
__________________ 

This work has been supported in part by the ACCIONES INTEGRADAS program supporting bilateral 

scientific and technological cooperation between Austria and Spain; and the Spanish projects TIN2004-
07461-C02 and SODA FIT-340000-2006-312 (PROFIT program). 

The Meaning of Inheritance in i* 

R. Clotet1, X. Franch1, L. López1, J. Marco1, N. Seyff2, P. Grünbacher3 

1 Software Engineering for Information Systems Group (GESSI) 

Universitat Politècnica de Catalunya (UPC) 

UPC-Campus Nord, Omega, 08034 Spain 

{rclotet, franch, llopez, jmarco}@lsi.upc.edu 
2 Institute of Systems Engineering and Automation 

Johannes Kepler Universität, A-4040 Linz, Austria 

nseyff@sea.uni-linz.ac.at 
3 Christian Doppler Laboratory for Automated Software Engineering 

Johannes Kepler Universität, A-4040 Linz, Austria 

paul.gruenbacher@jku.at 

Abstract. The is-a relationship among actors has been introduced since the very 

beginning of i*. However, the effect of this construct at the level of intentional 

elements and dependencies is not always clear. In this paper, we explore the 

semantics of inheritance in i*. Aligning with its usual meaning in object-

orientation, we distinguish 3 main notions to be defined: extension, refinement, 

and redefinition. For each of them, we study its effects on the different types of 

intentional elements and their links, and also dependencies, making explicit 

what can be and cannot be done. We illustrate the proposal with an example 

that makes intensive use of inheritance, a multi-stakeholder distributed system 

in which different types of related stakeholders co-exist. 

1 Introduction 

Goal- and agent-oriented modeling approaches are widely used in requirements 

engineering (RE) [1]. Approaches like i* [2] enable analysts to understand the system 

domain by providing support for modeling stakeholder requirements.  

i* focuses mainly on representing strategic concerns by means of intentional 

elements (IE) and their relationships. Several dialects exist, remarkably Yu’s seminal 

proposal [2], GRL [3], and Tropos [4]. They all agree on a core of main concepts 

whilst not addressing in much detail other related concepts (see [5] for an analysis). 

One of the elements lacking a more detailed definition is the concept of inheritance, 

despite the fact that it already appeared in Yu’s seminal definition [2]. Other authors 

make use of inheritance but they have not clearly defined this concept nor provided 

guidelines for usage. The reason for this lack of rigor in inheritance definition is that 

the construct is not needed often for some modeling tasks. On the other hand, there 

are domains that naturally need this mechanism. 

As one of these domains, we have started to use the i* language to model service-

oriented multi-stakeholder distributed systems (MSDS). MSDS are distributed 

systems in which subsets of the nodes are designed, owned, or operated by distinct 



2       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

stakeholders [6]. Using basic i* modeling concepts such as intentional elements, 

links, and actors we experienced some limitations of i* when specifying the needs of 

heterogeneous stakeholders in a particular example of system, an web-based travel 

agency [7]. A significant problem we faced when modeling this MSDS was caused by 

the need to use inheritance for building hierarchies of actors without knowing 

accurately the consequences on their rationale of doing so. Specifically, when 

modeling our MSDS system, we aimed to model a common rationale in the 

superactor and a specific rationale in the subactors. Using inheritance as defined by 

Yu, we felt the need to determine which model transformation operations are valid 

and which are their implications in the context of specialization of actors. 

This paper thus explores the semantics of inheritance in i* and proposes three 

model transformation operations for implementing the concept of actor specialization 

at a detailed level (sections 4 to 7). These operations rely upon some agreed strategies 

and rules that exist in the object-orientation context (section 2). The conditions of 

applicability of these operations are discussed. Graphical conventions are introduced 

to allow representing inheritance in i* diagrams. Our discussion is based on the 

lessons learned from the MSDS travel agency example (section 3). 

2 Background  

We present in this section an overview of the general concept of inheritance in object 

orientation and a survey on the use of inheritance in i*. First, we briefly summarize 

the main concepts of i* needed in the rest of the paper. 

