
Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

Open framework for web service selection using multimodal
and configurable techniques

Oscar Cabrera
1
, Marc Oriol

1
, Xavier Franch

1
, Jordi Marco

1
, Lidia López

1
, Olivia Fragoso

2
,

and René Santaolaya
2

1
 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

2
 Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca,

Morelos, México

{ocabrera, moriol, franch, llopez}@essi.upc.edu, jmarco@lsi.upc.edu, {ofragoso,
rene}@cenidet.edu.mx

Abstract. Services as part of our daily life represent an
important mean to deliver value to their consumers and
have a great economic impact for organizations. The
service consumption and their exponential proliferation
show the importance and acceptance by their
customers. In this sense, it is possible to predict that
the infrastructure of future cities will be supported by
different kind of services, such as, smart city services,
open data services, as well as common services (e.g.,
e-mail services), etc. Nowadays a large percentage of
services are provided on the Web commonly called
web services (WS). This kind of services have become
one the most used technologies in software systems.
Among the challenges when integrating web services in
a given system, requirements-driven selection occupies
a prominent place. A comprehensive selection process
needs to check compliance of Non-functional
Requirements (NFR), which can be assessed by
analyzing the Quality of Service (QoS). In this paper,
we describe a framework called WeSSQoS that aims at
ranking available WS based on the comparison of their
QoS and the stated NFR. The framework is designed
as an open Service Oriented Architecture (SOA) that
hosts a configurable portfolio of normalization
procedures and ranking algorithms that can be selected
by users when starting a selection process. The QoS
data from WS can be obtained either from a static,
WSDL-like description, or dynamically through
monitoring techniques. WeSSQoS is designed to work
over multiple WS repositories and QoS sources. The
impact of having a portfolio of different normalization
and ranking algorithms is illustrated with an example.

Keywords. Web service (WS), web service selection,
service oriented architecture (SOA), quality of service
(QoS), non-functional requirement (NFR), service level
agreement (SLA), ranking services.

Marco de trabajo para la selección de
servicios web utilizando técnicas

multimodales y configurables

Resumen. Los servicios como parte de nuestra vida
diaria representan un medio para entregar valor a sus
consumidores y tienen un gran impacto económico en
las organizaciones. El consumo del servicio y su
proliferación exponencial muestra la importancia y
aceptación por sus clientes. En este sentido, es posible
predecir que la infraestructura de ciudades futuras
serán soportadas por diferentes clases de servicios,
tales como, servicios de ciudades inteligentes,
servicios de datos abiertos, así como también servicios
comunes (por ejemplo: servicios de correo electrónico),
etc. Actualmente, un gran porcentaje de servicios son
proporcionados en la Web, comúnmente llamados
servicios Web (WS). Esta clase de servicios han
llegado a ser una de las más usadas tecnologías en
sistemas de software. Entre los retos cuando se
integran servicios Web en un sistema dado, la
selección dirigida por requisitos ocupa un lugar
prominente. Un proceso de selección exhaustivo
necesita verificar el cumplimiento de requerimientos no
funcionales (NFR), que pueden ser evaluados
analizando la calidad del servicio (QoS). En este
artículo, describimos un marco de trabajo llamado
WeSSQoS que tiene como objetivo la clasificación de
servicios Web disponibles, en base a la comparación
de su QoS y de los NFR establecidos. El marco es
diseñado como una arquitectura abierta orientada a
servicios que aloja una cartera configurable de
procedimientos de normalización y algoritmos de
clasificación que pueden ser seleccionados por los
usuarios cuando inician un proceso de selección. Los
datos QoS de los WS pueden ser obtenidos de forma
estática, desde la descripción del WSDL, o

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

dinámicamente a través de técnicas de monitoreo.
WeSSQoS está diseñado para trabajar sobre múltiples
repositorios de WS y fuentes de QoS. El impacto de
tener una cartera de diferentes algoritmos de
normalización y clasificación es ilustrado con un
ejemplo.

Palabras clave. Servicio web (WS), selección de
servicios web, arquitectura orientada a servicios (SOA),
calidad del servicio (QoS), requerimiento no funcional
(NFR), acuerdo de nivel del servicio (SLA), clasificación
de servicios.

1 Introduction

In today´s world, there are different kinds of
services created to facilitate the life of citizens in
their daily tasks. These services have been
developed to solve different needs according to
certain requirements of different human desires.
As a result, an enormous explosion in offering
services has occurred. In fact, it can be observed
that for a given need, a plethora of services can
be found. In addition, according to [1] there is a
growth in consumer services driven by various
social, economic and technological factors (e.g.,
demand for social services, size and role of the
public sector, complexity of work environments,
etc.).

A generic definition of a service is provided by
the Office of Government Commerce (OGC) in its
ITIL standard as follows [1]: “A service is a means
of delivering value to customers by facilitating
outcomes customers want to achieve without the
ownership of specific costs and risks”

The OGC considers that the outcomes
mentioned are possible from the performance of
different tasks and are limited by the presence of
certain constraints. In this sense, the presented
paper is focused on quality constraints that
characterize services. Specifically, web services
(WSs), since a large amount of services are being
provided using this technology.

WSs integrate a set of protocols and standards
for data interchange among software applications
developed in different programming environments
and languages, and executed in different
platforms. This interoperability is provided mainly
by the following open standards: XML, SOAP,
HTTP, WSDL and other Web-related standards
[2].

