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Abstract. The specialization relationship is offered by the i* modeling language through the is-a 

construct defined over actors (a subactor is-a superactor). Although the overall meaning of this 

construct is highly intuitive, its semantics when it comes to the fine-grained level of strategic rationale 

(SR) diagrams is not defined, hampering seriously its appropriate use. In this report we provide a 

formal definition of the specialization relationship at the level of i* SR diagrams. We root our 

proposal over existing work in conceptual modeling in general, and object-orientation in particular. 

Also, we use the results of a survey conducted in the i* community that provides some hints about 

what i* modelers expect from specialization. As a consequence of this twofold analysis, we identify, 

define and specify two specialization operations, extension and refinement, that can be applied over 

SR diagrams. Correctness conditions for them are also clearly stated. The result of our work is a 

formal proposal of specialization for i* that allows its use in a well-defined manner.  

Keywords: i* framework, i-star, goal-oriented modeling, specialization, generalization, subtyping, 

inheritance. 

1. Introduction 

The i* (pronounced eye-star) framework [1] is currently one of the most widespread goal- and agent-

oriented modeling and reasoning frameworks. It has been applied for modeling organizations, business 

processes and system requirements, among others.  

In the heart of the framework lies a conceptual modeling language, that we will name “the i* language” 

throughout the report. It is characterised by a core whose constructs, although subject of discussion in 

some details [2], are quite agreed by the community. A rough classification of the core distinguishes six 

main concepts: actors, intentional elements (IE), dependencies, boundaries, IE links and actor association 

links [3]. They can be used to build two types of diagrams: Strategic Dependency (SD) diagrams, 

composed by actors, dependencies and actor association links among them; and Strategic Rationale (SR) 

diagrams, that introduce IEs, with their respective links, inside actors’ boundaries, and reallocate the 

dependencies from actors to IEs. 

Among actor association links, we may find a typical conceptual modeling construct: specialization, 

represented by the is-a language construct. The i* Guide [4] defines this construct as follows: “The is-

a association represents a generalization, with an actor being a specialized case of another actor”. In other 

words, this construct is defined at the SD level as: an actor a (subactor) may be declared as a 

specialization of an actor b (superactor) using is-a. No more details are given and in particular, the 

effects that a specialization link may have on SR diagrams is not stated. 

Despite the widespread use of specialization in i* models, a systematic analysis of the literature reveals 

that none of these works has defined formally the effects of the is-a link beyond the sketchy definition 

we have presented above, or proposed methodological guidelines for its usage. In particular, and this is 

the focus of our work, given the relationship a is-a b, the consequences at the SR diagram involving a 

are not clear. Therefore, several questions have not a welldefined answer. For instance, consider the 

model at Fig. 1: how are IEs belonging to Customer inherited in Family?, what modifications are valid 

over these inherited elements?, do dependencies as Easily Bought also apply to Family?, may Buy Travel 
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have additional subtasks in Family?, etc. This uncertainness makes the modeller hesitant about the use of 

specialization and then about the correctness of the i* models that use this construct. 

 

 

Fig. 1. Fragment of i* SR model with two actors linked with is-a. 

The work presented here addresses these questions and specifically tries to answer the following research 

question divided into subquestions: 

RQ. Given an actor specialization relationship declared at the SD level, what modeling operations can be 

defined at the SR level? 

SQR1. What is the relevant background to make this decision?  

SQR2. What are the effects of these operations? 

SQR3. What are the correctness conditions to be fulfilled for their application? 

The rest of the report is structured as follows. Section 2 presents the background for our work from which 

we identify two specialization operations, extension and refinement, defined formally in sections 5 and 6 

upon the algebraic specification of i* and the correctness notion given in Section 3. Section 3 presents the 

formalization of i* language and Section 6 provides the conclusions and future work. Basic knowledge of 

i* is assumed, see [1] and [4] for details. 

2. Background and Specialization Operations in i* 

The idea of organizing concepts into is-a hierarchies emerged very early in Information Systems and 

Software Engineering. The main concepts that appear around taxonomies are specialization or how to 

make something generic more concrete; its counterpart generalization; and inheritance as the mechanism 

that determines how the characteristics from the most generic concept are transferred to the most concrete 

one. 

2.1. The concept of specialization and its use in conceptual modeling 

In this subsection we focus on specialization in three areas of interest: knowledge representation, software 

development and conceptual modeling. 

Knowledge representation. Quillian introduced inheritance as part of his definition of semantic 

networks [5]. Brachman and Levesque distinguished two kinds of inheritance semantics [6]. In strict 

inheritance, a concept inherits all the attributes of its ancestors on the is-a hierarchy and can add its own 

attributes. In defeasible inheritance, it is allowed cancelling attributes from the ancestors. Although 

cancellation can help to represent knowledge, it poses some problems to infer information [7]. 

