
HiME: Hierarchical i* Modeling Editor

Lidia López
1

Xavier Franch
1

Jordi Marco
1

Abstract: In this paper, we present HiME, a tool for editing i* models. The

distinguishing characteristic of HiME is its ability to deal with inheritance. It includes

specific operations for declaring an actor as heir of another and then stating the

relationships between the intentional elements of both actors.

1 Introduction

Inheritance is defined in the i* framework using an “is-a” link between actors.

Although this construct already appeared in the seminal version of the framework (1995) [1],

its semantics has not been completely defined neither in that original version nor in other

existing i* dialects. Since we had the need of defining completely the meaning of

inheritance, in earlier works [2, 3] we explored its definition, emphasizing on how the is-a

relationship between actors affects to their intentional elements (IEs).

A natural consequence is the need of dealing with inheritance in i* related tools.

There are several tools which support the seminal Yu’s proposal and i* dialects [4]. As a

natural consequence of the lack of precise definition of the notion of inheritance, tools like

OME, REDEPEND and TAOM4E do not include specific functionality for inheritance, at

most they support the establishment of is-a links. Our aim thus is to provide tool support for

helping modelers to use inheritance according to [2, 3].

2 Inheritance in i* Models

We have defined inheritance for actors and how the inherited IEs, in the heir, can be

modified. When an actor (heir) is linked by an is-a relation with another actor (parent), the

heir inherits all the parent’s IEs. Upon this basic behavior, we have defined three different

operations over IEs that, under certain conditions, lead to correct heirs: refinement

(specializes an IE), extension (adds some information about how to obtain the IE) and

redefinition (defines a different way from the parent to obtain the IE). In [2] the reader may

find the complete definition of these three operations: their context, their correctness

conditions and the effects on the heir.

1 Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3 (Campus Nord, Omega building),

08034 Barcelona, Catalunya, Spain, {llopez,franch,jmarco}@lsi.upc.edu

Hierarchical i* Modeling Editor

2

3 Hierarchical i* Modeling Editor

We aim to provide a tool that includes the inheritance operations introduced in the

previous section. For this purpose we had two options: creating a new modeling tool from

scratch or including new operations in an existing one. We have opted for the second

alternative, and have chosen the J-PRiM tool [5] as starting point, not just because it has

been developed by our research group, but also because the modeling facilities may be

decoupled very easily from the core functionality of the tool, namely the support to the PRiM

methodology for reengineering business processes. Therefore, we have split the edition

functionality in a separate tool and then included the inheritance operations only for edition

purposes. We call HiME (for Hierarchical i* Modeling Editor) the resulting tool.

The current version of HiME (1.0) allows creating and managing models using the

general functionality that can be found in most i* existing tools (creating actors, new IEs for

an actor, new dependencies, etc). HiME also imports and exports i* models using iStarML

[6]. One feature that distinguishes HiME from other similar tools is that the model is not

represented graphically following the symbols of the i* framework; it is represented like a

folder tree directory in a file system. Figure 1 shows a piece of the Meeting Scheduler

example found at [1].

Meeting Initiator is the
depender of the Attends

Meeting dependency

Meeting Initiator is the
dependee of the Attends

Meeting dependency

Figure 1. Meeting Scheduler model (SD) as represented in HiME

The functionality added to support inheritance is that an actor can be created as an

heir of another, which implies the inclusion of an is-a link between them. Heirs inherit all

intentional elements from their parents, and the inherited elements can be modified in the

heir using the operations described in the previous section. All parent’s IEs are inherited, but

Hierarchical i* Modeling Editor

RITA Volume VIII Número 1 2001 3

only the modified ones (using the inheritance operations) and the new ones appear inside the

boundary of heir actors. This characteristic helps in limiting the complexity of the obtained

models and allows focusing in incremental changes. We are currently implementing a

functionality that will allow the user viewing all heir’s IEs (making visible all inherited IEs).

Figure 2 shows the valid operations: adding a subactor (left); and refinement, extension and

redefinition of intentional elements (right).

Figure 2. Inheritance operations and the effect of adding an heir

Therefore, the tool shows 2 kinds of IEs in heirs, the inherited IEs from the parent and

the new IEs from the heir. To distinguish among them, HiME uses regular colored icons next

to the IE name to identify the type of the IEs that are defined as new in an actor, whilst these

icons are shown in black and white for inherited IEs. Figure 3 shows an example,

emphasizing these two different types of IEs for the Important Participant heir.

IE extended in Important
Participant

Inherited IE
(black & white icon)

New means to achieve
Arrange Meeting (colored

icon)

Figure 3. Inherited IEs for the Important Participant actor in HiME

Hierarchical i* Modeling Editor

4

The Hierarchical i* Modeling Editor has been developed using Java and the Rich

Client Platform (RCP) for Eclipse. Models are stored in a MySQL database.

The tool is available in http://www.lsi.upc.edu/~llopez/hime/. Besides the necessary

files for the tool installation (RCP files and the script to create the database), a user manual is

also available.

4 Future Work

Future work moves along two directions. On the one hand, we are working to

improve functionality. In the next versions, we will address two current limitations of the

tool, transitivity and multiple inheritance. Also, we plan to include an inheritance operation

for dependencies between actors and actor types (agents, positions and roles). For

dependencies, inheritance operations will be defined to refine the dependum and the

dependency strengths. Also, correctness conditions checking (i.e., operations are applied

under appropriate circumstances) are planned for the future releases.

On the other hand, concerning tool architecture, we plan to eliminate the need of

storing models in a data base. Next versions will store them in a file, making models

portability possible and facilitating the installation process (no DBMS required).

5 References

[1] Yu, E. Modeling Strategic Relationships for Process Reengineering. PhD Thesis, Univ.

Toronto, 1995.

[2] Clotet R., Franch X., López L., Marco J., Seyff N. and Grünbacher P.: The Meaning of

Inheritance in i*. In Proceedings of the 17th International Workshop on Agent-Oriented

Information Systems (AOIS'07), Tapir Academic Press, Trondheim, Norway, June 2007.

[3] López L., Franch X., Marco J.: Defining Inheritance in i* at the Level of SR Intentional

Elements. In Proceedings of the 3rd International i* Workshop, CEUR Workshop Series

322, Recife, Brazil, February 2008.

[4] i* Wiki site: http://istar.rwth-aachen.de/tiki-index.php?page_ref_id=21.

[5] Grau G., Franch X., Ávila S. J-PRiM: A Java Tool for a Process Reengineering i*

Methodology. In Proceedings of the 14th IEEE International Requirements Engineering

Conference (RE’06), IEEE Computer Society, Minneapolis, USA, Sept. 2006.

[6] Cares C., Franch X., Perini A. and Susi A.: iStarML Reference's Guide. Technical

Report LSI-07-46-R, UPC, Barcelona (2007)

http://www.lsi.upc.edu/~llopez/hime/
http://istar.rwth-aachen.de/tiki-index.php?page_ref_id=21

