazioni, Italy (TEI), one of the industrial RISCOSS partners.

For the summative evaluation of the approach, we plan to apply the OSS adoption
strategies and the corresponding guidelines in other industrial organizations besides the
RISCOSS partners, which would become the last stage of our method (see Figure 1).

Figure 1: Research method followed in this paper

4. An Ontology for OSS Adoption Strategies

In order to state the basis for defining models that represent the different OSS adoption
strategies, we have developed an ontology that embraces terms related to OSS projects
and the adoption strategies involved in them. To do so, as a first step, we conducted an
SLR using the guidelines defined by Kitchenham [14] with the purpose of identifying
existing OSS ontologies. The details of the SLR and the subsequent analysis can be found
in [15].

Although the SLR was conducted in order to find ontologies related to OSS field, the
search string included some terms besides the term ontology (metamodel, glossary,
taxonomy and reference model) in order to avoid missing papers with a kind of implicit
ontology. This also resulted in a large set of initial papers that was considerably pruned:
from an initial set of 1214 primary studies, we selected 9 papers to be analysed as papers
that contain an ontology (explicit or not). From them, 3 relevant ontologies emerged:
Dhruv’s ontology [16], OSDO [17][18] and OFLOSSC [19].

We finally chose OFLOSSC as starting point because: (1) it was the most complete
amongst the ontologies reviewed (it actually includes parts of the other two), (2) it is an
ontology for supporting OSS development communities and covers concepts related to
community interactions for developing software. However, it lacks of adoption concepts
related to OSS adopter organizations, therefore, we extended it with these missing (with
respect to our purposes) concepts. To do so, we performed a thorough analysis of the
elements that an adopter organization should consider when participating in an OSS

 7

project by running off-line workshops (i.e., discussions that were centralized in a wiki
tool) with partners of the RISCOSS project.

The results of this work have been reported as part of the RISCOSS ontology in [15].
They consist in a complete set of concepts and relations related to the actors, roles,
activities and resources that correspond both to OSS communities and OSS adopter
organizations. In this paper, we focus on the subset of these concepts related to activities
and resources that can be relevant for the interaction that an OSS adopter has with an OSS
community according to its adoption strategy. Table 1 lists them. For each element, the
table includes its identifier and a brief description. The elements identified have been
classified into five groups: software development activities, community-oriented
activities, communication activities, personnel activities and resources. We must note that
the OSS adopter, when using the OSS component, gets involved in the OSS community
to a certain extent that depends on its adoption strategy, and may develop activities of the
OSS community (e.g. Act-PATCH). Therefore these activities have been included in
Table 1.

Table 1. Activities and resources for OSS adoption strategies

Identifier Description
Software Development Activities
Act-SEL Selection of an OSS component for its deployment or integration in an

organization
Act-DEP Deployment of an OSS component for its actual use in the organization
Act-DEV Development of an OSS component (specification, design, code)
Act-INT Integration of an OSS component into another software artifact
Act-TEST-Comp Testing of an OSS component
Act-TEST-Prod Testing of a software artifact that integrates an OSS component
Act-MAINT-Comp Maintenance of an OSS component
Act-MAINT-Prod Maintenance of a software artifact that integrates an OSS component
Act-PATCH Development of a patch to correct some bug or add some new feature for

an OSS component
Community-Oriented Activities
Act-NewCOMM Creation of an OSS community
Act-DECIDE-
Roadmap

Decision of the roadmap of an OSS component. It includes planning of
releases and which features are included

Act-DECIDE-Acc Acceptance of a contributor in an OSS community
Act-DECIDE-
Wishlist

Decision of the desired features for the next releases of an OSS component
(but without a concrete planning)

Act-RELEASE Making available a software component under OSS license (either first
time or an evolution)

Communication Activities
Act-RepPATCH Communication of a patch for an OSS component
Act-RepBUG Report of a bug
Act-SUPP Any kind of support given to the OSS community (except bug reports and

patches; e.g. organising or endorsing sponsoring events)

8

Act-ASK Ask about an issue to the OSS community
Personnel Activities
Act-ACQ-Tech Acquisition of the necessary knowledge about an OSS component to be

able to master its technology
Act-ACQ-Man Acquisition of the necessary knowledge about managing an OSS

community
Act-LEARN Acquisition of the necessary knowledge about an OSS component to be

able to operate it (as end user)
Resources
Res-OSS-Comp An OSS component as a software artifact
Res-Tech-DOCUM Technical documentation of an OSS component
Res-User-DOCUM User documentation (e.g., tutorials) of an OSS component
Res-PATCH Patch provided for an OSS component
Res-BUG Report of a bug or post, etc., referred to an OSS component
Res-
NEWFEATURE

Report of desired feature(s) for an OSS component

Res-ROADMAP Strategy for new features and releases of an OSS component

The concepts in Table 1 exhibit some relationships that can be expressed as ontology

properties. They are sub-concepts of activity and resource, related by two properties;
activities produce resources and activities use resources. Activities themselves are also
related by one property: activities precede activities. These properties have the sub-
properties included in Table 2 relating different sub-concepts of activity and resource.

Table 2. Relationships for OSS adoption strategies activities and resources

Concept ID Concept ID
Activity produces Resource
Act-RELEASE Res-OSS-Comp
Act-RELEASE Res-Tech-DOCUM
Act-RELEASE Res-User-DOCUM
Act-RepPATCH Res-PATCH
Act-RepBUG Res-BUG
Act-DECIDE-Wishlist Res-NEWFEATURE
Act-DECIDE-Roadmap Res-ROADMAP
Activity uses Resource
Act-SEL Res-OSS-Comp
Act-DEP Res-OSS Comp
Act-INT Res-OSS-Comp
Act-TEST-Comp Res-OSS-Comp
Act-MAINT-Comp Res-OSS-Comp
Act-PATCH Res-NEWFEATURE
Act-DECIDE-Roadmap Res-NEWFEATURE
Act-ACQ-Tech Res-Tech-DOCUM
Act-LEARN Res-User-DOCUM
Activity precedes Activity

 9

Act-SEL Act-DEP
Act-SEL Act-INT
Act-DEV Act-TEST-Comp
Act-INT Act-TEST-Prod
Act-NewCOMM Act-DECIDE-Roadmap
Act-NewCOMM Act-DECIDE-Acc

5. OSS Adoption Strategies Models

We present next a catalogue of models that characterize each of the OSS adoption
strategies described in Section 2. These models are built on top of the ontology presented
in Section 4 and each of them combines the ontology elements as required by its
corresponding strategy. Models focus on the adopter organization and refer to the
particular OSS component under adoption. We have used the i* framework as modelling
approach. The reason is that i* is an intentional actor-oriented modelling and analysis
framework (see Section 2.2), which supports representing and analysing synergistic and
conflicting stakeholder interests and decision-making within and across organizational
settings.