WSs have become a useful technology to
implement any kind of software, providing greater
interoperability and scalability. This success has
triggered the emergence of a huge WSs
marketplace. Consequently, for a given
functionality we may find a large set of WSs that
can be selected in several ways. This proliferation
of WS increments the chances to find existing
software that satisfies the stated needs, but at the
same time raises new problems and challenges.
Among them, there is an increasing need for
selecting the most appropriate WS in a given
context of usage [3]. Usually this problem is
studied in relation with the requirements elicited
from the stakeholders. In other words, the goal is
to select the WS that “better” satisfies the
stakeholder requirements.

We consider here the classical distinction
among functional and non-functional
requirements [4]. With respect to functional
requirements, it is necessary to validate that a
WS fulfills the functionality expected by the
stakeholders. On the other hand, non-functional
requirements (NFRs) refer to the Quality of
Service (QoS) that the WS offers, i.e., behavioral
and non-behavioral characteristics that the WS
exhibits for offering a given functionality: cost,
response time, availability, etc. Usually, NFRs are
expressed in terms of conditions over the QoS in
a document named Service Level Agreement
(SLA). Therefore, we can assess if a WS w
satisfies an NFR r by checking if the QoS of w
satisfies the clauses from the SLA that refer to the
concepts inherent to r.

Given this context, our work proposes a
framework for ranking a set of WSs that belong to
a certain software domain. We assume that the
functional requirements are used to determine
this software domain, therefore our framework
focuses on the ranking based on the satisfaction
of NFR.

The main goals that we aim to address in this
paper are: how NFR are expressed; what is the
measure of the satisfaction of an NFR in a given
WS; how are these individual measures combined
in order to rank the WS according to a set of NFR;
how the QoS of a WS may be obtained; where
the WSs are obtained from; and what is the value
obtained by combining different normalization
procedures and ranking algorithms to select WSs.

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

To attain these goals we have designed
WeSSQoS (Web Service Selection based on
Quality of Service), a framework for selecting
WSs based on their QoS and NFR. WeSSQoS
proposes an open Service Oriented Architecture
(SOA) that is able to manage several ranking
algorithms and normalization procedures for
computing the adequacy of a WS with respect to
NFR. These NFR are expressed by means of
formulae stated over QoS attributes (i.e., SLA
clauses) coming from the quality model proposed
in an earlier work [5].

NFR are classified as mandatory and optional,
and this information may be used for ranking the
results. WeSSQoS is designed to work over
several WS repositories that eventually can be
built using different technologies. In order to get
the behavior of the accessible WSs with respect
to the selection criteria, it is possible to use either
the description of the QoS (if included in the WS
definition), or the results of WS monitoring
(obtaining then the real, updated QoS of the WS).
In this sense, we share the vision of [6] that
proposes to define a priori only static attributes
like cost, whilst dynamic attributes like response
time or availability should be obtained through
monitoring.

The rest of the paper is organized as follows:
in Section 2 a review of some similar frameworks
is provided. Then, Section 3 describes the
proposed WS selection process. Section 4
introduces normalization procedures and ranking
algorithms. Section 5 describes the framework
architecture proposed. Sections 6 and 7 describe
a prototype and provide some validation. Finally,
section 8 presents conclusions and future work.

2 Related work

In the academic research, different frameworks
for ranking and selecting WSs according to their
QoS have been proposed. In Table 1 we show a
representative sample of these proposals,
including our WeSSQoS framework, comparing
them according to the following criteria:

a) Architectural style. Architecture in which the
framework has been developed. We find
Component Based Architectures (CBA),
Service Oriented Architectures (SOA) and a

combination of both. We represented each of
the styles by using C, S and CS,
respectively. It is worth noting that adopting
SOA allows integrating heterogeneous
systems more easily.

b) Attributes. Quality attributes considered in
those systems. In some cases, a small
predefined set of quality attributes is being
used, whereas other frameworks allow the
usage of arbitrary ones (although they may
validate the proposal with a given set). We
represent the value of this criterion by using
the amount of attributes defined as dynamic
(d) or as static (s). In case of configurable
attributes, i.e., the possibility of adding new
attributes, we use an asterisk (*).

c) QoS data source. Describes if quality data
are declared in the service description
(represented by using S) or for dynamic
quality attributes, if their value is obtained
through monitoring (represented by using M).
In cases where the proposals provide both
kinds of sources we represent the value by
using SM.

d) Multinormprocedure. Describes if the
framework is able to work with more than
one normalization procedure in order to
obtain the QoS data normalized about WSs
and stakeholders. We represent the value of
this criterion by using yes (����) or no (X). In
case of proposals which allow adding new
procedures, we use an asterisk (*).

e) Multialgorithm. Describes if the framework is
able to work with more than one selection
algorithm. We represent the value of this
criterion by using yes (����) or no (X). In case
of proposals which allow adding new
algorithms, we use an asterisk (*).

f) Multirepository. Describes if the framework is
able to obtain the data from different
repositories and combine the information to
extend the number of services and quality
attributes to evaluate. We represent the
value of this criterion by using yes (����) or no
(X). In case of proposals which allow adding
new repositories, we use an asterisk (*).

g) Prototype available. Specifies if the
framework is available to be used for the
research community. We represent the value
of this criterion by using yes (����) or no (X).

