
PhD THESIS 
Thesis presented to obtain the qualification of Doctor in Software from the 

Universitat Politècnica de Catalunya.  

 
 
 

 

THE NOTION OF SPECIALIZATION IN THE i* 

FRAMEWORK 

 

Lidia López Cuesta 
 

Advisors: 

Dr. Xavier Franch 

Dr. Jordi Marco  

 

 

 

 

 

Barcelona, February 2013 

 

 

 





 

i 

 

ACKNOWLEDGMENTS 

First, I would like to thank my PhD advisors, Professors Xavier Franch and Jordi Marco, for all 

the support they have provided me over the years: to Xavier Franch for accepting me as a PhD 

student and keeping me on the right track, and to Jordi Marco for making the journey easier. I 

am also grateful to Paul Grünbacher and Norbert Seyff, the first researchers I have 

collaborated internationally with; from this collaboration came up my PhD subject, and they 

made my first steps in research really a pleasure.  

Next, I would like to thank everybody in my research group (GESSI), where I was accepted from 

the very beginning as a full member. In particular, to my doctorate companions David and 

Marc: we have shared this journey together. And a special mention to Claudia, who ended 

when I was starting, but with whom nevertheless I established a bond that still remains. A big 

thank you also to everyone who helped me to improve my job, reviewing and discussing my 

proposals.  

I would also like to acknowledge the Professors of the Escola d’Enginyeria de Terrassa (ETT), 

who helped me to combine my teaching job with my research. In particular, thanks are due to 

Pepa, Angela and Pau, who have been there from the beginning.  

And last, but not least, I owe a huge debt of gratitude to my family, for their love, patience and 

support over the many years that I worked in this PhD thesis. I thank Félix, and just in case 

someday my children Sergi and Sara read this, I would also like to tell them that through their 

birth, they were part of the process. Finally, a very particular thank you to my parents, for 

whom my higher education was of the utmost importance: without them, I would never have 

arrived here. 

This work has been possible thanks to the Departament de Llenguatges i Sistemes Informàtics, 

and in particular Jordi Marco, in charge of the ETT section, for giving me the opportunity to 

teach while working on my thesis. And the Spanish projects HU2005-0021, TIN2007-64753, 

AT2009-0015 and TIN2010-19130-C02-01, for giving me the opportunity to participate in 

research events in order to share and improve my research results.  





 

iii 

ABSTRACT 

This thesis provides a formal proposal for the specialization relationship in the i* framework 

that allows its use in a well-defined manner. I root my proposal over existing works in different 

areas that are interested in representing knowledge: knowledge representation from Artificial 

Intelligence and conceptual modeling and object-oriented programming languages from 

Software Development. Also, I use the results of a survey conducted in the i* community that 

provides some insights about what i* modelers expect from specialization. As a consequence 

of this twofold analysis, I identify three specialization operations: extension, refinement and 

redefinition. For each of them, I: 

 motivate its need and provide some rationale; 

 distinguish the several cases that can occur in each operation; 

 define the elements involved in each of these cases and the correctness conditions 

that must be fulfilled; 

 demonstrate by induction the fulfilment of the conditions identified for preserving 

satisfaction; 

 provide some illustrative examples in the context of an exemplar about travel agencies 

and travelers. 

The specialization relationship is offered by the i* framework through the is-a construct 

defined over actors (a subactor is-a superactor) since it was first released. Although the 

overall meaning of this construct is highly intuitive, its effects at the level of intentional 

elements and dependencies are not always clear, hampering seriously its appropriate use.  

In order to be able to reason about correctness and satisfaction, I define previously the 

conditions that must be preserved when a specialization takes place. In addition, I provide a 

methodology with well-defined steps that contextualize the formal aspects of this thesis in a 

development process. 

As a conclusion,  this  thesis is  making possible the  use of the  specialization  relationship  in  

i*  in a precise, non-ambiguous manner.
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Chapter 1.  Introduction 

Goal-oriented modeling approaches are widely used in requirements engineering (RE) 

[Lamsweerde01]. The definition of goal formulated by Lamsweerde [Lamsweerde01] is “a goal 

is an objective the system under consideration should achieve“. Goals allow capturing 

requirements at different levels of abstraction, from high level, representing strategic 

concerns, to low level, technical concerns. A remarkable quality is the possibility of recording 

the rationale behind them (the why), complementing the what and how dimensions that 

classical modeling approaches address. In goal-oriented RE the relationship between the 

requirements and their motivating goals is represented explicitly. Goals can be used for 

requirements elaboration, verification or conflict management. They are also used to explain 

requirements to stakeholders, and the notion of goal refinement provides a natural 

mechanism for structuring complex requirement documents. 

Agent and multi-agent systems, which use agents as main abstraction entity, are a 

consolidated type of systems in software engineering. According to [Jennings-etal98] “an agent 

is a computer system, situated in some environment that is capable of flexible autonomous 

action in order to meet its design objectives”. The use of agents as abstractions helps in the 

development of complex and distributed systems: as mentioned in [Jennings-etal99] [Jennings-

etal00], agent-oriented decompositions are an effective way of partitioning the problem space 

of a complex system, the key abstractions of the agent-oriented mindset are a natural means 

of modeling complex systems and the agent-oriented philosophy for dealing with 

organizational relationships is appropriate for complex systems. In [Wooldridge-etal00] some 

other important reasons about the necessity of adopting this approach can be found. Agent-

oriented models became really popular in several disciplines of software engineering, and here 

the link with RE appears. There are some proposals for agent-oriented models in RE, and some 

of them focus in goal-oriented RE.  

The i* framework, presented by Prof. Eric Yu in his PhD thesis (advised by Prof. John 

Mylopoulos) [Yu95], falls into this category. i* (pronounced eye-star) is a goal- and agent-

oriented framework. Although primarily conceived in the RE context, i* can also be applied to 

business process reengineering, organizational impact analysis and software process modeling, 

among others. The i* framework is composed of a modeling language and some reasoning 

techniques. In this thesis I am primarily interested in the language, which I name the i* 

language in the rest of the document. This language blends concepts that come from goal-
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oriented RE (e.g., goal), agent-oriented RE (e.g., agent), modeling in general (e.g., aggregation, 

specialization) and the i* framework in particular (e.g., dependency). As a goal-oriented 

language, its aim is including the why of the decisions taken during system development. As an 

agent-oriented language, it includes the notion of agent and even more generally, the notion 

of actor. The concept of interest for this PhD thesis is that of specialization, which appears in 

the i* language in the form of is-a link between actors. 

1.1 THE CONTEXT: I* LANGUAGE 

The i* framework [Yu95] was formulated for representing, modeling and reasoning about 

socio-technical systems. It has been applied for modeling organizations, business processes 

and system requirements, among others. Its modeling language (the i* language) is 

constituted basically by a set of graphic constructs which can be used in two types of diagrams. 

Firstly, the Strategic Dependency (SD) diagram, which allows the representation of 

organizational Actors, specialized on Roles, Positions and Agents. Actors can be related by is-a, 

is-part-of, covers, instance-of, plays and occupies relationships. Actors can also have social 

dependencies. A Dependency is a relationship among two actors, one of them, named 

Depender, which depends for the accomplishment of some internal intention from a second 

actor, named Dependee. The dependency is then characterized by an intentional element 

(Dependum) which represents the dependency’s element. The primary intentional elements 

are: Resource, Task, Goal and Softgoal. A softgoal represents a goal that can be partially 

satisfied, or a goal that requires additional agreement about how it is satisfied. They have 

usually been used for representing non-functional requirements and quality concerns. 

Secondly, the Strategic Rationale (SR) diagram represents the internal actors’ rationale. The 

separation between the external and internal actor’s worlds is represented by the actor’s 

boundary. Inside this boundary, the rationale of each actor is represented using the same 

types of intentional elements described above. Additionally these intentional elements can be 

interrelated by using relationships such as Means-end (e.g., a task can be a mean to achieve a 

goal), Contributions (e.g., some resource could contribute to reach a quality concern or 

softgoal) and Decompositions (e.g., a task can be divided into subtasks). 

Figure 1-1 shows an excerpt of an i* model for an academic tutoring system. There appear 

most of constructs already described. The intuitive meaning of this model should help to 

capture the practical use and the semantics of the i* framework. 

For a more complete description, I refer to [Yu95]. A summary and a comparative of dialects 

can be found in [Ayala-etal05], and a reference model in [Yu11, ch.17]. 
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Figure 1-1. Excerpt of an i* model for an academic tutoring system. 

1.2 THE PROBLEM: SPECIALIZATION IN I* 

Specialization was proposed as part of i* from the very beginning. To illustrate its usage, I 

consider an example introduced by Yu in his PhD thesis about a meeting scheduler system. 

Figure 1-2 shows this example. It shows two actors, Meeting Initiator and Meeting Participant, 

that collaborate in order to jointly achieve the overall goal of organizing a meeting. The two 

actors depend on each other through some dependencies: if one actor fails on satisfying some 

dependency, the other may fail too. It can be observed in the diagram a third actor, Important 

Participant, defined as a specialization (subactor) of Meeting Participant (superactor). 

In spite of its use in this and other examples, Yu did not define in the rest of his thesis what the 

implications of specialization are, so several questions arise: 

 Are all the dependencies defined on the superactor inherited by the subactor? 

 Are the subactors’ goals exactly the same as their superactor’s? 

 May a subactor have additional goals? 

 May a subactor get rid of some superactor’s goal? 

As an example, in Figure 1-2, Important Participant has two incoming dependencies. Yu did not 

explain how the subactor behavior changes because of them. It seems that the subactor’s 

goals are exactly the same as its superactor’s. In fact, when Yu presented the actor goals, he 

modeled Meeting Participant’s goals, but he did not mention anything about Important 

Participant’s. So, it can be interpreted as: Important Participant’s goals are the same as 

Meeting Participant’s. However, Important Participant has new incoming dependencies, and 

this can be also interpreted as: Important Participant’s behavior is not exactly the same as the 

Meeting Participant’s. 
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Figure 1-2. Meeting Scheduler Example (extracted from Yu’s thesis [Yu95]) 

One could argue that maybe the amount of information included in this i* seminal work (Yu’s 

thesis) was so high that it is justifiable to find some incomplete points as such. However, this 

situation has not changed ever since. As I will show in Section 3.3, modern approaches either 

do not tackle specialization at all or use it without stating the consequences. Therefore, the 

need for providing formal semantics to this fundamental modeling construct, as it happened in 

other modeling languages or paradigms, still remains.  

1.3 RESEARCH GOAL 

This thesis is motivated by the silences and ambiguities in the interpretation of is-a link 

construct, as outlined in the previous section and presented in more detail in the state of the 

art in Section 3.3.  

I argue that the meaning of specialization should be inferred from the valid methodological 

uses of this construct. From a modeling point of view, this means determining which is the 

valid set of modeling operations that can be applied using the is-a construct. Therefore, the 

general goal of this work can be stated as: 

Presenting a set of specialization operations applicable in the process of 

building models with the i* language.  

As a result of my investigation, the following general research question may be expected to be 

answered: 

RQ1: How can actor specialization be applied when building models with 

the i* language? 

However, when this research questions started to be investigated, a new challenge arose. As 

reported in many works (e.g., [Cares-etal11]), there are literally dozens of variations of i* in 

the literature, from minor ones to major variants merging i* with other languages. So a first 

decision was to decide which of these variations I was going to use. Since I wanted to be as 

inclusive as possible, I decided to select the most widely acknowledged constructs, what I 

name the i* language core, then a second research question naturally emerged: 

RQ2: What constructs configure the i* language core? 
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1.4 METHODOLOGICAL APPROACH 

Shaw provides several ways of characterizing software engineering research, in terms of what 

she describes as research settings, research products, and validation techniques [Shaw01]. 

Table 1-1, 1-2 and 1-3 summarize these characterizations. 

Table 1-1. Shaw’s characterization of Software Engineering Research Questions 

Research Setting Sample Question 

Feasibility Is there an X, and what is it? Is it possible to accomplish X at all? 

Characterization What are the important characteristics of X? What is X like? What, exactly, do we mean 
by X? What are the varieties of X, and how are they related? 

Method/Means How can we accomplish X? What is a better way to accomplish x? How can I automate 
doing X? 

Generalization Is X always true of Y? Given X, what will Y be? 

Selection How do I decide between X and Y? 

The settings of this research, in terms of Shaw’s characterizations (Table 1.1), are feasibility, 

characterization, and method/means. RQ2 is clearly related to Characterization, but RQ1 is 

involving the three settings so I decompose it into three subquestions: 

 RQ1-1: How is the is-a link defined and used by modelers? (Feasibility) 

 RQ1-2: Which are the admissible modifications in a subactor? (Characterization) 

o RQ1-2.1: How is specialization defined in other related areas? 

o RQ1-2.2: Which are the types of changes over a superactor that can be done in 

the subactor? 

o RQ1-2.3: How are these changes included in the diagrams? 

 RQ1-3: How can these changes be applied? (Method/Means) 

Besides the research questions directly related to the proposal definition, a question related to 

the proposal validation must be added. In order to validate the models where specialization is 

applied, the following research question rose: 

 RQ3: How can the model correctness be validated when specialization is used in i* 

models? (Method/Means) 

Referent to the definition of the is-a construct (RQ1-1), I have focused my research exploring in 

which part of the i* models, and under which conditions, it may be applied. Also, I have 

analyzed how is-a affects specialized goals and dependencies, and how its goals can be 

modified to achieve these new dependencies or if it is possible that this modified behavior can 

create new outgoing dependencies. 

As part of the definition of admissible changes (RQ1-2.2), it is important to determine how 

these changes will be translated into the diagrams (RQ1-2.3). This is especially important since 

the i* language is a notation in which graphical representation plays a fundamental role.  
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A deep knowledge about the language is required (RQ2) for defining the admissible changes 

(RQ1-2.2). 

These questions have been addressed and refined by an empirical iterative process detailed in 
Chapter 3.  

Table 1-2. Shaw’s characterization of Software Engineering Research Products 

Research Product Research Approach or  Method 

Qualitative or 

Descriptive model 

Organize & report interesting observations about the world. Create & defend 
generalizations from real examples.  Structure a problem area; formulate the right 
questions. Do a careful analysis of a system or its development.  

Technique Invent new ways to do some tasks, including procedures and implementation techniques. 

Develop a technique to choose among alternatives 

System Embody result in a system, using the system development as both source of 

insight and carrier of results  

Empirical 
predictive model 

Develop predictive models from observed data 

Analytic model Develop structural (quantitative or symbolic) models that permit formal analysis 

The products of this methodological process, in terms of Shaw’s characterization (Table 1-2), 

can be described as: 

 RQ1-1: A careful analysis of the definition and use of is-a construct (Descriptive model). 

o Studying how the is-a construct has been used in models presented by the 

research community. 

o Conducting a survey over the research community (experts) about the 

consequences of using the is-a construct over i* Diagrams. 

 RQ1-2: 

o RQ1-2.1: A careful analysis of the use of specialization in other areas 

(Descriptive model). Based on the result of the previous analysis, a  proposal of 

(Technique): 

 RQ1-2.2: a set of operations applied over the superactor to obtain the 

subactors, and  

 RQ1-2.3: their graphical representation in the i* diagrams. 

 RQ1-3: A methodology to apply specialization operations (Technique). 

 RQ2:  

o A systematic analysis of the definition of the i* language and its dialects 

(Descriptive model). 

o A model definition in order to facilitate the specialization operations 

formalization (Analytic model). 

 RQ3:  

o Definition of model validation  for models that contains specialization 

(Technique). 
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The corresponding research products are descriptive and analytic models and techniques. The 

validation techniques used in validating this research, in terms of Shaw’s characterizations 

(Table 1-3) are: 

 V1: Present an academic exemplar for validating methodologically the proposed 

operations (Persuasion). 

 V2: Formalize the specialization operations to validate formally their correctness 

(Analysis). 

 V3: Formal validation for the operations using the chosen technique resulting from 

RQ3 (Analysis). 

 V4: Include specialization operations in an existing tool (Implementation). 

Table 1-3. Shaw’s characterization of Software Engineering Research Validation 

Technique Grounds 

Persuasion A technique, design or example. 

Implementation Of a system or technique. 

Evaluation With respect to a descriptive model, a qualitative model, an empirical quantitative model. 

Analysis Of an analytic formal model, an empirical predictive model. 

Experience Expressed in a qualitative or descriptive model, as decision criteria or an empirical predictive 
model. 

The four different validation techniques are added to the activities defined to produce the 

research products to have a complete list of activities related to the results of this dissertation. 

The complete list of research activities, corresponding to produced products and validation, is 

shown in Figure 1-3. There is a detailed list of these activities allocated in the three stages that 

this thesis has been conducted (see Chapter 2). 

 
Figure 1-3. Research Activities 

Specialization Semantic Definition (RQ1-2.2)

Specialization Syntax Definition (RQ1-2.3)

i* Models Formalization (RQ2)

Validation

Specialization in i* Models (RQ1-1)

Specialization in Other Areas (RQ1-2.1)

Research Products

Methodology Definition(RQ1-3)

Academic Exemplar (V1)

Tool Support (V4)

Specialization Formalization (V2)Specialization Survey (RQ1-1)

i* Models Definition (RQ2)

Correctness Definition  in i* models (RQ3)

Model Correctness Validation (V3)

Correctness Formalization in i* models (RQ3)



8 Chapter 1.  Introduction  

 

 

1.5 RESEARCH CONTEXT 

The research in this thesis has been conducted within the GESSI (Software Engineering for 

Information System) research group from the Universitat Politècnica de Catalunya - 

BarcelonaTech (UPC). The GESSI group conducts research in many fields of software 

engineering, with particular emphasis on requirements engineering, software quality, software 

architecture, service-oriented computing, open source software, software modeling and 

empirical research. 

This thesis is focused on the i* modeling language, which can be connected to requirements 

engineering and software modeling research lines, which have been progressing through 

several projects the group has carried out and is currently carrying out. Some of the most 

representative are: Requirements Engineering for Multi-stakeholder Distributed Systems 

[MSDS], Definition of the i* format by using the metamodel compiler ADOxx v1.0 [ADOxx] and 

Requirement-based production of service-oriented software [ProsReq]. I have been involved in 

all of them, in fact [MSDS] was the initial point of this thesis.  

In the [MSDS] project, the group collaborated with the Christian Doppler Laboratory for 

Automated Software Engineering at the Johannes Kepler Universität (Linz, Austria) for creating 

a framework that traces the requirements through all life-cycle of the system, including 

deployment and runtime. The first proposal of this framework was presented in [Clotet-etal07] 

and the collaboration has pervaded the end of the project, for instance, [Clotet-etal08] and 

[Grunbacher-etal07] present how model variability for Service-oriented Systems and [Franch-

etal11] presents the current stage of the framework proposed called MAeSOS. This framework 

has as starting point the system requirements modeled using i*. When these models were 

constructed, the intensive use of the is-a construct was necessary, and after discovering the 

state of art as reported in Section 3.3, we defined some ad-hoc rules [Clotet-etal07bis] that 

quickly become too shallow. At that point the necessity of a full definition of the construct, the 

main aim of this thesis, arose.  

The [ADOxx] project was a collaboration with the Department of Knowledge Engineering (DKE) 

of the Universität Wien (Vienna, Austria). DKE offers a tool for creating modeling tools based 

on metamodels. The main aim of this collaboration was to use the i* reference model of our 

group as the metamodel used to create a modeling tool and applying all the techniques and 

algorithms provided for DKE tool for i* models. Since our reference model includes 

specialization, the connection with this thesis is also clear. 

The [ProsReq] project is an ongoing collaboration with the Centro de Investigación en Métodos 

de Producción de Software (PROS) at the Universidad Politécnica de Valencia (Valencia, Spain). 

It consists on defining, designing and implementing a software production process for service-

oriented software systems. This production process consist on modeling functional and non-

functional requirements and determine the transformation of these requirements into a 

testable service-oriented architecture model ready to be used as starting point by later code 

generation processes. Since i* is one of the models chosen for the requirements phase, the 

connection with this thesis also appears. 
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At the time of writing this thesis, further collaborations are on the way. For instance, GESSI is 

starting a collaboration with the NEMO group at Universidade do Espirito Santo (Vitoria, Brasil) 

fostering the use of foundational ontologies in general, and UFO in particular [Guizzardi05], as 

a way to clarify the meaning of i* and as the basis to propose a normative definition. Our first 

contribution in this line is presented in [Franch-etal11bis]. However, this work is not part of 

this thesis and it is reported here just for information purposes. 

1.6 STRUCTURE OF THIS DOCUMENT 

The thesis document is structured in the following 10 chapters: 

 Chapter 1. Introduction. In this chapter I provide an introduction to the work, the 

objectives of the thesis and an overview of the proposal. 

 Chapter 2. Research Method. It presents the research process used to produce the set 

of operations for actor specialization proposed in this thesis. 