Object-oriented (OO) programming languages. Simula 67 [8] was the first programming language 

proposing the notions of class and inheritance. It adopted a strict inheritance strategy. Later on, languages 

as Smalltalk-80, Delphi, C++, C# and Java aligned with defeasible inheritance allowing modifying the 
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implementation of a method (overriding). Visual Basic for .NET allowed in addition cancelling properties 

(shadowing). As a kind of compromise between the strict and defeasible approaches, Eiffel introduced the 

concept of design by contract [9] to delimit the changes included in an overridden method and facilitating 

the declaration of class invariants. 

Conceptual modeling. First works on conceptual modeling focused on semantic data models for 

database logical design. Smith and Smith introduced the notion of generalization in database modeling 

according to the concept of strict inheritance [10]. Afterwards, conceptual modeling languages and 

methodologies for specification and design in the OO paradigm started to proliferate. For instance, 

Borgida et al. proposed a software specification methodology based on generalization/specialization that 

uses the concept of strict inheritance adding the refinement of attributes [11]. Concerning languages, the 

UML became the dominant proposal [12]. Inheritance is used in class diagrams in the same way it was 

used the semantic data models. 

Table 1 classifies these approaches using Meyer’s Taxomania rule [9]: “Every heir must introduce a 

feature, redeclare an inherited feature, or add an invariant clause”.   

Table 1. Summary of specialization behaviour in different areas. 

Area Approach New feature Add Invariant Redeclare feature 

Knowledge 
Representation 

Strict New 
Attributes 

No 
No 

Defeasible Attribute Cancellation 

OO Languages 

Simula 67 

New 
Properties & 

Methods 

Simulation 
accessing 

properties via 
methods 

No 

Smalltalk-80, 
Delphi, C++, 
C#, Java 

Overrides for methods 
Simulation for properties accessing 

via methods 

Visual Basic 
Overrides and Shadows for 

properties and methods 

Eiffel 
Adding 

invariants 

Renaming and Redefinition for 
routines and procedures using 

contracts 

Conceptual 

Modeling 

Semantic data 
models 

New 
Attributes & 

Methods 
No 

No UML 

Borgida & 
Mylopoulos 

For attributes 

2.2. Specialization in the i* framework: antecedents 

Inheritance appeared in i* from the very beginning. Yu used the is-a relationship as actor specialization 

in his thesis [1]. This link is only used in SD models between actors but it is not formally defined; the 

only observable effect in the examples is the addition of new incoming dependencies to the subactor. No 

examples are given of SR diagrams for subactors so the precise effects of is-a at this level remain 

unknown. 

The is-a construct has been used in several works with the same meaning than Yu’s. A non-exhaustive 

list is: [13][14] as a regular modeling construct; [15] for model-driven generation; [16] for modeling actor 

states, and [17] for deriving feature models. In all of these works the level of detail given is as insufficient 

as in [1].  

2.3. A community perception on specialization from i* researchers 

In order to complete our preliminary analysis, we conducted a survey to know i* modelers’ concept of 

specialization. It was conducted from June to September 2010. Most of the answers come from attendees 

to the 4
th

 Intl’ iStar Workshop, where the survey was first presented. It was responded anonymously. We 

finally got 21 valid answers. Even if it seems a low number, it has to be considered that the core 
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community of researchers is not too big. As an indicator, we explored the literature review presented in 

[18] and counted 196 authors contributing to the 146 papers found; thus the survey’s population was 

about the 10% of this core community of authors. 

The questions were very basic and are listed in Table 2; the full text is available in Appendix A.  

Table 2. Questions appearing in the survey on i* specialization. 

Q1. How often do you use is-a links in the i* models that you develop? 

Q2. If you use is-a links, do you have any doubts about their usage? 

Q3. If A is-a B, what is the consequence regarding dependencies at SD model level? 

Q4. If A is-a B, what is the consequence regarding the SR model level? 

Fig. 2 shows the results for the first two questions, which are of exploratory nature and admitted just one 

answer. According to these results, the construct is frequently used (57% answered sometimes or more in 

Q1) but mostly with some concerns about its usage (84% answered yes in Q2). This contradiction is 

explained because in fact 68% answered Q2 as: yes, but these doubts are not fundamental for my models.  

 

 
 

Fig. 2. Survey on i* specialization: results of Q1 (left) and Q2 (right). 