The models have been discussed in the context of the RISCOSS project running off-
line workshops (i.e., discussions that were centralized in a wiki tool) with the project
partners.

The main actors involved in the OSS adoption strategies are: the organization that
adopts the OSS component (OSS Adopter) and the OSS community that produces it. The
six strategies (see Section 2.1) can be characterised depending on: (1) whether the main
goal is consuming OSS or producing it (i.e. providing the initial version of the code) and
(2) the degree of involvement of the OSS adopter in the OSS community (see Table 3).
Regarding the involvement, we have defined three degrees: no involvement, active
involvement in the community (i.e. investing some resources for the evolution of the OSS
component) and leading the community (i.e. investing some resources in order to try to
control the evolution of the OSS component).

Table 3. OSS adoption strategies

 Not involvement Active involvement Leading
Consuming OSS OSS Acquisition OSS Integration OSS Takeover
Producing OSS OSS Release OSS Fork OSS Initiative

The activities performed and the resources produced by each of these actors vary
significantly depending on the adoption strategy, and this is the basis of the model
construction. For each adoption strategy, we have allocated the activities and resources,
presented in Section 4, to the two actors, depending on which one is responsible. Table 4
provides the allocation of activities and resources to the adopter organization actor
depending on the adoption strategy followed. The expertise obtained from the RISCOSS

10

partners has provided us the rationale to choose the most adequate allocation according
to the main features of each identified OSS adoption strategy.

Table 4: Adopter activities and resources (rows) per OSS adoption strategies (columns)

 Integration Initiative Takeover Fork Acquisition Release
Software Development Activities
Act-SEL X X X X
Act-DEP X X X X X X
Act-DEV X X
Act-INT X X X X X X
Act-TEST-Comp
Act-TEST-Prod X X X X X
Act-MAINT-Comp
Act-MAINT-Prod X X X X X X
Act-PATCH X X X X
Community-oriented Activities
Act-NewCOMM X X
Act-DECIDE-Roadmap X X
Act-DECIDE-Acc X X
Act-DECIDE-Wishlist X X
Act-RELEASE X X
Communication Activities
Act-RepPATCH X X X X
Act-RepBUG X X X X
Act-SUPP X X X X
Act-ASK X X X X X
Personnel Activities
Act-ACQ-Tech X X X X X X
Act-ACQ-Man X X X X
Act-LEARN X X X X
Resources
Res-OSS-Comp X X
Res-Tech-DOCUM X X
Res-User-DOCUM X X
Res-PATCH X X X X
Res-BUG X X X X
Res-NEWFEATURE X X
Res-ROADMAP X X

Some general observations on Table 4 are the following:

1. For the strategies that do not require community involvement (acquisition and
release), the activities allocated to them are mainly internal-oriented software
development activities and not community-oriented or communication
activities (except for Act-RELEASE in the release strategy case and Act-ASK in
the acquisition strategy).

 11

2. For the rest of strategies: the organization participates in communication
activities (e.g. Act-RepBUG) and contributes with their corresponding resources
(e.g. Res-BUG). Additionally, the organization develops different community-
oriented activities depending, mainly, on whether it is exercising control over
the community or not. Remarkably, in the initiative and takeover case, the
organization decides the community roadmap (Act-DECIDE-Roadmap, Res-
ROADMAP).

3. Two of the strategies, namely, initiative and fork, require that the organization
sets up an OSS community (Act-NewCOMM).

The activities of maintaining and testing the OSS component (Act-MAINT-Comp and
Act-TEST-Comp) are not allocated to the organization in any strategy meaning that they
are basically developed by the OSS community. Taking as a basis the allocation described
in Table 2, we have built an i* model for each strategy. These models have been
complemented with two kind of goals: some goals used to structure the model (e.g.
Technical Quality to embrace the tasks related to acquire skills for using the component
Act-ACQ-Tech and Act-Learn) and some high-level goals and softgoals more related to
the strategic goals (e.g. Take benefit from OSS community).

In the following subsections we detail the models of each of the identified OSS
adoption strategies. All of them have a central task representing the type of OSS adoption
strategy (Acquire OSS Component, Integrate OSS Community, etc.). Considering these
tasks as a central element, the models include a set of high-level goals directly attained
by the strategy (goals above the task, e.g. OSS involvement minimized in Figure 2) and
the low-level tasks or resources which are requirements for an adequate application of the
OSS adoption strategy (tasks or resources below the central task, e.g. Act-SEL and Act-
LEARN in Figure 2).

5.1. OSS Acquisition

The model for the OSS acquisition adoption strategy (see Figure 2) shows how the
adopter organization only obtains the component from the OSS community and does not
give back any return to the community. Therefore it can be observed from the model that
only outgoing dependencies stem from the adopter organization actor. The adopter is
interested on using an existing OSS component (as represented by the goal Take benefit
from OSS community) but it is not necessarily interested on the successive releases of the
adopted OSS component produced by the community for the maintenance of its product
(goal Do not care OSS evolution for maintenance). For this purpose it does not need to
be involved in the OSS community that produces that OSS component (softgoal OSS
involvement minimised).

The central task Acquire OSS Component is composed primarily by all the activities
that the adopter performs to select and use the OSS component and test and maintain the
software product where the component is used. The adopter depends on the community
to obtain the OSS component and its documentation as shown by the dependencies.

12

Additionally, good technical skills are required as represented by the softgoal Technical
Quality. Activities Act-ACQ-Tech and Act-LEARN contribute to achieve these skills.

Figure 2: OSS Acquisition model

5.2. OSS Integration

The OSS integration adoption strategy requires sharing and co-creation of OSS
between the adopter and the OSS community (see Figure 3). This collaboration means a
give-and-take to the benefit of all involved parties. For instance, the adopter might use
existing OSS components that have been developed by the community, and pay back in
terms of bug reports, patches, etc. Thus, the adopter organization wants to benefit from
co-creation (softgoal Benefit from co-creation taken); it is interested on being involved in
the OSS community (softgoal OSS involvement) and on influencing it (softgoal OSS
evolution influenced).