 Chapter 3. Related Work. In this chapter there is an overview of the state-of-the-art 

on the use of inheritance in i* and in some related areas (knowledge representation, 

conceptual modeling and object oriented programming). It is also presented the 

results of a survey over the research community, about the consequences of using is-a 

construct over the i* diagrams. 

 Chapter 4. Formalization. This chapter presents the formalization of i* models. As well 

as some functions needed for the specialization operations formalization presented in 

Chapters from 6 to 8 .This formalization is done in algebraic way. It is also including the 

model correctness formalization in terms of satisfaction. 

 Chapter 5. Towards the Formal Definition of Actor Specialization in i*. This chapter 

provides an overview of the operations (semantic and syntax) that will be detailed in 

Chapters from 6 to 8.  

 Chapter 6. Extension. This chapter contains a detailed description and formalization of 

the operations related to add new information to the specialized actors. Including 

examples extracted from the case study presented in Section 2.2. The methodological 

validation, in terms of actor satisfaction, is also included in this chapter. 

 Chapter 7. Refinement. This chapter contains a detailed description and formalization 

of the operations related to change, in a restricted way, some inherited elements in 

the specialized actors. Including examples extracted from the case study presented in 

Section 2.2. The methodological validation, in terms of actor satisfaction, is also 

included in this chapter. 

 Chapter 8. Redefinition. This chapter contains a detailed description and formalization 

of the operations related to change, even delete some inherited elements in the 

specialized actors. Including examples extracted from the case study presented in 
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Section 2.2. The methodological validation, in terms of actor satisfaction, is also 

included in this chapter. 

 Chapter 9. Specialization Process. This chapter presents how to use specialization 

operations from the methodological point of view. 

 Chapter 10. Conclusions and Future Work. This chapter summarizes the contributions 

of the thesis and the future work.  

 Published Papers for this Thesis. The list of publications related to this thesis. 

Figure 1-4 shows the relationship among the thesis’ chapters summarized in this section, 

research activities described on Section 1.4 and the papers related to this thesis dissertation 

presented in Publications in Relation to this Thesis. Further details about activities and 

publications can be found in Section 2.3. 

 
Figure 1-4. Relationship among Thesis’ Chapters, Research Activities and Publications



 

 

Chapter 2.  Research Method 

The research undertaken in this thesis has been conducted in three stages, each one with well-

defined objectives and activities. The results of each stage have been analyzed and used to 

refine the objectives and activities of the succeeding ones. 

This section first introduces the antecedents that motivated the thesis. Then, it introduces a 

summary of the exemplar that I will use in the document to develop the proposal. Last, I 

describe the three research stages, including a brief description of their objectives, the 

activities performed and the main findings resulting from them. 

2.1 ANTECEDENTS 

As mentioned in Section 1.5, the research in this thesis was originated from previous research 

projects. All started with the project Requirements Engineering for Multi-stakeholder 

Distributed Systems (MSDS) in 2006-07. The aim of this project was to present a framework to 

represent and negotiate requirements for MSDS. The i* framework was selected because the 

notion of stakeholder fits very naturally with that of actor, stakeholders’ needs can be easily 

represented as actors goals, and dependencies are very useful to represent relationships 

among them. In this context, we faced often the need of representing different types of 

stakeholders that were defined as a specialization of general ones (e.g., Family Travel Agency 

and University Travel Agency as specialization of Travel Agency). This need also arose with 

actors representing software (e.g., Credit Card Payment System and Bank Transfer System as 

specialization of Payment System). In this situation we experimented the problem reported in 

the introduction of this thesis: it is very natural to introduce the is-a link to represent actors’ 

classification but the effects of this link when developing the corresponding models were not 

clear at all.  

After confirming that there were no proposals addressing this problem, we formulated some 

ad-hoc rules. These rules were defined first to this project’s models but after gaining some 

experience I generalized them to be used in general i* models. 



12 Chapter 2.  Research Method  

 

 

2.2 EXEMPLAR 

The exemplar presented in this section is an academic exemplar that arose in the project 

[MSDS] mentioned in the previous section. It is complex enough to allow introducing the 

different specialization operations that are the kernel of this thesis as well as the method I am 

going to formulate for driving specialization formulation.   

In this exemplar, I consider an actor for a Travel Agency that offers a customized online travel 

platform to their customers. Travel agencies may address different types of customers, and I 

decide to declare new actors as specializations using the is-a link. Figure 2-1 below shows two 

of such specializations, University Travel Agency and Family Travel Agency. University Travel 

Agency represents travel agencies specialized in supporting researchers in planning trips, 

whilst Family Travel Agency is focusing on trips for families with kids. Figure 2-1 shows a piece 

of SD model with some specialization.  

 
Figure 2-1. Case Study: Travel Agency SD Model 

There are two kinds of stakeholders: customers and travel agencies, which are specialized 

depending on the type of customers. The superactor Customer states the dependencies that a 

general customer has on travel agencies represented by the superactor Travel Agency: the 

general softgoal of getting Cheap Travels and the resource that results from this goal, the 

Travel Offering itself. In return, the Customer is expected to provide the Customer Data 

requested by the Travel Agency. The Customer’s subactor Family has an additional 

dependency on Family Travel Agency asking for Children Activities Offered, whilst the other 

Customer’s subactor Researcher requests an additional facility to University Travel Agency for 

Search Conferences when planning trips1. 

                                                           

1 A recurrent matter of discussion when building i* models is the classification of the intentional elements 

into their types. For instance, one could have also modelled the Search Conference task as a more general 

goal, Conferences Obtained. In this thesis I will not justify these decisions since it does not affect the 

proposal itself, I may refer e.g. to [Franch-etal07] for a methodological discussion about this issue. 
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Figure 2-2. Case Study: External Services SD Model 

In this example, specialization is also used for the external services used by the system. Figure 

2-2 shows an excerpt that models the relationships between the Travel Agency and the 

external services. The external services have been modeled using the general actor Services 

Provider. There are two specializations for this actor grouping the services by type: Travel 

Services Provider and Payment Services Provider. 

In the following sections small pieces of the whole model are included to illustrate 

corresponding specialization operation. In Section 9.4, after all operations definitions, the 

whole example is included.  

2.3 RESEARCH STAGES 

My research has been conducted through three stages designed to answer the research 

questions presented in the previous chapter. Each research question has associated some 

activities that have been developed in one or more stages. Table 2-1 shows how the activities 

have been allocated into the different stages associated with the research questions that are 

addressed to answer or the validation method.  

The following subsections detail the information shown in Table 2-1, including the objectives 

that correspond to each stage and the results and publications for each one. 
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Table 2-1. Summary of activities for Research Stages and Research Questions 

 Initial Proposal Proposal Consolidation Proposal Validation 

RQ1-1: is-a link? Inheritance in i* Models 

Inheritance Survey 

  

RQ1-2.1: Inheritance? Inheritance in Other 

Areas 

  

RQ1-2.2: Semantics Initial Specialization 

Semantics 

Complete Specialization 

Semantics 

 

RQ1-2.3: Syntax Initial Specialization 

Syntax 

Complete Specialization 

Syntax 

 

RQ1-3: Method  Methodology Definition  

RQ2: i* Constructs?   i* Model Definition & 

Formalization 

RQ3: Correctness?  Correctness in i* Models 

Definition  & 

Formalization 

 

V1: Exemplar Initial Proposal 

Validation 

Complete Proposal 

Validation 

Method Validation 

V2: Formalization   Specialization Formalization 

V3: Correctness   Model Correctness Validation 

V4: Tool Support Analyze i* Tools 

Definition & 

Development of new 

functionalities in a Tool 

Complete Tool Support  

2.3.1 FIRST STAGE: INITIAL PROPOSAL 

Objectives 

 O1.1: Identify the is-a link usage in i* models (RQ1-1). 

 O1.2: Identify the use of specialization and related concepts (inheritance, ...) in other 

areas (RQ1-2.1). 

 O1.3: Identify an initial set of specialization operations in an informal way (RQ1-2.2 

and RQ1-2.3). 

 O1.4: Include the proposal in the GESSI i* reference model2 (RQ1-2.2) and the iStarML 

model interchange format (RQ1-2.3). 

 O1.5: Apply these operations to the exemplar (V1). 

 O1.6: Decide if these operations can be included in an existing i* modeling tool (V4). 

  

                                                           

2 The i* reference model formulated by the research group GESSI as presented in [Yu11, ch.17]. 



2.3 Research Stages 15 

 

 

Activities 

 Perform a bibliographic review of the state-of-the-art on how the is-a link is used in i* 

models (O1.1). 

 Conduct a survey in the research community (experts) asking for the expected changes 

in i* diagrams when an actor is a specialization of another (O1.1). 

 Perform a literature review of the state-of-the-art on the use of specialization and 

related concepts in other modeling areas. The areas identified are knowledge 

representation, conceptual modeling and object oriented programming (O1.2). 

 Elicit, from the state of the art, an initial set of operations defined in an informal way, 

validated by application to an exemplar (O1.3 and O1.5). 

 Update the GESSI i* reference model (O1.4). 

 Include the necessary information into the iStarML model interchange format (O1.4). 

 Analyse the existing i* modeling tools (O1.6). 

 Specify and implement the new functionalities needed for supporting specialization 

operations in a modeling tool (O1.6). 

Results   

 i* modelers use the is-a link in the same way as presented in Yu’s thesis, i.e., it is used 

for actor specialization without further consequences in any of the two involved actors 

(O1.1).   

 The survey results reveal that i* modelers think that it should be possible to introduce 

changes in the specialized actor (O1.1).  

 Related research areas share the same concerns about this construct. In some cases 

specialization only allows the addition of new information to the specialized concept, 

and sometimes some modification can be done. In knowledge representation both 

options are present, in conceptual modeling the majority do not allow modifications 

and in object oriented programming the majority allows modifications (O1.2).  

 This proposal adopts the more general view for the sake of generality. Some 

reflections on the consequences of this issue are provided. Operations are extension, 

refinement and redefinition, which will be defined in detail in the next chapters.  

Semantic and syntactic (graphical) definitions for these operations are provided (O1.3 

and O1.5).  

 The reference model is updated to support the specialization operations (O1.4).  

 The iStarML interchange format is updated to support the specialization operations 

(O1.4).  

 Due to the proposed syntax, it is possible to represent information in the specialized 

actor using the existing tool REDEPEND with minor changes (O1.6).  

 The functionality of the existing tool HiME [HiME] created by the GESSI group (the 

model edition part of the former J-PRiM tool [Grau-etal06]) is enhanced to support 

these operations (O1.6).  
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Published Results 

[Clotet-etalt07bis] includes a short summary about how the is-a construct is used in i* models 

and the initial set of operations over the intentional elements. The exemplar presented in 

Section 2.2 is used to illustrate the operations with examples. It was published in the 

Proceedings of the 17th International Workshop on Agent-Oriented Information Systems (AOIS 

2007), as part of the CAiSE 2007 Proceedings of Workshops and Doctoral Symposium. 

[Lopez-etal08] is a position paper that present the objectives of this research and the initial set 

of operations to the i* community. It was published in the Proceedings of the 3rd International 

i* Workshop (iStar 2008). 

[Lopez09] presents the PhD proposal to senior researchers in a PhD Colloquium. It also 

contains the result of the research until that moment. It was published in the Proceedings of 

the ER 2009 PhD Colloquium, affiliated to the 28th International Conference on Conceptual 

Modeling (ER 2009). 

[Lopez-etal09] presents the functionalities added to the HiME tool in order to support the 

specialization operations, including the modification of the iStarML interchange format to 

include specialization. It was published in Revista de Informática Teórica e Aplicada. Volume 16 

– number 2. This publication corresponds to the Proceedings of the ER 2009 posters and 

demonstrations session, affiliated to the 28th International Conference on Conceptual 

Modeling (ER 2009). 

2.3.2 SECOND STAGE: CONSOLIDATION OF THE PROPOSAL 

Objectives 

 O2.1: Get the final proposal of specialization operations in an informal way (RQ1-2.2 

and RQ1-2.3). 

 O2.2: Include the proposal in the GESSI i* reference model (RQ1-2.2) and the iStarML 

model interchange format (RQ1-2.3). 

 O2.3: Define a specialization process (RQ1-3). 

 O2.4: Identify how model correctness can be validaded (RQ3). 

 O2.5: Apply these operations to the exemplar using the defined process (V1). 

 O2.6: Have a tool that supports the complete proposal (V4). 

Activities 

 Complete the set of operations defined in the first stage to embed all types of i* model 

elements (O2.1).  

 Perform the necessary modifications to the i* reference model used by GESSI (O2.2).  

 Include the necessary information into the iStarML model interchange format (O2.2).  

 Define the method that coordinates the activities to undertake when defining a is-a 

specialization link (O2.3).  

 Perform a bibliographic review in related areas to define the model correctness in i* 

models for validating specialization operations (O2.4).  

 Validate the set of operations applying them over the exemplar (O2.5).  

 Increase the functionality of the HiME tool for including the complete proposal (O2.6).  



2.3 Research Stages 17 

 

 

Results 

 The final set of operations with a full analysis of all the cases of application found (O2.1 

and O2.5).  

 The GESSI i* reference model updated to support the new version of specialization 

operations (O2.2).  

 The iStarML model interchange format updated to support the new version of 

specialization operations (O2.2).  

 The specialization operations defined such that only one operation can be applied over 

an inherited element. Therefore, the order in which the operations are applied does 

not alter the resultant model (O2.3).  

 Actor satisfaction as technique for correctness validation (O2.4). 

 A formal definition for actor satisfaction (O2.4).  

 The HiME tool updated to include all the functionalities needed for support the 

complete proposal (O2.6).  

Published Results 

[Cares-etal10] presents the current stage of the research group GESSI respect to the i* 

metamodel proposal. As part of this research, it is reported how the is-a link between two 

actors affects to the other model elements in the metamodel. It was published in the 

Proceedings of the 4th International i* Workshop (iStar 2010). 

2.3.3 THIRD STAGE: VALIDATION OF THE PROPOSAL 

Objetives 

 O3.1: Define a formalization of i* models (RQ2). 

 O3.2: Provide a formal validation of the operations (V2). 

 O3.3: Define a formalization of satisfaction in i* models (RQ3). 

 O3.4: Conduct a validation in terms of model satisfaction (V3). 

Activities 

 Provide a convenient formalization of i* models in an algebraic way (O3.1). 

 Formulate a set of assumptions/decisions needed to formalize i* models (O3.1). 

 Provide formalization of the specialization operations in an algebraic way (O3.2). 

 Provide formalization for model elements’ satisfaction in an algebraic way(O3.3).  

 Study the model elements’ satisfaction when a specialization operation is applied over 

an element that appears in a subactor (O3.4).  

Results 

 A formal definition of the i* language core (O3.1). 

 A formal definition of the specialization operations (O3.2). 

 A formal definition of model elements’ satisfaction (O3.3). 

 Methodological validation taking into account the assumption that the specialized 

actor satisfaction must imply the general actor satisfaction (O3.4). 
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Published Results 

[Lopez-etal11] presents the ambiguities and silences that were found during the formalization 

of i* models and the decisions that I made in the formalization. A metamodel for this final 

proposal, name “i* core”, is presented. Also, some modifications to the core are proposed to 

be discussed. It has been published as full research paper in the Proceedings of the 30th 

International Conference on Conceptual Modeling (ER 2011).  

[Lopez-etal12] presents the specialization operations that correspond to extension and 

refinement jointly with the formalization of the model and these operations. It has been 

published as a full research paper in the Proceedings of the 31st International Conference on 

Conceptual Modeling (ER 2012). It got the Best Student Paper Award. 

[Lopez-etal12bis] is a research report that complements the results published in [Lopez-

etal12]. It includes all the operations’ correctness proofs and the full text of the survey, which 

could not be included in [Lopez-etal12] for lack of space. 



 

 

Chapter 3.  Background 

In this chapter I provide the necessary background for understanding the thesis proposal. 

3.1 THE I* LANGUAGE 

i* is currently one of the most widespread goal- and agent-oriented modeling and reasoning 

frameworks. As an indicator of this usage, [Cares-etal11] presented a review conducted over 

the following conferences and journals for the period 2006-2010: ER, CAiSE, REJ, DKE, IS 

Journal, RE, RiGiM, WER, i* workshop, and it included also the recent book on i* [Yu11]. I have 

extended it to include also year 2011. This literature review shows that the requirements 

engineering community is paying a lot of attention to this framework. Table 3-1 and Table 3-2 

show some numbers that refer to the number of contributions. Table 3-1 shows the number of 

contributions in the conferences and journals aforementioned, not including neither the i* 

workshop nor the i* book. Almost 50% of the contributions are proposing some change to the 

original proposal. In the i* Related column appears the number of papers where i* is used with 

modeling purposes and the i* with Changes column shows the number of these papers where 

some new constructs has been included to the Yu’s proposal to fit the work presented in them. 

Table 3-1. i* Published Papers (2006-2011) 

 Venue Reviewed Papers i* Related  i* with Changes 

Journals REJ 89 17 6 

DKE 532 3 1 

ISJ 294 1 1 

International 

Conferences 

CAiSE 184 21 14 

RE 348 22 9 

ER 251 20 14 

Workshops RIGIM (20073-2009) 15  8 4 

WER 98 17 3 

TOTAL  1811  109 52 

                                                           

3 The first edition was held at 2007 and then 2008 and 2009. The 4th edition was run in 2012. 
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As a second indicator, I show the growth of the i* community in relation to their participation 

in the i* workshop, see Table 3-2. These numbers show that the interest is growing, the time 

between editions is shortening and the contributions increased. This table also shows that in 

every edition there is some contribution that includes a change to the original proposal (only 

contribution with explicit changes has been counted as changes) and remarkably the number 

of proposals of changes has increased in a significant way in the last two editions (up to the 

50% in the last one). It has to be also mentioned that in 2011, in addition to the regular 

scientific workshop, an industrial showcase (Exploring the Goals of your Systems and 

Businesses4) was organized in London with more than 40 attendees.  

Table 3-2. i* Workshop Editions 

i* Workshop Edition Colocated with Contributions i* with changes 

2001 Stand-alone 13 5 

2005 Stand-alone 11 1 

2008 IDEAS 205 2 

2010 CAISE 23 7 

2011 RE 25 12 

TOTAL  92 27 

3.2 A TOUR TO INHERITANCE 

As detailed below, specialization is an abstraction mechanism based on the concept of 

inheritance. This section reviews the general concept of inheritance in different areas and how 

the is-a link is used in the i* framework. I include also the results of a survey conducted on 

the i* community about how the is-a link is used. 

The idea of organizing concepts into hierarchies (taxonomies) comes from several centuries 

ago. Taxonomy comes from the two Greek words taxis (meaning “order” or “arrangement”) 

and nomos (meaning “law” or “science”), and Aristotle (384-322 BC) already classified species 

in his Historia Animalum6. The idea is starting by making broad groups (general) and then 

subdividing those groups into smaller groups (specializations) repeating until you have small 

enough groups to easily handle. 

In the Information Systems engineering discipline, several abstraction mechanisms are used to 

improve the quality of the software produced, among them specialization and its dual 

mechanism, generalization. Inheritance is presented as an inference rule for generalization; as 

stated by Mylopoulos “generic concepts have been traditionally organized into taxonomies, 

                                                           

4 http://www.city.ac.uk/informatics/school-organisation/centre-for-human-computer-interaction-

design/istar11 

5 There is one article generic for modelling languages, not specifically to i*. 

6 The illustration used in the cover corresponds to the Arbor naturalis et logicalis by Ramon Llull (logica 

nova, 1303), that includes a version of the Tree of Porphyry, it is a classic classification of a "genera of 

being" created by the philosopher Porphyry (234–c. 305 BC) applying the Aristotle’s Categories. 
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referred to as is-a or generalization hierarchies, which organize all classes in terms of a partial 

order relation determined by their generality/specificity” [Mylopoulos98]. Danforth and 

Tomlinson state that “to inherit is to receive properties or characteristics of another, normally 

as a result of some special relationship between the giver and the receiver” [Danforth-

Tomlinson88]. 

Inheritance has been used in different related contexts. In the rest of this subsection, I go over 

the use of inheritance for knowledge representation and reasoning (the same information is 

not stored at different places) and for software development (the same code is not written at 

different places). Between these two areas lies Conceptual Modeling, focusing on how to 

represent knowledge/information oriented to develop software and store data (the same 

information and behavior are not stored and developed in different places). 