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

Table 1. Comparative table of frameworks

Proposal a) b) c) d) e) f) g)

E. Al-Masri et al.
[6]

C
6d
3s

S
M

X X ���� ����

T. Yu et al. [7, 8]
C

4d
1s

S X ���� X X

X. Wang et al.
[9]

-
*1d
5s

S X X X X

D. D’ Mello et al.
[10]

C
S

*3d
2s

S
M

X X X X

H. Wang et al.
[11]

C 6s
S
M

X X X X

P. Wang et al.
[12]

- *6d S X X X X

R. Mohanty et
al. [13]

- 9s S X ���� X X

Q. Tao et al. [14]
C 6s

S
M

X X X X

H. Cai et al. [15] C
S

*0s
S
M

X X X X

L. Sha et al. [16] C
S

7s
S
M

X X X X

M. Alrifai et al.
[17]

C 0s
S
M

X X X X

A. Huang et al.
[18]

- 0s S X X X X

C. Lin et al [19] C 0s S X X X X

Z. Gao et al. [20] - 5s S X X X X

WeSSQoS C
S

*9d
1s

S
M

*
����

*
����

*
����

����

As a result of the previous evaluation we

identified different gaps, such as, the lack of
frameworks with the capability to retrieve a list of
web services from different sources. As far as we
know, the only framework that fulfills this criterion
is provided by Al-Masri et al. [6], whose
framework obtains the list of WSs from several
sources (UDDIs, ebXMLs, search engines and
service portals). However, it does not specify a
method to combine the services data when
different sources have the same service with
different QoS data: cost, brand reputation, etc.

Another important gap is the lack of
frameworks with the capability to reuse existing

normalization procedures and selection
algorithms, which would allow assessing results
obtained from different proposals. In fact, only
QCWS [7, 8] offers the capability of
multialgorithm. However, since it is not a SOA, it
does not allow adding external algorithms in an
easy manner.

Regarding the criterion of prototype available,
we identified that although in most of the
proposals a prototype is being described and
even some of them have a Web page (e.g., [7,
8]), there is not a framework available. In fact, we
have only found a tool available from Al-Masri et
al [6].

3 The proposed web service selection
process

Figure 1 shows the proposed web service
selection process with the following inputs and
selection phases:

Inputs:

• WSlist, a QoS matrix of size k×n, where
(w1, …, wk) are the candidate WS and (q1,
…, qn) are the quality attributes referred in
the NFR. WSlist[i, j] stands for the value of
the quality attribute qj in the WS wi.

• lreqs, a NFR vector of size n, where lreqs[i]
specifies (1) the value that is required for
the attribute qi, (2) a Boolean value that
indicates if the attribute’s value is to be
minimized or maximized, and (3) another
Boolean value that indicates if the required
attribute’s value is mandatory or not. A
value is mandatory when it cannot be
higher than the required threshold when it
has to be minimized, or cannot be lower
than the threshold when it has to be
maximized, e.g., a NFR may state to
minimize the cost mandatorily with a
maximum of 100 euros per month.

Selection phases:

• Normalization. This phase has the purpose
of integrating the heterogeneous QoS
attributes’ values over which relies
decision-making in the WSs selection
problem. Both inputs WSlist and lreqs must
be normalized to compensate the different
measurement units of the different QoS

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

values by projecting them into a normalized
interval. Interval boundaries are established
by the normalization procedure used.
Details of the different normalization
procedures are described in the next
section. The result of this phase is the
normalized structures denoted by WSlistN
and lreqsN.

• Ranking. Starting from the normalized data
in the previous stage, a ranking algorithm
can be applied with the goal of computing
some similarity measure between the NFR
(lreqsN) and the QoS of each service
(WSlistN). This algorithm may be any of the
commonly employed in Vector Space
Models (VSM) to evaluate the similarity
between two objects described by vectors
[21]. For example, the Euclidian Distance
algorithm looks for the shortest distances
between the QoS of each candidate WS
and the user NFR. As a result, we obtain
the values of the algorithm and the WSs
ranked according to them. Next section
describes different ranking algorithms.

• Priority evaluation. In this phase two main
types of WSs ranking are carried out, one
by number of mandatory requirements that
services fulfill and one by the selection
algorithm used.

4 Normalization procedures and
ranking algorithms

One of the main characteristics of the proposed
framework architecture is that it supports the
coexistence of normalization procedures and
ranking algorithms offered as services.

4.1. Normalization procedures

The normalization service that WeSSQoS
currently offers has four normalization procedures
(see equations (1) (2) (3) (4)). Nevertheless, as
mentioned before, users can extend it by
providing their own normalization procedures. In
this sense, providing or selecting these
procedures depend on both the user’s needs and
the properties of such procedures, i.e., the
selection process involves analyzing and
evaluating their advantages and disadvantages
as well as their applicability.

For example, according to [22] procedure (1) is
very common and has an intuitive interpretation. It
also maintains the proportionality of different
values, i.e., ai/ak = Ai/Ak, for all i, k. Procedure (2)
refines the previous one in order that the
normalized scale covers exactly the interval [0, 1],
i.e., for each criterion the worse value is 0 and the
better value is 1, but in this case the
proportionality is not maintained. Procedure (3)
offers almost the same advantages as procedure
(1), although (3) concentrates Ai towards small
values. Finally, procedure (4) offers an important
advantage allowing dimensionless comparisons

Figure 1. Flow diagram for the web services selection
process

�� �	�� ���	��⁄
0<Ai≤1

(1)

�� �	�	
	�� ��⁄ (1a)

�� �	�� ��	
	�� ���	�� ��	
	��⁄
0≤Ai≤1

(2)

�� �	���	�� �	�� ���	�� ��	
	��⁄ (2a)

�� �	�� � ���
�
�
��

0<Ai<1

(3)

�� �	�� �� ����
�
�
�� (4)

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

of vectors related to the problem criteria.
Procedures (1a) and (2a) represent the case of
minimum values of procedures (1) and (2)
respectively, i.e., they vary the relation mentioned
above and establish 1 as worst value and 0 as
best value. An extended comparative analysis of
these procedures is out of the scope of the paper,
but the reader can refer to [22, 23] for details
regarding the different normalization procedures.