The i* framework. In the i* framework there are two types of models: Strategic 

Dependency (SD) models declare the actors, their relationships (e.g., specialization 

and composition) and how they depend on each other. Strategic Rationale (SR) 

models state the main goals of these actors and their decomposition using some links. 

Both types of models together provide a comprehensive view of the system. 

The work presented in this paper mainly focus on SR models. SR models describe 

actor objectives in terms of four kinds of intentional elements (IE) that appear in the 

boundary of that actor: goals, tasks, resources and softgoals. These four IE may be 

connected inside the SR boundary by using three kinds of links: task-decomposition, 

means-end and contribute-to. Furthermore, IE appearing inside two different 

boundaries may be related by using dependencies which may be also of the four types 

mentioned above. For a more complete description we refer to [2]. A summary, a 

metamodel and a comparative of dialects can be found in [5]. 

One notion that we need in this paper is satisfactibility of an IE. Intuitively, an IE 

states some objective that may be satisfied or not. We assume that satisfactibility is 

denoted by a Boolean predicate. The exact meaning of satisfactibility depends on the 

type of the IE: goal satisfactibility means that the goal attains the desired state; task 

satisfactibility means that the task follows the defined procedure; resource 

satisfactibility means that the resource is produced or delivered; softgoal 

satisfactibility means that the modeled conditions fulfills some fit criterion. We will 

represent satisfactibility of an IE x by satisfies(x). 



The Meaning of Inheritance in i*      3 

The notion of inheritance. Inheritance appears mainly in the context of object-

orientation (OO). If an object x inherits from an object y, then x has all the properties 

that y exhibits. Also, there are some possibilities of extension, see [8] for a summary. 

Inheritance in i*. Inheritance appeared in i* from the very beginning. Yu uses the 

is-a relationship called actor specialization in his thesis. Specifically in the “Meeting 

Scheduler” example [2] the actor “Important Participant” is related with the actor 

“Meeting Participant” using the is-a link. This link is only used in SD models 

between actors; also the subactor has some new incoming dependencies. When 

actors’ SR models are developed no SR model is defined for the subactor “Important 

Participant”. Both characteristics can be interpreted as inheritance meaning that a 

subactor has the same IEs than its superactor and only new IE can be added. In spite 

of using the is-a link in the example, it is not explicitly defined in the i* description. 

The is-a construct has been used by several teams, including ours, in several 

contexts, with the same meaning, as a pure modeling tool, e.g. [9, 10] or also in the 

context of generation of UML specifications from i* models, e.g., [11, 12]. In all of 

these works the level of detail given is as insufficient as in [2]. Because of this 

looseness and the infrequent use of is-a in the i* community, this construct is not 

included in the core concepts defined in the metamodel [5], although it should be 

considered as we will show in our examples. 

It is worth to remark that the most important i* dialects GRL and Tropos, do not 

define an is-a link either. For instance, in [13] it is stated that “it should be noted that 

inheritance, a crucial notion for UML diagrams, plays no role in [Tropos] actor 

diagrams”. In a more recent publication [14], the is-a link is not included in the 

Tropos metamodel. In GRL’s specification [3] there is no definition for the is-a link.  

3 The MSDS context: the Travel Agency case 

Our MSDS example is a distributed system provided by a company called Travel 

Services Inc. (TSI) that allows travelers searching for, and booking, trips online. 

While some of the required services are developed by TSI, most are provided by third 

party service providers. For example, the system relies on a payment service provider 

offering payment services to TSI. The system also relies on a number of travel 

services, e.g., for booking flights or checking the availability of hotel rooms. Travel 

Agencies (TA) contract TSI’s software to offer a customized online travel platform to 

their customers. These TA have different expectations and needs. For example, 

University_TA (UTA) is a travel agency specialized to support researchers in 

planning trips whilst Family_TA (FTA) is focusing on trips for families with kids. 

TSI is interested on supporting further types of travel agencies in the future. 