The task Integrate OSS Component is composed by the activities already required by
the acquisition strategy complemented with additional activities that the adopter develops
as part of its co-creation and collaboration with the community. These activities, grouped
under the goal OSS Community Contributed, may be reporting bugs, developing and
reporting patches or other forms of support such as sponsoring events. Dependencies stem
out of these activities reflecting the collaboration with the community. For an
advantageous co-creation, the contribution must be aligned to the OSS community
culture, as represented by the softgoal According to OSS Community Practices. The
activity Act-ACQ-Man consisting on acquiring knowledge about the community

 13

contributes to it.
A feature of the OSS integration adoption strategy is that the adopter organization relies

partly on the successive releases of the OSS component for the maintenance of its product.
Thus, the adopter organization might want to influence the community roadmap to ensure
that successive releases of the OSS component follow its desired features. The softgoal
OSS Comp Evolves towards Desired Features under the maintenance activity shows this
dependency. The adopter organization defines its expectations for the evolution of the
OSS component (Act-DECIDE-Wishlist). The community may eventually take this
wishlist to decide its roadmap as represented by the dependency with dependum Res-
NEWFEATURE. The maintenance activity of the company also depends on the Quality
of the Evolved OSS Component provided by the OSS community.

Figure 3: OSS Integration Model

5.3. OSS Initiative

The OSS initiative adoption strategy requires to initiate a new OSS project and to
establish a community around it (see Figure 4). In this case, the adopter organization is
interested in providing OSS solutions (goal OSS solutions provided), controlling its
evolution (goal Steer OSS component evolution) and, as in the previous integration

14

strategy, it also considers taking benefit from co-creation (softgoal Benefit from co-
creation taken) and being involved in the OSS community (softgoal OSS involvement).

The central task Perform OSS Initiative includes the activities already required by the
integration strategy complemented with new ones for building the initial OSS component,
releasing it, establishing the OSS community around it and managing the community.
Community management skills are required both to create and manage the community as
represented by the task Act-ACQ-Man. To manage the community implies to take
decisions such as those related to the roadmap and the acceptance of contributors (Act-
DECIDE-Roadmap and Act-DECIDE-Acc). For this management to be effective it is
required that the community accepts it, as represented by the dependency with dependum
Company Management Accepted).

Figure 4: OSS Initiative Model

5.4. OSS Takeover

The OSS takeover adoption strategy means to take over an existing project/community
and to control and steer its development (Figure 5). Hence this strategy is similar to the
initiative strategy with the difference that, in the takeover case, the OSS community
already existed and it is not created by the organization. Consequently, the takeover model
is similar to the initiative one (see Section 5.3). The main differences are that the activities
related to building the initial OSS component, releasing it, establishing the OSS

 15

community around the component are not included in the takeover case. Conversely, it is
required to acquire knowledge about the community in order to have the skills to control
it (dependency with dependum Knowledge acquisition about OSS community).

Figure 5: OSS Takeover Model

5.5. OSS Fork

The OSS fork adoption strategy means to create an own independent version of the
software that is available from an OSS project or community (see Figure 6). This strategy
implies that the organization creates a new community and it does not necessarily exercise
control over it and behaves as in the integration strategy.

An organization may be willing to fork an existing OSS project because the evolution
of the OSS component does not fit with its needs (goal Independent OSS component
version got). In this case, the adopter organization does not necessarily want to control
the OSS component evolution, but it wants to perform some influence (softgoal OSS
evolution influenced) in order to take benefit from co-creation (softgoal Benefit from co-
creation taken) and it wants to get involved in the new community (softgoal OSS
involvement).

The model of the OSS fork adoption strategy includes two OSS community actors: one
corresponding to the existing community that provides the initial software called Old OSS
Community and the newly created community named New OSS Community. Since i* does

16

not allow expressing temporal relationships, this sequencing cannot be modelled.
The central task Perform OSS Fork is composed primarily by all the activities that the

organization performs to use the OSS component and test and maintain the software
product where it is used, jointly to the selection of the component to be forked and the
creation of the new community. Additionally, it includes the same activities as the
integration strategy developed as part of its co-creation and collaboration with the new
community such as reporting bugs, developing and reporting patches or other forms of
support such as sponsoring events.

Figure 6: OSS Fork Model

5.6. OSS Release

The OSS release adoption strategy implies that the organization releases bespoke
software as OSS but does not care about whether or not a community evolves around it
or an existing community makes use of it or develops it further (see Figure 7). Therefore,
in this case there is no community involved in the model. The rationale behind this
strategy may be to affect an emerging market by releasing software as OSS in order to

 17

control potential competitors. In this strategy, the organization wants to release some
product under an OSS license (goal OSS solutions provided) without any interest on the
OSS community that can be created around it (goal No OSS involvement).

The central task Perform OSS Release is composed primarily by all the activities that
the organization performs to develop, use, test and maintain its software, jointly to the
activity of releasing it as OSS component.

Figure 7: OSS Release Model

6. Guidelines for Applying OSS Adoption Strategy Models in an Organization

OSS adoption strategy models have been developed as generic models; therefore, a
question to be answered is how to apply them in a specific situation (in our case, an OSS
adopter organization). The question is twofold: first, when is it adequate to apply an OSS
adoption strategy model (which responds to the high-level question: which strategy is the
most adequate for an organization that wants to go OSS); and second, how to align the
organizational model with the strategy model (which responds to the high-level question:
what is the effect for the organization to adopt this particular strategy). To answer these
questions, we start by assuming the existence of an organizational model that declares the
higher-level goals pursued by the organization and using this existing organizational
model we select the OSS adoption strategy that is most suited to the organization needs.
To answer the second question, we describe the process of extending the model with the
elements from the selected OSS adoption strategy model and making the necessary
adjustments to these new elements.

6.1. Selecting the OSS Adoption Strategy

Figure 8 shows an excerpt of the organizational model for the fictitious organization
ACME, that produces the Road Runner Locator (RR Locator) product for its customers.
The company is interested in reducing in-house development costs, therefore they have

18

decided to reduce the development effort integrating an OSS component as part of their
software, but they are not interested in being involved with the OSS community behind
this component.

Figure 8: ACME Organizational Model

In order to facilitate the process of finding the more suitable OSS adoption strategy, we
have adapted the model matching notion presented by Franch in [20]. In that paper, i*
models are used to describe market segments and software packages in order to evaluate
the matching between both models with an i* organizational model, and select the best
software package for the organization needs. In the current proposal, we use the same
idea and evaluate the matching between an organizational model and the set of OSS
adoption strategy models in order to identify the strategies that better match the
organizational goals and eliminate those that clearly do not apply to the specific
organization. Franch uses a concept called coverage for classifying the matching results
that we adapt for our purposes [20].