4.2. Ranking algorithms

The ranking service that WeSSQoS currently
offers includes six ranking algorithms (see
equations (5) to (10)). As mentioned before, users
can also provide their own ranking algorithms. In
this sense, users are responsible for selecting the
ranking algorithms fulfilling their requirements, by
analyzing and assessing the advantages and
disadvantages as well as their applicability.

According to [24], the Cosine measure (5)
assumes that similarity is proportional to the angle
between two t-dimensional vectors in a t-
dimensional space. Because the numerator is
divided by the product of the lengths of the
vectors, the measure tends to give low similarities
between long vectors, i.e. vectors with many
terms. The Overlap measure (6) compensates the
Cosine measure by dividing by the vector having

the lowest sum of weights. The Dice coefficient
(7) gives more weight to matches in the data than
to differences, whereas Jaccard's coefficient (8) is
the proportion of characters (i.e. index terms) that
match, excluding those characters that lack in
both vectors. Finally, the Euclidean distance (9)
emphasizes differences between two vectors
more than matched features. An important
disadvantage of this measure is related to the
variables used, i.e. if these variables are
correlated then the information provided will be
redundant. A variation of the Euclidean distance,
emphasizing distance rather than similarity is
presented in equation (10). An extended
comparative analysis of these algorithms is out of
the scope of the paper. Details of such algorithms
can be checked at [24, 25].

To illustrate the execution of the WS selection
process, let’s consider the following example: A
user needs to select a WS for a given domain
with a set of NFRs instrumented in different
metrics (e.g., cost, response time, availability,
etc.). The user defines the list of values for such
metrics in Ireqs (see Table 2 – NFRs from
Stakeholders Ireqs).

In the repository there are 4 WSs that fulfill the
functionality required by the user with different
QoS (see Table 2 – QoS from candidate WSs).
Both NFRs and QoS are normalized by applying
the procedure that better fulfills the user’s needs.
In Table 2 we show the results applying the
normalization procedure (1). These normalized
data are then the input for the ranking phase (see
Table 3). On top of the table, we depict the results
of applying the Euclidean distance algorithm (9). It
may be observed that WS1 has the minimum
value, thus it looks like a promising candidate for
selection before evaluating the compliance
degree of the mandatory requirements.

As for the priority evaluation phase, let’s
suppose that all requirements are mandatory.
Based on this premise, the results depicted in the
bottom of Table 3 shows that WS1 and WS2
comply with 5 of the 8 NFR, whilst WS3 and WS4
comply with 3. When the results obtained by the
phases of ranking and priority evaluation are
combined, the prioritized list of services is as
shown in the bottom of Table 3. WS1 is still the
best ranked service, although the ranking results
for the rest of services change.

�	�������(�, �) � 	 ∑ (�� ∗ ��)��
� ∑ �����
� ∗ ∑ �����
�
 (5)

�	��!�"#$%(�, �) � 	 ∑ (�� ∗ ��)��
��	
(∑ ����
� , ∑ ����
�) (6)

�	�&���(�, �) � 	 2 ∗ ∑ (�� ∗ ��)��
�∑ ����
� + ∑ ����
� (7)

�	�)$��$"&(�, �) �	 ∑ (�� ∗ ��)��
�∑ ����
� +∑ ����
� �∑ (�� ∗ ��)��
� (8)

*	+,�-�#�&�$�(�, �) � 	�� (�� � ��)��
�
� (9)

.
/*	+,�-�#�&�$�(�, �) � 	 11 + ∑ (�� � ��)���
� (10)

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

Table 2. Inputs and outputs of the
normalization phase

NFRs from Stakeholder, lreqs

[30, 35, 31, 15, 20, 0.5, 0.03, 150]

QoS from candidate WSs, WSlist

WS1 20 30 25 15 10 0.4 0.3 50

WS2 5 10 20 20 15 0.5 0.2 80

WS3 33 11 6 8 10 0.8 0.4 125

WS4 25 35 45 45 15 0.5 0.5 302

Normalized NFRs, lreqsN

[0.91, 1, 0.69, 0.33, 1, 0.62, 0.60, 0.50]

Normalized QoS from candidate WSs, WSlistN

WS1 .7 .9 .6 .3 .5 .5 .6 .2

WS2 .1 .3 .4 .4 .8 .6 .4 .3

WS3 1 .3 .1 .2 .5 1 .8 .4

WS4 .8 1 1 1 .8 .6 1 1

Table 3. Results from ranking and priority

evaluation

ID Name

WS

Euclidian
distance

Ordering by
QoS

WS1 AirportWeather

Check

0.71083 1

WS2 BerreWeather 1.14562 4

WS3 FastWeather2 1.11749 3

WS4 Weather 1.01981 2

ID Name

WS

Mandatory QoS vs.
Mandat.

WS1 AirportWeather

Check

5/8 1

WS2 BerreWeather 5/8 2

WS3 FastWeather2 3/8 4

WS4 Weather 3/8 3

5 Framework architecture proposed

The proposed framework, Web Service Selection
Based on Quality of Service (WeSSQoS) is
structured under the SOA paradigm in order to
facilitate its integration into other systems. Figure
2 shows the elements integrating the framework
architecture which are described as follows:

• QoSSelector. Service that integrates three
services: QoSRepositoryProxy, QoS
NormalizeData and QoSSelectionModel,
providing a unified view and a single entry
point to the whole system.