Fig. 3 shows the results of the last two questions, which are of interpretative nature and admitted more 

than one answer. According to these results, when actor a is-a actor b, new elements can be added in the 

actor a (86% for dependencies (Q3); 90% for intentional elements (Q4)). There is less agreement about 

modification (38% and 14% respectively). Finally, almost none of the respondents supported the option 

of removing elements (5% and 10% respectively).  

  

Fig. 3. Survey on i* specialization: results of Q3 (left) and Q4 (right). 

2.4. Conclusion 

Considering the review presented in this section, it can be concluded that specialization consists on 

adding new and modifying the inherited information. Meyer summaryzes these operations in his 

Taxomania Rule, which can be applied to i* as: 

3; 14%

6; 29%
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3; 16%
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8
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1
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Q3: Dependencies...

3

19

2
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0
0

5
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– Extension (from Taxomania rule: “introducing a feature”). A new IE or dependency, related 

somehow to inherited elements, is added to the subactor. 

– Redefinition (“redeclaring an inherited feature”). An IE or dependency that exists in the superactor is 

changed in the subactor. 

– Refinement (“adding an invariant clause”). The semantics of an inherited IE or dependency is made 

more specific. 

Our goal is to align i* specialization with the general concept of specialization (Section 2.1), considering 

the uses made by i* researchers (Section 2.2) and their reported preferences (Section 2.3). For this reason, 

we do not consider redefinition in this work, since it is not used in main conceptual modeling proposals 

and clearly rejected by the i* community (“Remove” in the survey), whilst we adopt extension (“Add”), 

since the introduction of new features is the essence of specialization. As for refinement (“Modify”), 

where the most diversity exist, we include it due to the highly strategic nature of i*, which demands a 

richer conceptual modeling language. The questions that arise are then: 

– What extension and refinement operations do exist? 

– Which is their formal definition? 

– Which are the correctness conditions? 

We answer these questions in the next sections. First, we need to formalize the definition of i* SR models 

to be able to write definitions and correctness proofs. 

3. A Formal Definition of i* SR Models 

In this section we introduce a formal definition of the i* elements that are important for our proposal. For 

the purposes of this work, we make some simplifications over the language: 

– actors are restricted to general actors (not distinguishing roles, positions and agents); 

– actors links are restricted to actor specialization (is-part-of is not considered); 

– an IE cannot be decomposed using more than one IE link type simultaneously; 

– we do not allow two IEs with the same name. 

To avoid the need of distinguishing continuously special cases, and since we are interested in SR models, 

we assume that: 

– the rationale of all actors is declared (i.e., at least one IE exists inside each actor); [A1] 

– dependency ends are always connecting IEs and not actors. 

Definition 1. i* SR model (i* model for short). 

An i* SR model M is a tuple M = (A, DL, DP, AL) where A is a set of actors, DL a set of dependencies, 

DP a set of dependums and AL a set of actor specialization links. 

Definition 2. Actor. Set of actors of a model. 

An actor a is a tuple a = (n, IE, IEL) where n is a name, IE a set of intentional elements and IEL a set of 

intentional element links. Given an i* model M = (A, DL, DP, AL), the set of actors A is: 

 A  {(na, IEa, IELa)} 

Definition 3. Intentional element (IE). Set of intentional elements of an actor. 

An intentional element (IE) ie is a pair ie = (n, t) where n is a name and t a type of intentional element t, 

tIET, where IET = {goal, softgoal, task, resource}. Given an actor a = (na, IEa, IELa), the set of 

intentional elements of the actor a is: 

 IEa  {(nie, tie)}. 
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Definition 4. IE link. Decomposition links. Set of intentional element links of an actor. Main IEs of an 

actor. 

An IE link l is a tuple l = (p, q, t, v) where p and q are IEs (source and target respectively), t a type of IE 

link, tIELT, and v a contribution value, vCT  {}, where: 

IELT = {means-end, task-decomposition, contribution} 

CT = CT+  NCT  {unknown}, 

CT
+
 = {Make, Some+, Help} 

NCT
-
 = {Break, Some-, Hurt} 

An IE link l = (p, q, t, v) is a decomposition link if it breaks an IE into others: 

decomposition-link(l)  t{means-end, task-decomposition}   

(type(l)=contribution  value(l)  {And, Or}) 

Given an actor a = (na, IEa, IELa), the set of IE links of the actor a is: 

IELa  {iel | iel = (piel, qiel, tiel, viel)} such that: 

 ielIELa: pielIEa  qielIEa        (IE links are internal to actors) 

 tiel = means-ends  type(qiel) ≠ softgoal  viel =  (softgoal not target) 

 tiel = task-decomposition  type(qiel) = task  viel =  (task is the target) 

 tiel = contribution  type(qiel) = softgoal  viel ≠  (softgoal is the target) 

 xIELa: xancestors(IELa, x)   (no cycles allowed) 

Given an actor a = (na, IEa, IELa), the main IEs of the actor a, mainIEs(a), are the (non-empty due to [A1] 

above) subset of its IEs that are not part of a decomposition: 

mainIEs(a) = {ieIEa | ancestors(IELa, ie) = } 

Definition 5. Dependum. Set of dependums of a model. 