The notion of goal matching has also been used in [21][22]. Rolland [21] uses goal
matching between organization intentions and the goal/requirements that can be achieved
by COTS components, with the purpose of selecting and assembling them. Soffer et al.
[22] propose to match enterprise goals, operationalized as business rules, with ERP
system capabilities in order to align ERP systems with enterprise requirements.

In the following we first describe the intuitive notion of coverage and then we provide
its formalization.

6.1.1. Notion of coverage and its use for selecting strategies

The notion of coverage in the context of selecting an OSS adoption strategy is twofold:
• Coverage of the organizational model: it measures to which extent the intentional

elements (IEs) that appear inside the Organization actor in the organizational SR
model are covered by an OSS adoption strategy model. In other words, it measures
to which extent an OSS adoption strategy supports the strategic goals of the
organization. This coverage is specified as a percentage (i.e. which percentage of
elements is covered).

 19

• Coverage of the OSS adoption strategy model requirements: It measures to which

extent the tasks and resources, representing requirements, which are part of the
Organization actor SR model of a specific OSS adoption strategy, are covered by
the organizational SR model. In other words, it measures to which extent an
adoption strategy can effectively be adopted by an organization from the degree to
which the organization fulfils the needs of the strategy. This coverage is specified
as a percentage (i.e. which percentage of requirements is covered). The adoption
strategy requirements are all the tasks and resources that belong to the
decomposition of the strategy central task (this central task was introduced at
Section 5).

The aim is finding the OSS adoption strategies that cover as much as possible the
organization strategic goals, taking into account that the company has, or is willing to
have, the needs required by the strategy. Therefore, any combination where the coverage
of the OSS adoption strategy model is incomplete (not a 100% coverage) because some
OSS adoption strategy requirements are missing, requires the organization to extend its
organizational model in order to apply the strategy. In these situations, the organization
should evaluate whether the strategic goals achieved thanks to the strategy are worth the
effort needed to fulfil its requirements.

Central to model coverage is the definition of IE coverage. To introduce this notion,
we need to refer to the concept of satisfaction of an IE considered as a logical predicate
sat [23]. The satisfaction of an IE depends on its type: goal satisfaction means that the
goal attains its desired state; task satisfaction means that the task follows its defined
procedure; resource satisfaction means that the resource is produced or delivered; softgoal
satisfaction means that the modelled condition fulfils some agreed fit criterion. In the case
of softgoals, the predicate is not indicating if the softgoal is satisfied or not, it is indicating
if it is satisfied enough (satisficed). We use the word satisfaction for all kinds of IEs for
simplicity. The modeller should identify the pairs of equivalent elements in terms of
satisfaction (CC1), and for the others identify whether the element in one model is
satisfied by one in the other model (CC2) or the other way round (CC3). Then:

Definition 1. Intentional element coverage
Given an IE ieA belonging to an SR model A and given another SR model B, we define

the notion of intentional element coverage (by an SR model), is_covered(ieA, B),
according to the following four cases:

CC1. There is an intentional element ieB∈B that is equivalent, in terms of
satisfaction, to ieA, sat(ieA) ⇔ sat(ieB). In this case, is_covered(ieA, B) = true.

CC2. There is an intentional element ieB∈B whose satisfaction ensures that of ieA,
sat(ieB) ⇒ sat(ieA). In this case, is_covered(ieA, B) = true.

CC3. There is an intentional element ieB∈B whose satisfaction is part of that of
ieA, sat(ieA) ⇒ sat(ieB). However, since this does not guarantee that ieA is
satisfied, we consider that in this case, is_covered(ieA, B) = false.

20

CC4. There are no intentional elements in B for which an implication relationship
with ieA can be found. In this case, is_covered(ieA, B) = false.

Note that this definition can be extended into subsets of IEs in a straightforward
manner.

As an example, Table 5 shows the coverage of the ACME organizational model (Figure
8) by the OSS Acquisition strategy model (Figure 2) (organizational model coverage).
The coverage of the ACME organizational model by the strategy is acceptable (66,6% of
elements covered). Furthermore, the only element not related at all with the strategy is
the task Sell RR locator which, nevertheless, represents a kind of activity not addressed
by the OSS adoption strategies. In addition, Develop RR Locator even if not total, has
some kind of partial coverage which could be considered as a mitigation to the satisfaction
of this element (this kind of argumentation would be part of the analysis of results, to be
made during the process of deciding the most appropriate OSS adoption strategy for the
organization). Therefore, the OSS Acquisition strategy seems a good choice to be applied
to the organization.

Table 5: Organizational model coverage

OSS Organizational
model

Coverage
case

Coverage by OSS adoption strategy model
(strategy IEs appear underlined)

Sell RR Locator CC4 Missing
Maintain RR Locator CC1 Act-Maint-Prod ⇔ Maintain RR Locator
Develop RR Locator CC3 Develop RR Locator ⇒ Act-INT

Develop RR Locator ⇒ Act-TEST-Prod
OSS component integrated CC2 Acquire OSS component ⇒

OSS component integrated
In-house development cost
reduced

CC2 Take benefit from OSS Community ⇒
In-house development cost reduced

Minimize OSS involvement CC1 OSS involvement minimized ⇔
Minimize OSS involvement

Table 6 shows the coverage of the OSS acquisition adoption strategy requirements by

the ACME organizational model. The requirements are all the tasks and resources that
decompose the central task Acquire OSS component in the Acquisition model (Figure 2).
In this case, the coverage is not optimal (50% of coverage). The requirements related to
achieve the technical skills in order to use the component (Act-ACQ-Tech, Act-LEARN
and Act-ASK) are missing. Therefore, the organizational model should be extended by
including them, if ACME decides to apply the strategy. Note that ACT-DEP is not so
fundamental to be covered, since there is another means to achieve the goal OSS
Component Used (Act-INT, see Figure 2) which is covered by the organizational model
allowing us to discard this requirement.