3.2.1 KNOWLEDGE REPRESENTATION  

Inheritance was first introduced by M.R. Quillian in 1966 as part of his proposal for semantic 

networks [Quillian66] based on semantic nets for machine translation of natural languages 

[Richens56]. A semantic network was at that time a new way to represent knowledge by 

means of a graph of concepts, based on the way how the long-term memory information in 

human brain (semantic memory) is organized and retrieved. Nodes (representing concepts, 

events, ideas, etc.) were connected using links representing semantic relationships like is-a, 

for instance “an elephant is-a mammal”, creating a hierarchy of nodes. Nodes have attributes 

associated to properties, like “mammal has 4 legs” or “birds can fly”. On this hierarchy, the 

lowest nodes have their own attributes and inherit all the attributes from the nodes that 

precede them in the hierarchy. The attributes are located following the cognitive economy 

principle, which refers to the fact that the attributes are stored at the highest possible level in 

the hierarchy and not re-represented at lower levels. There are different uses for is-a links, as 

shown by Brachman who collects different meanings depending on what kind of nodes are 

linked (individual or general concepts) [Brachman83]. In the previous example, elephant and 

mammal can be considered general concepts. But in the example “Clyde is-a elephant”, the 

is-a link is also used to denote the relation between the individuals and their general concept.  

Ever since semantic networks emerged, other proposals have included inheritance as the way 

to represent information, for example NETL [Fahlman79] and SNePS [Shapiro79]. These 

proposals can be named as Inheritance Networks. These networks consider two kinds of 

inheritance: strict and defeasible [Brachman-Levesque04]. In strict inheritance, a concept 

inherits all the attributes of its predecessors on the is-a hierarchy and can add its own 

attributes. On the other hand, defeasible inheritance allows in addition cancelling some 

attributes from the concept’s predecessors. If “birds can fly” and “a penguin is a bird”, for 

penguins the property “can fly” has to be cancelled (overridden). According to Brachman, 

cancellations can be interpreted as real world exceptions and it is really difficult to represent 

knowledge without this concept [Brachman83]. Although cancellation can help us to represent 

knowledge, it poses some problems for inferring information [Brachman83] [Brachman85]. 
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3.2.2 SOFTWARE DEVELOPMENT 

In software development, inheritance first appeared in the definition of programming 

languages. In fact, inheritance is one of the main (if not the main) characteristics in object-

oriented programming (OOP) [Liskov87][Wegner87][Danforth-Tomlinson88][Meyer97,p.26], 

for code sharing and reuse. Simula 67 [Dahl68] can be considered the seed of OOP. It was the 

first programming language that included the concepts of class and inheritance. When some 

classes have common properties, these are collected in a separate class. The concept of 

inheritance appeared to denote that all properties of a superclass were included in all of its 

subclasses. Considering the inheritance classification used in inheritance networks (see above), 

Simula 67 adhered to strict inheritance (only new information was allowed to be added in 

subclasses). 

Nowadays, the use of inheritance in programming languages follows the path open by Simula 

67. A common variation is the possibility of modifying the implementation of a method 

(overriding). This overriding can be interpreted as a kind of inheritance network’s cancellation, 

i.e. programming languages use the concept of defeasible inheritance proposed in inheritance 

networks. Overriding was firstly included in Smalltalk-80 [Golberg-Robson83] in 1980, then C++ 

in 1983 [Stroustrup97] and Delphi released latter on 1995, the same year as Java [Gosling-

etal05] and more recently C# released on 2002 [Hejlsberg-etal10]. Inheritance was fully 

included in Visual Basic .NET, released on 2003, including the possibility of cancelling 

(“shadowing”, using their terminology) properties and/or methods from the superclass.  

As a compromise between strict and defeasible compliant approaches, Eiffel [Meyer92] 

introduces the concept of contract for methods in 1985. These contracts are used to delimit 

the changes included in an overridden method. It is a semantic rather than merely syntactic 

relation because it intends to guarantee semantic interoperability of types in a hierarchy. 

In top of the language constructs, I may think about the method of using inheritance. The main 

concern of Software Engineering is developing high quality software, defining techniques and 

methodologies to achieve it. Among the several proposals used, I am interested in Meyer’s 

proposal as presented in 1988 [Meyer97]. Meyer introduces some categories of inheritance 

and summarizes their correct usage in the “Taxomania rule” (the conjunction of words taxo 

from taxonomia and mania referent to that all classes have to be organized) that is stated as: 

“Every heir must introduce a feature, redeclare an inherited feature, or add an invariant 

clause” [Meyer97, p.820].  

3.2.3 CONCEPTUAL MODELING 

Software development is not only programming, the code has to be maintained and extended 

throughout the system lifespan. To make these tasks possible, some knowledge about the 

domain and the functions that the system provides is needed to be generated and stored. As 

early as 1958, Young and Kent [Young-Kent58] worked on how to specify a system 

independently from its implementation, and they presented a model known as logical model. 

In the early 1970s, database management systems appeared to support the design of the 

information to be stored in information systems. The notion of “conceptual model” appeared 

in 1975 for “the enterprise’s view of the structure it is attempting to model in the data base” 
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[ANSI75]. Around the same time, the first semantic data model was proposed [Abrial74], the 

most popular being the Entity-Relationship model (ER) [Chen76]. In 1977 the concept of 

generalization was introduced in database modeling [Smith-Smith77] according to the concept 

of strict inheritance. The entity generalization was one of the characteristics included in the 

Extended Entity-Relationship (EER), EER is not a standard and there are several extensions. 

Generalization is included as an ER extension by several authors, like [Scheuermann-etal80], 

[Atzeni-etal81] and [Navathe-Cheng83]. 

Conceptual models are created for organizing information in terms of abstraction mechanisms, 

such as generalization, specialization, aggregation and classification. The most used modeling 

language currently is the Unified Modeling Language (UML) created by the Object 

Management Group, whose version 1.0 was presented in 1997 [UML]. UML allows developing 

different kind of models to represent different features of the software (structure, behavior 

and interaction). Class diagrams are used to represent the structure of knowledge, being 

“class” the counterpart in UML of the “concept” in inheritance networks. Inheritance is used in 

class diagrams (structure) initialy in the same way it was used the semantic data models, and 

in the use case diagram (behavior) in the sense of a task can be extended by other. In version 

2.0 (2005), the notion of redefinition has extensibely included, some features can be renamed 

(attributes and association roles) or some can be restricted (formal param types, cardinatilies, 

default values, visibility,…). Borgida et al. consider two alternatives for what they call IS-A 

hierarchies: class as template (strict inheritance) or as prototype (defeasible inheritance 

allowing only attribute refinement) [Borgida-etal82]. They present a software specification 

methodology based on generalization and specialization that uses the prototype alternative. In 

a conceptual model, properties can have restrictions about values (e.g., the class Person has an 

attribute Age with values between 0 and 120). Refining an attribute means enforcing the 

restriction in the sense that the rank of values of the attribute in the subclass must be a subset 

of the superclass’ (e.g., if an Undergraduate-student is-a Person, with an Age between 18 and 

120).   

3.2.4 SUMMARY 

After reviewing the different definitions and uses of inheritance (and consequently, 

specialization and its dual concept, generalization) along areas and time, I conclude that the 

main message behind the concept is the need of sharing information for concept reuse. 

Despite of their differences, the various approaches concur that all the instances of a 

subconcept must be instances of the superconcept, changing the words instances and concept 

depending on the area.  

Table 3-3 shows the features found in the different areas and approaches. They are classified 

with respect to the Taxomania rule because this is the rule that encloses all possible changes 

(introduce feature, add invariant and redeclare feature). Some approaches are similar in what 

can be done, and even the way of doing it. For example, most of OO languages do not allow 

cancelling properties, but it can be simulated accessing properties via methods (throwing an 

exception when a method for a “cancelled” property is called). Following the Taxomania 

naming, feature means method and property, also named attribute depending on the area. 
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Table 3-3. Inheritance features in Information Systems 

Area Approach Introduce feature Add invariant Redeclare feature 

Semantic/ 
Inheritance 
Networks 

Strict 

New Attributes 

No No 

Defeasible No 
Attribute 

Cancellation 

OO 
Languages 

Simula 67 

New Properties 
 & Methods 

Simulation accessing 
properties via methods 

No 

Smalltalk-80 Overrides for methods 
Simulation for 

properties accessing 
via methods 

C++/C# 

Java 

Delphi 

Visual Basic 
Overrides and shadows 

for properties and 
methods 

Eiffel Adding invariants 

Renaming and 
redefinition for routines 

and procedures using 
contracts 

Conceptual 
Modelling 

Semantic Data 
Models (EER) 

New Attributes  
& Methods 

No No 

UML Features Restriction 
(cardinality, visibility,…) 

Attributes and Roles 
Renaming 

Borgida and 
Mylopoulos 

For attributes 
No 

Figure 3-1 shows the evolution of the concepts presented in this section and the interaction 

between them. 

 
Figure 3-1. Inheritance Evolution 

Taking the concepts of strict and defeasible inheritance from inheritance networks, I remark 

that all OO languages except for Simula67 are adopting defeasible inheritance. Meanwhile 

conceptual modeling approaches are adopting strict inheritance. In the case of Borgida and 

Mylopoulos is more permissive than strict inheritance but less than defeasible inheritance, 

because it is only allows refinement (that is not overriding or cancelling) for attributes. 
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3.3 SPECIALIZATION IN THE I* FRAMEWORK 

3.3.1 A LITERATURE REVIEW 

Specialization appeared in the i* language from the very beginning. Yu included in his PhD 

thesis the is-a relationship as actor specialization. Specifically in the Meeting Scheduler 

example [Yu95], the actor Important Participant is related with the actor Meeting 

Participant using the is-a link as is shown in Figure 3-2. The following two problems arose:   

 This link is only used in SD models between actors. But when actors’ SR models are 

developed, no SR model is defined for the subactor Important Participant.  

 In spite of using manipulating the subactor (it has some new incoming dependencies), 

policies of use are not explicitly defined in the i* definition.  

 
Figure 3-2. Meeting Schedule SD Diagram 

As mentioned in section 3.1, there are some i* dialects. The main ones are: the Goal-oriented 

Requirement Language (GRL), which is part of the User Requirements Notation (URN) [URN]; 

and Tropos, an agent-oriented software methodology that adopts a slightly modified version 

of i* as its modelling language [Susi-etal05]. It is worth to remark that none of them define the 

is-a link in their metamodels. GRL does not have any type of actor links and Tropos only 

defines other types of links between types of actors (plays, covers and occupies).  

Since its appearance, the is-a construct has been used by several authors, in several contexts. 

Normally this use has been limited to reproduce the use in Meeting Schedule Diagram, as a 

pure modeling instrument. In other words, the is-a link has been used to link actors in SD 

diagrams. In these examples, subactors have not been involved in dependencies and the SR 

has not been developed. Therefore, these authors have not deal with consequences. As 

examples, I may mention: 

 Giunchiglia et al [Giunchiglia-etal02] presents the use of Tropos for the meeting 

scheduler problem. Important Participant (IP) and Active Participant (AP) appear in 

early requirement analysis fase as Potential Participant (PP) subactors (see Figure 3-3). 

But this relation disappears, although actors remain, in late requirement analysis fase 

with no explanation. A remarkable curiosity is that in Tropos metamodel is-a link is 
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not defined. It is also curious that this example is also used in [Sannicolo-etal02], 

where the Tropos metamodel is studied in depth and is-a link is not included. 

 
Figure 3-3. Meeting Scheduler Problem using Tropos 

 Marin et al [Marin-etal04] uses specialization in the early requirement analysis fase, 

from Tropos methodology, for modeling what the authors name agro-food products 

delivery chain (see Figure 3-4). This is a simple example that uses especializaton for 

different kinds of agro-food industries (actor classification).  

 
Figure 3-4. Actor Classification Example 

 Mouratidis et al. [Mouratidis-etal06] that uses is-a link in the context of the 

development of security-critical applications. A case study in the e-commerce domain 

is presented, Card Issuer (actor) is-a Load-Acquierer (role). The authors write “It is 

worth mentioning that card issuers can take on the roles of load acquirers.” This 

comment leads the reader to wonder whether the link used in this case should be 

plays, taking into account the types of the involved actors.  

 Franch [Franch05] that proposes hierarchies using is-a links for representing different 

types of software packages in a software selection scenario. In this case, the author 

defined explicitly two integrity constraints about the is-a link: an actor shall not be a 

specialization of itself and specialization shall preserve the type of the specialized 

intentional element. 
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 Castro et al. [Castro-etal12] that uses the link in the context of modeling requirements 

using i* to generate architectural models, in this case the link is used for human actors 

Travelers. Figure 3-5 shows how this link is used for modeling multiple inheritance 

(more than one superactor), subactor Travelers has Advise Giver and Advise 

Receiver as superactors. 

 
Figure 3-5. Multiple Inheritance Example 

Although it is not usual, some authors do develop SR diagrams for subactors. For example, on 

the context of dynamically adaptive systems, [Goldsby-etal08] uses the specialization concept 

to represent the different states associated to a system. Specifically a Flood warning system, 

the system’s behavior depends on a river flow. Subactor’ diagrams represent the system 

behavior depending if the flow is normal (S1), flow increase (S2) or flood (S3). In this case the 

subactor diagrams are very similar (see Figure 3-6 where differences are marked), but the 

superactor is not developed. The superactor’s SR diagram did not appear in subsequent 

publications of these authors related to the same case study either [Welsh-Sawyer09][Welsh-

Sawyer10][Welsh-Sawyer10bis]. So, the authors did not deal with the differences between 

superactor and subactor behavior. 

 
 

Figure 3-6. Flood warning systems subactor's SR diagrams (S1 left, S2 right) 
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In the context of generation of UML specifications from i* models, e.g., for Use Case Diagrams 

[Santander-Castro02] maps the is-a link to a <<generalization>> relationship between actors 

and for Class Diagrams [Alencar-etal02] maps the is-a link to a class 

generalization/specialization. This is also used in the model-driven development process 

proposed in [Alencar-etal09] to generate UML diagrams from i* models. [Alencar-etal09] has 

some rules to map the is-a link to inheritance between classes, but there is a lack of 

information about how some elements inside the subactor Photographer boundary are placed 

into the superclass CandidateEmp (see Figure 3-7). For example resource A description about 

photo equipment in Photographer ends as the attribute descEquipment in class 

CandidateEmp. 

 

 
Figure 3-7. From i* to UML Conceptual Models example 

We can conclude that the proposals that have used the i* specialization concept have not 

solved the problems that we have enumerated for the seminal Yu’s proposal.  

3.3.2 GATHERING THE COMMUNITY PERCEPTION 

On the other hand, I decided to complement this literature analysis with an empirical study in 

the form of a community-oriented perception of the construct. Therefore, I designed and 

conducted a survey about this issue. This survey was conducted over the research community 

and it is focused in the consequences of this construct over SD diagrams, specifically subactor 

dependencies, and SR diagrams, specifically differences between superactor and subactor IEs 
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and IE links. For facilitating the analysis, I decided to provide closed answers to the questions. 

Table 3-4 shows the list of questions included in this survey. Appendix A contains the complete 

survey text. Q1 and Q2 are of exploratory nature and addressed to know if the construct is 

used by modelers and if they have clear its use (only one option can be chosen). Q3 and Q4 are 

of interpretative nature and addressed to know what consequences have this link for the 

actors involved, Q3 is addressed to dependencies in SD diagram and Q4 is addressed to IE and 

IE links in SR diagrams. The possible answers for Q3 and Q4 are if the involved actor models 

are the same or if some elements can be added, modified or deleted (multiple options can be 

chosen). 

Table 3-4. is-a Survey Questions 

Q1 How often do you use is-a links in the i* models that you develop? 

Q2 If you use is-a links, do you have any doubts about their usage? 

Q3 If A is-a B, what is the consequence regarding dependencies at the SD model level? 

Q4 If A is-a B, what is the consequence regarding the SR model level? 

I have obtained 21 valid answers, most of them collected during the Fourth International i* 

Workshop (held during June 2010) and a few by later interactions with community members. I 

consider this a sufficient sample of the i* core research community7. The survey was 

responded anonymously. 

Figure 3-8 shows the results for the first two questions. For each answer, the chart shows two 

data: the number of answers and the percentage that it represents. According to those results 

the construct is frequently used (57% answered “sometimes” or more in Q1) but most 

modelers recognize doubts about its usage (84% of the total answered “yes” in Q2). From Q2’s 

answers, it is possible to conclude that the lack of definition is because researchers use this 

construct but it is not in the focus of their research (68% use this construct but they consider 

that is not fundamental for their models). 

 

  
Figure 3-8. Results for Q1 (left side) and Q2 (right side). For each cluster, the first number is the number of 

answers and the second the percentage over the total of answers 

 

                                                           

7 In a survey about the use of i* presented in CAISE 11 [Cares-etal11], I have counted 196 different authors. If I 

consider this number as indicative, the population sample of the survey is covering the 10.7% of the core research 

community population. If I consider the information contained in the i* wiki, the list of community members includes 

up to 139 researchers, and this case the sample grows up to the 15.1% of the community population. 
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Figure 3-9 shows the results for questions Q3 and Q4. When actor A is-a actor B, the 

tendency is that new elements (dependencies for Q3 and intentional elements for Q4) can be 

added in the actor A (85% for dependencies and 90% for IEs). There is less agreement about 

modification (38% for dependencies and 14% for IEs). Finally, almost none of the respondents 

allow removing elements (4.7% for dependencies and 9.5% for IEs).  

  
Figure 3-9. Results for Q3 (left side) and Q4 (right side) 

Respondents were asked for what kind of modification could be allowed (Q3 and Q4). All the 

respondents said that the intentional elements should be modified using the OO specialization 

concept, with no more information about what does OO specialization means. 

I have studied the results for questions Q2, Q3 and Q4 depending on the frequency of use (Q1: 

Everyone, Never, Rarely, Sometimes, Often and Very Often) and the results are almost the 

same that taking all the answers. Analyzing the trends that the graphics show from Figure 3-10 

to Figure 3-12, only the Often (2/21) and Very Often (1/21) results have some slight 

differences. In both cases, they have no doubts about the construct (Q2) and the Very Often 

do not agree with the rest of the answers (included the Often) about removal of elements. 

 
Figure 3-10. Tendencies depending on the is-a use for Q2 
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Figure 3-11. Tendencies depending on the is-a use for Q3 

 
Figure 3-12. Tendencies depending on the is-a use for Q4 

The result of this survey leads to the following main conclusions, independently of the 

frequency of use of the construct: 

 Although the construct is used, it is used with some doubts.  

 The community agrees on allowing adding extra information to subactors, has doubts 

about whether the inherited information can be modified and mostly agreed in not 

allowing removal of inherited information. 





 

 

Chapter 4.  Formalization 

One necessary outcome of this thesis is to provide a formal validation of the proposed 

specialization operations. For achieving this validation, it is necessary first to provide a formal 

formulation of i* models, and this is the main purpose of this chapter. Moreover, I will 

establish some ontological assumptions in those points where the classical definition of i* is 

not clear enough. Finally, I will provide some auxiliary functions that will be useful in the rest of 

the document. 

4.1 FORMALIZATION OF I* MODELS  

This section presents the domains and functions that I consider in the formalization of the i* 

modeling language. The full formalization is summarized in Figure 4-1. The general layout of 

this formalization consists on defining elements as tuples of sub-elements and then functions 

with a meaningful name to obtain these sub-elements (e.g., given a model, an operation actors 

returns the set of actors of that model). Some functions filter a domain of elements according 

to categories that form an enumeration domain (represented as boxes in Figure 4-1.; e.g., 

actors are filtered using the functions genericActors, roles, positions and agents); conversely, a 

given element may be queried for its type using a function type that ranges over the 

corresponding enumeration domain (e.g., the type of an actor may be obtained). In addition, I 

may use functions to obtain the name of those elements that have name (e.g., actors). For the 

sake of brevity, these two types of operations are not defined in the text (in fact, name does 

not appear in the figure either). Correctness conditions are stated when needed. This 

formalization is based in the ’95 Yu’s definition [Yu95] although the different types of 

contributions proposed in its wiki evolution [iwiki] have been incorporated into the definition 

since they provide more expressive power to the models with several types of positive and 

negative contributions and also the ability to decompose softgoals using and and or. Some 

particular i* constructs are not completely defined in Yu’s thesis and I include assumptions to 

solve these ambiguities [Lopez-etal11]. In general, the formalization provided in the section 

could be adapted to the slight variations proposed in the different i* dialects mentioned in the 

introduction. 

Since this thesis is focused in the effects of specialization both at the level of actors and 

intentional elements, it is not necessary to introduce in the model the concepts of SD and SR 
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diagrams. Formalization presented in this section is the model formalization, this model is 

representing a SD or SR diagrams depending on the information included in it. For instance, for 

SD diagrams actors does not have intentional elements inside.  