A dependum d is an IE. Given an i* SR model M = (A, DL, DP, AL), the set of dependums of the model 

M is: 

 DP  {dp | dp = (n, t)}. 

Definition 6. Dependency. Set of dependencies of a model. 

A dependency d is a tuple d = ((dr,sr), (de,se), dm) where dr, de and dm are IEs (depender, dependee and 

dependum respectively) and sr and se the depender and dependee strengths. sr, se  ST, where: 

ST = {open, committed, critical} 

 Given an i* model M = (A, DL, DP, AL), the set of dependencies of the model M is: 

 DL  {d | d = ((dr, sr), (de, se), dm)} such that 

actor(drd) ≠ actor(ded) (an actor cannot depend on itself), being actor(ie) the actor to which 

ie belongs: a = (na, IEa, IELa)  ie IEa. 

Definition 7. Actor specialization link.   

An actor specialization link l is a pair l = (a, b) where a and b are actors (the source and the target, also 

named the subactor and superactor, respectively). Given an i* model M = (A, DL, DP, AL), the set of 

actor specialization links of the model M is: 

AL  {al | al = (a, b)} such that:  

a, bA: aancestors(AL, b)  bancestors(AL, a)  (no cycles allowed) 
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4. Notion of Correctness 

In this section we introduce the notion of satisfaction required to reason about specialization correctness. In 

other words, what conditions have to be fulfilled in order to consider this specialization correct. We 

consider the notion of satisfaction as the baseline to define correctness: subactor’s satisfaction must imply 

superactors’ satisfaction. This property ensures that the subactor a may be used in those contexts where 

the superactor is expected.  

Definition 8. Actor specialization satisfaction.  

Given an i* model M = (A, DL, DP, AL) and two actors a, bA such that (a, b)AL, we define actor 

specialization satisfaction as:  

sat(a, M)  sat(b, M) 

Given our simplifications and assumptions, each actor contains at least one main intentional element, 

hence we reduce the actor satisfaction to IE satisfaction.  

Definition 9. Actor satisfaction.  

Given an i* model M = (A, DL, DP, AL) and an actor aA, a = (n, IE, IEL) with       IE ≠ , we define a’s 

satisfaction, sat(a, M), as the satisfaction of all its main IEs:  

ie mainIEs(a): sat(ie, M). 

Satisfaction of an IE depends on the IE links that reach that IE. If there are no links, satisfaction is up to 

the modeler. If there are decomposition links or dependencies, a logical implication may be established. 

In the case of contributions to softgoals, we adopt Horkoff and Yu’s [20] proposal. 

Definition 10. IE satisfaction.  

Given a model M = (A, DL, DP, AL) and an IE ieIE, we define ie’s satisfaction, sat(ie, M), according to 

the cases below (note that the second and third cases can happen simultaneously with the fourth, then 

both conditions apply): 

– ie is neither decomposed nor has outgoing dependencies: satisfaction has to be explicitly provided by 

the analyst/modeler. 

– ie is decomposed by decomposition links: satisfaction depends on the link type: 

 task-decomposition: according to the i* definition (an incomplete AND-decomposition), the 

sources are AND-ed: 

      ieand: (ieand, ie, task-decomposition, )IEL: sat(ie, M)  sat(ieand, M) 

 means-end: according to the i* definition, the sources are OR-ed: 

      ieor: (ieor, ie, means-end, )IEL: sat(ieor, M)  sat(ie, M) 

– ie is softgoal with contribution links: satisfaction is defined as in [20]. 

– ie has outgoing dependencies: satisfaction depends on dependum’s: 

 ((ie, sie), (de, sde), dm)DL: sat(ie, M)  sat(dm, M) 

Note that the implication cannot be an equivalence because the ie can be decomposed and then its 

satisfaction would depend on its decomposition. 

At this point, we have completely defined the notion of specialization satisfaction and may therefore 

proceed to define extension and refinement operations. 
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5. Extension Operations 

Extension means adding a new model element to the subactor. There are two types of elements to 

consider: 

– IEs. An IE can be added extending an inherited IE or as a main IE: 

 IE extension. In the subactor, some IE is added as a decomposition of an inherited IE.  