 21

Table 6: OSS acquisition strategy requirements coverage

OSS Acquisition
strategy

Covera
ge

Coverage by Organizational Model

Act-SEL CC2 OSS component integrated ⇒ Act-SEL

Act-ACQ-Tech CC4 Missing
Act-LEARN CC4 Missing
Act-ASK CC4 Missing
Act-DEP CC4 Missing
Act-INT CC1 OSS component integrated ⇔ Act-INT
Act-TEST-Prod CC2 Develop RR Locator ⇒ Act-TEST-Prod
Act-MAINT-Prod CC1 Maintain RR Locator ⇔ Act-MAINT-Prod

6.1.2. Formalization of the i* framework

We present next an algebraic formalization of i* based on the definition provided in
[23]. The general layout consists on defining elements as tuples of sub-elements and then
functions with a meaningful name to obtain these sub-elements. In a nutshell, an i* model
(M) contains actors (A), dependencies (DL), dependums (DP) and actor links (AL). Actors
contain intentional elements (IEs, of type: goal, softgoal, task and resource) connected by
IE links (IEL) of different types (means-end, task-decomposition and contribution).
Dependencies connect IEs inside actors (although the IEs are not shown when the actors
remain closed) and have a dependum (that is also an IE). A model element n is identified
by its name, name(n). Other auxiliary functions with intuitive meaning are used in the
formalization; for instance, the function actors(M) returns the set of actors of a model,
actors(M) = A. Table 7 summarizes the formal definitions used in this section.

Table 7. Formal definition of the i* language as used in this paper.

Concept Definition Components
i* model M =

(A, DL, DP, AL)
A: set of actors; DL: set of dependencies
DP: set of dependums; AL: set of actor specialization links

Actor a = (n, IE, IEL) n: name; IE: set of IEs; IEL: set of IE links
IE ie = (n, t) n: name; t: type of IE, t∈{goal, softgoal, task, resource}
IE link l = (x, y, t, v) x, y: IEs (source and target)

t: type of IE link, t∈ IET
IET = {means-end, task-decomposition, contribution} with

target(means-end) ≠ softgoal
target(task-decomposition) = task
target(contribution) = softgoal

v: contribution value, v∈ CLV with
 CLV = CT+ ∪ CT– ∪ {Unknown}
 CT+ = {Make, Some+, Help},

22

 CT– = {Break, Some-, Hurt}
Depen-
dency

d = ((dr, ier, sr),
 (de, iee, se),
 dm)

dr, de: actors (depender and dependee respectively)
ier, iee, dm: IEs (depender, dependee and dependum,
respectively),
 ier ∈ IE(dr), iee ∈ IE(de), dm ∈ DP
sr, se: strengths, sr, se∈{open, committed, critical}
dm: (n, t) (see IE)
actor(dr) ≠ actor(de) (an actor cannot depend on itself)

Actor
link

al=(a, b, t) a, b: actors; t = type of actor link, t∈ {is-a, is-part-of, plays,
occupies, covers}

Derived concepts
intentionalElements(IEL) {x | (x, ie, t, v) ∈ IEL ˅ (ie, x, t, v) ∈ IEL}
descendants(ie, IEL) {x | (x, ie, t, v) ∈ IEL ∨

(∃y: (y, ie, t, v) ∈ IEL ∧ x ∈ descendants(y, IEL))}

6.1.3. Formalization of the notion of coverage

In this section we formalize the two notions of coverage introduced in Section 6.1.1.
Since they are similar, both of them rely in an auxiliary definition of coverage of a set of
IEs, which in its turn is defined on top of the intentional element coverage introduced also
in Section 6.1.1 (is_covered). To illustrate the different concepts, we use the example
presented in Figure 9. It represents two sets of intentional elements A and B such that a1
and b1 are equivalent, a4 is covered by b5 (but are not equivalent), and b2 and b3 are
covered by a3 (without being equivalent either). We assume that neither a3 nor b4 is not
covered.

Figure 9: Illustration of coverage

Definition 2. Set of intentional elements covered
Given two sets of intentional elements IEa and IEb, the set of elements from the first set

IEa covered by the second IEb is defined as:

coveredIEs(IEa, IEb) = {ie ∈ IEa: is_covered(ie, IEb)}

 23

In Figure 9, the set of elements of A covered by B is {a1, a4} while the set of elements

of B covered by A is {b1, b2, b3}. Therefore in terms of Definition 2, we have:
coveredIEs(A, B) = {a1, a4} and coveredIEs(B, A) = {b1, b2, b3}.

The following definition measures to which extent a set of IEs (e.g. A in Figure 9) is
covered by another (e.g., B in Figure 9).

Definition 3. Set of intentional element coverage
Given two sets of intentional elements IEa and IEb, the coverage of IEa by IEb is defined

as the percentage of elements in IEa that are covered by the elements in IEb:
coverage(IEa, IEb) = (||coveredIEs(IEa, IEb)|| / ||IEa||)*100, being ||S || the size of S

In Figure 9, we have that the percentage of elements of A covered by B is 50%, whilst
the percentage of elements of B covered by A is 60%.

Given these auxiliary definitions, it is easy to define both concepts of coverage. Given
the actor aorg = (nameorg, IEorg, IELorg), corresponding to the organization in the
organizational model, and astr = (nameorg, IEstr, IELstr), the actor representing the OSS
adopter organization in an OSS adoption strategy model, we define the following:

Definition 4. Organizational model coverage
We define the organizational model coverage as the result of:

coverage(IEorg, IEstr)

Definition 5. Adoption strategy requirements coverage
Given iestr the intentional element representing the adoption strategy requirements

central task, iestr∈ IEstr, we define the adoption strategy requirements coverage as the
result of:

coverage(requirements (iestr, IELstr), IEorg),
where requirements(ie, IEL) = {x | x ∈descendants(ie, IEL) ˄ type(x) ∈ {task, resource}}

6.2. Merging the Organizational model with the Adoption Strategy model

Once the organization has decided which OSS adoption strategy is going to adopt, the
process of refining the organizational model according to the strategy consists on the
following steps:

1. Merging both models applying the organizational model coverage, including the
elements from the selected OSS adoption strategy model into the organizational
model.

2. Making the necessary adjustments to the resulting model in order to adapt the
general OSS adoption strategy model to the specific case.

Having the organizational model and the selected strategy model, the final
organizational model should be refined adding the strategy model elements. We use the

24

organizational model coverage in order to include the connection among all the elements
from both models. Given ieorg∈ IEorg and iestr∈ IEstr:

CC1. sat(ieorg) ⇔ sat(iestr). In this case, ieorg is kept and iestr is discarded. The
descendants of iestr must be included in the organizational model too to make
explicit the ways in which ieorg may be satisfied using the adopted strategy.

CC2. sat(iestr) ⇒ sat(ieorg). This means that iestr is a means to satisfy ieorg in the
organization. Therefore, an i* means-end link may be introduced from iestr
(means) onto ieorg (end).