 

Figure 4-1. Summary of Domains and Functions used in the i* formalization  

Meanwhile the Figure 4-1 contains the complete domains and functions for a complete 

formalization, Table 4-1 contains the list of domains and functions that are formalized in this 

chapter. This list corresponds to the necessary domains and functions for specialization 

operations. 
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Table 4-1. Concepts and Functions formalized in this section 

Domain/Function Description Definition & Page 

Actor Basic concept of the i* language Definition 2, pg. 37 

actor(n, A) Function that returns the actor with this 
name 

Definition 2, pg. 37 

ActorLink Basic concept of the i* language Definition 6, pg. 41 

actorLinks(M) Set of Actor Links from the model M Definition 6, pg. 41 

actors(M) Set of Actors from the model M Definition 2, pg. 37 

addDependencies(M, D) Function that add the set of dependencies D Definition 16, pg. 50 

addIEDecomposition(a, ie, IES, t, v) Function that add the set of IEs IES to the ie 
decomposition 

0, pg. 49 

ALT Actor Link Types set of Values Definition 6, pg. 41 

ancestors(a, AL, t) Actor ancestors from actor a through the 
same actor link type 

Definition 6, pg. 41 

ancestors(ie, IEL) ie predecessors though decomposition links Definition 4, pg. 38 

ANDdecomposition(ie, IEL) ie targets when decomposition type is AND Definition 4, pg. 38 

AT Actor Types set of Values Definition 2, pg. 37 

Boundary Basic concept of the i* language Definition 2, pg. 37 

CT Contribution Types set of Values Definition 4, pg. 38 

DCT Decomposition Contribution Types set of 
Values 

Definition 4, pg. 38 

decomposition(ie, IEL) ie targets when the IE link is a 
decomposition link 

Definition 4, pg. 38 

decomposition-link(iel) Returns if iel is an IE decomposition type link  Definition 4, pg. 38 

decompositionLinks(IEL) Returns all IE decomposition links from IEL Definition 4, pg. 38 

decompositionTypes(ie, IEL) Returns all IE decomposition types from IEL Assumption 2, pg. 40 

deleteDependencies(M, D) Function that delete the set of 
dependencies D 

Definition 15, pg. 50 

deleteIEDecomposition(a, IEdel) Function that deleted the set of IEs IEdel 
from actor a 

Definition 12, pg. 49 

Dependency Basic concept of the i* language Definition 7, pg. 43 

Dependency End Basic concept of the i* language Definition 7, pg. 43 

dependencies(M) Set of Dependencies from the model M Definition 7, pg. 43 

Dependum IEs in a dependency Definition 5, pg. 40 

dependums(M) Set of Dependums from the model M Definition 5, pg. 40 

dependums(DL) Set of Dependum from a set of 
dependencies 

Definition 7, pg. 43 

descendants(ie, IEL) IEs that belong to ie decomposition Definition 4, pg. 38 

incomingDependencies(a, DL) Function to get all incoming dependencies 
that arrives to an actor a 

Definition 7, pg. 43 

Intentional Element Basic concept of the i* language Definition 3, pg. 38 

Intentional Element Link Basic concept of the i* language Definition 4, pg. 38 

intentionalElementLinks(a) Set of Intentional Element Links in a Definition 4, pg. 38 

IELT Intentional Element Link Type set of Values Definition 4, pg. 38 

intentionalElements(a) Set of Intentional Elements in a Definition 3, pg. 38 

IET Intentional Element Type set of Values Definition 3, pg. 38 

is_dl_inherited(dl, M) Returns if the dl is inherited and not 
modified 

Definition 17, pg. 51 
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Domain/Function Description Definition & Page 

is_ie_extended(ie, a, M) Returns if an extension has been applied 
over ie  

Definition 9, pg. 45 

is_ie_specialized(ie,a) Returns if any specialization operation has 
been applied over ie  

Definition 9, pg. 45 

is_ie_inherited(ie, a, M) Returns if the ie is inherited and not 
modified 

Definition 9, pg. 45 

is_iel_inherited(l, a, M) Returns if the contribution link value has 
not been changed respect to the inherited 

Definition 9, pg. 45 

mainIEs(a) IEs in a that do not have ancestors Definition 4, pg. 38 

Model i* model Definition 1, pg. 37 

modelElements(a, M) Actor-related model elements Definition 8, pg. 44 

movedDL(M, dl) Partial function that returns the original 
dependency when dl has been reallocated. 
If it is not reallocated, returns dl 

Definition 17, pg. 51 

NCT Negative Contribution Types set of Values Definition 4, pg. 38 

ORdecomposition(ie,IEL) ie targets when decomposition type is OR Definition 4, pg. 38 

original_link(l, a) Link where the IEs has been changed by the 
original in case they have been specialized 

Definition 9, pg. 45 

original_decomposition(ie, a) set of decomposition sources of ie, when 
the source is specialized the inherited value 
is included in the set 

Definition 9, pg. 45 

original_dependency(dl, M) Function that returns the dependency that 
corresponds to dl involving the superactor 
elements 

Definition 17, pg. 51 

original_dependencyEnd(de, M) Function that returns the dependency end 
that corresponds to de involving the 
superactor elements 

Definition 17, pg. 51 

original_incoming_dependencies(a, M)  Function to get all the original incoming 
dependencies for actor a 

Definition 17, pg. 51 

original_outgoing_dependencies(a, M)  Function to get all the original outgoing 
dependencies for actor a 

Definition 17, pg. 51 

outgoingDependencies(a, DL) Function to get all outgoing dependencies 
that stem from actor a 

Definition 7, pg. 43 

outgoingDependencies(a, ie, DL) Function to get all outgoing dependencies 
that stem from the IE ie of actor a 

Definition 7, pg. 43 

PCT Positive Contribution Types set of Values Definition 4, pg. 38 

reallocateIncoming(M,d,ie) Function to change the dependee ie in a 
dependency d 

Definition 19, pg. 52 

reallocateOutgoing(M, d, ie) Function to change the depender ie in a 
dependency d 

Definition 17, pg. 51 

reallocatePreventiveIncoming(M,d,ie) Function to change the dependee for ie in a 
dependency d when dependee IE is going to 
be removed 

Definition 20, pg. 53 

replaceIELink(a, ie, IES, t, v) Function that changes type and value for all 
exiting links between ie and the set of IEs 
IES 

Definition 14, pg. 49 

specializedIEa(ie) Partial function that returns the original IE 
when ie has been specialized in subactor a 

Definition 9, pg. 45 

ST Strength Type set of Values Definition 7, pg. 43 
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Domain/Function Description Definition & Page 

Strength Basic concept of the i* language Definition 7, pg. 43 

superactor(a, M) Function to get the immediate ancestor 
using the is-a link 

Definition 6, pg. 41 

substituteActor(a, b, M) Substitutes actor a by actor b in the model 
M 

Definition 10, pg. 47 

substituteIE(ie, ie’, a, M) Substitutes ie by ie’ in the actor a  Definition 11, pg. 47 

traceDL(M, dl’, dl) Function to store that dl’ replaces dl  Definition 17, pg. 51 

traceIE(a, ie’, ie) Function to store that ie’ replaces ie in actor 
a 

Definition 9, pg. 45 

Definition 1. i* model. 

Let 𝕄 be the set of all possible i* models defined as: 

𝕄 = {M |  M = (A, DL, DP, AL)} 

where A is a set of actors, DL a set of dependencies, DP a set of dependums and AL a set of 

actor links. 

Definition 2. Actor. Actor Boundary. Set of actors of a model. 

An actor a is a 4-tuple a = (n, IE, IEL, t) where n is a name, IE a set of intentional elements, 

IEL a set of intentional element links, and t a type of actor, t ∈ AT, where: 

AT = {generic, role, position, agent} 

The data included in the 4-tuple that corresponds to an actor is named actor boundary. 

Let 𝔸 be the set of all possible actors, defined as: 

𝔸 =  {a | a = (na, IEa, IELa, ta)} 

Given an actor a= (na, IEa, IELa, ta), there are four functions to return each one of the 

elements of the actor’s tuple8: 

name(a)= na 

intentionalElements(a)= IEa 

intentionalElementLinks(a)= IELa 

type(a)= ta 

Given an i* model M = (A, DL, DP, AL), the set of actors A of the model M is a set: 

A ⊆ 𝔸  such that ∀a, b ∈ A: a ≠ b ⇔ na ≠ nb 

                                                           

8 Functions that return the elements of the different tuples for following definition are not included 

although they implicitiy exist.  
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The following function returns the actor that corresponds to a specific name: 

actor(n, A) = a | a ∈ A ∧ name(a) = n 

Definition 3. Intentional element. Set of intentional elements of an actor. 

An intentional element ie is a 2-tuple ie = (n, t) where n is a name, and t a type of intentional 

element t, t ∈IET, where: 

IET = {goal, softgoal, task, resource} 

 

Let 𝕀𝔼 be the set of all possible intentional elements defined as: 

𝕀𝔼 = {ie | ie = (nie, tie)} 

Given an actor a = (na, IEa, IELa, ta), the set of intentional elements of the actor a is a set: 

IEa ⊆ 𝕀𝔼 such that ∀x, y ∈ IEa: x ≠ y ⇔ nx ≠ ny 

Note that the condition above means that two different actors are allowed to have two 

intentional elements with the same name. 

Definition 4. Intentional element link. Decomposition links. Set of intentional 
element links of an actor. Main intentional elements of an actor.  

An intentional element link l is a 4-tuple l = (p, q, t, v) where p and q are intentional elements 

(the source and the target respectively), t a type of intentional element link, t ∈ IELT, and v a 

contribution value, v ∈ CT ∪ {}, where: 

IELT = {means-end, task-decomposition, contribution} 

CT = PCT ∪ NCT ∪ DCT ∪ {Unknown} where: 

PCT = {Make, Some+, Help}, are the positive contributions 

NCT = {Break, Some-, Hurt}, are the negative contributions 

DCT = {And, Or}, decompose softgoals 

Figure 4-2 shows which IEs are the source (p) and the target (q) in an intentional element link. 

 

Figure 4-2. Intentional Element Links direction definition (p: source; q: target) 

An intentional element link l = (p, q, t, v) is a decomposition link if it breaks an IE into more 

fine-grained IEs: 

decomposition-link(l) ⇔ t ∈ {means-end, task-decomposition} ∨  

  (t = contribution ∧ v ∈ DCT) 
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In particular, it is remarkable that not all contribution links are considered decomposition links. 

For avoiding confusion I use the name of softgoal decomposition for contributions with values 

that belong to DCT and qualitative contributions for the rest. 

Given an actor a = (na, IEa, IELa, ta), the set of intentional element links of the actor a is a set: 

IELa ⊆ {iel | iel = (piel, qiel, tiel, viel)} such that: 

 ∀iel ∈ IELa: piel ∈ IEa ∧ qiel ∈ IEa  

 tiel = means-ends ⇒ type(qiel) ≠ softgoal ∧ value(iel) =  

 tiel = task-decomposition ⇒ type(qiel) = task ∧ value(iel) =  

 tiel = contribution ⇒ type(qiel) = softgoal ∧ value(iel) ≠  

 ∀x ∈ IELa: x ∉ ancestors(x, IELa), with: 

ancestors(ie, IEL) = {y |  (ie, y, t, v) ∈ decompositionLinks(IEL) ∨ 

(∃r: (ie, r, t, v) ∈ decompositionLinks(IEL)  ∧ y ∈ ancestors(r, IEL))} 

           where decompositionLinks(IEL) = {iel | iel ∈ IEL ∧ decomposition-

link(iel)} 

The function descendants(ie, IEL), analogue to the ancestors function, is also needed. 

The first bullet requires the source and the target to be intentional elements of the involved 

actor, the three next bullets declare which elements may be linked with a given type of link 

(see Figure 4-3), whilst the last item avoids cycles in the directed graph formed by the links. 

The ancestors of an IE are considered only for decomposition links.  

 

  
Figure 4-3. Supported combinations of Intentional Element Links  

Given an intentional element iel = (p, q, t, v), the functions source(iel) = p and target(iel) = 

q are defined.  

Given an actor a = (na, IEa, IELa, ta), the main IEs of the actor a, mainIEs(a), are the subset of 

its intentional elements that are not part of a decomposition: 

mainIEs(a) = {ie ∈ IEa | ancestors(ie, IELa) = ∅} 

Note that due to the last bullet in the definition of set of intentional element links, for a valid 

actor it always holds that:  
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IEa  ∅ ⇔ mainIEs(a)  ∅ 

Several functions are going to be needed in later chapters for retrieving IEs directly connected 

to another through decomposition links, either as source or target. One for retrieving the 

direct descendants using decomposition IE links (decomposition) and other two for 

distinguishing the type of decomposition: 

decomposition(ie ,IEL) = {p | l = (p, ie, t, v) ∈ IEL ∧ decomposition-link(l)} 

ANDdecomposition(ie, IEL) = {p | (p, ie, t, v) ∈ IEL ∧ 

 (t = task-decomposition ∨ 

 (t = contribution ∧ v = and))} 

ORdecomposition(ie, IEL) = {p | (p, ie, t, v) ∈ IEL ∧ 

 (t = means-end ∨ 

 (t = contribution ∧ v = or))} 

Assumption 1. The decomposition of an intentional element is considered 
incomplete.9 

Given a set of decomposition links that decompose a given q, {l = (pi, q, ti, vi) | l ∈ IEL ∧ 

decomposition-link(l)}, there is no means in the i* language to state whether q still allows 

additional decompositions (pj, q, tj, vj) or not. To solve this ambiguity in the most general way 

without changing the language (e.g., not allowing annotations), I consider in the rest of the 

thesis that decomposition of IEs is not complete. This is an important assumption related to the 

definition of specialization provided later in the section. 

Assumption 2. An intentional element can be decomposed just with one type of 
decomposition link. 

Given a set of decomposition links that decompose a given IE, there is no explicit mention in 

the i* language about the possibility of decomposing it using more than one type of link. I 

assume that a given IE can be decomposed just using one type of decomposition link (means-

end, task-decomposition, softgoal decompositions).  

∀ie ∈ IEa: ∥decompositionTypes(ie, IELa)∥ = 1, where 

decompositionTypes(ie, IELa) = {(t, v) | 

∃iel ∈ decompositionLinks(IELa): ie = target(iel) ∧ t = type(iel) ∧ v  = value(iel)} 

If more than one descomposition type is used for the same IE, the model can be ambiguous 

because ambiguity provably appears in the way to interpret the combination of them. This 

situation can be modeled using intermediate IEs with the unambiguous combination. 

Definition 5. Dependum. Set of dependums of a model. 

A dependum d is an intentional element. 

Given an i* model M = (A, DL, DP, AL), the set of dependums of the model M is a set: 

                                                           

9 [Yu95] states “…This is allowed due to the inherent openness (incompleteness) assumed by the 

modelling framework.” when it is talking about using means-end between two tasks (Task-Task Link). 



4.1 Formalization of i* Models 41 

 

 

DP ⊆ {dp | dp = (ndp, tdp)} such that ∀x, y ∈ DP: x ≠ y ⇔ nx ≠ ny  

Note that it is not allowed to have two dependums with the same name in the model. 

Definition 6. Actor link. Set of actor links of a model.  

An actor link l is a 3-tuple l = (a, b, t) where a and b are actors (the source and the target 

respectively), and t a type of actor link, t ∈ ALT, where: 

ALT = {is-a, is-part-of, plays, covers, occupies, instance} 

Figure 4-4 shows which are the source (a) and the target (b) in an actor link. 

 
Figure 4-4. Actor Links Direction Definition (a: source, b: target) 

Given an i* model M = (A, DL, DP, AL), the set of actor links of the model M is a set: 

AL ⊆ {al | al = (aal, bal, tal)} such that: 

 ∀al ∈ AL: aal ∈ A ∧ bal ∈ A  

 tal = is-a ∨ tal = is-part-of ⇒ type(aal) = type(bal) 

  tal = is-a ⇒ aal ∉ instances(M) ∧ bal ∉ instances(M) 

 tal = instance ⇒ type(aal) = agent ∧ type(bal) = agent ∧ bal ∉ instances(M) 

 tal = covers ⇒ type(aal) = position ∧ type(bal) = role 

 tal = occupies ⇒ type(aal) = agent ∧ type(bal) = position 

 tal = plays ⇒ type(aal) = agent ∧ type(bal) = role 

 ∀a ∈ A: a ∉ ancestors(a, AL, t), with: 

ancestors(x, AL, t) = {y |  (x, y, t) ∈ AL ∨  

  ∃r: (x, r, t) ∈ AL ∧  y ∈ ancestors(r, AL, t) ∨  

  ∃r: (x, r, is-a) ∈ AL ∧ y ∈ ancestors(r, AL, t)} 

The first bullet requires the source and the target to be actors of the model, the six following 

bullets are declaring which types of actors may be linked with a given type of link, whilst the 

last avoids cycles in the directed graph formed by the links. Depending on the type of link 

there are different assumptions. For is-a and is-part-of, the types for both actors must be the 
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same, this restriction comes from the reference model that is included in [Yu11] and from the 

i* wiki10. For instance: 

 If an actor is an instance-of another, it must not be involved in is-a links.  

 An agent cannot be an instance of an agent. 

 For the rest of rules about link and actor types, they are defined in the thesis. 

The ancestor function groups the actor links that are connected by the same type of link (actor 

links are transitive) and the actor links inherited from the ancestors (actor links are inherited 

by descendants).  For the model shown in Figure 4-5, the set of actor a that are ancestors with 

respect to is-part-of is {d, e, c}. Actors d and e are ancestors because of the is-part-of 

transitivity and actor c because the is-part-of is inherited from actor b. 

 
Figure 4-5. Actor Ancestors 

Assumption 3. No multiple inheritance 

In this proposal I am considering models without multiple inheritance. 

∀a ∈ A : ||{b | (a, b, is-a) ∈ AL}||    1 

Given an i* model M and an actor a ∈ actors(M), the superactor of the actor a in M, 

superactor(a, M), is the actor which appears in the only (Assumption 3) actor link as a target 

when a is the source and the type link is is-a: 

 superactor(a, M) = {
, ∄𝑏 | (a, b, is-a) ∉ actorLinks(M)
𝑏, ∃! 𝑏 | (a, b, is-a) ∈ actorLinks(M)

 

The main problem with multiple inheritance is identifying when more than one superactor 

contains the same IE (same name, type and decomposition), in this case the IE only should 

appear once in the subactor. This is an implementation problem and it does not affect to 

which operations can be applied over the inherit elements. 

                                                           

10 i* wiki states  as a guideline “Use 'ISA' and "Is part of' Association Links only between actors of the 

same type”. 
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Definition 7. Dependency. Dependency end. Strength. Set of dependencies of a 
model.  

A dependency d is a 3-tuple d = (dr, de, dm) where dr and de are dependency ends (the 

depender and the dependee respectively), and dm a dependum. A dependency end dend is a 

3-tuple dend = (a, ie, s) where a is an actor, ie an optional intentional element of this actor, 

and s a strength, s ∈ ST, where: 

ST = {open, committed11, critical} 

Let 𝔻𝕃 be the set of all possible dependencies defined as: 

𝔻𝕃 = {d | d = (drd, ded, dmd)} 

Given an i* model M = (A, DL, DP, AL), the set of dependencies of the model M is a set: 

DL ⊆ 𝔻𝕃 such that: 

 ∀d ∈ DL: actor(drd)∈ A ∧ actor(ded)∈ A ∧ actor(drd) ≠ actor(ded) ∧   

actor(drd) ∉ ancestors(actor(ded), AL, is-a) ∧    

actor(ded) ∉ ancestors(actor(drd), AL, is-a)  

 ∀d ∈DL:  

intentionalElement(drd) ∈ {} ∪  intentionalElements(actor(drd)) ∧ 

intentionalElement(dre) ∈ {}  ∪  intentionalElements(actor(dre)) 

The first bullet forces a dependency to link two different model actors and avoids reflexive 

dependencies and dependencies between actors related using the is-a link (direct or 

indirectly), and the second bullet specifies that if the depender (dependee) involves an 

intentional element, then this element must belong to the actor declared in the same 

dependency end.  

The functions below will be needed in later chapters for retrieving outgoing and incoming 

dependencies from an actor and an IE inside an actor. 

outgoingDependencies(a, DL) = {d | d ∈ DL ∧ actor(dependerEnd(d)) = a} 

outgoingDependencies(a, ie, DL) = {d | d ∈ DL ∧ actor(dependerEnd(d)) = a ∧  

intentionalElement(dependerEnd(d)) = ie} 

incomingDependencies(a, DL) = {d | d ∈ DL ∧ actor(dependeeEnd(d)) = a} 

It is also used in the following chapter a function that returns the dependum from a set of 

dependency links. 

dependums(DL) = {dependum(d) | d ∈ DL} 

                                                           

11 In the graphical notation, when there is no symbol for the strengths, it means that the value is 

committed. 
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Assumption 4. When the boundary of an actor includes intentional elements, its 
incoming and outgoing dependencies have to be linked to one of its 
IE. 

