
Requirements Modelling for Multi-Stakeholder
Distributed Systems: Challenges and Techniques

Roger Clotet∗ Xavier Franch∗ Paul Gr̈unbacher‡ Lidia López∗ Jordi Marco∗ Michael Quintus† Norbert Seyff†
∗Software Department

Universitat Polit̀ecnica de Catalunya (UPC)
08034 Barcelona, Spain

Email: {rclotet|franch|llopez|jmarco}@lsi.upc.edu
†Institute for Systems Engineering and Automation

Johannes Kepler Universität (JKU)
A-4040 Linz, Austria

Email: nseyff@sea.uni-linz.ac.at, michael.quintus@students.jku.at
‡Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler Universität (JKU)
A-4040 Linz, Austria

Email: paul.gruenbacher@jku.at

Abstract— Multi-stakeholder distributed systems (MSDS) are
distributed systems in which subsets of the nodes are designed,
owned, or operated by distinct stakeholders. New computing
paradigms such as service-oriented computing mean that chal-
lenges posed by MSDS will be more dominant in the future.
These challenges have particular implications for requirements
engineering (RE). For example, in MSDS decisions about the
system architecture are increasingly shifted from system design
to system operation. In this paper we discuss the characteristics
of MSDS and present a framework for structuring the MSDS
research issues. Using an example we illustrate that existing
RE approaches for goal modelling, variability modelling, and
negotiation techniques can be used successfully if used in an
integrated manner to address the identified challenges.

I. I NTRODUCTION

Multi-stakeholder distributed systems (MSDS) have been
described as distributed systems in which subsets of the nodes
are designed, owned, or operated by distinct stakeholders [1].
MSDS are quickly gaining importance in today’s networked
world by several technology trends such as service-oriented
computing, web services, etc. MSDS pose a number of crit-
ical challenges to both researchers and practitioners and the
consequences of MSDS for system development, operation,
and evolution are manifold.

MSDS are often composed from already existing services
and components. This means that in the future, requirements
engineering (RE) approaches need to be aware of existing
technological solutions [2], [3]. This shifts many RE decisions
from design-time to runtime when, e.g., services are often
already in operation when being considered for integration.
Also, as MSDS are operated by distinct stakeholders they can
change uncontrollably and rapidly. If one stakeholder modifies
some part of an MSDS, this can have severe implications on
the users of other nodes. Providing adequate knowledge on
how to deal with such changes is thus another challenge. In
MSDS, negotiation processes ensuring stakeholder agreement

are important to provide and maintain mutually satisfactory
solutions. This also means that understanding the goals of dif-
ferent stakeholders and resolving potential conflicts becomes
essential.

Dealing with these challenges requires the adoption of
proven RE approaches in an integrated manner. Here we
present an approach combining the strength of three con-
solidated disciplines that fit well with the needs of MSDS:
goal-oriented requirements modelling [4], decision-oriented
approaches and variability modelling [5], [6], as well as
negotiation techniques [3], [7]. The approach is based on our
high-level framework of RE for MSDS presented in [8].

In Section II we discuss a typical MSDS example to illus-
trate the problems and challenges of this type of systems. In
Section III we briefly introduce our framework for MSDS. In
Section IV we present our approach integrating concepts from
requirements modelling, requirements negotiation, and product
line engineering. In Section V we apply this framework to the
MSDS example from Section II. In Section VI we make a
preliminary assessment of our approach. In the last Section
we present conclusions and further work.

II. I LLUSTRATIVE EXAMPLE

Our example is a distributed system provided byTravel
Services Inc. (TSI)that allows travellers to search for and book
trips online. While some of the required services are developed
by TSI, most are provided by third party service providers. Ser-
vices range from very simple to highly complex offering large
functionality. For example, the system relies on a payment
service provider offering payment services to TSI. The system
also relies on a number of travel services, e.g., for booking
flights or checking the availability of hotel rooms.Travel
Agencies (TA)contract TSI’s software to offer a customized
online travel platform to their customers. These TA have
different expectations and needs. For example,UniversityTA

(UTA) is a travel agency specialized to support researchers in
planning trips whileFamily TA (FTA) is focusing on trips for
families. TSI is interested to support further types of travel
agencies in the future.

The following scenario is used to highlight selected prob-
lems stemming from several interoperating services and di-
verse stakeholders using those services: A regular customer
of NorthStar Travel Agency reports an issue by e-mail:“I’ve
recently read in a magazine that CheatCard credit service is
blamed for selling private data of customers for advertising
organizations”.

1) NorthStar TA looks into the details of their contract with
TSI and finds out that the CheatCard credit service is
used in the web portal. The contract is not explicit with
respect to using private data for advertising.

2) After an internal discussion, NorthStar TA agrees to
report this problem to TSI because they are unaware of
how TSI has actually implemented the payment service.
They are even unsure whom to contact to resolve the
issue.

3) TSI is initially unaware of the problem but promises to
investigate the issue immediately.

4) TSI is trying to locate the problem. However, due to
the limited information available this turns out to be
extremely challenging. A lengthy investigation finally
reveals that CheatCard is indeed violating privacy laws
by selling customer data to third parties. TSI’s CEO
requests from TSI to replace the service immediately.

5) The software architect starts searching for alternative
services according to the customers’ goals.

6) TSI’s CEO and software architect, together with major
customers, discuss three candidate services that could
replace CheatCard.

7) The software architect replaces CheatCard credit service
with the Securitas service.

8) TSI sends updated contracts to all TA with Securitas as
the new service.

This simplified scenario reveals some typical issues in
MSDS:

• The CheatCard credit service is operated by a distinct
company. While there is an incentive for CheatCard to
sell customer data to increase profit this clearly violates
the privacy concerns of other stakeholders in the MSDS.

• It is virtually impossible for stakeholders to understand
how system nodes are linked in the MSDS to achieve the
desired purpose. E.g., it is not transparent for NorthStar
TA that TSI is using third-party payment services.