• QoSRepositoryProxy. Service that obtains
the QoS of WSs that belong to a given
domain. Two sources of QoS information are
defined:
o Monitor. Obtains the QoS at execution

time by means of monitoring techniques.
A monitor works on a predefined catalog
of dynamic quality attributes. Any
information about static quality attributes
will be available in the description of the
service, e.g., service cost.

o Data Bank. Obtains the QoS from the WS
provider which describes quality data in
extended WSDL files. In case of dynamic
quality attributes, such as mean response
time, the quality value is the one that the
provider promises to deliver.

• QoSNormalizeData. Service that normalizes

stakeholder requirements and QoS data
obtained from WSs by applying normalization
procedures as described in section 4. Its
SOA is flexible enough as to extend the
portfolio of normalization procedures. In its
current version, WeSSQoS provides, but it’s
not limited to, four normalization algorithms.
Users can provide and add its own
normalization procedures which will be
available for the scientific community.

• QoSSelectionModel. Service that sorts
candidate WSs by applying ranking
algorithms as described in section 4. Also its
internal architecture is flexible enough as to
extend the portfolio of ranking algorithms.
Currently, WeSSQoS provides, but it’s not
limited to, six ranking algorithms. Users can
provide and add its own ranking algorithms

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

which will be available for the scientific
community.

Figure 2 also shows the relationships among
the services previously mentioned. As shown, the
composition of services follows an orchestration
managed by QoSSelector service. A sequence
diagram of such orchestration is shown in Figure
3. The main method in QoSSelector is
rank4QoSRepository, which is used to rank the
services. The input of this operation is a list of
repositories (lProxies), the list of requirements
(lReqs), domain of the WSs (domain),
normalization procedure (iNumNormalize) and

ranking algorithm (iNumUtilFunction). The output
obtained is a list of WSs ranked according to the
satisfaction of NFRs and mandatory nature,
according to the process described in section 3.

The sequence shown in Figure 3 is described
as follows: rank4QoSRepository operation
invokes getServicesDataFromDomain operation
for each QoSRepositoryProxy (Databank or
Monitor) specified in lProxies. From such
invocation, the list of services with QoS
information is obtained (WSlist). In case of having
repeated QoS information in more than one
repository, a simple priority policy is applied to the
repositories list, i.e. the order in the repositories
list determines the priority of attributes appearing
in more than one repository.

Once the list WSlist of services with their QoS
information is obtained, the operations of
normalization and ranking are applied. First, the
operation getNormalizedData from QoS
NormalizedData service is executed. This
operation takes as input the following parameters:
WSlist, NFRs from the stakeholder represented
by lreqs and the type of normalization process
represented by iNumNormalize. The output of this
method is the normalized list of QoS and NFR.
Afterwards, QoSSelectionAlgorithm operation
from QoSSelectionModel service is executed in
order to rank WSs applying the ranking algorithm
identified by iNumUtilFunction.

The final output is a list of orderedWS that can
be simple or multiple. A simple list provides WSs
sorted by a single ranking algorithm using a single
normalization procedure and furthermore provides
WSs sorted by mandatory attributes. Whilst a
multiple list provides a simple list by each ranking
algorithm and normalization procedure applied,
considering that stakeholders can provide a list of
normalization procedures and ranking algorithms.

Table 4 shows the interfaces of services
appearing in the sequence diagram, whereas
attributes and classes involved are represented in
Figure 4. A general description of these elements
is provided as follows:

• lproxies is a list of repositories from which
the QoSRepositoryProxy service obtains
QoS Data. Each repository has the following
information: name, endpoint that
corresponds to the URL address where the

Figure 2. WeSSQoS general architecture

Figure 3. Sequence diagram of the basic use case of
the framework

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

repository is located (either databank or
monitor) and description.

• lReqs is a list of NFRs from the stakeholder
where each NFR has the following
information: name of the quality attribute,
required value and two Boolean values
regarding normalization of attributes
(maximize or minimize) and mandatory
attributes (mandatory or non-mandatory).

• The domain is a string that defines a specific
class of WSs.

• Identifiers iNumNormalize and iNumUtil
Function represent normalization procedures
and ranking algorithms, respectively.

Table 4. Interfaces of WeSSQoS services

QoSSelector

Operation: rank4QoSRepository

Input parameters:

lProxies: list<Repository Proxy>

lReqs: list<Stakeholder

Requirements>

domain: string

iNumNormalize: int

iNumUtilFunction: int

Result:

orderedWS: list

<ServiceData
PriorityResult>

QoSRepositoryProxy

Operation:

getServicesDataFromDomain

Input parameters: domain: string

Result:

WSList: list

<ServiceData>

QoSNormalizeData

Operation:

getNormalizedData

Input parameters:

completeWSList: list <ServiceData>

lReqs: list <Stakeholder
Requirements>

iNumNormalize: int

Result:

NormalizedData: list

<normalizedService
Data, normalized lReqs>

QoSSelectionModel

Operation:

QoSSelectionAlgorithm

Input parameters:

CompleteWSList: list <ServiceData>

lReqs: list <Stakeholder

 Requirements>

iNumUtilFunction: int

Result:

orderedWS: list
<ServiceDataPriorityRes
ult>

6 WeSSQoS prototype description

The WeSSQoS system described so far is
implemented and available in the following URL,
http://gessi.lsi.upc.edu/wessqos/. The system has
been developed using Java J2EE and Apache
Axis2 as web service technology, and Apache
Tomcat as execution platform. We have
developed WSs belonging to different domains
and placed in different repositories using

Figure 4. Class diagram of the services supporting the
internal architecture of WeSSQoS

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

Glassfish web service technology, in order to
assess the technological independence of the
platform.