∀d ∈DL:  

intentionalElement(depender(d))= ⇔ intentionalElements(actor(depender(d)))=∅ 

∧ 

intentionalElement(dependee(d))= ⇔ 

intentionalElements(actor(dependee(d)))=∅ 

The actor IEs are intended for giving answers to the questions how and why for the 

dependencies. Therefore, when IEs exist, these IEs must be linked to the dependencies to give 

the answers. 

4.2 FORMAL SUPPORT FOR SPECIALIZATION 

In this section some functions and order relations are defined on the top of the concepts 

introduced in the previous section. Although possible, it is not recommended to read this 

section sequentially, but just when some definition is referenced in later chapters. 

4.2.1 ADDITIONAL FUNCTIONS FOR SPECIALIZATION OPERATIONS 

Functions presented in this subsection, are supporting the specialization operations presented 

in Chapters from 5 to 8. 

4.2.1.1 ACTOR-RELATED MODEL ELEMENTS 

Actor-related model elements are those superactor model elements that will be transferred 

into the subactor at the moment that an is-a link is created between a subactor and this 

superactor. These elements include only the inherited elements that can be modified by 

specialization operations. The actor links are not copied, although they are inherited, because 

they cannot be modified during the specialization process. 

Definition 8. Actor-related model elements.  

Given an i* model M = (A, DL, DP, AL) and an actor a = (n, IE, IEL, t) such that a ∈ A, the 

model elements related to a, modelElements(a, M), are defined as: 

modelElements(a, M) = (IE, IEL, DLa) where  

DLa = {(dr, de, dm) ∈ DL | actor(dr) = a ∨ actor(de) = a}  

4.2.1.2 TRACING SPECIALIZED INTENTIONAL ELEMENTS 

Further chapters introduce some specialization operations that modify an inherited IE inside 

an actor and I need to identify them. 

Part of the following figure (Figure 4-6), presents the result of applying a refinement over the 

IE G in the superactor a to obtain the IE [G] ref in the subactor b. For some aspects of the 

formalization of the specialization operations, when an operation is going to be applied over 
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an IE inside the subactor, I need to know that goal [G] ref in subactor was originally the goal 

G inherited from the superactor.  

 
Figure 4-6. Goal Refinement and Extension 

I use a partial function to maintain this relation between the specialized and original IE in the 

subactors (specializedIE). This function must be partial because only the specialized IEs are 

part of its domain (Dom(specializedIE)), it is also partial evaluated because it depends on the 

actor where the IE belongs to.  It is partial evaluated because in the same model more than 

one actor can have the same IE (tuple name, IE type). This restriction fixes the actor and I have 

a partial function for each actor in the model, for example the refined [G] ref will be included 

in the domain of specializedIEb and extended G will be included in the domain of 

specializedIEc. The operation traceIE is the responsible to modify the domain and establish 

the result for the specializedIE function when an IE is specialized. 

In model shown in Figure 4-6, the specializedIE function has the following values: 

 specializedIEb(([G] ref, goal)) = (G, goal) and Dom(specializedIEb) = {([G] ref, goal)} 

 specializedIEc((G, goal)) = (G, goal) and Dom(specializedIEc) = {(G, goal)} 

Definition 9. specializedIE.   

Given an actor a, the partial function specializatedIEa is defined as: 

specializatedIEa: intentionalElements(a) 𝕀𝔼 

specializatedIEtraceIE(a,iepecialized,ieoriginal)(iespecialized) = ieoriginal 

∀a ∈ 𝔸: ∀op: 𝔸  𝔸 | op ≠ traceIE:  

specializatedIEop(a)(ie) = specializatedIEa(ie) 

The partial function is defined over the set of actor IEs and the result is an IE. For any actor and 

any operation over an actor that returns an actor, different to the operation traceIE, the result 

for specializedIE function is the same in both actors. 

The domain for partial function specializedIE is: 

∀a ∈ 𝔸 | intentionalElements(a) = ∅: Dom(specializatedIEa) = ∅ 

 ∀a ∈ 𝔸: ∀op: 𝔸  𝔸 | op ≠ traceIE :  

 Dom(specializatedIEop(a)) = Dom(specializatedIEa) 
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G
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Dom(specializatedIEtraceIE(a,iespecialized,ieoriginal)) = Dom(specializatedIEa) ∪ 

{iespecialized} 

In the specialization operations, I need to know when an IE or an IE link has been inherited (it 

is not new) and it does not have been specialized. Therefore, I use the partial function 

specializedIE to define the following predicates: 

is_ie_inherited(ie, a, M)⇔ie ∈ intentionalElements(superactor(a, M)) ∧  

    ¬is_ie_especializated(ie, a) 

is_iel_inherited(l, a, M)⇔ 

                             original_link(l, a) ∈ intentionalElementLinks(superactor(a, M)) 

where 

is_ie_specialized(ie, a) ⇔  ie ∈ Dom(specializedIEa) 

original_link(l, a) = (s, t) |  ( (s = source(l) ∧ ¬is_ie_specialized(source(l), a)) ∨   

     (s = specializedIEa(source(l)) ∧ is_ie_specialized(source(l), a))) ∧  

( (t = target(l) ∧ ¬is_ie_specialized(target(l), a)) ∨  

(t = specializedIEa(target(l)) ∧ is_ie_specialized(target(l), a)) 

The function original_link(l, a) constructs the link taking into account the IEs before 

specialization operation, in case that an specialization operation has been applied over the 

source or the target. 

It is also necessary to know when an IE has been specialized using the extension operation. In 

this case, besides the specializedIE function, the decomposition in the subactor must be 

compared with the decomposition in the superactor. It is an extension when the 

decomposition in the superactor is a subset from the subactor. 

is_ie_extended(ie, a, M) ⇔ is_ie_specialized(ie, a) ∧ specializedIEa(ie) = ie  ∧  

decomposition(ie, intentionalElementLinks(superactor(a, M)))  

original_decomposition(ie, a)  

Where original_decompostion(ie, a) is the set of decomposition sources for the IE links where 

ie is the target with the particularity than in case of an specialized IE, the original IE belongs to 

the  inherited IE instead of the specialized one. 

original_decomposition(ie, a) = SOURCESspec ∪ SOURCESnospec, where 

 SOURCESspec = {specializedIEa(ie) | ie ∈ decomposition(ie, a) ∧  

is_ie_specialized(ie, a)} 

 SOURCESnospec = {ie | ie ∈ decomposition(ie, a) ∧ ¬is_ie_specialized(ie, a)} 

4.2.1.3 ACTOR AND INTENTIONAL ELEMENT SUBSTITUTION 

When the specialization operation i applied over an IE, an IE link or a dependency, sometimes 

the IE or even the actor must be substituted in the model. The necessary substitution functions 

are: 
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 substituteActor: Responsible of substituting an actor by another in the model. 

 substituteIE: Responsible of substituting an IE inside an actor’s boundary by another. 

This change implies modifying the actor in the model and using the function traceIE to 

include the new IE in the function specializedIE associated to the modified actor. 

Definition 10. Actor substitution in the model. 

Given an i* model M = (A, DL, DP, AL) and two actors a, b  and an IE ie, such that a ∈ A,b ∉ A, 

where b is the actor that is going to substitute a, the operation substituteActor(a, b, M) yields 

a model M’ defined as: 

M’ = (A’, DL’, DP, AL’) such that: 

 A’ = A \ {a} ∪ {b} 

 DL’ = DLothers ∪ DLer ∪ DLee  

 DLothers  = {dl = ((x,iex,sx), (y, iey,sy), dm) | dl ∈ DL ∧  x ≠ a ∧  y ≠ a} 

 DLer  = {((b,iea,sa), (y, iey,sy), dm) | 

              ((a,iea,sa), (y, iey,sy), dm) ∈ DL ∧ iea ∈ {} ∪  intentionalElements(b)} 

 DLee  = {((x,iex,sx),(b,iea,sa),dm) | 

               ((x,iex,sx), (a,iea,sa) ,dm) ∈ DL ∧ iea ∈ {} ∪ intentionalElements(b)} 

 AL’ = ALothers ∪ ALsource ∪ ALtarget  

 ALothers = {l = (x, y, t) | l ∈ AL ∧ x ≠ a ∧ y ≠ a}  

 ALsource = {(b, y, t) | (a, y, t) ∈ AL} 

 ALtarget = {(x, b, t) | (x, a, t) ∈ AL} 

The first bullet substitutes the “old” actor a by the new one b in the actors’ set (A). The second 

bullet generates the new dependency links’ set with dependencies where a is not involved 

(DLothers) and adds those it is depender (DLer) and dependee (DLee) substituting it with b. The 

last bullet follows the same strategy but for actor links. 

Definition 11. Intentional Element substitution in the model 

Given an i* model M = (A, DL, DP, AL),  an actor a = (na, IEa, IELa, ta), the IEs ie and ie’  and 

the specialization operation name op such that a ∈ A, ie ∈ IEa, ie’ is the intentional element 

that is going to substitute ie on actor a, the operation substituteIE(ie, ie’, a, M) yields a model 

M’ defined as: 

 M’ = (A’, DL’, DP, AL’) such that: 

 A’ = A \ {a} ∪ {traceIE(a’, ie’, ie)} where 
 a’ = (na, IE’, IEL’, ta)} where 

 IE’ = IEa \ {ie} ∪  {ie’} 

 IEL’ = IELothers ∪ IELsource ∪ IELtarget where 

 IELothers = {l = (p, q, t, v) | l ∈ IELa ∧ p ≠ ie ∧  q ≠ ie} 
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 IELsource = {(ie’, q, t, v) | (ie, q, t, v) ∈ IELa} 

 IELtarget = {(p, ie’, t, v) | (p, ie, t, v) ∈ IELa} 

 DL’ = DLothers ∪ DLer1 ∪ DLee1  ∪ DLer2 ∪ DLee2 where 

 DLothers = {dl = ((x, iex, sx), (y,  iey, sy), dm) | dl ∈ DL ∧ x ≠ a ∧ y ≠ a} 

 DLer1 = {((a’, iea, sa), (y, iey, sy), dm) | ((a, iea, sa), (y,  iey, sy), dm) ∈ DL ∧ iea ≠ ie} 

 DLee1 = {((x, iex, sx), (a’, iea, sa), dm) | ((x, iex, sx), (a, iea, sa), dm) ∈ DL ∧ iea ≠ ie} 

 DLer2 = {((a’, ie’, sa), (y, iey, sy), dm) | ((a, iea, sa), (y,  iey, sy), dm) ∈ DL ∧ iea = ie} 

 DLee2 = {((x, iex, sx), (a’, ie’, sa), dm) | ((x, iex, sx),(a, iea, sa), dm) ∈ DL ∧ iea = ie} 

 AL’ = ALothers ∪ ALsource ∪ ALtarget where 

 ALothers = {l = (x, y, t) | l ∈ AL ∧ x ≠ a ∧ y ≠ a} 

 ALsource = {(a’, y, t) | (a, y, t) ∈ AL} 

 ALtarget = {(x, a’, t) | (x, a, t) ∈ AL} 

First bullet substitutes the “old” actor a by the result of marking the replaced IE ie’  as 

specialized inside the new one a’ in the actors set (A). a’ is generated replacing the ie for the 

new ie’ in the intentional elements set (IE’) and intentional element links set (IEL’). The new 

IEL’ is generated with links where ie is not involved (IELothers), and where it is involved as 

source (IELsource) and target (IELtarget). The second bullet generates the new dependency links 

set (DL’) with dependencies where a is not involved (DLothers), and where it is depender and 

dependee and ie is not involved (DLer1, DLee1) and where it is depender and dependee and ie is 

involved (DLer2, DLee2). The last bullet generates the new actor links set (AL’) with links where 

a is not involved (ALothers) and where it is source (ALsource) and target (ALtarget).  

4.2.1.4 REDEFINING INTENTIONAL ELEMENTS 

In this subsection, all the functions that support the redefinition are formalized. Redefinition 

consists on removing part of the decomposition inherited from the superactor and eventually 

adding some new element. Removing part of the decomposition includes removing outgoing 

dependencies and all the descendants that belong to the IE that has to be deleted. An IE is only 

deleted if, although has to be deleted from the redefined IE decomposition, is not belonging to 

other IE decomposition. 

The functions needed to support redefinition are: 

 deleteIEDecomposition: Responsible of deleting part of the IE decomposition (some IEs 

and their IE links). The list of IEs to be removed is required as a parameter. 

 addIEDecomposition: Responsible of adding the new IE decomposition elements. The list 

of the IEs to be added is required as a parameter. 

 replaceIELink: Responsible of defining the same type and value for all IE links that belongs 

to an IE decomposition. For the case that the decomposition is changing from AND (task-

decompostion, AND contribution link) to OR (means-end, OR contribution link) or vice 

versa. 

 deleteDependencies: Responsible of deleting all the outgoing dependencies that stem 

from the IE. 
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 addDependencies: Responsible of adding all the outgoing dependencies that still remains 

in the decomposition and the new ones. 

Definition 12. Intentional Element Decomposition removal  

Given an actor a = (na, IEa, IELa, ta) and the set of IEs to be deleted, jointly with their 

decomposition, such that IEdel  IEa the operation deleteIEDecomposition(a, IEdel) yields an 

actor a’ defined as: 

a’ = (na, IE’, IEL’, ta)  where  

 IE’ = IEa \ {ie | ie ∈ IE’’ ∧ (∄ie’ ∉IE’’  | ie ∈ descendants(ie’, IELa))} where 

 IE’’ = IEdel ∪ {ie | ∃ie’  ∈ ancestors(ie, IEL) ∧  ie’ ∈ IEdel} 

 IEL’ = {l = (p, q, t, v) | l ∈ IELa ∧ p ∈ IE’ ∧  q ∈ IE’} 

a’ is generated deleting the set of IEs IEdel and all the IEs that belongs to their decompositions 

in the intentional elements set of a (IEa). With the exception of the IEs that belong to a 

decomposition of an IE that is not intended to be deleted. The new IEL’ is generated with links 

where source and target still remain in actor a’.  

Definition 13. Intentional Element Decomposition addition 

Given an actor a = (na, IEa, IELa, ta), the set of IEs IES and the new type t and value v for the IE 

link such that ie ∈IEa the operation addIEDecomposition(a, ie, IES, t, v) yields an actor a’ 

defined as: 

a’ = (na, IE’, IEL’, ta) where 

 IE’ = IEa ∪ IES 

 IEL’ = IELa ∪ {l = (s, ie, t, v) | s ∈ IES} 

a’ is generated adding the new IEs defined in IES in the intentional elements set (IE’). The new 

IEL’ is generated adding to IEa the new links between IEs in IES, as source, and ie as target. 

Definition 14. Decomposition Link modification 

Given an actor a = (na, IEa, IELa, ta), the set of intentional element links IEL to be replaced and 

the new type t and value v, the operation replaceIELink(a, ie, IES, t, v) yields an actor a’ 

defined as: 

a’ = (na, IEa, IEL’, ta) where 

IEL’ = IELa \ {l ∈ IELa | source(l) ∈ IES  ∧ target(l) = ie} ∪  

{ l = (s, ie, t, v ) | s ∈ IES} 

a’ is generated replacing the old IE links defined in IEL by the new ones with the new type and 

value l and v in the intentional element links set (IEL’).  
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Definition 15. Dependencies removal 

Given an i* model M = (A, DL, DP, AL) and the set of dependencies to be deleted D, the 

operation deleteDependencies(M, D) yields a model  M’ defined as: 

M’ = (A, DL \ D, DP, AL)  

Definition 16. Depedencies addition 

Given an i* model M = (A, DL, DP, AL) and the set of dependencies to be added D, the 

operation addDependencies(M, D) yields a model M’ defined as: 

 M’ = (A, DL ∪ D, DP, AL) 

4.2.2 ADDITIONAL FUNCTIONS FOR SPECIALIZATION PROCESS 

Functions presented in this subsection, are supporting the operations for moving 

dependencies added in the specialization process operations, presented in Chapter 9. 

4.2.2.1 TRACING MOVED DEPENDENCIES 

Further chapters introduce some specialization operations that modify an inherited 

dependency between two actors. I need to identify over which dependencies have been 

applied a specialization operation. In case of dependencies, to identify the original inherited 

dependency from the superactor, I need to record which dependencies are reallocated, i.e. 

when the IE in one (or both) dependency end has changed inside the actor.  

Following figure (Figure 4-7) presents an inherited dependency d1 which has to be reallocated 

after the extension of IE G in the subactor b. In this case, the IE in the depender end has been 

changed to T2, a descendant of the original IE G.  

 
Figure 4-7. Reallocating a Dependency 

I use a function to know the relation between the moved dependency d2 and the original 

inherited one d1. In this case, unlike function specializedIE, the defined function movedDL is 

total. It is defined over all the elements in the set of dependency links. The result for non-

moved dependency is the dependency itself. The operation traceDL is the responsible to 

establish the result for the function movedDL when a dependency is moved. 

 In the model shown in Figure 4-7, the movedDL function has the following values: 

movedDL(M, d2) = d1 
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Dependencies can be moved twice, once for each dependency end. Figure 4-8 shows the 

model after reallocate dependency d2 from Figure 4-7 to d3 where the dependee end has 

been changed to G1, a descendant of the original IE T. In this case the value for movedDL 

function is the original d1 (previous to the first reallocation) instead of d2. The reason is 

because I need to know the original dependency inherited from superactor. 

 
Figure 4-8. Re-reallocating a Dependency 

Definition 17. movedDL 

Given an i* model M, the partial function movedDL is defined as: 

movedDL: 𝕄 × 𝔻𝕃  𝔻𝕃 

movedDL(traceDL(M,dlmoved,dloriginal),dlmoved)

= {
dloriginal,          ¬is_dl_moved(dloriginal)

movedDL(dloriginal),  is_dl_moved(dloriginal)
 

where is_dl_moved(dl, M) ⇔  movedDL(M, dl) ≠ dl 

∀op: 𝕄  𝕄 | op ≠ traceDL ∧ ∀dl ∈  :  
movedDL(op(M), dl) = movedDL(M, dl)  

 ∀M ∈ 𝕄 | dependencies(M) = ∅: movedDL(M, dl) = dl  

For any operation over a model that returns a model, different to the operation traceDL, the 

result for function movedDL is the same in both models. 

In specialization operation, I need to know when a dependency has been inherited (it is not 

new) and it does not have been specialized. Therefore, I use the total function movedDL  to 

define de following predicate: 

is_dl_inherited(dl, M) ⇔ original_dependency(dl, M) ∈ depencencies(M) 

Given a dependency link dl, the function that constructs the possible original dependency link 

involving the original elements from the superactor is defined as: 

original_dependency(dl, M) =  

(original_dependencyEnd(dependerEnd(movedDL(M, dl)), M), 

original_dependencyEnd(dependeeEnd(movedDL(M, dl)), M), 

dependum(dl)) 
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and given a dependency end de = (a, ie, s), that it has been moved to the original IE in case 

of dependency reallocation, the function that construct the possible original dependency 

end involving the elements from the superactor is defined as: 

 original_dependencyEnd(de, M)

= {
(superactor(a, M), specializedIEa(ie), s),  is_ie_specialized(ie, a)

(superactor(a, M),ie, s), ¬is_ie_specialized(ie, a) 
 

When the original dependency end is constructed, there are two possible situations: 

 is_ie_specialized: It means that the IE has been inherited (the IE is in a subactor) and it 

has been specialized. Therefore, the original IE is the result the partial function 

specializedIE. 

 is_ie_inherited: It means that the IE has been inherited (the IE is in a subactor) and it 

has not been specialized or is new. Therefore, the original IE is itself. 

For some checking I need to get the original dependencies from a subactor. Concretely, it is 

needed to compare them with the outgoing dependencies of its superactor or to assure Model 

Correctness Condition 1. 

original_outgoing_dependencies(a, M) = {original_dependency(d, M) |   

d ∈ outgoingDependencies(a, dependencyLinks(M))} 

original_incoming_dependencies(a, M) = {original_dependency(d, M) |   

d ∈ incomingDependencies(a, dependencyLinks(M))} 

4.2.2.2 MOVING DEPENDENCIES 

This subsection formalizes the functions to reallocate incoming and outgoing dependencies 

needed for the specialization process. 

Definition 18. Outgoing Dependency Reallocation 

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a, 

iea, sa), (b, ieb, sb), dm) and the new ie where the dependency has to be connected to as 

depender, such that ie ∈ ancestors(intentionalElementLinks(a), iea) or  ie ∈ 

descendants(intentionalElementLinks(a), iea) and superactor(a, M) ≠ , the operation 

reallocateOutgoing(M, d, ie) yields a model M’ defined as: 

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as: 

DL' = DL \ {d} ∪ {dlnew} where dlnew = ((a, ie, sa), (b, ieb, sb), dm) 

Outgoing dependencies only can be reallocated in a subactor and when the target IE belongs 

to the depender, concretely to the original IE decomposition. 