• In case of problems the limited information about the
network of adopted services means that it is hard to locate
the problem or to find a point of contact for resolving it.
It is also difficult to react to problems, e.g., by replacing
nodes, due to the unclear impacts of such a change. As
customer goals and preferences as well as properties of
nodes are not known explicitly it is hard to guide problem
resolution.

• Changes to a system node can happen at any time with
undesired impacts on other stakeholders in the MSDS.
A local change or behaviour can clash with the goals of
other stakeholder in the MSDS. It is difficult to monitor
and observe nodes to make sure stakeholder goals are not
violated. Such monitoring activities can be very complex
or even impossible.

III. A F RAMEWORK FORMSDS

The example shows that MSDS challenges are not purely
technical. Rather they cover different layers ranging from
stakeholder goals to low-level aspects of system composition
and monitoring. In an earlier paper [8] we have discussed these
different concerns using a framework. The current version
of this framework is shown in Fig. 1. It addresses both
design-time synthesis/analysis as well as runtime monitor-
ing/adaptation aspects and covers the following layers:

Stakeholder Needs:This layer addresses the needs of stake-
holders in the MSDS domain. It is typically hard to model
stakeholder needs. Goal modeling provides a language to
express stakeholder goals and dependencies. For instance,
customers of TAs may express their goal to keep personal data
private, and this goal will depend on the correct behavior of
other stakeholders such as the TA itself. If stakeholder needs
are not modeled explicitly they remain tacit. E.g., TSI may be
unaware of the strong privacy goals of TA customers.

Architecture Prescription:The Architecture Prescription
layer is introduced as an intermediate layer to map negotiated
requirements onto architectural concepts [9]. It defines the
specification of services and components and their relation-
ships to stakeholder needs. For example, to satisfy the stake-
holder goal “Provide Travel Information”, a weather forecast
service may be defined on this layer.

Solution Architecture:This layer addresses the mapping
of architecture prescription elements to real world elements.
Based on the specifications from the prescription layer, real
world services and components are selected. While a payment
service has been specified in the prescription layer, CheatCard
and Securitas are concrete services that can be selected for the
solution architecture.

Open System:The MSDS including components, services,
and connectors is represented in this layer. Knowing the
location and other physical properties of the system’s elements
is fundamental for monitoring its behavior. In an MSDS, an
individual stakeholder’s goal may conflict with goals of other
stakeholders, even more than in other type of systems. For
instance, the goal to ensure privacy of data may collide with
the TSI goal of advertising their services to a wide network
of potential customers. Negotiation is essential for resolving
such requirements conflicts. In the lower layers, negotiation is
a pre-requisite for selecting adequate services or components
that meet mutually satisfactory agreements of stakeholders
during design-time. If such agreements become obsolete due
to design-time or runtime changes of services or components,
stakeholders will have to re-negotiate.

Fig. 1. Framework for MSDS RE (adapted from [8]).

It must be noted that the layers in the framework are
highly intertwined and complement each other. To move from
one layer to another we have identified two pairs of related
processes. Duringsynthesis, the definition of the open system
takes place by selecting and composing services and com-
ponents based on high-level stakeholder needs. Theanalysis
of the MSDS is continuously performed during synthesis,
to check emergent properties of the system. At runtime,
monitoring (i.e., feedback from the system during operation
back to the stakeholder) allowsadaptingthe system to changes
of various kinds for ensuring satisfaction of stakeholder goals
and alerting about the violation of those goals.

IV. USING MODELLING TECHNIQUES IN THE
MSDS FRAMEWORK

The layers and processes outlined in the MSDS framework
need to be refined with concrete languages, techniques, meth-
ods, and tools. In this section we present these conceptual
elements and explore their application in the framework.

A. Modelling Techniques

We have been experimenting with different approaches
supporting the framework. In the MSDS domain we rely on
methods that allow the elicitation and modeling of stakeholders
and their goals. We also need approaches supporting the
negotiation and reconciliation in case of conflicts between
stakeholders. Finally, we need to be able to deal with the
dynamism of MSDS by modeling variability on all layers of
the framework.

Our approach is based on thei* modelling language.
The approach is extended and complemented with variabil-
ity modelling techniques from product line engineering and
negotiation techniques known from requirements engineering.

The i* language:Goal-oriented models [10] are a good
choice because they allow expressing high-level requirements,
recording the rationale behind requirements, and decomposing
them at the required level of detail. An interesting choice
is the i* notation [4] because it is not only goal-oriented
but actor-oriented too, thereby supporting the assignment of
responsibilities to system actors. At this level, actors are
mainly used to represent stakeholders, while in lower lev-
els they stand for services and components. There are two
types of models ini* : Strategic Dependency (SD) models
declare the actors, their relationships (e.g., specialization and
composition) and how they depend on each other. Strategic
Rationale (SR) models state the main goals of these actors and
their decomposition using some refinement constructs. Both
types of models together provide a comprehensive view of the
system.

Negotiation techniques:A significant number of approaches
are available to support negotiations [3]. The win-win negotia-
tion approach [11], for example, allows expressing stakeholder
goals as win conditions. In case of conflicting win conditions,
risks, or uncertainties an issue is created. Such issues are
resolved by proposing options and alternatives to overcome
the identified problems. The goal is to cover all win conditions
by agreements. Refinements of the win-win approach are
available to support stakeholder involvement, prioritization,
and trade-offs in negotiations [7].

Variability modelling: Product line concepts such as vari-
ability modelling are increasingly used to support run-time
evolution and dynamism in different domains. There exist
various tools and techniques to deal with variability on dif-
ferent levels, i.e., at the requirements, design, architecture,
implementation, application, and runtime level. For instance,
John and Schmid [6] describe a customizable approach for
variability management which is independent from specific
notations. Their approach is based on decision models, which
are built by specifying decision variables and constraints
between them. Bachmannet al. [5] propose a conceptual
model of variation to represent variability in product family
development. In their model, a variation point represents an
explicit engineering decision to allow for several alternative
variants with regard to selected assets of system development.
Authors have also distinguished between external variability,
i.e., the variability of artefacts that is visible to customers, and
internal variability, i.e., the variability of domain artefacts that
remains hidden from customers [12].