As part of our research, we are currently exploring the benefits and limitations of 

i* for MSDS [7]. The i* SD and SR models together provide a comprehensive 

overview of the system, support recording the rationale behind requirements, and 

allow decomposing elicited requirements to the required level of detail. We started to 

model the needs of the TSI stakeholder, whose main goal is to contract as many 

agencies as possible. To attain this goal it is decomposed into subgoals, e.g., 

providing good service, ensuring privacy, and keeping trustworthiness. 



4       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

 

Fig. 1. is-a relationship for travel agencies  

After building individual SR i* models for the two types of Customers and Travel 

Agencies, the two Customers were requested to negotiate to discern whether they 

could to agree on one SR i* model representing their needs and desires. Family and 

Researcher share similar goals, but each group has some individual interests. For 

example both expect cheap travels and some privacy provided by the TA. Families 

are interested in more specific facilities like children activities and pet admittance, 

while Researchers are interested in travelling to conferences or flexibility for 

changing bookings. Therefore stakeholders could not agree on a combined model and 

the negotiation led to a model with common goals located in the general actor 

Customer and specific goals placed in Family and Researcher actors. As a result, we 

used the is-a relationship to link Family and Researcher to Customer, see Fig. 1.  

However, this was just the first step, since it became necessary to include more 

information in the SR of the specialized actors. For instance, in Fig. 2 we show how 

some information is added in the Family Travel Agency (FTA) with respect to the 

contracting of many travels. This model is representative of the kind of things that 

need to define precisely. In Fig. 2, subactor’s inherited IE and links are depicted in 

dotted lines, whilst the new ones are depicted in the normal way (representation 

conventions are discussed in more detail throughout the paper). 

4 Actor specialization in i* 

As shown in section 2, the idea of the is-a relationship in i* is quite simple. It 

describes conceptual relationships between actors such as “a University travel agency 

is a travel agency” or “a Family travel agency is a travel agency” (see Fig. 1). While 

this notion is fairly intuitive, the open questions remain with respect to the IEs that 

conform the SR diagram of the specialized actor and their dependencies with other 

actors. As a starting point, we consider that if an actor B (hereafter, subactor) is-a 

actor A (hereafter, superactor), then B’s SR diagram includes all the IEs that are in A’s 

SR diagram (e.g., goals, tasks), the links between them (e.g., means-end, 

contributions-to) and their dependencies to other parts of the model, unless otherwise 

stated. In other words: the common rationale is modeled in the SR diagram of the 

superactor while the specific rationale is defined in the SR diagram of subactors. 

Establishing such a kind of relationship among actors may be considered the baseline 

of the actor specialization process, upon which the subactor may be further refined 

though the specialization of some of its IEs.  

Con formato: Fuente: Negrita



The Meaning of Inheritance in i*      5 

 

Fig. 2. Specialization of Travel Agency (TA) into Family TA (FTA). 

As mentioned in section 2, a goal of our proposal is to align i* inheritance with the 

general concept of inheritance as known in OO approaches. Following Borgida et 

al. [8], we consider two alternatives for inheritance: template and prototype. In the 

case of template, the IEs, links and dependencies appearing in the superactor’s SR 

diagram must be satisfied by all its subactors. For instance, if a superactor has a 

goal G that is achieved by a task T (expressed with a means-end link from T to G) all 

its subactors must keep the goal G and also keep the task T as a means to achieve it. 

In the case of prototype, an IE, link or outcoming dependency of the superactor’s SR 

may be changed in a particular subactor’s SR. E.g., a particular subactor can achieve a 

task T with a different task decomposition than its superactor. Given the needs stated 

in section 3, we clearly need to pursue the prototype approach. 