Definition 19. Incoming Dependency Reallocation 

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a, 

iea, sa), (b, ieb, sb), dm) and the new ie where the dependency has to be connected to as 
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dependee, such that ie ∈ intentionalElementLinks(b) and superactor(b, M) ≠ , the 

operation reallocateIncoming(M, d, ie) yields a model M’ defined as: 

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as  

   DL' = DL \ {d} ∪ {dlnew} where dlnew =  ((a, iea, sa), (b, ie, sb), dm) 

Incoming dependencies can be reallocated in a subactor, when the original IE is not going to be 

removed, to any IE that belongs to the actor. 

Definition 20. Incoming Dependency Preventive Reallocation 

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a, 

iea, sa), (b, ieb, sb), dm), the new ie where the dependency has to be connected to as 

dependee, such that ie ∈ intentionalElementLinks(b), ie ≠ ieb and superactor(b, M) ≠ , the 

operation reallocatePreventiveIncoming(M, d, ie) yields a model M’ defined as: 

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as  

   DL' = DL \ {d} ∪ {dlnew} where dlnew = ((a, iea, sa), (b, ie, sb), dm) 

Incoming dependencies can be reallocated in a subactor, when the original IE (ieb) is going to 

be removed, to a destination IE that belongs to the dependee actor. 

4.3 ORDER RELATIONSHIPS 

In order to formalize some constraints over specialization operation, I need to define some 

order relations. These order relation are defined for the elements that has a type and this type 

can be changed using a specialization operation. 

4.3.1 ORDER RELATIONSHIP FOR INTENTIONAL ELEMENT TYPES 

According to the elements’ definition that appears in the Yu’s thesis, the meaning of the 

different IE types is: 

 Goal: is a condition or state of affairs in the world that the actor would like to achieve. 

How the goal is to be achieved is not specified, allowing alternatives to be considered.  

 Softgoal: is a condition in the world which the actor would like to achieve, but unlike 

the concept of (hard-)goal, the criteria for the condition being achieved is not sharply 

defined a priori, and is subject to interpretation. 

 Task: specifies a particular way of doing something. 

 Resource: is an entity (physical or informational) that is not considered problematic by 

the actor. The main concern is whether it is available (and from whom, if it is an 

external dependency) 

Goals and softgoals are related to express a “desire”, something that the actor would like to 

achieve, it is not important how this “desire” is achieved. Meanwhile, tasks and resources are 
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related to performing or having something concrete. So, I establish the following relationships 

between them:  

 Goals vs. softgoals: Softgoals do not have a clear fit criterion to know when the 

“desire” is satisfied. Therefore, it can be said that softgoals are more generic than 

goals; defining a clear fit criterion for a softgoal implies having a goal. 

 Goals vs. tasks:  Goals do not specify how the “desire” has to be achieved; it can be 

said that goals are more generic than tasks because knowing how to achieve a “desire” 

implies having a task.  

 Goals vs. resources: Goals do not specify how the “desire” has to be achieved; it can be 

said that goals are more generic than resources because knowing an entity that 

achieves a “desire” imply having a resource. 

 Tasks vs. resources: These two intentional types of IE are not related because 

meanwhile task is representing the way to do something, the resource is representing 

the way to have something (informational or physical entity).  

Due to these “more generic than” relationship and preserving that less generic values must 

imply more generic values, the following order relationship is defined. 

Definition 21. Order relation “more generic than” between intentional element 
types. 

The “more generic than” is a strict partial order for the set IET, represented by the operator 

“” and it is defined as:  

softgoal  goal 

goal  task 

goal  resource 

From “”, two related operators are derived, “more specific than” denoted by “” and “as 

specific as”, denoted by “=”. 

4.3.2 ORDER RELATIONSHIP FOR QUALITATIVE CONTRIBUTION VALUES 

It is necessary to define the “more generic than” order relation for the different values for 

contribution links. This order relation has been defined taking into account the definitions that 

appear on the i* wiki [wiki]: 

 Make: A positive contribution strong enough to satisfice a softgoal. 

 Some+: A positive contribution whose strength is unknown. 

 Help: A partial positive contribution, not sufficient by itself to satisfice the softgoal. 

 Unknown: A contribution to a softgoal whose polarity is unknown. 

 Break:  A negative contribution sufficient enough to deny a softgoal. 

 Some-: A negative contribution whose strength is unknown. 

 Hurt: A partial negative contribution, not sufficient by itself to deny the softgoal 
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With the aim that less generic values must imply more generic values, the following order 

relationship is defined.  

Definition 22. Order relation “more generic than” between qualitative contribution 
links values. 

This relation is only defined for the values with the same “polarity”. For each group, the “more 

generic than” is a strict partial order for the set {CT} \ {DCT}, represented by the operator 

“” and it is defined as: 

For positive and unknown values: Unknown  Some+  Help  Make  

For negative and unknown values: Unknown  Some-  Break  Hurt 

From “”, two related operators are derived, “more specific than” denoted by “” and “as 

generic as”, denoted by “=”. 

4.3.3 ORDER RELATIONSHIP FOR STRENGTH VALUES 

It is necessary to define the “stronger ” order relation for the different values of strengths. 

The meaning of strength values depends on where it is placed; when it is placed in the 

depender side, it indicates the level of vulnerability of the depender if the dependum is not 

provided by de dependee; in the dependee side, it indicates how difficult is for the dependee 

providing the dependum to the depender. According to Yu’s thesis, the meaning for the three 

strength degrees is: 

 Open: Failure to obtain the dependum would affect the depender’s goals to some 

extent, but the consequences are not serious. On the dependee side, an open 

dependency is a claim by the dependee that it is able to achieve the dependum for 

some depender. 

 Commited: the depender has goals which would be significantly affected in that some 

planned course of action would fail if the dependum is not achieved. On the dependee 

side, a committed dependency means that the dependee will try its best to deliver the 

dependum.  

 Critical: the depender has goals which would be seriously affected in that all known 

courses of action would fail if the dependum is not achieved. For the dependee side is 

not defined, but I can assume that the meaning is that the dependee thinks that is 

difficult to achieve the dependum. 

With the aim that less critical values must imply more critical ones, the following order 

relationship is defined. The order is directly extracted from the Yu’s thesis, it defines different 

degrees of strengths and claims that “… a stronger dependency means the depender is more 

vulnerable” and “…stronger dependency implies that the dependee will make a greater effort 

in trying to deliver the dependum” depending on the strength side (depender or dependee). 
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Definition 23. Order relation “stronger than” between strength values. 

The “stronger than” is a total order for the ST set, represented by the operator “” and it is 

defined as: 

Critical  Open  Committed  

From “”, two related operators are derived, “weaker than” denoted by “” and “as strong 

as”, denoted by “=”.



 

 

Chapter 5.  Towards the Formal 
Definition of Actor 
Specialization in i* 

As shown in Chapter 3, the idea of the is-a link in i* is quite simple. It describes conceptual 

relationships between actors such as a Family Travel Agency is-a Travel Agency (see Figure 

5-1). 

 
Figure 5-1. An example of use of the is-a link 

While this notion is fairly intuitive, it is necessary to determine accurately what its meaning is 

and what can be done with the specialized actors. I call this problem the i* specialization 

problem. First, I need to fix which elements from an actor need to be considered when it is 

specialized. These elements are: its IEs, the links between them, the links with other actors, 

and the dependencies that involve the actor as depender or dependee. 

Then, the i* specialization problem may be stated as follows. Given an i* model, and given two 

actors a and b such that b is-a a, the i* specialization problem consists on determining the 

specialization operations that may be applied over the elements inherited by b: 

 which operations, 

 under which conditions, and 

 with which consequences. 

Before defining these operations, I need to define the characteristics that I want over i* 

models from specialization in the other areas. And for defining the conditions we need to 

define when i* model that includes specialization is correct. 

Family 

Travel 

Agency

Travel 

Agency

University 

Travel 

Agency

is-a is-a
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5.1 ACTOR SPECIALIZATION 

Adding an is-a link to a set of actor links is not only adding the link inside the set. I need to 

define an operation because adding this link implies that the actor playing the role of subactor 

must have specific characteristics. When an actor b becomes subactor of a: 1) b inherits all the 

information that a has, but 2) not all of this information is transferred to b’s model, only that 

information that can be modified or deleted in b, i.e., a’s actor-related model elements (see 

Definition 8 at Chapter 4). 

Specialization Operation 1. Actor specialization. 

Rationale. The modeler needs an actor whose semantics can be considered a specialization of 

another actor that already exists in the model. According to the i* language, the new actor will 

be added to the model and linked to the existing one using an is-a link. This operation just 

establishes this actor-related link as a necessary step before applying more fine-grained 

operations at the level of dependencies, IEs and IE links. 

Declaration. specializeActor (M, a, n),  

being M an i* model, a the existing actor that is going to be specialized (superactor) and n the 

name for the new actor (subactor). 

Definition. Given an i* model M = (A, DL, DP, AL), given a = (na, IEa, IELa, ta), and n such that      

a ∈ A, the operation specializeActor(M, a, n) yields a model M’ defined as: 

M’ = (A’, DL’, DP, AL’) such that: 

 A’ = A ∪ {b}, being b = (n, IEa, IELa, ta) 

 DL’ = DL ∪ DLer ∪  DLee, being 

 DLer = {((b, iea, sa), (y, iey, sy), dm) | ((a, iea, sa), (y, iey, sy), dm) ∈ DL } 

 DLee = {((x, iex, sx), (b, iea, sa), dm) | ((x, iex, sx), (a, iea, sa), dm) ∈ DL } 

 AL’ = AL ∪  {(b, a, is-a)}  

The first bullet adds the new actor (subactor) to the set of actors; this actor only differs from 

the superactor in its name. The second bullet duplicates all the superactor’s dependencies 

substituting the superactor a by the subactor b in the corresponding dependency ends 

(depender or dependee). The third bullet adds the new is-a link between the superactor and 

the subactor. Actor links from the superactor are not transferred to the subactor because they 

are inherited through the new is-a link added to the AL. The new is-a link is not introducing 

a cycle with respect to this type of link because the target actor is always a new one. 

Correctness conditions. The actor a must belong to the set of actors (a ∈ A) and there must not 

exist an actor in the model with the name used for the subactor (n).  

actor(n, A) = ∅  

Graphical representation. The subactor must be represented as a regular i* actor in the 
model. The is-a link is also explicitly represented. None of the elements transferred from a to 
b are shown as result of this operation (other operations may provoke later their appearance). 
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5.2 SPECIALIZATION IN I* MODELS 

As the state of the art conducted in Chapter 3 uncovered, specialization is a conceptual 

mechanism widely used in other paradigms and particularly is of paramount importance in 

knowledge representation, conceptual modeling and object-orientation. I do not want to 

reinvent the specialization concept; therefore a goal of my proposal is to be rooted in the 

knowledge and experience coming from these communities. In all of them, there is a clear 

consensus that heirs may add new information (mainly properties or methods). The survey 

presented in Section 3.3.2 shows that a vast majority of i* researchers agree with this position. 

The main difference among the i* researchers is whether to include “modifications” to 

inherited information or not. The adaption of the two alternatives considered in [Borgida-

etal82] can be announced as: 

 In the case of templates, the superactor-related model elements are inherited by all its 

subactors (strict inheritance). For instance, if a superactor has a goal G that is achieved 

by a task T (expressed with a means-end link from T to G), all its subactors must keep 

the goal G and also keep the task T as a means to achieve it. 

 In the case of prototype, the superactor-related model elements can be “refined” in a 

subactor. The superactor-related model elements has, “unless-otherwise-told”, a 

default nature (defeasible inheritance). For example, a particular subactor can achieve 

the goal G by a different task T. 

My proposal is based on the prototype alternative, the main reason being the flexible nature 

of the i* framework. This choice complies with the result of the survey conducted over the i* 

community about the specialization concept (see Section 3.3.2), showing that new information 

would be welcome and some refinements could be allowed.  

But I also want to borrow some other characteristics from the related areas. Concretely, I like 

to borrow the open/closed principle from object-orientation for reuse and exception 

modeling. 

 Specialization is also used in object-orientation as a technique for dealing with the 

open/closed principle, presented by Meyer in 1988 [Meyer97], “Software entities 

(classes, modules, functions, etc.) should be open for extension, but closed for 

modification”. In i* models I want to keep this idea at the level of actors. For the 

preservation of this principle, it is necessary to allow using a defined actor and make the 

needed changes in a separate actor (subactor). 

 Exceptions appear frequently in the context of specialization, e.g. a penguin is a bird 

although it does not fly. For strict inheritance, penguin cannot be a subclass of class bird, 

birds has to be classified into flying and non-flying birds (intermediate classes) and then 

a penguin has to be a non-flying bird. But in a software engineering context, sometimes 

it is not possible to extend the is-a hierarchy to cover all combination of features in 

separate intermediate classes because the hierarchy has been defined elsewhere and 

cannot be reengineered.  
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5.3 TYPES OF SPECIALIZATION OPERATIONS 

For complementing the prototype choice, and taking into account the open/closed principle 

and the exception modeling, I found useful the Taxomania rule formulated by Bertrand Meyer 

that proposes a neat framework to work upon: “Every heir must introduce a feature, redeclare 

an inherited feature, or add an invariant clause”. This rule adds the concept of element 

modification (redeclare) besides of refinement (from prototype). I apply this rule in the i* 

framework for obtaining three different types of specialization operations: 

 Extension (from Taxonomia’s rule “introducing a feature”). A new actor-related model 

element is added establishing some kind of relationships with the inherited ones. 

 Redefinition (“redeclaring an inherited feature”). The decomposition of some inherited 

actor-related model element is changed. 

 Refinement (“adding an invariant clause”). The satisfactibility predicate of an inherited 

actor-related model element is enforced. 

Of course, extensions, refinements or redefinitions cannot be arbitrary. I will define precisely 

the operations and enumerate the conditions that must hold in Chapters 6 to 8. The definition 

of each operation consists on defining the information shown in Table 5-1. 

Table 5-1.Specialization Operations Information 

Rationale Why this operation is applied 

Declaration Definition and explanation of the operation’s signature 

Definition A formal definition of the model after the application of the operation 
(postcondition) 

Correctness conditions When it can be applied (precondition) 

Additional remarks Any additional information needed 

Graphical representation How the final model is represented. 

 

There is one correctness condition that applies to all specialization operations where a new or 

a renamed IE is included in the subactor: neither the superactor a nor the subactor b can have 

an IE with the same name as the new or refined IE’s name n12. More formally, given an i* 

model M and two actors a, b such that b ∈ actors(M) and a = superactor(b, M): 

∀x: x ∈ intentionalElements(b) ∪ intentionalElements(a): name(x) ≠ n 

5.4 MODEL CORRECTNESS 

For the definition of the rest of specialization operations, I will require the resulting model to 

be correct. For all the areas presented in Section 3.2, the common idea of using specialization 

                                                           

12 Given the definition of IE, it is not possible to have two IEs with the same name (correctness 

condition), but depending on the specialization operations applied, it is possible that a superactor’s IE is 

not present on the subactor. This condition is for avoiding the confusion of having in the subactor an IE 

with the same name as a removed one, which would be valid from a formal point of view, but confusing 

from a methodological perspective. 
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is that all the instances of a subclass must be instances of the superclass (changing the words 

instances and class depending on the area). For formalizing this idea, in the area of object-

orientation, Barbara Liskov stated in 1987 the Liskov Substitution Principle (LSP) [Liskov87] as: 

“If for each object o1 of type S there is an object o2 of type T such that for all 

programs P defined in terms of T, the behavior of P is unchanged when o1 is 

substituted for o2, then S is a subtype of T.” 

The basic idea behind the LSP is that the objects of a subtype can be used instead of the 

objects of a supertype maintaining the expected behavior. The difference between 

programming, even modeling in general, and i* models is that i* diagrams are not intended to 

model the expected behavior. They reveal the objectives/desires of the actors and the 

dependencies between them. Therefore, to apply this principle to i* models, I have considered 

that the only type of information that can be considered as the “expected behavior” of an 

actor a are its incoming dependencies because they state what other actors expect from a.  

Model Correctness Condition 1: Superactor’s incoming dependencies must be kept in 

subactors 

Given an i* model M = (A, DL, DP, AL) and two actors a, b such that b ∈ A and a = 

superactor(b, M): 

incomingDependencies(a, DL) ⊆ original_incoming_dependencies(b, M)13 

On the other hand, regarding the actor itself, I consider that the aim of the model is to reflect 

the actor’s intentions that state its own satisfaction (the expected objectives/intentions). And 

taking into account that the subactors can be placed instead of their superactors (LSP), the 

specification operations must be defined assuming that the subactor’s expected 

objectives/intentions must imply the superactor’s ones.  In terms of actor satisfaction: 

Model Correctness Condition 2: Subactor satisfaction must imply superactor satisfaction 

Given an i* model M = (A, DL, DP, AL) and two actors a, b such that b ∈ A and a = 

superactor(b, M):  

is_satisfied(b, M) ⇒ is_satisfied(a, M) 

5.5 MODEL SATISFACTIBILITY FORMALIZATION 

The notion of satisfactibility is needed due to Model Correctness Condition 2, defined in the 

previous section. Besides the Model Correctness Condition 1, I will use the concept of 

satisfactibility to ensure the correctness of a specialization operation. Satisfactibility will 

establish the conditions that have to be met in the subactor with respect to the superactor. 

                                                           

13 original_incoming_dependencies(b, M) changes the subactor b, that appears in the dependee end, for its 

superactor a. Incoming dependencies cannot be deleted in subactor, therefore superactor’s incoming 

dependencies are a subset of  subactor’s. 
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The concept may be applied to different types of model elements: actors, dependencies and 

intentional elements. 

When I am referring to satisfaction of an IE, intuitively, an IE states some objective that may be 

satisfied or not. I assume that satisfactibility is denoted by a Boolean predicate. I will represent 

satisfactibility of an IE x by the Boolean predicate is_satisfied(x)14. The same assumption and 

notation is done for actors and dependencies. 

Actor satisfaction depends on whether the actor’s rationale exists or not. In the first case, 

satisfaction depends on the satisfaction of its IEs, in the second case of its dependencies.  

Definition 24. Actor Satisfaction 

Given an i* model M = (A, DL, DP, AL), and the actor a ∈ A, the actor satisfaction 

is_satisfied(a, M) is defined as: 

is_satisfied(a, M) ⇔  

(intentionalElements(a) ≠  ∅ ∧ ∀ie ∈ mainIEs(a): is_satisfied(ie)) ∨ 

(intentionalElements(a) = ∅ ∧ ∀d ∈outgoingDependencies(a, DL): 

is_satisfied(d)) 

I define the satisfaction of an actor as the satisfaction of all its main objectives. In the case of 

an actor without intentional elements, i.e. without main objectives, it is like the actor would 

contain a single main goal mygoal that corresponds to “all my outgoing dependencies 

achieved”. All outgoing dependencies that are steaming from the actor is like would be 

steaming from this non-decomposed virtual goal. The IE satisfaction, when it has outgoing 

dependencies is defined as (see Definition 26): 

is_satisfied(a, M) ⇔ ∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔  (1) 

is_satisfied(mygoal) ⇔  (2) 

∀d ∈ outgoingDependencies(a, mygoal,  DL): is_satisfied(d)) ⇔ (3) 

∀d ∈ outgoingDependencies(a, DL): is_satisfied(d)) 

(1) mainIES(a) = {mygoal} 

(2) Satisfaction definition for a non-decomposed IE with outgoing dependencies. 

(3) mygoal is a virtual IE. Actually, the outgoing dependencies belong to the actor. 

Definition 25. Dependency Satisfaction 

The satisfaction of a dependency is the satisfaction of the IE that plays the role of dependum.  

Given an i* model M = (A, DL, DP, AL), and a dependency d ∈ DL, the dependency 

satisfaction is_satisfied(d) is defined as: 

                                                           

14 We are aware that when we are talking about softgoals, the predicate is not indicating if the softgoal is 

satisfied or not. In this case is indicating if it is satisfied enough (satisficed). But we use the same name 

for all kind of IEs for simplicity. 
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is_satisfied(d) ⇔ is_satisfied(dependum(d)) 

The satisfaction respect to the depender and dependee ends must accomplish following 

predicates: 

is_satisfied(actor(dependerEnd(d))) ⇒ is_satisfied(dependum(d)) 

is_satisfied(actor(dependeeEnd(d))) ⇒ is_satisfied(dependum(d)) 

The exact meaning of satisfactibility depends on the type of the IE: goal satisfactibility means 

that the goal attains the desired state; task satisfactibility means that the task follows the 

defined procedure; resource satisfactibility means that the resource is produced or delivered; 

softgoal satisfactibility means that the modeled conditions fulfills some agreed fit criterion. 

In case of IEs, the IE satisfaction itself is not defined. IE satisfaction is defined by the modeler, 

when the IE is a leaf. When it is not a leaf, the only thing that can be done is to identify several 

properties depending on the type of links involved. 