CC3. sat(ieorg) ⇒ sat(iestr). Even if the organizational element is not covered, we can
represent this relationship using the i* task-decomposition link, in which iestr
is a subtask of ieorg.

CC4. There are no relationships between the elements. ieorg is kept as in CC 1, but
no option to add descendants exists.

Figure 10 is used to illustrate the coverage cases and the merging result, using the
coverage of the ACME organizational model by the OSS acquisition strategy model that
we are using as example in this section (see Table 5). The figure represents two subsets
of their intentional elements for actors ACME and OSS Adopter Organization including
the coverages shown in Table 5, such that Maintain RR Locator is equivalent to Act-
Maint-Prod (CC1), the satisfaction of Acquire OSS component implies the satisfaction of
OSS component integrated (CC2), and, finally, the satisfaction of Develop RR implies the
satisfaction of Act-INT and Act-Test-Prod (CC3). Descendants of the strategy model
elements are not shown in the result for the sake of brevity.

Figure 10. Illustration of model merge (excerpt of the ACME example)

In cases CC2 and CC3, the required connection sometimes cannot be directly provided
using a single i* IE link. The final model needs to include some auxiliary IEs to get a
syntactically correct connection. For example, if we have a set of tasks (t1, t2) in the
strategy model covering one goal in the organization model (g1) then, as we cannot

 25

connect directly a set of tasks to a goal using task-decomposition links, it is necessary to
introduce an intermediate task t3 as shown in Figure 11 (left).

The element Connected through an auxiliary task

covered by

Figure 11: IE coverage with an auxiliary element

To complete the example, we present in Figure 12 the complete model for the ACME
company after the merging, as well as the adjustments mentioned at the beginning of the
section. In the case that we are using as example in this section, the organization ACME
is acquiring the component OSS GIS to be integrated in its product RR Locator as shown
in Figure 8. The elements coming from the OSS acquisition strategy model (Figure 2) are
shown in italics. The task Acquire OSS Component and its decomposition are included as
the means to achieve the goal OSS component integrated, except for the task Act-DEP, it
does not appear in the model because the organization uses the OSS component
integrating (Act-INT) it in its own software (RR Locator). The tasks Act-MAINT-Prod and
Act-TEST-Prod from the strategy model are not included because they are covered by
Maintain RR Locator and Develop RR Locator from the organizational model
respectively. The ACME organization adheres to the strategic goal Minimize OSS
involvement, but not to Do not care OSS evolution for maintenance.

Notice that the task-decomposition links defined for the coverage of the task Develop
RR Locator by Act-INT and Act-Test-Prod (see Figure 10) are not included in the final
ACME organizational model (Figure 12). After the merge, these links have been removed
because they are redundant with having that Develop RR Locator has as sub-task the goal
OSS component integrated, and both tasks belong to this goal decomposition.

26

Figure 12: Organizational model adhering OSS acquisition adoption strategy

7. The TEI Case

In this section we show the application of the OSS adoption strategy models to TEI,
one of the RISCOSS project industrial partners. TEI is part of Ericsson, one of the world’s
leading telecommunication corporations. Ericsson produces hardware
(telecommunications infrastructure and devices) as well as the software to run it. The
company’s mission is to empower people, business and society at large, guided by a
vision of a sustainable networked society. One of TEI’s roles within the Ericsson
ecosystem is to provide OSS alternatives to support efficient third party products
handling. Therefore, it is important for TEI to adopt OSS components following the
adoption strategy that is most suitable to the organization needs.

Figure 13 shows an excerpt of the TEI organizational model related to the maintenance
of products including some OSS component, and how its goals impact on Ericsson’s
goals. Besides the typical strategic goal of any organization for reducing costs (goal Cost
reduced), the main objectives for TEI are fulfilling the Ericsson’s customers’
requirements (softgoal Product requirements achieved) using Maintainable code in order
to secure the Quality of code. For TEI it is crucial to use Mature technology and Secure
code. When TEI decides to use an OSS component, there are three possibilities for
maintaining this code: they can assume the activity (Provide in-house maintenance), Rely
on the OSS community for maintenance or Contract 3PP (third party) organization for
maintenance. For this portion of the TEI’s organizational model, the impacted Ericsson
goals are Time-to-market reduced and Reputation kept. Ericsson expects from TEI that

 27

the Development time is reduced, Responsiveness and Reliable products for achieving its
goals. Notice that the model only includes the third party organization (3PP OSS
Provider) in order to illustrate that the maintenance is outsourced; for the sake of brevity,
the description of this relation is not exhaustive and not all dependencies between both
organizations are included in this model.

Figure 13: Excerpt of TEI organizational model

The model in Figure 13 synthesizes all the elements from the TEI organizational model
that can be considered relevant when TEI interacts with an OSS community for adopting
OSS. Therefore, it is an adequate model to be used as a proof of concept of how our
proposed OSS adoption strategy models can be applied in an organization.

Table 8 shows the coverage of this abridged TEI organizational model (Figure 13) by
the OSS integration strategy model (Figure 3) (organizational model coverage). We can
see that the coverage is quite good (68,75% of elements covered). The strategy covers a
good number of TEI goals and tasks related to reducing maintenance costs and
development time as can be seen in Table 8. Furthermore, we can observe that all goals
that remain uncovered except one (Product requirements achieved, Maintainable code,
Secure code, Mature technology used) depend on the specific OSS component that has
been chosen and not on the adoption strategy applied by TEI (an adoption strategy cannot
cover them). The remaining goal (Contract 3PP organization for maintenance) is, again,

28

a goal that cannot be covered by any OSS adoption strategy because it consists on
contracting an external 3PP company for assuming the maintenance which is an activity
not addressed by OSS adoption strategies. We can conclude that the integration strategy
fits as well as possible TEI organizational needs and it is a good choice for TEI.