However, the prototype approach still allows too many degrees of freedom. We 

could assume for instance an IE to change its type, or to completely change its 

satisfactibility predicate, etc. We have thus decided to adhere to Meyer’s Taxomania 

rule: “Every heir must introduce a feature, redeclare an inherited feature, or add an 

invariant clause” [15, p. 820]. Upon adopting this rule in the i* framework we obtain 

three different specialization operations on IE: extension (i.e., introducing a feature), 

redefinition (i.e., redeclaring an inherited feature), and refinement (i.e., adding an 

invariant clause). By extension, a new IE is added establishing some kind of 

relationships with the inherited ones. By redefinition, the decomposition of some 

inherited IE is changed. In these two cases, the satisfactibility predicate does not 

change. By refinement, the satisfactibility predicate of an inherited IE is changed but 

not arbitrarily. As a result, specialization of an actor consists of several specialization 

operations applied to the inherited SR diagram. Of course, extensions, refinements or 

redefinitions must not be arbitrary. We thus enumerate the conditions that must hold 

in the following three sections. 

5 Extension of intentional elements 

In the OO paradigm, one of the most frequent ways of specializing a class is adding 

some information such as attributes and methods to a subclass. We extrapolate this 

idea into the i* modeling framework and call it extension. Extension in i* means 

adding new IEs to the SR model of a subactor together with relationships to other IEs.  



6       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

There is an example of extension in Fig. 2 (see section 3). The IE “Many travels 

contracted” belonging to the TA superactor has been extended in the FTA subactor. 

For family travel agencies, a new resource “Detailed product information” and new 

goals “Family discounts provided” and “Special familiar packets provided” are 

deemed necessary to achieve the inherited goal “Many travels contracted”. The 

strategic analysis of the new goals reveals positive contributions to the TA softgoals 

“Good quality-price rate” and “Many kind of travels offered”, which are also 

inherited by the FTA. 

As another example of extension, we analyze the specialization of Customer into 

Researcher. Fig. 3 shows the new softgoal “Booking portal customized for 

researchers” in the “Researcher” subactor, which contributes positively to the 

superactor’s softgoal “Travels contracted easily”. Also, the task “Buy travels” 

inherited from the Customer superactor is decomposed into three subtasks by means 

of a task-decomposition link. 

The two examples show that any kind of IE, together with links and dependencies, 

may be added to the SR model of a subactor. The new IE is drawn as usual, whilst the 

extended (inherited) IE is depicted using a dotted line.  

We present correctness conditions concerning links and dependencies to other IEs:  

• Dependency Links: 

− Outgoing: There is no restriction about the type or number of outgoing 

dependencies that may stem from a new IE. However, outgoing dependencies 

cannot be added to inherited IEs: if a superactor is able to achieve an IE by 

itself, its subactors must be able to do so as well. 

− Incoming: During the process of actor specialization, incoming dependencies 

cannot be added to a subactor. However, when building other parts of the 

model, it may be possible that new incoming dependencies appear. Let’s 

consider, e.g., the specialization of Travel Agency into Family Travel Agency 

(FTA). Initially, no incoming dependencies into FTA appear. Later on, however, 

when specializing Customer into Family, the outgoing dependency “Children 

activities offered” stemming from Family is also an incoming dependency into 

FTA (see Table 1, row 7). From our point of view, this new dependency is not 

part of the FTA specialization. 

• Contribute-to-Softgoal Link: A new element may contribute, either positively or 

negatively, to an inherited softgoal. 

 

Fig. 3. Specialization of Customer into Researcher extending a task and a softgoal 



The Meaning of Inheritance in i*      7 

• Task-Decomposition Link: A new element may be part of any task-decomposition 

link, because task-decompositions are not necessarily complete. It is therefore 

always possible to add more detail to the way a task is performed (see Fig. 3 for an 

example). By defining a task-decomposition, the new element is considered AND-

ed with the elements that decompose the task in the superactor. The case in which 

the task in the superactor is not decomposed (as shown in Fig. 3) is just a particular 

situation that falls into the general case. 

• Means-End Link: A new element may be considered as a new means to achieve an 

end, so no restriction exists. By definition of means-end, the new element is 

considered OR-ed with the means that appear in the superactor.  