B. Synthesis and Analysis

The following two sections describe how synthesis and anal-
ysis can be realized according to the layers of the framework
(see Fig. 1).

Stakeholder Needs Layer:In this layer, the main objective
is to develop a requirements model capturing the needs of the

various stakeholders. According to the analysis undertaken in
Section II, understanding the needs of stakeholders is essential
for dealing with MSDS challenges such as conflicting goals or
reacting to changes properly. It becomes clear that identifying
the right set of actors covering these stakeholders is a key
point for modeling. Therefore, methods that provide guidance
for this aspect are needed; we may mention the RiSD method
for building i* models [13] and we also remark that win-win
emphasizes identification of stakeholders as the first step to
be carried out in the process. During the synthesis of this
requirements model, different analyses may be undertaken.
For instance, the workability of the different actors [4] or
predictability of the model [14] may be analyzed and the
model may be tuned to achieve the required results.

As remarked in Section II, the usual problem of conflicting
requirements becomes especially important in MSDS and
we need specific techniques to address with this issue. An
excellent starting point for analyzing potential conflicts is the
information gathered on the stakeholder needs layer, i.e., the
i* models expressing goals of different stakeholders.

A win-win negotiation may be carried out as a two-step
process. First, all members of a particular stakeholder group
(e.g., all the representatives of travel agencies) may negotiate
their wishes and needs. In the general case, they will agree
in some points but they will also have different goals with
respect to other issues. In thei* model, we will represent
each group with a hierarchy of actors using the specialization
(is-a) construct. The root will stand for the actor (e.g., TA)
and will include the general needs, while there will be an heir
for each stakeholder group (e.g., University TA) with their
specific needs.

Next, a general negotiation among all stakeholders is per-
formed to agree on the final model. In fact, this negotiation
may be seen as the basis of the analysis performed in this
layer, meaning that the results obtained usually impact in the
requirements model. As widely known in requirements engi-
neering, modeling and negotiation are two highly intertwined
processes. These two aspects play an important part in this
layer of our MSDS framework.

As stated above, after negotiation we may end up with
different hierarchies of actors corresponding to specializations
of different groups of stakeholder in case stakeholders were
unable to agree on one system. This is similar to product
line modelling [12], in which we have a common part with
specific additions for each group of stakeholders (e.g., specific
customers). The goals that are refined in different ways in the
heirs stand for external variation points in the system.

Architecture-related Layers:In the synthesis process we
need to evolve the negotiated and agreed requirements into
architectural solutions. As presented in Section III, we have
distinguished three different layers. A goal in our approach is
to describe and use these architectural layers using the same
models and techniques as in the first layer.

We have shown in previous works [2] thati* supports
modeling the mapping of stakeholder goals onto architectural
concepts on the architecture prescription layer. The different

model elements ofi* (e.g., roles, agents, etc.) are applicable
also in the three lower levels of the MSDS framework. For
instance, at the architecture prescription layer, there may be
two different actors (expressed as roles ini*) for the types of
services “Flight Ticket” and “Hotel Booking”. In the solution
architecture, we may choose to cover these roles with one
actor “Amadeus” (modeled as ani* agent since it is a real-
world entity). In the open system layer, we may choose the
“Amadeus” service hosted on the Spanish site.

The use of product line engineering concepts such as vari-
ability models can help specifying, discovering and selecting
services or other type of components more precisely. The
alternative services and components for the selected one can
be recorded for further monitoring (e.g., if one service fails,
we can explore the recorded alternatives) as internal variation
points [12]. As stated in the previous subsection, we may use
i* constructs to implement these concepts.

Win-win negotiations can be useful in the solution architec-
ture layer to discuss and select possible options and alterna-
tives about how to realize the stakeholders’ goals (e.g., which
particular services or components are available for which
system actors). Also, in the open system layer, negotiation
may help to decide on the details of the initial deployment
of the system (e.g., whether to mirror services for efficiency
reasons).

Analysis in all these layers may be carried out oni* models
using the adequate properties. The architecture prescription
model may be analyzed in terms of properties such as security,
integrity, etc. In the lower two levels, properties such as
performance are likely to be assessed once concrete products
and topologies have been chosen. Again, the variability model
is important on these lower levels to better model possible
adaptations.

C. Monitoring and Adaptations

In Section I I we have already mentioned MSDS’ changing
nature. Change is constant in MSDS due to several reasons:

• Requirements changes:At any moment, the needs of
existing stakeholders may change. Such changes may
impact the first layer and will require to partially redo
the synthesis and analysis processes.

• New stakeholder types:New stakeholders (e.g., new types
of customers) may impact the variability analysis carried
out during negotiation and propagate to the lower layers.

• Technology changes:Today we can observe a rapid
appearance of new services and components while at the
same time other system elements become obsolete. This
may have an impact on higher-levels as new goals may
be satisfied with impacts on trade-offs in negotiations.

• Run-time changes:Changes may have multiple causes.
For instance, a site may provide bad service and thereby
degrade the performance of the MSDS as perceived by
certain stakeholders. Also, the change may be provoked
by some human activity, e.g., dealing with personal data
unsafely.