Table 8: TEI organizational model coverage

TEI OSS Organizational
model

Coverage Coverage by OSS integration strategy
model (strategy IEs appear underlined)

Product requirements achieved CC4 Missing
Maintainable code CC4 Missing
Secure code CC4 Missing
Mature technology used CC4 Missing
Costs reduced CC2 Benefit from co-creation taken ⇒ Costs

reduced
Maintenance cost reduced CC2 Benefit from co-creation taken ⇒

Maintenance cost reduced
Development time reduced CC2 OSS component used ⇒ Development time

reduced
Adopt OSS component CC2 Integrate OSS component ⇒ Adopt OSS

component
Licensing cost reduced CC2 Integrate OSS component ⇒ Licensing cost

reduced
Maintain (changing) component CC2 Act-MAINT-Prod ⇒ Maintain (changing)

component
Provide in-house maintenance CC2 Act-MAINT-Prod ⇒ Provide in-house

maintenance
Rely on the OSS community for
maintenance

CC2 Act-MAINT-Prod ⇒ Rely on the OSS
community for maintenance

Contract 3PP organization for
maintenance

CC4 Missing

Report bugs CC1 Act-RepBUG ⇔ Report bugs
Report solutions CC1 Act-RepPATCH ⇔ Report solutions
Quality of code CC1 Technical Quality ⇔ Quality of code

Table 9 shows the coverage of the OSS adoption strategy requirements. The coverage

is incomplete (61,53% of requirements covered). The requirements related to achieve the
technical skills in order to use the component (Act-ACQ-Tech, Act-LEARN and Act-ASK)
are missing. However, in this case, any organization that wants to use an external
component (OSS or not) is willing to acquire the necessary knowledge to use it.
Therefore, we realize that these activities, although omitted in our initial TEI
organizational model, are actually developed by TEI and thus the TEI organizational
model has to be refined by adding them. For the two remaining uncovered requirements
(Act-SUPP and Act-ACQ-Man), we asked TEI representatives whether the company

 29

would be willing to satisfy them. We found that they had actually knowledge about the
community practices and applied it when interacting with the community (so their
organizational model has to be extended to include Act-ACQ-Man). Finally, there was
one requirement (Act-SUPP) currently uncovered. Since this requirement is one means
for the goal OSS Community Contributed among two others which are covered by TEI,
we conclude that it does not prevent TEI from adopting the integration strategy.

Table 9: OSS integration strategy requirements coverage

OSS Integration
strategy

Coverage Coverage by the TEI OSS Organizational Model
(strategy IEs appear underlined)

Requirements
Act-SEL CC2 Adopt OSS component ⇒ Act-SEL

Act-ACQ-Tech CC4 Missing
Act-LEARN CC4 Missing
Act-ASK CC4 Missing
Act-DECIDE-
Wishlist

CC2 Maintain (changing) component ⇒
Act-DECIDE-Wishlist

Act-DEP CC2 Adopt OSS component ⇒ Act-DEP

Act-INT CC2 Adopt OSS component ⇒ Act-INT

Act-MAINT-Prod CC2 Provide in-house maintenance ⇒ Act-MAINT-Prod
Rely on the OSS community for maintenance ⇒
Act-MAINT-Prod

Act-RepBUG CC1 Report bugs ⇔ Act-RepBUG
Act-PATCH CC2 Report solutions ⇒ Act-PATCH
Act-RepPATCH CC1 Report solutions ⇔ Act-RepPATCH
Act-SUPP CC4 Missing
Act-ACQ-Man CC4 Missing

Figure 14 depicts a portion of the new organizational model obtained by adhering TEI

to the integration adoption strategy. The complete model is not shown for the sake of
brevity. This model results from applying the model merging and the needed adjustments
as described in Section 6. The new elements that come from the OSS integration strategy
model (Figure 3) are shown in italics. Figure 14 includes the portion of the model that
appears under the goal Maintain (changing) component from the original TEI model
(from Figure 13). We can see that TEI keeps its three original alternatives for
maintenance: 1) Provide in-house maintenance, 2) Rely on the OSS community for
maintenance and 3) Contract 3PP organization for maintenance. Although the first and
third alternatives remain the same as in the original model, the second one (consisting on
relying on the community behind the OSS component) has been enriched thanks to the
integration strategy model. More concretely, the new goal OSS Community Contributed
now groups all the activities that TEI may carry out as part of its co-creation with the OSS

30

community. This goal can be achieved thanks to several means: some were already
present in the original TEI model (Report bugs, Report solutions) but the task Act-SUPP
(that consists on giving support to the community by sponsoring events, etc.) has emerged
as a new way to contribute to the community according to the integration adoption
strategy. The model also includes new softgoals from the integration strategy, e.g.
softgoal OSS Comp Evolves towards Desired Features makes now evident the fact that
TEI contributions to the OSS community help in making the OSS component evolve
towards the features needed by TEI. Finally, the model shows new dependencies that
were hidden in the original model, e.g. dependency with dependum Quality of the Evolved
OSS Component points out that TEI depends on the community for the quality of the
evolved component when they rely on the OSS community for maintenance.

Figure 14: Portion of TEI organizational model adhering integration adoption strategy

 31

8. Conclusions and future work

In this paper, we have embraced a model-based perspective to assess OSS adoption by
IT organizations. Goal models in the i* language have been proposed for adoption
strategies models. Three research questions have been investigated:
• RQ1: How to characterize OSS projects? We have built an ontology to define the

activities and resources implied in OSS adoption strategies. As result of the
literature review we undertook, we observed that there are several ontologies for
OSS but they focus on the perspective of the community, with special attention to:
roles of developers (committers, contributors,…), licenses, etc. In the context of
business strategies for organizations, this perspective is not the right one, since the
needs are different. Therefore, our ontology goes beyond the state of the art and
makes possible its use in other works that may be interested in the adopting
organization perspective.

• RQ2: How do OSS elements map to OSS adoption strategies? For each OSS
adoption strategy, we have assigned these activities and resources to the actor that
is in charge: the adopting organization or the OSS community. As a result, we have
provided a characterisation of each strategy in terms of activities undertaken,
resources provided, and dependencies of these two actors on each other. Finally,
we have designed a set of models for the different strategies expressed in the i*
language.

• RQ3: How do OSS adoption strategies relate to the goals of the OSS adopter
organization? The concept of coverage has been formulated to explore the
adequacy of an adoption strategy for a particular organization. The use of goal
models and the coverage concept provides an accurate way to assess the right
selection of adoption strategy and the update of organizational models to reflect the
use of the adoption.

The resulting approach has been satisfactorily applied to the TEI case which has shown
the adequacy of the proposal in an industrial setting. From this experience, we have
learned that a successful application of the approach requires a good expertise of the
modellers applying it. They need a deep understanding both of the organizational model
and the OSS adoption strategy models in order to be able to decide about intentional
elements coverage by models. Furthermore, the involvement of the organization business
managers is required since strategic decisions may have to be taken when merging the
organizational model and the OSS adoption strategy model as the TEI case has shown
(e.g. deciding to cover an initially uncovered requirement). Although we may expect other
cases to be more complex than the TEI case, the portions of the organizational models
involved in OSS adoption are not expected to grow proportionally, supporting then
scalability of the approach. Of course, further validation of this statement is required.