Concerning graphical representation in the SR diagram, we remark that at least the 

extended IEs (i.e., decomposed tasks, ends or contributed softgoals, inherited from the 

superactor) and the new IEs must appear. Also, if the new IE is related to some other 

inherited IE, the relationship must be drawn and the inherited IE explicitly depicted in 

the diagram. This happens for example in Fig. 2 with the inherited “Good quality-

price rate” that appears because of the contribution from the new “Family discounts 

provided” IE. Optionally, other IEs inherited from the superactor may appear in the 

subactor to improve legibility (e.g., “Travels contracted easily” and “Buy travels” in 

Fig. 3). Remember that inherited elements are shown with dotted lines, whilst new 

elements are shown in regular lines. 

Table 1 summarizes all the possible situations of extension in actor specialization 

together with examples.  

6 Refinement of intentional elements 

Refinement in our framework captures the third situation stated in Meyer’s 

Taxomania rule, adding an invariant clause. We interpret adding an invariant as 

restricting the satisfactibility predicate of the IE being refined, in other words, 

satisfactibility of the new IE implies satisfactibility of the refined IE. More 

specifically, this means for the four types of IEs: (1) goals and (2) softgoals: the set of 

states attained by the new IE is a subset of the states attained in the refined IE; 

(3) tasks: the procedure to be undertaken in the new IE is more prescriptive than the 

procedure to be undertaken in the refined IE; (4) resource: the entity represented by 

the new IE entails more information than the entity represented by the refined IE. As 

a consequence of these definitions, IEs may not change their type when refined. 

Refinement is allowed only when the IE to be refined is not decomposed in the 

superactor’s SR diagram using means-end or task-decomposition links. The reason is 

that, if already decomposed, changing the satisfactibility predicate may result in an 

invalid decomposition. Although one could define additional conditions, this would 

lead to a highly counterintuitive and cumbersome use of inheritance. We therefore 

prefer to forbid this situation. Superactor goals, tasks, and resources may only be 

refined if they are leaves in the SR diagram. This condition does not apply to 

softgoals, since contribution-to links do not define a decomposition but just a 

relationships. Of course, once refined in the subactor, the new IE may be decomposed 

if required. 



8       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

Table 1. Summary of cases in extension during actor specialization. 

Extension of a 

goal 

 

Extension of a 

task 

 

M
ea

n
s-

en
d
 

Extension of a 

resource 

 

C
o
n
tr

ib
u
ti
o
n
 

Contribution to a 

softgoal 

 

Task not 

decomposed yet 

 

T
as

k
-d

ec
o
m

p
o
si

ti
o
n
 

Decomposed task 

 

D
ep

en
d
en

ci
es

 

New outgoing 

dependencies 

 



The Meaning of Inheritance in i*      9 

As a result, we find the following casuistic (see Table 2): 

• Refinement of IEs: Refinement is valid if the two mentioned conditions hold: 

(1) the refined IE is neither a decomposed task nor an end in some means-end 

relationship; (2) the satisfactibility predicate of the new element implies the 

satisfactibility predicate of the refined one. To represent refinement, the new 

element is depicted using solid lines and its name includes the name of the 

refined element appropriately. For instance, in Table 2 (row 3), “Travel 

information” resource is refined into the “Detailed travel information”. 

• Dependencies implying the refined IE:  

− Outgoing: There are two different situations. First, the new IE may still 

depend on the same actor than the refined IE, because the new satisfactibility 

predicate does not allow getting rid of that. In Table 2 (row 6) “Travels 

contracted easily” is refined into “Travels contracted easily by phone” and the 

outgoing dependency “Travels contracted easily” is still depending on the 

same actor. On the contrary, it may be the case that the predicate of the new IE 

leaves out specific needs that motivated the dependency in the refined IE; in 

this case, the dependency is not inherited. In Table 2 (row 5) we may observe 

how task “Pay travel” is refined into “Pay travel using cash” and this task does 

not depend anymore on the Payment Service Provider actor to be undertaken. 

Outgoing dependencies cannot be added because if the superactor was able to 

achieve the IE, its subactor should be able to achieve the refined IE.  