TABLE I

USE OF TECHNIQUES IN THE FRAMEWORK

Goal Modelling Variability Modelling Negotiation Techniques
Stakeholder Needs Building stakeholders’ SR models

Representing stakeholders’ dependen-
cies in a SD model
Including is-a hierarchies

Identifying external variation points
Building initial decision table

Identifying stakeholders
Eliciting stakeholder’ goals
Resolving stakeholder’ groups conflicts
Resolving overall system conflicts

Architecture Prescrip-
tion

Modeling the types of the future sys-
tem’s candidate service and compo-
nents
Decomposing the system into roles

Identifying additional external variation
points
Refining the decision tables

Evaluating trade-offs of several candi-
date designs
Reconcile information about negotia-
tion model with market information

Architecture Solution Including agents modelling concrete
services and components

Identifying internal variation points
Refining the decision tables

Ranking possible services and compo-
nents
Attaining agreements on selected ser-
vices and components

Open System Including agents as instances of former
agents

Updating decision tables with selected
services and components
Selecting a new service or component
automatically at runtime

Deciding details on the deployment of
the system
Signing agreement contracts between
stakeholders

Continuous monitoring is necessary to ensure that require-
ments of stakeholders remain satisfied after such changes.
In our framework we need to combine the ability to recog-
nize both human-triggered and system-triggered changes. For
human-triggered changes, we need specific activities in the
monitoring process. For system-triggered changes tool support
to detect the conflicts and translate them in terms of model
elements is required. Equally important, we need to be able to
trace from lower models to upper ones to support reasoning
and proper reactions. For instance, if the open system level
detects that a service fails, traceability allows to identify the
affected stakeholders to inform them accordingly.

Reaction and adaptation will be similar to synthesis in
the sense thati* modeling and win-win negotiations play
an important part, while keeping the product line scope. For
instance, once the stakeholders affected by a service failure
are identified, a negotiation may be carried out to assess the
criticality of this failure, possible alternatives, etc. As part
of this process, alternative services and components that are
available may be explored to see how they fulfill requirements
and conflict with stakeholder goals. At this level, negotiation
may benefit from the use of scenarios [15] which state the
change situation and explore the different solutions.

Decision modeling plays an important role to support such
adaptations. Decision tables as shown in Section V capture
variation points and can be used to inform engineering about
possible and meaningful changes that do not violate stake-
holder goals. For example, there could be a variation point
PaymentService on the Prescription Architecture layer with
CheatCard and Securitas as possible services on the Solution
Architecture layer.

D. Summary

Table I summarizes the most important issues about the suit-
ability and relevancy of each used technique. Goal modelling
using i* takes up an important role in the upper layers to
establish system requirements expressed in terms of goals.
The flexibility and adaptability ofi* permits the modelling
of stakeholder needs and high-level architectures. Variability

modelling uses the information fromi* to start modelling
variation points and alternatives. Our framework keeps this
information in order to support traceability of runtime system
backward to stakeholder goals and also to support fast adapt-
ability of the system in case requirements change. Negotiation
can be used at all layers to resolve conflicts that arise. The
importance decreases in lower layers because these are more
technical than upper ones and in many cases the possible
conflicts could be resolved using defined metrics that minimize
the need of negotiation between stakeholders.

V. INITIAL VALIDATION

We applied our approach to the travel agency example
briefly introduced in Section II. We used the combination of
i* modelling, win-win negotiations, and variability modelling
techniques to establish an online platform providing support
for travel agencies and their customers. As outlined in Sec-
tion II this platform is provided by a third actor, a fictitious
company calledTravel Services Inc.We used this example to
explore and validate the framework and modelling techniques.
Each author was asked to take the role of a stakeholder in
the study. We did not involve real-world stakeholders such as
representatives from travel agencies so far. We describe how
we used the approach on the different levels. We also highlight
the highly iterative nature of the different processes and the
intertwining of the different layers.

A. Synthesis and Analysis

Stakeholder Needs:As mentioned in Section IV.B, we ap-
plied a process for building the initiali* model prescriptively.
Our inspiration was the RiSD methodology [13] but with
one fundamental change: whilst RiSD focuses on the whole
system, we focused on the needs of each group of stakeholders
in the MSDS separately. In practical terms, this means that
once the critical stakeholders for the project were identified,
we built several SR models to discover the individual needs
of stakeholders. As part of this process the dependencies of
each stakeholder on others appeared, giving light to a first
version of the SD model. This process was in fact iterative

Fig. 2. Partial SR model for the Family actor.

and therefore, some of the obtained dependencies could not
be linked to existing actors; instead, we needed to identify new
success-critical stakeholders and introduce the corresponding
actors in the model.

In our example, we identified initially three stakeholder
groups, namely TSI, TA, and Customer. For each group, some
critical stakeholders were identified to collect system require-
ments and to invite them to the negotiation. For TSI only one
stakeholder was identified to represent the company needs,
but for the other two groups two different stakeholders were
identified, TA and Customer interested in trips for researchers
(UTA and Researcher) and TA and Customer interested in trips
for families (FTA and Family).

We started to model the needs of the TSI stakeholder, whose
main goal is to contract as many agencies as possible. To
attain this goal it is decomposed into subgoals, e.g., providing
good service, ensuring privacy, and keeping trustworthiness.
After further decomposition we observed that TSI is unable
to achieve all its goals itself, in particular the goals referred
to obtaining information about travels and contracting travels.
This gave rise to a new stakeholder group Service Provider
with stakeholders representing Travel Service Providers for
looking for travels and Payment Service Providers for paying
travels during the booking process. This situation illustrates the
iterative nature of our process as mentioned above. Also, these
new stakeholders are examples of unavailable stakeholders
that cannot participate in a negotiation, so their needs and
abilities need to be modelled by a representative (in a typical
process, by the requirements engineer driving this first layer).
Similarly, we developed SRi* models for both types of TA’s
and Customers. Fig. 2 shows part of the specific SR for the
Family actor and some dependencies stemming from it.

After building individual SRi* models, the two Customers
were requested to participate in a negotiation to discern if
they were able to agree on one SRi* model representing their
needs and desires. Family and Researcher share similar goals,

Fig. 3. Subtyping a stakeholder-related actor using theis-a relationship.