This work represents a significant extension of a previous paper [24]. More precisely,
the extensions are:
• We have extended the ontology by providing properties in addition to the concepts.

32

• We have presented the models for the six OSS adoption strategies (only two were

modelled in [24]).
• We have defined in detail the concept of coverage, which was only sketched in

[24].
• We have presented an example of application in a real company.
• We have provided more details in the background section.
Future work goes along several directions. First, we need to work further in the link

among business models and OSS adoption strategies, so that the process that has been
depicted in Section 6 becomes more prescriptive. Second, concerning the models for the
adoption strategies, we want to use i* roles as a way to organize the ontology elements:
roles like Contributor, Governance Body, OSS User, etc., may arrange the different
activities and resources, and then the adoption strategies will simply put together the
indicated roles in each case. Third, we need to be able to combine OSS adoption strategy
models, either because more than one strategy applies at the same time for the same OSS
component, or because more than one OSS component is being integrated in a project.

Last, we need to develop the summative evaluation stage of our research approach
described in Section 3. In other words, the framework must be applied in the context of
other industrial organizations besides the RISCOSS partners.

Acknowledgments

This work is a result of the RISCOSS project, funded by the EC 7th Framework
Programme FP7/2007-2013, agreement number 318249. It was also supported by the
Spanish project EOSSAC (TIN2013-44641-P).

References

[1] M. Driver, Hype Cycle for Open-Source Software, Technical Report, Gartner, 2013.
[2] H. Chesbrough, Open Business Models: How to thrive in the new Innovation Landscape, Harvard

Business School Press, 2006.
[3] D.J. Teece, Business Models, Business Strategy and Innovation. In Long Range Planning Journal, 43

(2010) 172-194.
[4] F. Kudorfer, J.P. Laisne, S. Lauriere, J. Lichtenthaler, G. Lopez, C. Pezuela, State of the art concerning

business models for systems comprising open source software. QualiPSo deliverable, 2007.
[5] C. Daffara, Business models in FLOSS-based companies. In Conference on Open Source Systems

(OSS) Workshops, 2007.
[6] S. Lakka, T. Stamati, C. Michalakelis, D. Martakos, The Ontology of the OSS Business Model: An

Exploratory Study, International Journal of Open Source Software and Processes, 3 (2011) 39-59.
[7] A. Osterwalder, The business model ontology - a proposition in a design science approach, University

of Lausanne, PhD Dissertation, 2004.
[8] A. Osterwalder, Y. Pigneur, C. Tucci, Clarifying Business Models: Origins, present and Future of

the Concept. In Communitacions of the Association for information Systems, 15 (May 2005).
[9] V. Chang, H. Mills, S. Newhouse, From Open Source to long-term sustainability: Review of

Business Models and Case studies. In All Hands Meeting 2007, OMII-UK Workshop.

 33

[10] C. Daffara, Business models in FLOSS-based companies.. In Open-Source Software in Economic
and Managerial Perspective (OSSEMP) 2007.

[11] A. Dornan, The Five Open Source Business Models. In Information Week 2008.
[12] E. Yu, Modelling Strategic Relationships for Process Reengineering, PhD. thesis, Toronto, 1995.
[13] X. Franch, A. Susi, M. C. Annosi, C. P. Ayala, R. Glott, D. Gross, R. S. Kenett, F. Mancinelli, P.

Ramsamy, C. Thomas, D. Ameller, S. Bannier, N. Bergida, Y. Blumenfeld, O. Bouzereau, D.
Costal, M. Dominguez, K. Haaland, L. López, M. Morandini, A. Siena, Managing Risk in Open
Source Software Adoption. In International Joint Conference on Software Technologies (ICSOFT),
2013, pp. 258-264.

[14] B. Kitchenham, Guidelines for performing Systematic Literature Reviews in Software Engineering
v2.3., EBSE Technical Report EBSE-2007-01, 2007.

[15] C. Ayala, L. López, D1.3 Modeling Support (consolidated version), Technical Report, RISCOSS FP7
project, 2014.

[16] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, C. Welty, Supporting online problem-solving
communities with the semantic web. . In International Conference on World Wide Web (WWW),
2006, pp. 575-584.

[17] G.L. Simmons, T.S. Dillon, Towards an Ontology for Open Source Software Development. In
International Conference on Open Source Systems (OSS), 2006, pp. 65-75.

[18] T.S. Dillon, G.L. Simmons, Semantic web support for open-source software development. In Signal
Image Tecnology and Internet Based Systems International Conference (SITIS), 2008, pp. 606-613.

[19] I. Mirbel, OFLOSSC, an ontology for supporting open source development communities. In
International Conference on Enterprise Information Systems (ICEIS), 2009, pp. 47-52.

[20] X. Franch, On the Lightweight Use of Goal-Oriented Models for Software Package Selection. In
International Conference on Advanced Information Systems Engineering (CAiSE), 2005, pp. 551-
566.

[21] C. Rolland, Requirements Engineering for COTS based Systems, In International Journal of
Information and Software Technology, 1999, 41 (14) 985-990.

[22] P. Soffer, B. Golany, D. Dori, Aligning an ERP system with enterprise requirements: An object-
process based approach. In Computers in Industry, 56 (2005) 639–662.

[23] L. López, X. Franch, J. Marco, Specialization in i* Strategic Rationale Diagrams. In International
Conference on Conceptual Modelling (ER) 2012, pp. 267-281.

[24] L. López, D. Costal, C. P. Ayala, X. Franch, R. Glott, K. Haaland, Modelling and Applying OSS
Adoption Strategies.. In International Conference on Conceptual Modelling (ER) 2014, pp. 349-362.

	1. Introduction
	2. Background
	2.1. OSS Adoption Strategies
	2.2. The i* Goal-Oriented Framework

	3. Research Approach
	4. An Ontology for OSS Adoption Strategies
	5. OSS Adoption Strategies Models
	5.1. OSS Acquisition
	5.2. OSS Integration
	5.3. OSS Initiative
	5.4. OSS Takeover
	5.5. OSS Fork
	5.6. OSS Release

	6. Guidelines for Applying OSS Adoption Strategy Models in an Organization
	6.1. Selecting the OSS Adoption Strategy
	6.1.1. Notion of coverage and its use for selecting strategies
	6.1.2. Formalization of the i* framework
	6.1.3. Formalization of the notion of coverage

	6.2. Merging the Organizational model with the Adoption Strategy model

	7. The TEI Case
	8. Conclusions and future work