Definition 26. Intentional Element Satisfaction Properties 

Given an i* model M = (A, DL, DP, AL), an actor a = (na, IEa, IELa, ta) ∈ A and an IE ie ∈ IELa, 

the satisfaction is_satisfied(ie) is defined in the following way (see Figure 5-2): 

 ie is neither decomposed nor has outgoing dependencies. The satisfaction has to be 
explicitly provided by the analyst/modeler. 

 ie is decomposed (Figure 5-2a). The satisfaction depends on the link used for the 
decomposition (AND, OR).  

∀ieand ∈ ANDdecomposition(ie, IELa): is_satisfied(ie) ⇒ is_satisfied(ieand)  

∀ieor ∈ ORdecomposition(ie, IELa): is_satisfied(ieor) ⇒ is_satisfied(ie) 

 ie is a softgoal with contribution links. The satisfaction is defined as in [Horkoff-Yu10]. 

 ie has outgoing dependencies (Figure 5-2b). The satisfaction relies on the satisfaction 
of all outgoing dependencies. 

∀di ∈ outgoingDependencies(a, ie, DL): is_satisfied(ie) ⇒ is_satisfied(di) 

Note that the all the cases except the first one can happen simultaneously; in this case, the 

involved conditions apply altogether (Figure 5-2c). 

(a)  

 

(b)  

(c)  

Figure 5-2. IE Decomposition Scenarios 



64 Chapter 5.  Towards the Formal Definition of Actor Specialization in i*  

 

 

5.6 SPECIALIZATION OPERATIONS VALIDATION 

In Section 5.4, two conditions to maintain the model correctness have been presented. Model 

Correctness Condition 1, referred to the expected behavior (incoming dependencies), will be 

always kept because the specialization operations will be defined with sufficient constraints to 

avoid deleting an incoming dependency. Regarding the Model Correctness Condition 2, 

referred to actor satisfaction, the satisfaction of subactor’s main objectives and outgoing 

dependencies have to imply the satisfaction of the superactor’s ones.    

Therefore, in Chapters from 6 to 8, besides the specialization operation definition, the formal 

proof that Model Correctness Condition 2 is kept will be included. These proofs will be 

conducted by induction with the following structure: 

 Induction Base Case (IBC): the operation that is going to be applied is the first 

specialization operation applied over the subactor15. This means that: 1) the IEs and IE 

links inside the subactor boundary are the same as the superactor’s and as a 

consequence the main IEs in both actors are the same, and 2) the subactor has the 

same dependencies (incoming and outgoing) as its superactor, therefore the 

dependums are the same. More formally, given two actors a, b such that b ∈ A and a 

= superactor(b, M), due to the result of the Actor Specialization operation (See 

Section 5.1): 

1. mainIEs(a) = mainIEs(b) 

2. depedums(outgoingDependencies(b,DL))=depedums(outgoingDependencies(a, 

DL)) 

Induction Hypothesis (IH): I assume a state in which after several specialization operations 

have been applied, still the Model Correctness Condition 2 holds. Model Correctness 

Condition 2 claims: 

is_satisfied(b, M) ⟹  is_satisfied(a, M) 

Despite of actor satisfaction definition, when actor contains IEs, this implication is equivalent 

to:  

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie) 

Induction Step (IS): It is presented the demonstration that if the operation whose correctness 

is being proved, is applied over a subactor that satisfies the Model Correctness Condition 2 

according to the IH, the resulting subactor satisfies it too. It is noteworthy that this 

demonstration will take in all the cases a similar form to the one conducted in the induction 

base case. 

Taking into account the definition for actor satisfaction, presented in Section 5.5, the 

demonstration will use main IEs or outgoing dependencies depending on the subactor has or 

not IEs. 

                                                           

15 Beware that the operation specializeActor is not a specialization operation applied over a subactor. This 

operation is applied over a superactor. 



5.7 Graphical Representation of Subactors 65 

 

 

5.7 GRAPHICAL REPRESENTATION OF SUBACTORS 

Given the fundamental graphical nature of the i* modeling language, it is utterly important to 

decide how to represent the elements that appear in the subactors. I have applied a minimum 

redundancy principle: when an inherited model element is neither modified nor referenced, it 

will not be included in the subactor. For “modified elements” I refer to those that have been 

object of a specialization operation and have experimented some change, whilst “referenced 

elements” are those that being the same as in the superactor, are involved in an IE link from a 

new IE of the subactor (e.g., because a new element contributes positively to an inherited 

one). 

Concerning the graphical representation, I use the same distinction to state the following 

general drawing rules16: 

 New model elements must be included in the subactor using a solid line shape (since 
they are “regular” i* elements). 

 Inherited and modified elements must be included in the subactor using a solid line 
and the inherited name must appear in the modified element between square 
brackets. 

 Referenced inherited model elements must be included using a dotted line shape. 

 Other inherited model elements can be included to improve legibility. In this case, they 
must be included using dotted line shape.  

 Removed model element must be included crossed out. 

Table 5-2 summarizes the syntax for the different model elements in the subactor SR Diagram. 

Table 5-2. Subactor Elements Syntax 

 IE Link Dependency 

New regular lines regular lines regular lines 

Inherited & non-modified dotted lines dotted lines dotted lines 

Extended 

 

dotted lines 

complete name into 
brakets 

  

Refined 

 

regular lines 

part of the name into 
brakets 

regular lines regular lines if the 
dependum is refined 

regular lines for link from 
actor to dependum if the 
strength is refined 

Redefined 

 

regular lines 

complete name into 
brakets 

regular lines regular lines if the 
dependum is refined 

regular lines for the link 
from actor to dependum if 
the strength is redefined 

Deleted Cross out Cross out links crossed out 

  

                                                           

16 Some slight variations will be mentioned depending on the specialization operation applied. 
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According with the rules presented above, the specialized IEs contain square brackets in their 

name, and the specialization operation can be identified by: 

 [] for the whole name + dotted lines = extension 

 [] for the whole name + regular lines = redefinition 

 [] for part of the name + regular lines  = refinement 

I refer to Chapters from 6 to 8 to explore in more detail the impact of this rule in each 

specialization operation. 

Figure 5-3. shows the graphical representation in a particular example. The goal Travels 

Contracted Increased for superactor TA has been extended in the subactor FTA. The result 

of applying an extension operation over this goal is the addition of the new goal Family 

Facilities Offered. Then, new tasks Provide Child Discounts and Provide Familiar 

Destinations are identified as means to achieve the new added goal. Following the drawing 

rules, the new elements appear in solid lines whilst the extended element from the superactor 

is drawn in dotted lines (it is exactly the same IE as in the superactor). Also, since the modeler 

determines that the new tasks contribute to the superactor’s softgoals Good Quality-Price 

Rate and Many Kind of Travels Offered, these softgoals have been included and drawn in 

dotted lines. Finally, the modeler has decided to include also the main goal but just for 

legibility purposes, its presence is not mandatory.  

 
Figure 5-3. Applying graphical rules 



 

 

Chapter 6.  Extension  

As defined in Section 5.3, the i* extension operation consists on adding a new actor-related 

model element either to the subactor (actor extension) or to one of its IEs, inherited from the 

superactor (IE extension). Functions, predicates and assumptions used in this section are 

defined in Chapter 4. 

6.1 ACTOR EXTENSION 

Actors admit two different extension operations: 

 New outgoing dependency links: When the subactor depends on another actor. Due to 

Assumption 4, this operation can be applied only if there are no IEs inside the 

subactor. 

 New main IEs: When the subactor has a new intentionality that is not covered by the 

superactor’s main IEs. This operation can be applied only if there are IEs inside the 

superactor. 

Operations described below show that although the actor-related model elements include 

incoming dependencies, extension (at actor level) can only be applied over outgoing ones. 

Incoming dependencies are added when other parts of the model are built and will be 

analyzed then from the perspective of the actors at the other end (i.e., where they are 

outgoing dependencies). Therefore, incoming dependencies are not involved in the actor 

specialization process. 

Specialization Operation 2. Actor extension with an outgoing dependency. 

Rationale. The subactor is not able to achieve a given intentionality without the support of 

another external actor. Therefore, a dependency onto this actor needs to be added. 

Declaration. extendActorWithOutgoingDependency(M, b, s, de, dm),  

being M an i* model, b the subactor to extend (acting as depender), s the strength of the new 

dependency on the depender side, de the dependency end that corresponds to the dependee, 

and dm the new dependum. Note that, as stated inDefinition 7 (See Section 4.1), the 

dependee may involve an actor or an IE (that belongs to an actor). Figure 6-1 shows all the 

elements that take part in the operation. 
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Figure 6-1. extendActorWithOutogoingDependency: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL) and given b, s, de, dm such that b ∈ A and 

actor(de) ∈ A, the operation extendActorWithOutgoingDependency(M, b, s, de, dm) yields a 

model M’ defined as: 

M’ = (A, DL ∪ {dnew}, DP ∪ {dm}, AL), where dnew = ((b, , s), de, dm) 

Correctness conditions. In addition to Assumption 4 accomplishment, the superactor must not 

have any outgoing dependency with the same dependee actor and dependum, regardless of 

the dependee strength and which IE arrives to (if any). The correctness condition can be 

written as: 

intentionalElements(b) = ∅ ∧ 

(∄((superactor(b, M), , sa), dea, dm) ∈ DL such that actor(dea) = actor(de)) 

Additional remarks. There is no restriction about the type or number of new outgoing 

dependencies that may stem from the subactor. 

Graphical representation. The new dependency is depicted as usual in i*. No other information 
needs to be depicted. 

Table 6-1 shows two examples of using extension for adding outgoing dependencies. The first 
row shows a new outgoing dependency Travelling Preferences in which also an incoming 
dependency (Travel Offerings) arriving to the subactor is. The second row shows a new 
outgoing dependency linking two subactors. The operation definition analyses the correctness 
of the dependency from the point of view of Family (depender, thus outgoing dependency). 

Table 6-1. Extending an actor with outgoing dependencies 

New outgoing dependency 
Traveling Preferences 

 

New outgoing dependency 
Children Activities 

Provided to the subactor 
FTA 

 



6.1 Actor Extension 69 

 

 

Theorem17. The operation extendActorWithOutgoingDependency(M, b, s, de, dm) is 

correct. 

Proof. is_satisfied(b, M’) ⟹is_satisfied(a, M’) 

Inductive Base Case (IBC): No specialization operation has been applied, therefore the 

subactor has the same outgoing dependencies as the superactor (further details in Section 

5.6), therefore the same dependums: 

depedums(outgoingDependencies(b, DL)) = depedums(outgoingDependencies(a, DL)) 

is_satisfied(b, M’) ⇔  (1)  

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔  (2) 

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ∧ is_satisfied(dnew)⟹ (3) 

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (4) 

 ie ∈depedums(outgoingDependencies(b, DL)): is_satisfied(ie)⇔ IBC 

 ie ∈depedums(outgoingDependencies(a, DL)): is_satisfied(ie)⇔ (4) 

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (5) 

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1) 

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor without IEs.  
(2) outgoingDependencies(b, DL’) = outgoingDependencies(b, DL) ∪ dnew, since dnew is 

added as outgoing dependency for actor b in the model M’, which contains DL’. 
(3) Since X ∧ Y ⟹ X. 

(4) Dependency Satisfaction definition. 
(5) Actor a remains unchanged, therefore outgoingDependencies(a, DL) = 

 outgoingDependencies(a, DL’). 

Induction Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M)  

Inductive Step:  

is_satisfied(b, M’) ⇔ (1)  

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔  (2) 

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹  (3)  

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (1) 

 is_satisfied(b, M) ⟹ IH  

is_satisfied(a, M) ⇔ (1) 

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (4) 

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)  

is_satisfied(a, M’) 

                                                           

17 In all the demonstrations in this and the next chapters, we follow the general form presented in Section 

5.6.  
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(1) Actor satisfaction definition for actor without IEs.  
(2) outgoingDependencies(b, DL’) = outgoingDependencies(b, DL) ∪ dnew, since dnew is 

added as outgoing dependency for actor b in the model M’, which contains DL’. 
(3) Since X ∧ Y ⟹X. 

(4) Actor a has no change, therefore outgoingDependencies(a, DL) =  
outgoingDependencies(a, 

DL’). 

Specialization Operation 3. Actor extension with a main intentional element 

Rationale. The subactor has an intentionality that is not covered by the superactor’s main IEs. 

Therefore, a new main IE needs to be added. 

Declaration. extendActorWithMainIE(M, b, ienew), 

being M the model, b the subactor to extend, and ienew the IE that will be included in the 

subactor as main IE. Figure 6-2 shows all the elements that take part in the operation. 

 
Figure 6-2. extendActorWithMainIE: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL) and given b = (nb, IEb, IELb, tb) and ienew 

such that b ∈ A and ienew ∉ IEb, the operation extendActorWithMainIE(M, b, ienew) yields a 

model M’ defined as: 

M’ = substituteActor(b, b’, M) where b’=(nb, IEb ∪ {ienew}, IELb, tb) 

Correctness conditions. The superactor must have IEs: 

intentionalElements(b) ≠ ∅  

Additional remarks. There is no restriction about the type or number of new main IEs that may 

be added to the subactor. 

Graphical representation. The new IE is depicted as usual in i*. No other information needs to 

be depicted. 

Table 6-2 shows two examples of using extension at the actor level referent to IE extension. 

The example shown in row 1 presents a new main IE, therefore the subactor has two main IEs 

in its boundary. The second example in row 2 a new main IE (Travels Services Provided), 

which can be further decomposed and can even involve in the decomposition some inherited 

elements (Encrypt Data, therefore depicted with dotted lines). 
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Table 6-2. Extending an actor with main IEs 

New goal Process 

Payment as a main 

objective 

  

New decomposed main 

goal Travel Services 

Provided.  Inherited IE 

Encrypt Data is a 

subtask of the new IE 
Contract Travels 

 

Theorem. The operation extendActorWithMainIE(M, b, ienew) is correct. 

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the 

extension in the model M’.  

Inductive Base Case (IBC): No specialization operation has been applied, therefore the 

subactor has the same main IEs as the superactor (further details in Section 5.6). 

mainIEs(a) = mainIEs(b) 

is_satisfied(b’, M’) ⇔  (1) 

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⇔  (2) 

∀ie ∈ mainIEs(b): is_satisfied(ie,) ∧ is_satisfied(ienew) ⟹  (3) 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⇔  IBC 

∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1) 

 is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  
(2) mainIEs(b’) = mainIEs(b) ∪ {ienew} , since b’ = (name(b), IE(b) ∪ ienew, IEL(b), 

type(b)) because ienew is added as main IE in actor b’ in the model M’. 
(3) Since X ∧ Y ⟹ X. 

Inductive Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M) ⇔ 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie) 
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Inductive Step:  

is_satisfied(b’, M’) ⇔  (1)  

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⇔  (2) 

∀ie ∈ mainIEs(b): is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3) 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⇔  IH 

∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔   (1) 

 is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs. 
(2) mainIEs(b’) = mainIEs(b) ∪ {ienew}, since b’ = (name(b), IE(b) ∪ ienew, IEL(b), 

type(b)) because ienew is added as main IE in actor b’ in the model M’. 
(3) Since X ∧ Y ⟹ X. 

6.2 INTENTIONAL ELEMENT EXTENSION 

An IE inherited from a superactor can be extended in a subactor by adding a new 

decomposition link stemming from another IE. This other IE can be new or inherited from the 

superactor. Any of the three types of decomposition link may be added: 

 Softgoal decomposition link: By defining a softgoal decomposition link, the element 

linked is considered AND-ed or OR-ed (depending on the contribution value) with the 

elements that contribute to the softgoal in the superactor.  

 Task-decomposition link: An element may be part of any task-decomposition link, 

because task-decompositions are not necessarily complete (according to Assumption 

1). It is therefore always possible to add more detail to the way in which a task is 

performed. By defining a task-decomposition link, the linked element is considered 

AND-ed with the elements that decompose the task in the superactor. 

 Means-end link: An element may be considered as a new means to achieve an end. By 

defining a means-end link, the linked element is considered OR-ed with the means that 

appear in the superactor.  

There are several remarkable facts: 

 In all three variants, the case in which the IE in the superactor is not decomposed is 

just a particular situation that falls into the general case. 

 It is worth to mention that adding a new qualitative contribution link is not considered 

an extension.  The reason is that contribution links express relationships among IEs 

that appear in the model, but we do not add IEs just to declare contributions. 

Specialization operations are only defined for softgoal decomposition links because 

they are considered as decomposition links. 
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  Outgoing dependencies cannot be added to an inherited IE: the reason is that if a 

superactor is able to achieve an IE by itself, its subactors must be able to do so as well. 

However, a new IE defined in the subactor as extension of an IE inherited from the 

superactor, can depend on other actors. The meaning is that the new IE, and not the 

inherited one, is the one that has the need represented by the dependency. 

 The IE that acts as source of the link may exist in the superactor or not. Although this 

second case will be the usual one, the first case may occur, meaning that the 

contributor IE was already playing a part in the superactor’s intentions. The IEs inside 

an actor may, in general, form a graph and not just a tree. 

The three types of links are applied in a similar way; therefore only one type of IE 

specialization operation is defined for all of them: 

Specialization Operation 4. Intentional element extension with a decomposition link 

Rationale. An IE in the subactor needs new IEs in order to be achieved. Therefore, a new 

decomposition link is added with an IE to be linked to the former. The source IE can be a new 

IE or an inherited one. 

Declaration. extendIEWithDecompositionLink(M, b, iet, ies, t, v), 

being M the model, b the subactor where the IE extension takes place, iet the target IE to be 

extended in the subactor, ies the source IE that will be linked to iet, t the type of 

decomposition link and v is the value associated to that link (applicable just in case of softgoal 

decomposition link, where the value And or Or is needed). Figure 6-3 shows all the elements 

that take part in the operation.  

 
Figure 6-3. extendIEWithDecomposition: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL) and given b = (nb, IEb, IELb, tb), iet, ies, t 

and v such that b ∈ A and iet ∈ IEb, the operation extendIEWithDecompositionLink(M, b, iet, 

ies, t, v) yields a model M’ defined as: 

M’ = substituteActor(M, b, traceIE(b’, iet, iet)) where  

b’ = (nb, IEb ∪ {ies}, IELb ∪ {(ies, iet, t, v)}, tb) 
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Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta): 

 Extension can be applied over an inherited and no-specialized element or over an 

extended one.  

is_ie_inherited(iet, b, M) ∨ is_ie_extended(iet, b, M) 

 the ies cannot be a main IE: 

ies ∉ mainIEs(b) 

 If the extended IE iet has descendants, the type of decomposition link must be the 

same as the one specified as a parameter in the operation (for preserving Assumption 

2). In case of softgoal decomposition, besides the link type t, the value associated to 

the link v has to be the same (AND or OR): 

∀l = (x, iet, tx, vx) ∈ decompositionLinks(IELb): tx = t ∧ vx = v 

Additional remarks. There is no restriction about the number of IEs (new or inherited) that 

may be added to the decomposition of the extended IE in the subactor. 

Graphical representation. Since the extended element is inherited but not modified, it has to 

be included in the subactor model in dotted lines. The source IE is depicted as usual in i* if it is 

new, or using dotted lines if it is inherited. The new link is depicted as usual in i* because it is 

new. Inherited IEs that decompose the extended IE in the superactor (if any) can be included in 

the subactor for legibility, drawn in dotted lines. If the source IE is new and contributes to 

inherited elements, they will also appear and also in dotted lines. 

In Table 6-3 and Table 6-4 there are some examples of using extension at intentional element 

level grouped by link type. Some of the extended IEs are already decomposed in superactor 

(Table 6-3 rows 1 and 3) and some non-decomposed (Table 6-2, row 2). Some of the examples 

show how the new IEs can be linked to the inherited ones (Table 6-3 row 1 and Table 6-4 row 

2), in these cases inherited elements are included to the model using dotted lines because of 

the new link.  
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Table 6-3. Intentional Element Extension: Adding Decomposition Links (Means-end) 

Means-end 

Extension of the goal 
Travels Contracted 

Increased with a new 
decomposed goal 
Family Facilities 

Obtained. 
Contributions to the 
inherited softgoals are 
included. 

 
Extension of the non-
decomposed goal 
Asynchronous 

Support for UTA 

 
Extension of the 
decomposed task Pay 
Travel with the new 
non-decomposed task 
Transfer. Inherited 
subtasks are depicted 
for legibility purposes. 