Fig. 4. Example of variation point: Customer Assistance Provided.

but each group has some individual interests. For example
both want cheap travels, a good level of service and some
privacy provided by the TA. Families are interested in more
specific facilities like activities for children and pet admittance,
while Researchers are interested in travelling to conferences or
flexibility for changing bookings. Therefore stakeholders could
not agree on one combined model and the negotiation led us
to a model with common goals located in the general actor
Customer and specific goals placed in Family and Researcher
actors. Family and Researcher are linked to Customer using
an is-a relationship (see Fig. 3). A similar situation appeared
when considering UTA and FTA.

When developing an SRi* model normally more re-
quirements are gathered than can be realized within limited
schedule and budget. So we also asked stakeholders to reflect
about the priorities of their goals regarding project success

and feasibility. The obtained priorities were used to support
negotiation activities in subsequent steps.

As soon as the different stakeholder groups agree on a
general model the next important step is to analyze the ex-
isting dependencies between actors. Some dependencies were
previously identified but they need to be confirmed whilst
new ones may appear. Since a dependency from an actorA
to an actorB means thatB responsible with respect toA,
negotiation should take care thatB is aware of and agrees
with that. In our framework, dependencies are modelled with
an SD model. In some cases, existing SRi* models have to
be extended because of such dependencies. Key stakeholders
can meet face-to-face to discuss issues and the requirements
engineer can use these discussions to develop the final SDi*
model. An example of issue in our case was the incompatibility
between payment services provider goal “Customer data sold
to third parties” and Customer goal “Personal data not sent to
third parties”. This conflict was identified when analyzing the
individual i* SR models. A negotiation in such a situation
may help to find options for resolving the issue, e.g., via
alternative service types or services. It might also be revealed,
however, that there are non-resolvable conflicts between SR
models. A requirements engineer would then point out the
problem to stakeholders and ask them to reconsider their goals.
In this layer, we determine the initial scope of the product
line. Some external variation point candidates were detected
applying heuristics like:

• Intentional elements appearing in a general actor which
are refined by anis-a relationships. For instance, the
“Good Service Offered” goal that belongs to Customer
is refined into several elements in Family like “Pets
Admitted” and into others in Researcher as “Flexibility
for Changing Bookings” (see Fig. 3).

• Goals and softgoals that appear as leafs in the model. This
means that they admit different ways for being attained.
For instance, the goal “Identification Means Provided”
can later be implemented using different types of services
or components (see Fig. 4).

• Means-end decompositions that, unlike the previous bul-
let, state the alternatives explicitly. For instance, the
“Customer Assistance Provided” goal in TA that admits
several ways, e.g. Asynchronous Communication and
Synchronous Communication (see Fig. 4).

These and other external variation points can be collected in
a decision table including useful information for later monitor-
ing and reaction to changes. For instance, the external variation
point “Customer assistance provided” leads to decisions such
as “What kind of customer assistance do you need?” or “What
should a component support?” (see Table II).

The output of that layer is one SDi* model, including all the
specific SRi* models, and an initial decision model collecting
external variation points.

Architectural Prescription:While in the previous layer we
have modelled the stakeholder needs constructing the social
system model, we evolve this model into a socio-technical
system by mapping stakeholders’ goals and some social actors

TABLE II

PARTIAL DECISION MODEL FOR THESTAKEHOLDER NEEDS LAYER.

Decision
Variable

Question Selection
Type

Cardinality Link to i*
element

Type of
customer
assistance

What kind of customer
assistance do you need?

Set
{synch,
asynch}

1:2 Customer
assistance
provided

Degree of
customer
assistance

How many hours per
day should the hotline
be available?

Value
[0..24]

1 Customer
assistance
provided

onto architectural concepts in this layer. This activity is done
in highly interactive workshops due to the need to reconcile in-
formation from the stakeholder model with market knowledge.
The newi* model includes on the one hand, the main system-
to-be as an actor, i.e., in our case is the Web Portal for TSI
(hereafter, TSI-WP). This system is decomposed into subactors
that capture the main capabilities embraced by the system, e.g.
“Hotel Booking”, “Travel Payment”, and “Data Management”.
These subactors are modelled as roles ini* . On the other
hand, we find types of services or components available in
the market, some of them coming from the stakeholder model
because they already play a part whilst eliciting needs, others
appearing here for the first time. For instance, we may identify
at this layer that Payment Service Provider may support one or
more of different payment types, such as credit card or transfer.
The TSI-WP and these services form together the MSDS
subject of study. Dependencies among these new actors and
social actors appear, they may be new or they may be existing
ones that are reallocated to adapt to the new configuration of
the system.

Fig. 5 shows an excerpt of the resulting architectural pre-
scription model. We decomposed the TSI-WP and explored
different architectural options. Concerning the relationships
among system elements, we have found the following typol-
ogy:

• Linking stakeholder needs with TSI-WP roles.These
dependencies show how the different parts of the TSI-WP
support the attainment of stakeholder needs. Typically,
one or more intentional elements from a stakeholder SR
model are linked with one or more roles. For instance,
the goals “Asynchronous Support” and “Synchronous
Support” from TA depend on the “Message Support”
and “Call Center Support” roles, respectively. Also, the
“Personal Data kept isolated” and “Personal Data not
send to 3rd parties” goals are linked with the “Privacy
Manager” role.

• Linking TSI-WP roles with external types of services or
components.These dependencies show how the TSI-WP
relies on existing services and components to satisfy the
delegated needs. One or more TSI-WP roles are linked
with one or more external actors. For instance, the “Travel
Payment Support” role is linked with the “Payment
Service Provider” actor. Also, the “Travel Finder”, “Hotel
Booking” and “Flight Ticket” roles rely on the “Travel
Service Provider” type of service.

Fig. 5. Excerpt of the Architectural Prescription Model.