− Incoming: Dependencies that go into the refined IE must be kept in the new IE 

(i.e., they are inherited). The reason behind this decision is that the depender is 

expecting that the dependee will fulfill some kind of responsibility in any 

circumstance, and it may not be the case that some particular subactor of the 

dependee does not commit to that responsibility. As an example, in Table 2 

(row 7), the task “Contract travel” is refined into “Contract travel by phone” 

and the incoming resource dependency “Personal data” maintains the same 

depender (not explicitly drawn because it is always inherited as such). 

The fact that outgoing dependencies may not be inherited by subactors means that 

inherited outgoing dependencies must be explicitly declared (with dotted lines as for 

inherited elements, see example in Table 2 row 6). We considered the possibility of 

inheriting them automatically, but this would have required a notational convention to 

get rid of those outgoing dependencies that are not inherited and we rejected that. 

7 Redefinition of intentional elements 

Redefinition (“redeclaration” in the Taxomania rule) allows redefining IEs and their 

relationships. The main difference among redefinition and refinement is that redefi-

nition does not allow changing the satisfactibility predicate (thus, the IE type must be 

kept). In the case of goals, tasks and resources, redefinition implies that the redefined 

IE (in the superclass) needs some decomposition using task-decomposition or means-

ends links to make sense (otherwise, we would use extension or refinement). In the 

case of softgoals it is only possible to redefine the interpretation of the condition to be 

fulfilled (fit criterion), since they are not decomposed but just contributed.  



10       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

Table 2. Summary of cases in refinement during actor specialization 

Refinement of a 

goal 

 

Refinement of a 

task 

 

Refinement of a 

resource 

 

In
te

n
ti
o
n
al

 e
le

m
en

ts
 

Refinement of a 

softgoal 

 

Removal of 

outgoing 

dependency 

 

Preservation of 

outgoing 

dependency 

 

D
ep

en
d
en

ci
es

 

Preservation of 

incoming 

dependency 

 



The Meaning of Inheritance in i*      11 

In other words, redefinition allows changing the way an IE behaves, but without 

altering its observable behaviour. In some way, we may establish a parallelism with 

the idea of design by contract [15] in which a method can be redefined but respecting 

the established contract. We may also consider parent’s satisfactibility predicate as 

the contract to be fulfilled by each of its subactors. 

To sum up, redefinition of an IE means providing an alternative way of decompo-

sing a task, or providing means for an IE, or interpreting the fit criterion of a softgoal. 

In the particular case of tasks, we allow changing from task-decomposition links to 

means-ends links and vice-versa. More precisely, being x the IE being redefined, all 

means-end links in the superactor where x is the end, or task-decomposition that 

decompose x in the superactor, are not inherited in the subactor. For each of these 

links that are not inherited, i.e., from an IE z to x in the superactor, if z does not 

participate in any other link (e.g., a contribution link or an incoming dependency), it 

is not inherited in the subactor since it is not needed. 

For goals, tasks and resources redefinition, we may consider that the definition is 

done in two steps. Fig. 4 shows a generic example: the redefinition of “Goal 1”. First, 

the IE being redefined is included in the subactor (with the same name and drawn 

with regular lines since it is not inherited but redefined) but the means are not kept 

(see Fig. 4 (a)). Next, the inherited goal is redefined, in this case by given two 

different new means (see Fig. 4 (b)). This second step is mandatory because, as 

mentioned above, the redefined goal may not be left without means.  

The case of softgoals deserves more attention because, unlike the other IE types, 

they may not be leaves if some contributions exist. When a softgoal is redefined, we 

allow representing enforcement of the fit criterion by suffixing the name of the 

softgoal with a ‘+’ or ‘-‘. Consider the example in Fig. 5 (a), in which “Travel bought 

cheaply” in Customer is refined into “Travel bought cheaply (+)” in Family. In Fig. 

5 (b) we show that this Customer softgoal has some contributions which need to be 

analyzed. First we find a negative contribution from the softgoal “Ad level kept low”; 

after analysis, we arrive to the conclusion that for getting travels cheaper as required, 

families may receive more ads, and therefore it is necessary to redefine this softgoal 

also, in this case with a ‘-‘ since it is being relaxed. Note that the 
 

 
(a) 

 
(b) 

Fig. 4. Redefinition of a decomposed goal: (a) deleting means end, (b) adding new IE. 