A client Web interface divided into different
sections was also developed (see Figure 5). The
first section corresponds to repositories
containing WSs with QoS data description. The
basic use case of this section is to provide the
domain and repositories over which the search
will be done. The domain name is required to
obtain a specific subset of services from
repositories. The framework allows using both
internal repositories (i.e., local to WeSSQoS) and
external ones (i.e., provided by stakeholders).

As already mentioned, the repositories are
identified using their endpoint. Each repository
might have different strategies to extract QoS
data, i.e., using the strategy design pattern it is
possible to extend the repository behavior
adopting different QoS data sources in the same
repository (e.g., QoS data from XML documents,
databases, etc.). Finally, each repository from the
list of chosen repositories can be prioritized.

The second section, depicted in Figure 6
corresponds to normalization procedures that will
be applied on both QoS data from WS and NFR
from stakeholders. The basic use case of this
section is to provide at least a normalization
procedure in order to compensate the different
measurement units of the different QoS and NFR
values by projecting them into a normalized

interval. The framework allows using both internal
normalization procedures (i.e., local to
WeSSQoS) and external ones (i.e., provided by
the stakeholders).

Normalization procedures are also identified
using their endpoint. Each procedure selected or
provided might have optional strategies acting as
a repository of normalization procedures in the
same endpoint.

The third section, depicted in Figure 7,
corresponds to ranking algorithms that will be
applied to prioritize WSs. The basic use case of
this section is to provide at least a ranking
algorithm fulfilling the data structure specified in
the QoSSelectionModel service depicted in Table
4. Furthermore, the framework allows using both
internal ranking algorithms and external ones.
Ranking algorithms are identified using their
endpoint. Each algorithm selected or provided
might have alternative strategies acting as a
repository of ranking algorithms in the same
endpoint. Finally, each endpoint from the list of
chosen selection models can be deleted.

Figure 6. Normalization procedures interface

Figure 5. Repositories of web services with QoS
description

Figure 7. Ranking algorithms interface

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

The fourth section, depicted in Figure 8,
corresponds to stakeholder requirements, where
stakeholders introduce NFR to be fulfilled. These
NFR are settled over quality attributes that can be
attributes provided by the framework based on [5]
or by other external source. Clearly, stakeholders
have the responsibility of choosing quality
attributes that WSs should comply, i.e., these
attributes will be used to compute the relationship
(similarity or dissimilarity) between them and the
QoS information from WSs. For each attribute
introduced, the following information is required:
value that WSs should meet, maximization or
minimization to compensate the attribute value
and information allowing to identify when an
attribute is mandatory to prioritize services.

Finally, the results section depicted in Figure 9,
shows the resulting ranking and provides different
options described below. The first ranking
provided is a sorted WSs list according to the
ranking algorithm and normalization procedure
chosen by stakeholders. Also the number of
mandatory attributes fulfilled is depicted.

Figure 10 shows the graphic option of the
results with two types of charts. The chart on the
right shows the ranking results applying
normalization procedure (1) and ranking algorithm
(5). The Chart on the left shows the ranking
results applying mandatory requirements.

As mentioned before, the architecture of
WeSSQoS allows providing both, a list of
normalization procedures and a list of ranking
algorithms supplying a list of results. This
functionality allows comparing the different
rankings obtained as well as the behavior shown
by ranking algorithm in combination with a
normalization procedure. In this sense, Figure 11
shows the ranking of four services applying two
ranking algorithms with two normalization
procedures yielding four different results.

7 Validation

In order to test our prototype, we have designed a
scenario to execute some test cases. The
scenario has been designed to assess the
following features of our framework:

Figure 10. Ranking results using Euclidean distance

Figure 11. Ranking results considering mandatory
requirements

Figure 8. Stakeholder requirements interface

Figure 9. Results interface

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

• Quality attributes management. In the
scenario, the customer can decide the quality
attributes which she/he is interested on.
These attributes may or may not be defined
in the information about the WSs being
selected. The basic case is when the
customer asks for a subset of attributes
defined on the repositories. The customer
can also ask for attributes that are not
specified on repositories, these attributes will
be treated as undefined by the ranking
algorithm.

• Repositories independence. Our framework
does not have restriction in the number or
repositories used for the search. Each
repository can be static or dynamic. When
there is more than one repository, the
following assumptions are considered:
o The WS of each repository can be

different. In this case we consider as WS
candidates the union of all services inside
all repositories.

o More than one repository may contain
information of a given WS, but the quality
attributes are disjoint. In this case, the
algorithm will simply combine the required
attributes retrieving them from the
adequate repositories.

o More than one repository may contain
information of a given WS, and some
quality attribute may appear in more than
one repository. In this situation, the value
is taken from the repository with more
priority (i.e., the one declared first).

Figure 12 shows the architecture implemented
and the necessary data for running the tests
previously described. We have both types of
QoSRepositoryProxy (static and dynamic). The
Monitor instances use Axis, whilst the DataBank
(which contains information about two WS
domains) uses Glassfish. In figure 12, the names
of some of WSs have been included. These
services have been selected in order to highlight
services located in more than one repository, and
some of them have attributes in more than one
repository.