 New main IE. Some IE is added as a main IE due to the subactor has a new intentionality that is 

not covered by the superactor’s main IEs. 

– Dependencies. A dependency can be added to an IE ie in two different directions:  

 Outgoing dependencies. This case is not allowed. The reason is that if a superactor is able to 

satisfy ie by itself, its subactors must be able to do so as well.  

 Incoming dependencies. Adding a new incoming dependency does not affect ie’s satisfaction, but 

the satisfaction of the IE that acts as depender. This means that this dependency needs not to be 

considered in the analysis of ie. 

 As a conclusion, we need two extension operations for IEs, but none for dependencies. We present in the 

rest of the section these two operations. 

CASE 1. IE extension. An IE inherited from a superactor can be extended in a subactor by adding a new 

decomposition link: 

– Task-decomposition link: Since task-decompositions are not necessarily complete, it is always 

possible to add a new IE that provides more detail in the way in which a task is performed. By 

defining a task-decomposition link, the linked element is considered AND-ed with the elements that 

decompose the task in the superactor. 

– Means-end link: An element may be considered as a new means to achieve an end. By defining a 

means-end link, the linked element is considered OR-ed with the means that appear in the superactor. 

Fig. 4 presents two examples of extension. In the diagrams, inherited elements in the subactor are shown 

in dotted lines. The subactor UTA shows the extension of a superactor TA’s non-decomposed task (Name 

a price). The FTA adds a third means to an inherited end (Travels Contracted Increase) that was already 

decomposed in TA; this new IE, playing the role of means, has just sense in the case of the subactor. In 

both cases, the IE that is being subject of the operation is further decomposed; additionally, in FTA, some 

IEs contribute to two softgoals inherited from the superactor, shown also in dotted lines to indicate that 

they are same as in the superactor.  

 

Fig. 4. Specialization operations: adding task-decomposition (UTA) & means-end (FTA) links. 
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Extension Operation 1 Intentional element extension with a decomposition link. 

Declaration. extendIEWithDecompositionLink(M, a, iet, ies, t), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), aA, the subactor where the IE extension takes place 

 ietIEa, the inherited IE to be extended (the target) 

 ies, the new IE to be linked to iet (the source) 

 t, the type of decomposition link, either means-end or task-decomposition. 

Preconditions. 1) ies is semantically correct with respect to iet given the type of link: 

 means-end: sat(iet, M)  sat(ies, M) 

 task-decomposition: sat(ies, M)  sat(iet, M) 

2) ies is not main element in the superactor: iesmainIEs(superactor(a)) 

Effect. extendIEWithDecompositionLink(M, a, iet, ies, t) yields a model M’ defined as: 

 M’ = substituteActor(M, a, a’),  

being substituteActor a function that replaces every occurrence of a in M by a’, a’ = (na, IEa  

{ies}, IELa  {(ies, iet, t, v)}). 

Theorem. The operation extendIEWithDecompositionLink(M, a, iet, ies, t) is correct. 

Proof. We demonstrate by induction that this operation keeps actor specialization correctness, i.e. sat(a’, 

M’)  sat(b, M’) (see Definition 1).  

Induction Base Case (IBC). In the IBC, this operation is the first specialization operation applied over 

the subactor a, i.e. IE(a) = IE(b)  IEL(a) = IEL(b) [P1] 

[1] sat(a’, M’)  iemainIEs(a’): sat(ie, M’), applying Definition 2 over a’ 

[2]   iemainIEs(a): sat(ie, M), since main elements do not change: 

(ies, iet, t, v)IELs(a’)  precondition 2  mainIEs(a’) = mainIEs(a) 

[3]   iemainIEs(b): sat(ie, M), since [P1]  mainIEs(b) = mainIEs(a) 

[4]   iemainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[5]   sat(b, M’), applying Definition 2 over b 

Induction Hypothesis (IH). We assume a state in which after several specialization operations applied, 

still the correctness condition holds: 

sat(a, M)  sat(b, M) 

Induction Step (IS). If this operation is applied over a subactor a that satisfies the correctness condition, 

the resulting subactor a’ satisfies it too: 

sat(a’, M’)  sat(b, M’) 

[1] sat(a’, M’)  iemainIEs(a’): sat(ie, M’), applying Definition 2 over a’ 

[2]   iemainIEs(a): sat(ie, M), since ies is not added as main IE 

[3]   sat(a, M), applying Definition 2 over a 

[4]   sat(b, M), applying the IH 

[5]   iemainIEs(b): sat(ie, M), applying Definition 2 over b 

[6]   iemainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[7]   sat(b, M’), applying Definition 2 over b 
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CASE 2. Main IEs addition. The subactor has an intentionality that is not covered by the superactor’s 

main IEs. Therefore, a new main IE needs to be added. Fig. 5 presents an example of adding a new main 

IE in the subactor. Again, this new element is further decomposed and its decomposition includes an 

inherited element (drawn in dotted lines) at the second level of decomposition. 