A role that is not linked to any other element will be
developed in-house. This is the case, e.g., of “Travel Planner”.
It is worth to mention that once the main roles have been
identified, some of them can be covered by different special-
izations, which is represented again using theis-a relationship
inside the system actor. In our case, the role “Travel Payment
Support” could be covered by two different specializations
“Credit Card Payment” and “Transfer Payment” (the link has
not been represented in the drawing). These specializations of
a role are identified as external variation points of a possible
product line and are added to the decision model of this layer.
A final remark about the architecture prescription model is
the apparent duplicity among roles and external services. This
is due to the necessary separation about which capabilities
offer the system-to-be (represented by TSI-WP roles) and what
services are available in the market (represented by external
roles and, in the following layers, agents). Our future work
includes the exploration ofi* -based notational techniques
allowing to represent this situation in a more compact form.

Solution Architecture:At that point we need to negotiate
and agree on an actual solution and identify real services and
components. At the Solution Architecture we must choose
one or more real services or components for each role of

the architectural prescription model bound to some service;
we remind that some roles may have been designated to
be developed in-house. A fundamental part here is service
discovery, i.e., discerning which of the many possible candi-
dates better fit to the stated needs. We have defined in [16]
a framework that facilitates this selection process considering
selection as a problem of matching among goal-based models:
the model of the needs to satisfy and the models of the
different services and components, which may fulfil or not
the goals, tasks, etc. defined in the role of the corresponding
service. During this selection, other two aspects that need to
be taken into account are negotiation and service composition.
Both techniques together help finding solutions for the usual
case in which there is no service in the market covering all
the relevant needs.

The result of this activity is a list of candidate services
and components to be chosen from. For instance, for cov-
ering the Credit Card Service Provider we may obtain two
services, CheatCard and Securitas. To choose between them,
negotiation again may help if representatives of these services
and components are available. In any case, from our product
line perspective, if more than one service or component could
play the service role, these roles become internal variation

Fig. 6. Excerpt of Solution Architecture Model.

points and will be added to the decision table, as shown
in Table III. The information added to the decision table is
manifold: make clear the nature of the variation point; state
how the services relate to that variation point (i.e., what part
of the system is implemented by which service); and show
the alternative services available (in our case, CheatCard and
Securitas). This information may be used for supporting the
monitoring process, because the entries of the table help in
identifying triggers for monitoring. Also we may take profit
of this information to develop some scenarios for adapting
the MSDS in response to these triggers, similar to the one
presented in Section II.

TABLE III

PARTIAL DECISION MODEL FOR THESOLUTION ARCHITECTURELAYER.

Decision
Variable

Question Selection
Type

Cardinality Link toi*
element

Credit
Card
Service
Provider

What is your preferred
service for credit card
transactions?

Set
{CheatCard,
Securitas}

1 Credit
Card
Service
Provider

Once this process ends, the real components selected are
included in the model as agents (circles with a segment in
the upper part, whilst roles have the segment in the lower
part) with ani* plays relationship between them and the roles.
Fig. 6 shows an excerpt of thei* model obtained at this layer.
This model does not contain information about the alternatives
found becausei* does not offer this feature. Not only the

TSI-WP’ subactors but also the rest of actors are modeled
as roles, because when approaching to the solution space, it
becomes more important to distinguish between the different
types of actors. The output of that layer is ani* model of the
Architectural Solution and an updated Decision Model.

Open System:So far we have developed the model and
selected some real services and components for the system, but
there is no real system running. At this layer concrete instances
of the real services and components modelled as agents in the
previousi* model are used for defining a deployment model.
These instances are defined again as agents which, following
the i* guidelines, are instances of the agents obtained in
the previous layer; this relationship may be established in
the model by using thei* instance relationship (see Fig. 7)
defining the the existing node implementing the Amadeus
service.

Once all the layers have been defined, customization for
particular types of stakeholders is supported. For example, if
a new TA wants to subscribe for TSI services, this can be done
with the help of the decision model. The TSI can immediately
deliver a model for the customized version of the product to the
new TA and in the case that product line engineering has been
followed, the customised portal could be effectively delivered
with little effort. In some cases the new TA will have special
needs which won’t be covered by the current product line
scope. The TSI and the new TA will then be committed to
negotiate the opportunities. After new features or services have

Fig. 7. Excerpt of Open System model.

been identified, they can be incorporated into the model at the
upper level and then propagate to the lower ones using the
synthesis process. Inviting other TAs can help to support the
development, because a new feature can also be interesting for
them.

B. Monitoring and Adaptation

Monitoring and adapting to changes are important character-
istics for MSDS as shown in Section II. Many approaches are
described in literature for monitoring systems (e.g., [17]). Here
we focus on the adaptation aspect and demonstrate how our
approach can support changing a system at runtime. Within
our framework we distinguish two different ways how this
change can emerge: 1) Changes can be “bottom-up”, i.e.,
triggered from the open system layer provoked by factors
like new services or components on the market or run-time
modifications of existing services or components; 2) Changes
can be “top-down” and stem from the Stakeholder Needs
layer of the framework. As discussed in section IV.C, new
stakeholder or floating requirements of existing stakeholders
can provoke changes at this level.

Based on the example presented in Section II we describe a
scenario demonstrating how such changes are handled by the
different layers of our approach. The first example shows how
to react if there is a change on the open system level. Instead of
discussing new candidate services with major customers like
NorthStar in step 6 of the original example, the variability
model provides the solution how to proceed.

1) The software architect of the TSI can recognize prior-
itized alternative services in the architectural solution

layer variability model. In our example the Securitas
service, which was already discovered during system
synthesis, fulfils all essential stakeholder needs.

2) As the Securitas service is the alternative service with
the highest priority the software architect chooses this
service to replace the CheatCard service.

3) After the system changes, the software architect uses the
i* system model and the decision model to identify all
affected stakeholders. To do so she can use some existing
tool support functionalities, e.g. backward traversals as
described in [18]. In this case stakeholders have only
to be informed that the security issue is resolved and
the system is working again as suggested. We are aware
that this example is only valid if alternative services can
be identified at the time of synthesis. If there are no
alternatives available the software architect has to focus
on the architectural prescription layer of the framework
to resolve the problem.