12       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

 
 

Fig. 5. Softgoal refinement: (a) redefinition of a softgoal; (b) consequences of redefinition. 

contribution must be preserved and with the same sign, therefore we do not need to 

depict it explicitly, we consider it automatically inherited (although they may be 

included for legibility purposes, as done in the figure). Afterwards, due to the 

redefinition of “Ad level kept low”, it becomes necessary to analyze also softgoals 

which it contributes to, which leads to find the softgoal “Privacy provided”. We 

decide that relaxing “Ad level kept low” impacts the fit criterion of “Privacy 

provided”, therefore it becomes necessary to also redefine this softgoal in Family, 

thereby obtaining the final model of Fig. 5 (b). 

When an IE is being redefined, it may participate in relationships with other 

elements: it may be the depender or dependee of some dependencies, it may be part of 

a task, or means towards an end, or contribute to some softgoal. Here we provide 

details on how redefinition may affect these relationships:  

• Dependency Links: 

− Outgoing: Although the new IE must fulfill the same objective, its redefinition 

means that the way to fulfill may change. Therefore, something that was 

required in the parent may not be needed anymore in the child. In other words, 

we consider that outgoing dependencies are not inherited when redefining an 

IE; if some existing dependency is needed, it must be depicted again with 

dotted lines, since it is inherited. Note that we do not allow adding new 

outgoing dependencies on any of the new IEs that appear in the redefinition 

because since the superclass is able to fulfill some responsibility without 

depending on other actor, then its subclasses must too. 

− Incoming: On the contrary, incoming dependencies may not be deleted, 

because an incoming dependency means that some other part of the model 

needs what is provided by the actor. However, reallocation of incoming 

dependencies is allowed. This means that an incoming dependency that was 

first established upon an IE may be reallocated to be established upon a 

redefinition of that IE.  



The Meaning of Inheritance in i*      13 

• Other types of links: Since neither the type of the IE nor the satisfactibility 

predicate are allowed to change, the redefined IE will still participate under the 

same conditions in the stated relationship.  

Table 3. Summary of cases in redefinition during actor specialization 

Redefinition 

of a goal 

 

Redefinition 

of a task 

 

Redefinition 

of a resource 

 

In
te

n
ti
o
n
al

 e
le

m
en

ts
 

Redefinition 

of a softgoal 

 

Removal of 

outgoing 

dependency 

 

D
ep

en
d
en

ci
es

 

Preservation 

of outgoing 

dependency 

 



14       R. Clotet, X. Franch, L. López, J. Marco, N. Seyff, P. Grünbacher 

Preservation 

of incoming 

dependency 

 

D
ep

en
d
en

ci
es

 

Reallocation 

of incoming 

dependency 

   

8 Conclusions 

Modelling highly variable software systems such as multi-stakeholder distributed 

systems (MSDS) poses new challenges for goal oriented modelling approaches. When 

using i* to model a service-oriented MSDS in the travel domain we identified 

modelling issues which needed more refined i* concepts. In this paper we have 

presented an accurate definition of the notion of inheritance for the i* modelling 

language with a focus on the SR model.  

Our contribution includes a concept for actor specialization, extension, refinement, 

and redefinition of intentional elements. The defined inheritance concept enables to 

deal with the modelling issues raised. For instance, we were able to model the 

variability needed to express different stakeholder needs. Such models express more 

clearly how stakeholder needs relate to each other. This is essential to understand 

MSDSs. We would like to remark the main strengths of our approach: 

• It relies on the theory of inheritance as defined by some milestone references [8, 

15, 16]. Therefore, our approach is compliant with the most recognised principles 

in this context. 

• We avoided adding new constructs to i*. This is an important issue since we 

avoid committing our approach to a particular version of the language. We have 

just introduced some diagrammatic convention (e.g., dotted lines) for legibility 

reason. 