 

Fig. 5. Actor specialization operations: adding main IEs. 

Extension Operation 2 Actor extension with a main intentional element 

Declaration. extendActorWithMainIE(M, a, ienew), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), aA, the subactor where the new IE is added 

 ienew, the new IE to be added as main IE 

 

Precondition. ienew is really enlarging subactor’s intentionality: 

  (sat(ienew, M)  iemainIEs(a): sat(ie, M)) 

Effect. extendActorWithMainIE(M, a, ienew) yields a model M’ defined as: 

M’ = substituteActor(M, a, a’), 

 where a’ = (na, IEa{ienew}, IELa) and substituteActor defined as above. 

Theorem. The operation extendActorWithMainIE(M, a, ienew) is correct. 

Proof. By induction, very similar to the former proof. The only notable difference is that since the new IE 

is added as main element, some equivalence needs to be converted into implication. For instance, in 

the IBC, step [2] changes into:   

[2a]   iemainIEs(a): sat(ie, M’)  sat(ienew, M’), since ienew is added as main IE 

[2b]   ie  mainIEs(a): sat(ie, M’), since X  Y  X 

6. Refinement Operations 

Refinement means replacing an existing model element by another that somehow constraints the inherited 

behaviour. There are three types of elements to consider: 

– IEs: any IE in the model can be refined. 

– Contribution links: the value of a contribution link can be enforced in the subactor. 

– Dependencies: an inherited dependency can be refined either by enforcing the IE placed as dependum 

or by making stronger any of the two strengths.  

As a conclusion, we need three refinement operations, presented next (proofs are very similar to CASE 1 

above). 
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CASE 3. IE refinement. A subactor a can refine an IE ie inherited from its superactor b with the 

following meaning depending on its type: 

– Goal, softgoal: the set of states attained by ie in a is a subset of those attained in b. 

– Task: the procedure to be undertaken when executing ie in a is more prescriptive (i.e. has less 

freedom) than the procedure to be undertaken when executing ie in b. 

– Resource: the entity represented by ie in a entails more information than the entity represented by ie in 

b. 

Fig. 6 presents two examples of IE refinement. On one hand it shows the refinement of a non-

decomposed resource (Travel Information) in which information related to families (e.g., number and age 

of children) is included in the subactor. On the other hand, it refines a decomposed task (Charge Travel), 

with the particularity that what is needed is not an IE but an additional dependency that expresses the 

dependence on some other actor for undertaking the task in the subactor. As usual, IEs in dotted lines 

represented IEs inherited from the superactor and not changed in the subactor. 

 

Fig. 6. Specialization operations: refining a resource (top) and a decomposed task (bottom). 

Refinement Operation 1 Intentional element refinement. 

Declaration. refineIE(M, a, ies, nref), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), aA, the subactor where the IE refinement takes place 

 ies=(n, t)IEa, the inherited IE to be refined 

 nref, the name to be given to the refined IE 

Precondition. the new IE is enforcing the inherited one: sat((nref, t), M)  sat((n, t), M) 

Effect. refineIE(M, a, ies, nref) yields a model M’ defined as: 

M’=substituteIE(M, a, ies, ieref),  

being    ieref = (nref ,t) and substituteIE a function that replaces ies of a in M by ieref in M’. 

Theorem. The operation refineIE(M, a, ies, nref) is correct. 

Proof. By induction as usual. sat(a’, M’)  sat(b, M’). 

Induction Base Case (IBC). sat(a’, M’)  sat(b, M’). IE(a)=IE(b) I IEL(b)=IEL(a) Again we have 

IE(a) = IE(b)  IEL(a) = IEL(b). 