The second example illustrates how changes on the Stake-
holder Needs level can provoke changes of the running system:

1) TransworldTravels TA enters the market and requests
TSI to provide an extended payment service supporting
world-wide payment solutions.

2) As the need of TransworldTravels might provoke a
change on the stakeholder needs level, TSI software
architects analyse the high-leveli* goal models.

3) TSI figures out that the goal of TransworldTravel is not
included in thei* goal model so far and that other TAs
like NorthStar and the Payment Service Provider (PSP)
are affected by this request.

4) According to the framework TSI has to negotiate and
reconcile the new need with the other stakeholders.
The affected TAs and the Payment Service Provider are
invited to discussions. In our case we assume that the
other TA’s concur that they are not interested in the new
service.

5) The Payment Service Provider is willing to provide a
more advanced service to satisfy the requested needs as
TransworldTravels is willing to pay for this new service.

6) Based on this decision, TSI’s software architects have to
adapt thei* and the variability model on all framework
levels according to that system change. In this case
they have to model variability as TransworldTravels
is now using a different payment service as the other
TAs. Again, thei* and variability models support the
decision-making process within TSI, as the ways to react
to changes are already thought through and explicitly
expressed.

VI. ASSESSMENT OF THE APPROACH

In this section we highlight the main strengths and diffi-
culties of our approach. In the next section we include some
further work aimed at solving the identified difficulties.

The i* language: In our framework, i* is used in the
upper layer to describe stakeholders (including their subtyping
relationships) and their needs, to establish how these actors

depend one on each other (thei* SD model), and to record
the reasoning behind the decisions taken (thei* SR model).
Using i* modeling at that layer helps to gather information
about the different actors and to make requirements engineers
understand the whole system. In the lower three layers, the
concepts modeled are different: types of services, services,
consumed data, etc. However, and this is a first benefit, the
versatility of i* allows using it in all the layers, providing a
uniform and comprehensive framework and facilitating trace-
ability among models using for instance the matching notion
defined in [16]. In particular, the use ofi* to generate low
level models out of high level ones supports traceability of
individual stakeholder goals to real world components of the
open system.

A second benefit of usingi* is the possibility to assess
properties using metrics. Depending on their context, metrics
may be very different in nature, from requirements-oriented
(predictability, workability, etc.) to architecture-oriented (secu-
rity, performance, etc.). Although we have not illustrated this
aspect in the paper, we have demonstrated before [2], [14] that
it is feasible to define these metrics usingi* elements. Also,
having actors in the system allows focusing on their needs
independently, which fits with the MSDS characteristic that
stakeholders have their own perception of the system.

Finally, there exists currently a large community usingi*
which may facilitate knowledge transfer in both directions,
i.e. we may port other’s work to our MSDS framework whilst
making our approach more attractive for this community.
Remarkably, there currently exist some tools for editing and
reasoning withi* models which we envision as part of our
future tool-support.

At the time being, the most important drawback on the use
of i* is the size and complexity of the resulting models. This
has been reported as a main drawback ini* modeling [19]
and MSDS are not an exception. A second difficulty is the
lack of expressivity for some needs that are very related to
the MSDS domain. We have mentioned the incomplete way in
which theis-aconstruct is defined ini* , but also the absence of
a construct to record the discarded alternatives in the solution
architecture and other minor issues. We are currently working
to ameliorate these two drawbacks.

Negotiation techniques:The utility of win-win in the MSDS
framework is manifold. The approach emphasizes the in-
volvement of all success-critical stakeholders in a negotiation
and supports trade-offs in case of conflicting requirements.
Usually stakeholders demand more than can be covered by the
project budget. Win-win also entails prioritization techniques
to make requirements analysts understand the system’s most
critical features. It also supports consensus-building techniques
by pointing out goals where stakeholders do not agree. By
negotiating their needs, stakeholders have the chance to under-
stand the overall system and the needs of other stakeholders.
Negotiation is also helpful as a means to identify candidates
for variation points [20]. In that paper we also document that
win-win is helpful for scoping a product line. An issue that we
need to cope with is identify all the stakeholders for a MSDS,

Also, for some of the identified stakeholders, it may be hard
to involve them in a negotiation process. We need to adapt
win-win to overcome these difficulties.

Variability modeling:Our framework extends the traditional
use of variability modeling. While in conventional product
line engineering, variability modeling is essential in system
design and product configuration, in the MSDS context we
have shifted the emphasis on runtime adaptations. Decisions
tables allow reacting to system changes in an appropriate
way as they can also be used to define the alternatives in
case of system adaptations. Variability modeling also allows
dealing with the high volatility of the service market. New
services may be tight to the architecture in the identified
variability points without impacting much on the running
system. Variability techniques are also helpful for coping with
stakeholder variability, whilst maintaining a common set of
features relevant for all stakeholders.

VII. CONCLUSIONS

In this paper we have presented a framework for RE in
MSDS and reported several critical and important research
challenges. We have shown that an integrated approach based
on goal-oriented RE modelling, negotiation and variability
modelling is promising to deal with these issues. These
different individual approaches have been successfully used
in building high quality software systems in various domains.
Complementing each other, they seem to be beneficial for
supporting the development and evolution of MSDS.

The issues summarized in Section II highlight the problems
of the MSDS domain and confirm the need for an integrated
approach. Such an approach is particularly important for
providing systems that can be tailored to customer needs and
changed with minimal effort during operation as discussed in
this paper. The combination ofi* modelling and variability
models provides new possibility to better react to changes and
to support architectural design in the system operation phase.

Although preliminary, the application of the approach to
design a typical MSDS example highlights its strength and
benefits. Appling our approach we were able to identify issues
and ideas stimulating further research:

• Combining the three different techniques helps stakehold-
ers to understand the overall system vision. However, it is
time consuming to use more than one isolated modelling
technique. In our further research we have to explore
how to provide more integrated support and guidance for
applying the approach.