• We have analyzed the effects of the several specialization constructs to the 

diversity of intentional elements, links and dependencies that are in i* definition. 

The presented i* inheritance concept was designed to overcome the issues raised 

when modelling a specific MSDS system. Therefore we do not claim completeness 

and need further evaluation in upcoming project to evolve and adapt our concept.  



The Meaning of Inheritance in i*      15 

Although preliminary, the lack of related work in RE means that our results can 

offer new insights and can help to identify new research challenges in goal-oriented 

modelling. Our future work includes formalisation and the addition of inheritance into 

the i* metamodel [5]. We will also focus on the specialization of dependencies in SD 

models and the transitivity of actor specialization. Another research question is to 

investigate the joint application of redefinition and refinement.  

We are currently addressing these challenges also including research on adequate 

tool support for i* inheritance. We are envisioning extension of some i* modelling 

tool enabling practitioners to make use of the presented inheritance concept. Since we 

did not introduce new types of links on the SR level this extension will be easier and 

basically should just check the correctness conditions presented in this paper whilst 

driving the actor specialization process. 

9 References 

[1] van Lamsweerde A. “Goal-Oriented Requirements Engineering: A Guided Tour”. In 

Proceedings of the 5th ISRE, 2001. 

[2] Yu, E. Modeling Strategic Relationships for Process Reengineering. PhD Th,Toronto, 1995. 

[3] GRL website, www.cs.toronto.edu/km/GRL. 

[4] Fuxman A., Liu L., Mylopoulos J., Pistore M., Roveri M., Traverso P. “Specifying and 

Analyzing Early Requirements in Tropos”. Requirements Engineering Journal, 9 (2), 2004. 

[5] Ayala C., Cares C., Carvallo J.P, Grau G., Haya M., Salazar G., Franch X., Mayol E., Quer 

C. “A Comparative Analysis of i*-Based Agent-Ariented Modeling Languages”. In 

Proceedings of the 17th SEKE, 2005. 

[6] Hall R.J. “Open Modeling in Multi-stakeholder Distributed Systems: Requirements 

Engineering for the 21st Century”. In Proceedings of the 1st Workshop on the State of the 

Art in Automated Software Engineering, 2002.  

[7] Clotet R., Franch X., Grünbacher P., López L., Marco J., Quintus M., Seyff N. 

“Requirements Modelling for Multi-Stakeholder Distributed Systems: Challenges and 

Techniques”. In Proceedings of the 1st RCIS, 2007. 

[8] Borgida A., Mylopoulos J., Wong H.K.T. “Generalization/Specialization as a Basis for 

Software Specification”. In Proceedings of Intervale Workshop, 1982. 

[9] Mouratidis H., Jürjens J., Fox J. “Towards a Comprehensive Framework for Secure 

Systems Development”. In Proceedings of the 18th CAiSE, LNCS 4001, 2006. 

[10] Franch X. “On the Lightweight Use of Goal-Oriented Models for Software Package 

Selection”. In Proceedings of the 17th CAiSE, LNCS 3520, 2005. 

[11] Santander V.F.A., Castro J. “Deriving Use Cases from Organizational Modeling”. In 

Proceedings of the 10th RE, 2002. 

[12] Alencar F.M.R., Filho G.A.C., Castro J. “Support for Structuring Mechanism in the 

Integration of Organizational Requirements and Object Orientation”. In Proceedings of 5th 

WER, 2002.  

[13] Bresciani P., Perini A., Giorgini P., Giunchiglia F., Mylopoulos J. “Tropos: An Agent-

Oriented Software Development Methodology”. Journal of Autonomous Agents and Multi-

Agent Systems, 8(3), 2004. 

[14] Susi A., Perini A., Mylopoulos J. “The Tropos Metamodel and its Use”. Informatica 29, 

2005. 

[15] Meyer B. Object-Oriented Software Construction. Prentice Hall, 1997. 

[16] Liskov B., Wing J. M. “A Behavioral Notion of Subtyping”. ACM Transactions on 

Programming Languages and Systems, 16(6), 1994. 