[1]sat(a’, M’)  iemainIEs(a’): sat(ie, M’), applying Definition 2 over a’ 

[2]  iemainIEs(a)\{ies} : sat(ie, M)  sat(ieref, M’), ieref = (nref, t), to deal with the  

          special case in which ierefmainIEs(a’) 

[3]   iemainIEs(a)\{ies} : sat(ie, M)  sat(ies, M), since 

        sat(ieref, M) sat(ies, M) is a precondition 
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[4]   iemainIEs(a): sat(ie, M) 

[5]   iemainIEs(b): sat(ie, M), since in IBC mainIEs(b) = mainIEs(a) 

[6]   iemainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[7]   sat(b, M’), applying Definition 2 over b 

Induction Hypothesis. sat(a, M)  sat(b, M) 

Induction Step. sat(a’, M’)  sat(b, M’) 

[1] sat(a’, M’)  iemainIEs(a)\{ies}: sat(ie, M)  sat(ies, M), from IBC’s [2], [3] iemainIEs(a’): 

sat(ie, M’), applying Definition 2 over a’ 

[2]   iemainIEs(a)\{ies} : sat(ie, M)  sat(ieref, M’), ieref = (nref, t) 

[3]   iemainIEs(a)\{ies} : sat(ie, M)  sat(ies, M), since 

        sat(ieref, M) sat(ies, M) is a precondition 

[4]   sat(a, M), applying Definition 2 over a 

[5]   sat(b, M), applying the Induction Hypothesis 

[6]   iemainIEs(b): sat(ie, M), applying Definition 3 2 over b 

[7]   iemainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[8]   sat(b, M’) 

CASE 4. Contribution link refinement. Contribution link refinement means changing the value of a 

contribution link going from an IE to a softgoal, both of them appearing in the superactor. Of course, not 

all the changes must be allowed, since it is necessary to guarantee that the satisfaction of the refined link’s 

value implies the link under refinement’s value. This is done by using the typical order relation among 

contribution link values [20]: Unknown > Some+ > Help > Make, and Unknown > Some- > Break > 

Hurt. Note that we keep positive and negative values separated, meaning that we do not allow changing 

the “sign” of the contribution. 

Fig. 7 presents two examples of contribution link refinement. The left figure shows a refinement where 

the involved IEs are the same in both actors, just the contribution value changes. In the right figure, the 

source IE has been also refined, meaning that the subactor is the result of two refinement operations. 

 

Fig. 7. Specialization operations: refining contribution links. 

Refinement Operation 2 Contribution link refinement. 

Declaration. refineContributionLink(M, a, iel, v), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), aA, the subactor where the IE link refinement takes place 

 iel=(ies, iet, contrib, vl)IELa, the inherited contribution link to be refined 

 v, the value to be given to the refined contribution link 
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Precondition. The new contribution value is enforcing the inherited one: v < vl. 

Effect. refineContributionLink (M, a, iel, v) yields a model M’ defined as: 

M’ = substitute(M, a, a’), where a’=(na, IEa, (IELa\{iel})  {(ies, ies, contrib, v)}) 

Proof of correctness is the same as Extension Operation 1. extendIEWithDecompositionLink(M, a, iet, ies, 

t) (Section 0, CASE 1), there is no changes in subactor main IEs. 

CASE 5. Dependency refinement. A dependency can be refined only if at least one of the actors involved 

in the refined dependency is a subactor. Both the dependum and the strengths may be refined. In the case 

of the dependum, since it is an IE, the rules are the same to those introduced in CASE 3, although 

technically there is a difference: in CASE 3 the refined IEs were IE appearing inside an actor, whilst here 

the refined IE appears in dependencies that are external to actors. In other words, given an i* model M = 

(A, DL, DP, AL), CASE 3 is defined over A whilst CASE 5 is defined over DP. Concerning strengths, it is 

similar to CASE 4 (refinement of a value) with the relationship Open > Committed > Critical (being 

Committed the default case). 

Fig. 8 presents two examples of dependency refinement. In the bottom dependency (Customer Info), just 

the dependum is refined, it also presents the particularity that both dependency ends correspond to 

subactors. In the top dependency (Travel Offerings), besides the dependum, the dependee’s strength is 

refined too. 

 
Fig. 8. Specialization operations: refining dependums. 

Refinement Operation 3 Dependency refinement 

Declaration. refineDependency(M, d, dmref, sdrref, sderef), being: 

 M = (A, DL, DP, AL), an i* model 

 d = ((dr, sdr), (de, sde), dm), dDL, the inherited dependency under refinement 

 dmref, sdrref and sderef the dependum and strengths for the refined dependency 

Note that d is the inherited dependency, where at least one of the depender or dependee is a subactor, not 

to confound with the original dependency that will not change. 

Precondition.  

 The new dependum is enforcing the inherited one: sat(dmref, M)  sat(dm, M). 