• At the moment the artefact types of the different ap-
proaches are not linked to each other clearly. A more
formal meta-model describing the relationship of artefacts
will be needed to automate information exchange.

• Identification of possible variation points in thei* model
relies in some not validated rules. In our further research
we have to explore how to derive variation points in a
more guided manner.

• While i* works fine on the higher levels of modelling the
MSDS we intend to refine some concepts (remarkably,

the is-a construct) to support the MSDS domain more
explicitly.

• So far we have been mainly using two tools. The RE-
DEND tool [18] supportsi* modelling (cf. the figures
in this paper). The DecisionKing tool [21] supports the
development and enactment of variability models. These
two tools are not integrated to so far and we will be
providing exchange mechanisms. The EasyWinWin tool
suite [7] provides good support for the elicitation and
negotiation aspects of our framework. So far we have not
been using the negotiation tools but we intend to integrate
selected negotiation capabilities in the future.

• We are also working on defining an evolution of the
RiSD method for buildingi* models [13] adapted to some
MSDS specificities.

ACKNOWLEDGMENTS

This work has been supported in part by the ACCIONES
INTEGRADAS program HU2005-0021 supporting bilateral
scientific and technological cooperation between Austria and
Spain; and the Spanish projects TIN2004-07461-C02 and
SODA FIT-340000-2006-312 (PROFIT programme).

REFERENCES

[1] R. Hall, “Open modeling in multi-stakeholder distributed systems:
requirements engineering for the 21st century,” inProc. First Workshop
on the State of the Art in Automated Software Engineering, U.C. Irvine,
Institute for Software Research, 2002.

[2] X. Franch and N. Maiden, “Modeling component dependencies to
inform their selection,” in2nd International Conference on COTS-Based
Software Systems, ser. Lecture Notes in Computer Science, vol. 2580.
Springer, 2003.

[3] P. Gr̈unbacher and N. Seyff, “Requirements negotiation,” inEngineering
and Managing Software Requirements, A. Aurum and C. Wohlin, Eds.
Springer Verlag, 2005.

[4] E. Yu., “Modeling strategic relationships for process reengineering,”
Ph.D. dissertation, Univ. Toronto, 1995.

[5] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and
A. Vilbig, “A meta-model for representing variability in product family
development,” 2003.

[6] I. John and K. Schmid, “A customizable approach to full-life cycle
variability management,”Elsevier Journal of the Science of Computer
Programming, Special Issue on Variability Management, 2004.

[7] B. Boehm, P. Gr̈unbacher, and R. Briggs, “Developing groupware for
requirements negotiation: Lessons learned,”IEEE Software, vol. 18,
no. 3, pp. 46–55, 2001.

[8] P. Gr̈unbacher, F. Stallinger, N. Maiden, and X. Franch, “A
negotiation-based framework for requirements engineering in multi-
stakeholder distributed systems,” inWorkshop on ”Requirements En-
gineering and Open Systems (REOS)” at RE’03. Monterey, CA:
http://www.cs.uoregon.edu/ fickas/REOS/, 2003.

[9] P. Gr̈unbacher, N. Medvicovic, and A. Egyed, “Reconciling software
requirements and architectures with intermediate models,”Journal on
Software and System Modeling, vol. 3, no. 3, pp. 235–253, 2004.

[10] A. v. Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings 5th IEEE International Symposium on Require-
ments Engineering (RE’01), August 27-31, 2001.

[11] B. Boehm, P. Bose, E. Horowitz, and M. Lee, “Software requirements
as negotiated win conditions,” inFirst International Conference on Re-
quirements Engineering. Colorado Springs, CO, USA: IEEE Computer
Society, 1994, pp. 74–83.

[12] K. Pohl, G. B̈ockle, and F. van der Linden,Software Product Line Engi-
neering – Foundations, Principles, and Techniques. Berlin, Heidelberg,
New York: Springer, 2005.

[13] X. Franch., G. Grau, E. Mayol,et al., “Systematic construction of i*
strategic dependency models for socio-technical systems.”to appear:
International Journal of Software Engineering and Knowledge Engi-
neering (IJSEKE), 2007.

[14] X. Franch, “On the quantitative analysis of agent-oriented models,” in
Proceedings 18th CAiSE Conference. Springer LNCS 4001, 2006.

[15] I. Alexander and N. Maiden,Scenarios, Stories and Use Cases. John
Wiley, 2004.

[16] X. Franch, “On the lightweight use of goal-oriented models for software
package selection,” inProceedings 17th CAiSE Conference, ser. Lecture
Notes in Computer Science, vol. 3250. Springer, 2005.

[17] M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvidovic, “Improv-
ing availability of distributed event-based systems via run-time moni-
toring and analysis,” inProceedings of Twin Workshops on Architecting
Dependable Systems (WADS 2004), Edinburgh, UK, May 25, 2004 and
Florence, Italy, June 30, 2004.

[18] J. Lockerbie and N. Maiden, “REDEPEND: Extending i* modelling
into requirements processes,” inProc. 14th International Conference on
Requirements Engineering (RE’06), Minneapolis, MN, 2006.

[19] H. Estrada, A. Mart́ınez, O. Pastor, and J. Mylopoulos, “An experimental
evaluation of the i* framework in a model-based software generation
environment,” in Proceedings 18th CAiSE Conference, Luxembourg.
Springer LNCS 4001, 2006.

[20] M. Noor, R. Rabiser, and P. Grünbacher, “A collaborative approach
for reengineering-based product line scoping,” inProceedings 1st In-
ternational Workshop on Agile Product Line Engineering (APLE’06),
Baltimore, USA, 2006.

[21] D. Dhungana, “Integrated variability modeling of features and archi-
tecture in software product line engineering. doctoral symposium,”
in 21st IEEE/ACM International Conference on Automated Software
Engineering, Tokyo, Japan. IEEE Computer Society, 2006.