Databank1 contains information about all
attributes with the exception of Current
ResponseTime (CRT) and CurrentAvailability
(CA). In the services from Monitor1 and Monitor2,

the information about what attributes have
information is included too. In addition to the CRT
and CA, there is also information about the
AverageResponseTime (ART) in some services.
If the priority of repositories (i.e., their order of
appearance) is Monitor1, Monitor2, DataBank1,
given the service AirportWeatherCheck (which is
located in all the repositories) ART, CRT and CA
will be taken from the Monitor1 and the other
attributes from the DataBank1. However, if the
order was Monitor2, Monitor1 and DataBank1, the
CRT would be taken from the Monitor2, ART and
CA from the Monitor1 and the rest from the
DataBank1. The users can test the scenarios
described before or testing other ones using the
WeSSQoS prototype.

8 Conclusions and future work

In this paper we have presented WeSSQoS, a
framework for ranking available WSs through the
evaluation of their QoS with respect to the stated
NFR. In terms of the criteria introduced in section
2, we can conclude that the proposal has the
following advantages:

• Architectural style. WeSSQoS is developed
as a Service Oriented System itself.
Following SOA principles, users can add new
services related to ranking algorithms,
repositories and normalization procedures, if

Figure 12. Scenario for WeSSQoS tests

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

they are just compliant with the expected
service definitions.

• Quality attributes. WeSSQoS is independent
of the Quality Model or ontology used to
define quality attributes. The system
interface allows users to select from a well-
known predefined set of attributes based on
[5], and also add any kind of quality attributes
from any quality model. As many
frameworks, WeSSQoS is able to work with
either static or dynamic quality attributes,
although it’s important to mention that this
distinction is implicit from the way the data
are retrieved.

• QoS Data. WeSSQoS is able to retrieve
quality attributes from either, quality
descriptions in service definition (WSDL) or
by monitoring systems. The usage of a
common interface (proxy) to retrieve data in
a uniform way from these sources provides
extensibility to add new kinds of repositories,
independently of the approach used to obtain
the data.

• Multinormprocedure. WeSSQoS is able to
work with any kind of normalization
procedure that is implemented using the
defined interface. Eventually, we could use
arbitrarily complex procedures, e.g.
aggregators of results through choreography
of other WSs defining different normalization
procedures.

• Multialgorithm. WeSSQoS is able to work
with any kind of ranking algorithm that is
implemented using the defined interface.
Eventually, we could use arbitrarily complex
algorithm, e.g. aggregators of results through
choreography of other WSs that define
different algorithms.

• Multirepository. WeSSQoS allows the user to
include several repositories of WSs with
independence of the technology used.
Furthermore, it provides a mechanism to
combine the QoS data when the same
service is present in more than one
repository. Currently, the user is responsible
for selecting those repositories that are
compatible with each other, e.g., repositories
should use a common terminology to refer to
the same quality attribute.

• Prototype available. WeSSQoS is available
at http://gessi.lsi.upc.edu/wessqos/. The
current version has been tested and
validated as explained in section 7.

In section 5 we dealt with the issue concerning
WS repositories’ priority policy, the main idea of
this is to integrate in a general repository the WSs
coming from all chosen repositories in a
prioritized way. It is worth noting, WS integration
is used in repositories combination and it is not
part of WS composition, this topic is out of the
scope of the paper.

As future work, we have identified several
research lines and improvements that could be
performed in order to increase the current
framework’s capabilities:

• Perform tests in large web service
ecosystems to ensure the correctness and
suitability of the framework to rank web
services in real situations.

• Increase the number of dynamic quality
attributes retrieved by the monitoring system.

• Design different sophisticated mechanisms
to combine data from several repositories
and unify these strategies under a common
interface, in order to build it as a service.

• Automate analysis and evaluation of ranking
algorithms and normalization procedures.

Acknowledgements

This work was partially supported by the Spanish
project TIN2013-44641-P. Oscar Cabrera Bejar is
a PhD student at the UPC using a CONACYT
grant.

References

1. Taylor, S., Iqbal, M., & Nieves, M. (2011). ITIL
Version 3 Service Strategy. The Office of
Government Commerce.

2. Papazoglou, M. (2007). Web Services: Principles
and Technology. Pearson-Prentice Hall.

3. Menasce, D. (2002). QoS issues in web services.
Internet Computing, IEEE, 6(6), 72-75.

4. Robertson, S., & Robertson, J. (2012). Mastering
the Requirements Process: Getting Requirements
Right. Pearson Education.

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX–XX
ISSN 1405-5546

5. Ameller, D., & Franch, X. (2008). Service level
agreement monitor (SALMon). In Composition-
Based Software Systems, ICCBSS’08, Seventh
International Conference on, IEEE, 224-227.

6. Al-Masri, E., & Mahmoud, Q. H. (2009, May). A
broker for universal access to web services. In
Communication Networks and Services Research
Conference, CNSR'09, Seventh Annual, IEEE,
118-125.

7. Yu, T., & Lin, K. J. (2005). Service selection
algorithms for Web services with end-to-end QoS
constraints. Information Systems and E-Business
Management, 3(2), 103-126.

8. Yu, T., & Lin, K. J. (2005). A broker-based
framework for qos-aware web service composition.
In E-Technology, e-Commerce and e-Service,
EEE'05, IEEE International Conference on, IEEE,
22-29.

9. Wang, X., Vitvar, T., Kerrigan, M., & Toma, I.
(2006). A qos-aware selection model for semantic
web services. In Service-Oriented Computing–
ICSOC 2006, Springer Berlin Heidelberg, 390-401.