 The new strengths are less or equal than the older:  sdrref  sdr  sderef  sde 

 At least one component changes: dmref  dm  sdrref  sdr  sderef  sde 

Effect. refineDependency(M, d, dmref, sdrref, sderef) yields a model M’ defined as: 

M’ = (A, DL \ {d}  {((dr, sdrref), (de, sderef), dmref)}, DP  {dmref}, AL) 

Note that d is removed since it is substituted by the new dependency. On the contrary, d’s dependum, dm, 

is not removed since the specialized dependency (the one being inherited) still makes use of it. 
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Dependency refinement does not affect directly to the satisfaction of an actor, independently of it is an 

incoming or outgoing dependency. The outgoing dependencies are involved in the IE satisfaction, but not 

directly to the actor satisfaction, that depends on the main IE and they do not change using this operation 

Proof of correctness is the same as Extension Operation 1. extendIEWithDecompositionLink(M, a, iet, ies, 

t) (Section 0, CASE 1), there is no changes in subactor main IEs. 

7. Conclusions and Future Work 

In this research report we have presented a proposal for defining i* specialization in a formal manner at 

the level of SR diagrams. According to the main research question, the aim has been to study the 

consequences of a specialization relationship declared at the SD level. We have identified two main 

specialization operations, extension and refinement, and for them, we have identified two and three 

concrete operations, respectively. Concerning the three derived subresearch questions stated at the 

introduction: 

– SQR1: we have studied the literature on specialization in the disciplines of knowledge representation, 

object-oriented programming and conceptual modeling, and we have compiled the works so far on i* 

specialization as well as ran a survey in the i* community on the expected behaviour of such a 

construct. This study has been the basis of our decision for the two specialization operations. 

– SQR2: for each of the five operations, we have defined their behaviour in terms of the algebraic 

specification of i* models. We have identified the required preconditions for these operations in terms 

of properties on their parameters.  

– SQR3: we have also proven the correctness of these operations by demonstrating that the satisfaction of 

the subactor implies the satisfaction of the superactor. We have defined formally the satisfaction 

concept and conducted the proofs by induction. The report includes one of the proofs with all details, 

whilst the others are in a separated document due to space reasons. 

These operations can be combined in any arbitrary order during the modeling process: our proofs show 

that satisfaction is kept provided that the original model was correct.  

The work presented here has assumed a few simplifications on the i* language. Most of them are really 

not important although some may require further attention, specifically the exclusion of the is-part-of 

construct of our analysis (see below). 

Future work spreads along several directions. First, the Taxomania rule considers a third type of 

specialization operation, redefinition, which we have not included in the present work. We plan to analyse 

in detail under which conditions this operation could be applied and then define it in a similar way than 

extension and refinement. Second, we aim at providing an ontological-based semantics to i* 

specialization. At this respect, we have recently started to apply the UFO foundational ontology over i* 

[21][22], and we plan to include specialization in this work. Third, the problem of loose definition of the 

specialization relationship is not the only point of ambiguity of the i* language. A similar situation can be 

found for the rest of actor links: is-part-of, plays, occupies and covers. Therefore, we plan to 

address this problem following the same method as with specialization and as a further step, to explore 

the relationships of all of these actor association links with is-a. 
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Appendix A: Survey for specialization in i* models  

 

Using is-a links in i* models 

1. How often do you use is-a links in the i* models that you develop? 
a. Never 

b.   Rarely          c.   Sometimes d.   Often e.   Very often 

2. If you use is-a links, do you have any doubts about their usage?  
a. No, I have really clear the consequences of using this type of link. 
b. Yes, but these doubts are not fundamental for my models. 
c. Yes, and thus I have defined some rules to use this type of link (please describe briefly 

these rules in the back of this sheet). 

3. If A is-a B, what is the consequence regarding dependencies at SD model level?  More than 
one option can be chosen. 
a. A must have exactly the same dependencies, with the same characteristics, than B. 
b. A can add dependencies (incoming and/or outgoing) that are not in B. 
c. A can remove some dependencies that are in B. 
d. A can modify the dependencies that are in B as follows: 

d1. The dependum can be different (please describe briefly how in the back of this 
sheet). 

d2. The depender strength can be different. 
d3. The dependee strength can be different. 

e. Other (please describe briefly in the back of this sheet). 

4. If A is-a B, what is the consequence regarding the SR model level? More than one option can 
be chosen. 
a. A must have exactly the same SR model than B. 
b. A can add new intentional elements that are not in B. 

b1. New intentional elements can be linked only to other new intentional elements. 
b2. New intentional elements can be linked to both new or B intentional elements. 

c. A can remove some intentional elements that are in B. 
d. A can modify intentional elements from B (please describe briefly how in the back of this 

sheet). 
e. Other (please describe briefly in the back of this sheet). 

Thanks for your cooperation!! 

          Lidia López, PhD student 

 The GESSI group, http://www.essi.upc.edu/~gessi/   
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