10. D'Mello, D. A., Ananthanarayana, V. S., &
Santhi, T. (2008). A qos broker based architecture
for dynamic web service selection. In Modeling &
Simulation, AICMS’08, Second Asia International
Conference on, IEEE, 101-106.

11. Wang, H. C., Lee, C. S., & Ho, T. H. (2007).
Combining subjective and objective QoS factors for
personalized web service selection. Expert
Systems with Applications, 32(2), 571-584.

12. Wang, P., Chao, K. M., & Lo, C. C. (2010). On
optimal decision for QoS-aware composite service
selection. Expert Systems with Applications, 37(1),
440-449.

13. Mohanty, R., Ravi, V., & Patra, M. R. (2010).
Web-services classification using intelligent
techniques. Expert Systems with Applications,
37(7), 5484-5490.

14. Tao, Q., Chang, H. Y., Gu, C. Q., & Yi, Y. (2012).
A novel prediction approach for trustworthy QoS of
web services. Expert Systems with Applications,
39(3), 3676-3681.

15. Cai, H., Hu, X., Lü, Q., & Cao, Q. (2009). A novel
intelligent service selection algorithm and
application for ubiquitous web services
environment. Expert Systems with Applications,
36(2), 2200-2212.

16. Sha, L., Shaozhong, G., Xin, C., & Mingjing, L.
(2009). A qos based web service selection model.
In Information Technology and Applications, 2009.
IFITA'09. International Forum on, IEEE, 353-356.

17. Alrifai, M., Risse, T., Dolog, P., & Nejdl, W.
(2009). A scalable approach for qos-based web
service selection. In Service-Oriented Computing–
ICSOC’08 Workshops, Springer Berlin Heidelberg,
190-199.

18. Huang, A. F., Lan, C. W., & Yang, S. J. (2009).
An optimal QoS-based Web service selection
scheme. Information Sciences, 179(19), 3309-
3322.

19. Lin, C. F., Sheu, R. K., Chang, Y. S., & Yuan, S.
M. (2011). A relaxable service selection algorithm
for QoS-based web service composition.
Information and Software Technology, 53(12),
1370-1381.

20. Gao, Z. P., Chen, J., Qiu, X. S., & Meng, L. M.
(2009). QoE/QoS driven simulated annealing-
based genetic algorithm for Web services
selection. The Journal of China Universities of
Posts and Telecommunications, 16, 102-107.

21. Salton, G., Wong, A., & Yang, C. S. (1975). A
vector space model for automatic indexing.
Communications of the ACM, 18(11), 613-620.

22. Barba Romero, S. & Pomerol, J. (2000).
Multicriterion Decision in Management. Principles
and Practice, Kluwer Academic Publishers.

23. Peña, V. H., Lai, T. L., & Shao, Q. M. (2008). Self-
normalized processes: Limit theory and Statistical
Applications. Springer.

24. Knappe, R. (2005). Measures of semantic
similarity and relatedness for use in ontology-
based information retrieval. Doctoral dissertation,
Roskilde University.

25. Bernstein, A., Kaufmann, E., Kiefer, C., & Bürki,
C. (2005). Simpack: A generic java library for
similarity measures in ontologies. University of
Zurich.

Computación y Sistemas Vol. 18 No. 4, 2014 pp XX-XX
ISSN 1405-5546

Oscar Cabrera is a PhD
student in Computer Science
at the Universitat Politècnica
de Catalunya, UPC,
Barcelona, Spain. He obtained
his MSc degree in computing
in the Software Engineering
area from the National Center
for Research and

Technological Development (CENIDET), Cuernavaca,
Morelos, Mexico. He is a member of the GESSI
research group at UPC. His current research lines
include Service-Oriented Computing, current trends in
smart cities, context modeling, quality models and
information technology in software development.

Marc Oriol is a PhD student
in Computer Science at the
Universitat Politècnica de
Catalunya, UPC, Barcelona,
Spain. He obtained his MSc
degree in computing from the
same university. He is a
member of the GESSI
research group at UPC. His

current research lines include Service-Oriented
Computing, Quality-of-Service and monitoring.

Xavier Franch is Associate
professor and Head of the
GESSI research group at the
Universitat Politècnica de
Catalunya, UPC, Barcelona,
Spain. He obtained his PhD
and Msc in Informatics from
this University. His current
research lines include

Service-Oriented Computing, Requirements
Engineering, Software Quality and Software
Architecture, among others.

Jordi Marco is Associate
professor and member of the
GESSI research group at the
Universitat Politècnica de
Catalunya, UPC, Barcelona,
Spain. He obtained his PhD
and Msc in Computing from
this University. His current
research lines include

Service-Oriented Computing, conceptual modeling,
container libraries, and computer graphics.

Lidia López is a researcher of
the GESSI research group at
the Universitat Politècnica de
Catalunya, UPC, Barcelona,
Spain. She obtained her PhD
and Engineer degree in
Informatics from this
University. Her current
research lines include Service-

Oriented Computing, goal-oriented modeling, and
Open Source Software.

Olivia Graciela Fragoso Díaz
is a researcher in the Software
Engineering area from the
National Center for Research
and Technological Develop-
ment (CENIDET),
Cuernavaca, Morelos, México.
Her areas of interest are web
services selection, web

services for e-learning, software reusability, and
processes for software development.

René Santaolaya Salgado is
a researcher in the Software
Engineering area from the
National Center for Research
and technological develop-
ment (CENIDET),
Cuernavaca, Morelos, México.
His areas of interest are web
services, software reusability,

and integrated environments for software development
visual programming.

Article received on XX/XX/20XX; accepted XX/XX/20XX.