 

The second row from Table 6-4 (task-decomposition) shows how task Name a Price is 

extended with a non-decomposed IE Conference Information and a decomposed IE Trips 

Found. Once the IE has been extended, a new contribution to the existing Travels Bought 

Easily softgoal is added. In row 6, besides showing how the task Buy Travel is extended with 

the new goal Family Facilities Obtained, it is shown how this new goal is also 

decomposed by two goals and each one needs a new outgoing dependency to the subactor 

FTA. 
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Table 6-4. Intentional Element Extension: Adding Decomposition Links (Contribution and task-decomposition) 

Contributions 

For researchers, resource 
Conference Information 

is also needed (AND) to 
consider Good Service 

Received 

 

Task-decomposition 

Name a Price task is not 
decomposed in Customer, it is 
decomposed in Researcher 

adding the resource 
Conference In-formation 

and decomposed goal Trips 
Found 

 
Extension of decomposed task 
Buy Travel with a 
decomposed goal Family 

Facilities Obtained 
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Theorem. The operation extendIEWithDecompositionLink(M, b, iet, ies, t) is correct. 

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the 

extension in the model M’.  

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b) 

is_satisfied(b’, M’) ⟺ (1)  

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2) 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟺ IBC 

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺  (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  
(2) Since ies is not added as main IE (correctness condition), mainIEs(b) = mainIEs(b’). 

Inductive Hypothesis (IH):  

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie) 

Inductive Step:  

is_satisfied(b’, M’) ⟺ (1)  

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)  

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH 

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺ (1) 

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  
(2) Since ies is not added as main IE, mainIEs(b) = mainIEs(b’). 





 

 

Chapter 7.  Refinement 

As defined in Section 5.3, the i* refinement operation consists on restricting the satisfactibility 

predicate of an actor-related model element. In other words, the satisfactibility of the new 

element in the subactor must imply the satisfactibility of the original element inherited from 

the superactor. The elements that have associated a satisfaction predicate are IEs, qualitative 

contribution links and dependencies, therefore these are the ones that can be refined. The 

refinement operation is not applied to actors, because the only way to refine an actor is 

specializing it into a subactor and this is already done by the is-a link. 

I define three refinement operations, one for each of the three types of elements above: 

 IEs: with the following meaning (according to their definition, see Definition 3, Section 

4.1): 

o Goals and Softgoals: the set of states attained by the new IE is a subset of the 

states attained in the original IE. 

o Tasks: the procedure to be undertaken in the new IE is more prescriptive than 

the procedure to be undertaken in the original IE. 

o Resources: the entity represented by the new IE entails more information than 

the entity represented by the original IE. 

 Qualitative contribution links: the value of the new contribution must be more 

restrictive than the value of the original contribution (i.e., it must be enforced). 

 Dependencies: two different options: 

o Dependum: in the same way as IEs. 

o Strengths: the value of the new strength must be more restrictive (i.e., 

stronger) than the value of the original strength. 

In the rest of the chapter, the subactor’s model element before the refinement (i.e., as 

inherited from the superactor) is denoted as “element under refinement”, and the subactor’s 

model element result of the refinement, as “refined element”. Functions, predicates and 

assumptions used in this chapter are defined in Chapter 4. 
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7.1 ACTOR’S INTENTIONAL ELEMENTS REFINEMENT 

An IE inherited from the subactor can be refined enforcing the satisfactibility predicate. This 

enforcement can be applied only for the IE semantics or even its type. 

Specialization Operation 5. Intentional element refinement 

Rationale. An IE in the subactor needs to be restricted in order to fit into a new context. 

Therefore, its satisfactibility predicate is enforced in a way such that it implies the original one. 

This enforcement can include the need of changing the type of the IE in the subactor according 

to the order relation “more specific than” between IEs.  

Declaration. refineIE(M, b, ieref, n, t), 

being M the model, b the subactor where the IE refinement takes place, ieref the IE under 

refinement, n the new name given to the refined IE and t the type for the refined IE. Figure 7-1 

shows all the elements that take part in the operation.  

 

 
Figure 7-1. refineIE: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), ieref, n and t such 

that b ∈ A and ieref ∈ IEb, the operation refineIE(M, b, ieref, n, t) yields a model M’ defined as: 

M’ = substituteIE(ieref, ienew, b, M) where ienew =  (n, t) 

Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta): 

 Refinement can only be applied over an inherited and non-specialized element. 

is_is_inherited(iet, b, M) 

 The refined IE is more restrictive than the IE under refinement (from the satisfaction 

point of view).  

is_satisfied(ienew) ⟹  is_satisfied(ieref) 

 If the IE under refinement is decomposed, the new IE must fit with the decomposition 

of the IE under refinement: 

ieand ∈ ANDdecomposition(ieref, IELb): is_satisfied(ienew) ⟹ is_satisfied(ieand) 

ieor ∈ ORdecomposition(ieref, IELb): is_satisfied(ieor) ⟹ is_satisfied(ienew) 

di ∈ outgoingDependencies(b, ieref, DL): is_satisfied(ienew) ⟹ is_satisfied(di) 
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 When the IE type changes, the type of the refined IE must be “more specific than” () 

the type of the IE under refinement: 

t ≤ type(ieref) 

Graphical representation. Since the refined IE is a modification of the inherited element under 

refinement, it has to be included in the subactor model in regular lines. The new name must 

include the name of the IE under refinement in order to identify which is the IE in the 

superactor, the part of the name corresponding to the IE under refinement (name that 

appears in the superactor) must appear between square brackets.  

Table 7-1. Intentional Element Refinement 

Maintaining IE type 

The decomposed task 

Charge Travel is refined 

into Charge Travel 

using PayPal. 

This task decomposition 

and the dependency to 

actor Payment Service 

Provider are kept. The 

new outgoing dependency 

PayPal Account to 

Customer appears.  

 

 

For Family TA, the 
Travel Information 

non-decomposed Resource 

has to be refined to Family 
[Travel Information] 

to include information 

about families (age of 

children, for instance). 

 

Refining IE type 

The goal Synchronous 

Support is refined into 
Provide [Synchronous 

Support] by Phone 
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In Table 7-1 there are several examples using refinement for IEs. In some of them, new actor-

related model elements are included. For instance, in the first row, the task Charge Travel in 

the superactor TA is refined for subactor Secure TA into [Charge Travel] using PayPal. 

Once the IE has been refined, two new dependencies appear, one to actor Customer 

(customers need a PayPal Account to contract their travels) and the other to actor PayPal 

(because the payment has to be accepted by PayPal service). In this case, decomposition 

and Payment Info incoming dependency are both inherited but only the decomposition (tasks 

Charge using Credit Card and Charge using Debit Card) has been included in the 

subactor for facilitating its legibility. 

As stated in the correctness conditions, when the IE under refinement is decomposed and/or 

has outgoing dependencies, the refined IE must not produce any conflict with the 

decomposition and/or outgoing dependencies because the decomposition and/or outgoing 

dependencies are still present in the subactor. For example, the task under refinement Charge 

Travel (Table 7-1, row 1) cannot be refined as Charge Travel in Cash because the inherited 

means Charge using Credit Card and Charge using Debit Card would not be correct 

means for the refined IE any longer. 

When an actor has IEs, the satisfaction depends on its main IEs. Therefore, this operation 

directly affects to the actor satisfaction only when the refined IE (ieref) is a main IE. When the 

refined IE is not a main IE, the main IEs in b’ remains the same as in b (see demonstration for 

specialization operation extendIEWithDecompositionLink, Section 6.2). The following 

demonstration is intended to proof the theorem when the refined IE is a main IE. 

Theorem. The operation refineIE(M, b, ieref, n, t) is correct.  

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the 

refinement in the model M’.  

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b) 

is_satisfied(b’, M’) ⇔ (1)  

ie ∈ mainIEs(b’): is_satisfied(ie) ⇔ (2) 

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3)  

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ieref) ⇔ (4)  

ie ∈ mainIEs(b): is_satisfied(ie) ⇔   IBC 

ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs. 
(2) mainIEs(b’) = mainIEs(b) \ {ieref} ∪ {ienew= (n, t)} , since ieref is replaced by ienew as 

main IE in actor b’ in the model M’.  
(3) is_satisfied(ienew) ⟹ is_satisfied(ieref) is a correctness condition of the operation. 
(4) Since X \ Y ∪ Y  = X when Y ∈ X and ieref ∈ mainIEs(b). 

Inductive Hypothesis (IH):  

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie) 
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Inductive Step:  

is_satisfied(b’, M’) ⇔ (1)  

ie ∈ mainIEs(b’): is_satisfied(ie) ⇔  (2) 

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3)  

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ieref) ⇔ (4)  

ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH  

ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  
(2) mainIEs(b’) = mainIEs(b) \ {ieref} ∪ {ienew = (n, t)} , since ieref is replaced by ienew as 

main IE in actor b’ . 
(3) is_satisfied(ienew) ⟹ is_satisfied(ieref) is a correctness condition of the operation. 
(4) Since X \ Y ∪ Y = X when Y ∈ X and ieref ∈ mainIEs(b) 

7.2 QUALITATIVE CONTRIBUTION LINK REFINEMENT 

Qualitative contribution link refinement means changing the value of a contribution link that is 

stated from an IE to a softgoal, both of them appearing in the superactor. As it happened with 

the change of IE type in IE refinement, not all the changes must be allowed. To proceed 

similarly to that case, it is necessary to define some rules to guarantee the refinement rule, i.e. 

the satisfaction of the refined link’s value implies the link under refinement’s value.18 

Specialization Operation 6. Qualitative Contribution link refinement 

Rationale. A contribution value needs to be restricted in order to fit in a new context. 

Therefore, the satisfactibility predicate for this value is enforced in a way such that it implies 

the original one. This enforcement consist on changing the value of the contribution in the 

subactor according to the order relation “more specific than” between contribution values. 

Declaration. refineContributionLink(M, b, iel, v),  

being M the model, b the subactor where the IE link is stated, iel = (ies, sg, contribution, vold) 

is the qualitative contribution link under refinement, and v the new value for the refined 

qualitative contribution link between these IEs in the subactor. Figure 7-2 shows all the 

elements that take part in the operation. 

                                                           

18 This operation is also available because I have considered more than one value for positive and 

negative contributions. If I were using a version with only + and – (e.g., as the original i* definition in 

Yu’s thesis) this operation would not apply. 
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Figure 7-2. refineContributionLink: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL) and b = (nb, IEb, IELb, tb), iel = (ies, sg, 

contribution, vold) and v such that b ∈ A and iel ∈ IEb, the operation 

refineContributionLink(M, b, iel, v) yields a model M’ defined as: 

M’ = substituteActor(M, b, b’) where  

b’ = (nb, IEb, (IELb \ {iel}) ∪ {(ies, sg, contribution, v)}, tb) 

Correctness conditions. 

 Only qualitative contributions can be refined:  

type(iel) = contribution ∧ value(iel) ∉ DCT 

 Refinement can be applied over an inherited and non-specialized contribution link. 

is_cl_inherited(iel, b, M) 

 The change of the value must maintain the condition that the satisfaction of the 

refined contribution link implies the satisfaction of the contribution link under 

refinement. To guarantee this implication, the type can only change from more generic 

in the superactor to more specific in the subactor. The new value cannot be the same 

as the existing one because if the refinement implies changing the value, it is the only 

property that can be refined in this link. 

value(iel) > v 

Graphical representation. The refined link is inherited and modified, therefore it has to be 

included in the subactor model in regular lines. The source and target IEs also will be included 

in the model in regular or dotted lines depending on if they have been refined (by another 

operation) or not. 

  



7.3 Dependency Refinement 85 

 

 

In Table 7-2 there are some examples of using refinement for qualitative contributions.  

Table 7-2. Qualitative Contribution Link Refinement 

Help Contribution is refined 

into Make Contribution 

because of the task Provide 
Synchronous Support by 

Phone, which is not the 

source of the link 

  

Refining Help Contribution 

Link to Travels Bought 

Easily because the source 

goal Assistance Obtained 

is refined 

 

 

This operation does not affect directly to the satisfaction of an actor. When the specialized 

actor has IEs linked using qualitative contribution links, satisfaction depends on the main IE 

and they do not change using these operations (see demonstration for specialization operation 

extendIEWithDecompositionLink, Section 6.2).  

7.3 DEPENDENCY REFINEMENT 

A dependency is the combination of the actors involved (depender and dependee), the 

strengths at each side and the intentional element (dependum) that the depender expects 

from dependee. A dependency can be refined only if at least one of the actors involved in the 

refined dependency is a subactor. Refining a dependency means refining at least one of the 

strengths in the dependency ends or the dependum. 

Dependums are refined using the same rules stated for the refinement of an intentional 

element in the Specialization Operation 4 (Section 6.2). 

Specialization Operation 7. Dependency refinement 

Rationale. A dependency has to be refined because one of its participating actors (or both) has 

been specialized in a way that the dependency has to adapt correspondingly. This refinement 

can consist on the refinement of the dependum (given its condition of IE) and/or the 

enforcement of the strength values, on the specialized actor side, according to the order 

relation “stronger than” between strength values. 
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Declaration. refineDependency(M, d, sr, se, dmnew), being M the model, dref the dependency 

under refinement, sr and se the new strengths for depender and dependee side, and dmnew 

the new dependum for the refined dependency. Figure 7-3 shows all the elements that take 

part in the operation. 

 
Figure 7-3. refineDependency: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL), d = ((b, ieb, sb), (c, iec, sc), dm), sr, se and 

dmnew = (n, t) such that d ∈ DL, the operation refineDependency(M, d, sr, se, dmnew) yields a 

model M’ defined as:  

M’ = (A, DL \ {d} ∪ {dnew}, DP ∪ {dmnew}, AL) where  

dnew = ((b, ieb, sr), (c, iec, se), dmnew) 

Correctness conditions 

 A refinement can only be applied over an inherited and non-specialized dependency.  

is_dl_inherited(d, M) 

 At least one of the strengths or the dependum has to be refined: 

sr > sb ∨ se > sc ∨ dmnew ≠ dmref 

Graphical representation. The new dependency is included in the model. Each line included in 

the dependency (from depender to dependum and from dependum to dependee) will be 

drawn using regular lines, when the strength end is changed, and dotted when kept the same 

value. The dependum will appear in regular or dotted depending on if it has been refined or 

not. No other information needs to be depicted.  

In Table 7-3 there are some examples using refinement of dependencies when the dependum 
has been refined. Meanwhile, Table 7-4 shows examples where the refinement implies only 
the strengths. The last row in Table 7-3 corresponds to an example where dependencies and 
strengths have been refined. 
  



7.3 Dependency Refinement 87 

 

 

Table 7-3. Dependencies Refinement: Refining Dependum 

Refining Dependum 

Refining the dependum 

Customer Info into 
University&[Customer 

Info] without changes in 

actors’ IEs 

 
Refining the dependum 

Assistance Obtained for 

Families because of the 

refined IE [Assistance 

Obtained] by Phone on 

the depender side 

  

Refining Dependum and Strengths 

Refining dependum Travel 

Offerings for Families. 

This refinement caused by 

new depender needs,  

causes the refinement of 

the IE Family [Travel 

Information] on the 

depender side  and it is 

more difficult (X) for the 

dependee attends this 

necessity 

 

 
  



88 Chapter 7.  Refinement  

 

 

Table 7-4. Dependencies Refinement: Refining Strengths 

Refining Strengths 

Refining depender strength 

because Researchers 

needs the Invoice to be 

paid for the University 

 

Refining dependee strength 

because of the Travel 

Offerings is search by 

Conference in UTA and it is 

more difficult (X) to achieve. 

 

 

This operation affects the satisfaction of an actor differently depending if the actor contains IEs 

or not. When actor has IEs, it does not affect directly the satisfaction of an actor regardless 

whether it is an incoming or outgoing dependency. The outgoing dependencies are involved in 

the IE satisfaction, but not directly to the actor satisfaction, that depends on the main IE and 

they do not change using this operation (see demonstration for specialization operation 

extendIEWithDecompositionLink, Section 6.2). Incoming dependencies do not affect 

dependee’s satisfaction. 

When actor has not IEs, then the refinement only affects to the depender satisfaction. 

Therefore the following demonstration is only affecting actors with outgoing dependencies 

refined. 

Theorem. The operation refineDependency(M, dref, sr, se, dmnew) is correct.  

Proof. is_satisfied(b, M’) ⟹ is_satisfied(a, M’), where b is the depender (without changes) 

and M’ is the resulting model after the outgoing dependency refinement in model M. 

Inductive Base Case (IBC):  

depedums(outgoingDependencies(b, DL)) = depedums(outgoingDependencies(a, DL)) 
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is_satisfied(b, M’) ⇔ (1) 

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔  (2) 

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹ (3) 

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dref) ⇔ (4) 

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔(5) 

 ie ∈depedums(outgoingDependencies(b, DL)): is_satisfied(ie)⇔ IBC 

 ie ∈depedums(outgoingDependencies(a, DL)): is_satisfied(ie)⇔ (5) 

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (6) 

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor without IEs.  
(2) DL’ = DL \ {dref} ∪ {dnew}, since dref is replaced by dnew in the dependency links set DL’ in 

the model M’.  
(3) is_satisfied(dnew) ⟹ is_satisfied(dref) is a correctness condition of the operation. 
(4) Since X \ Y ∪ Y  = X when Y ∈ X and dref ∈ outgoingDependencies(b, DL). 
(5) Dependency Satisfaction definition. 
(6) Actor a has not changed, therefore outgoingDependencies(a, DL) = 

 outgoingDependencies(a, DL’). 

Induction Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M)  

Inductive Step:  

is_satisfied(b, M’) ⇔ (1) 

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔ (2)  

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹(3)  

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dref) ⇔ (4) 

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (1) 

is_satisfied(b, M) ⟹ IH  

is_satisfied(a, M) ⇔ (1) 

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (5) 

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor without IEs.  
(2) DL’ = DL \ {dref} ∪ {dnew}, since dref is replaced by dnew in the dependency links set DL’ in 

the model M’.  
(3) is_satisfied(dnew) ⟹ is_satisfied(dref) is a correctness condition of the operation. 
(4) Since X \ Y ∪ Y = X when Y ∈ X and dref ∈ outgoingDependencies(b, DL). 
(5) Actor a has no change, therefore outgoingDependencies(a, DL) = 

outgoingDependencies(a, DL’).





 

 

Chapter 8.  Redefinition 

As defined in Section 5.3, the i* redefinition operation consists on changing an actor-related 

model element. There are two kinds of changes that are mutually exclusive: 

 Changing the semantics of the element under redefinition. The elements whose 

meaning can be changed are those that have an associated property with some 

allowed values. These elements are: qualitative contributions to softgoal and 

dependency strengths.  

 Changing the way to achieve the semantics of the element under redefinition. The 

elements whose way to be achieved can be redefined are those IEs inside actors’ 

boundary that are decomposed with any type of decomposition link. In this case, the 

redefinition consists on changing the decomposition for this element. Note that in 

particular, unlike qualitative contributions to softgoal, softgoal decompositions fall into 

this category. 

This specialization operation is the most controversial one because its use makes it possible 

that some IEs are not present in the subactor when they exist in the superactor, provided that 

some correctness conditions (related to dependencies, see Section 8.1) hold. In spite of this 

controversy (that becomes evident e.g. in the empirical study that we conducted in the 

community), I have decided to include it in this thesis. The main reason is that it fits when a 

usual situation in the system development process: the need of representing exceptions over 

reusable actors provided off-the-shelf. On the other hand, it is worth to remark that as 

reported in Chapter 3, other researchers have identified this need and in fact, OO 

programming languages may offer this feature. At the end, the modeler may decide not using 

this operation if she considers that the drawbacks are greater than the benefits.  

8.1 ACTOR INTENTIONAL ELEMENTS REDEFINITION  

Redefinition of IEs is meant to change the way an IE behaves, but without altering its 

observable behavior. In other words, redefinition implies that the IE in the superactor is 

decomposed in a particular manner and then this decomposition is changed in the subactor. 

The main difference among IE redefinition and refinement is that redefinition does not allow 

changing the satisfactibility predicate (thus, the IE type and name must be kept).   
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In the case of tasks and softgoals, I allow changing from AND to OR (and vice versa) 

decomposition in the sense of not inheriting the original links and adding new links with the 

other value. More precisely, being x the IE under redefinition, some means-end links in the 

superactor where x is the end, or task-decomposition that decompose x in the superactor, or 

softgoal decomposition that decompose x, are not inherited in the subactor. For each of these 

links that are not inherited, if they do not participate in any other link (e.g., a qualitative 

contribution link or another decomposition link), they are not inherited in the subactor since 

they are not needed19. Finally, new decomposition links can be added using new elements or 

existing from other decompositions in the superactor.  

When an IE is under redefinition, it may participate in relationships with other elements: it 

may be the depender or dependee of some dependencies, it may be part of a task, or means 

towards an end, or contribute to some softgoal. Here I provide details on how redefinition may 

affect these relationships:  

 Outgoing Dependency Links: Although the IE in the subactor must fulfill the same 

objective as the IE in the superactor, its redefinition means that the way to fulfill may 

change and the dependencies that stem from the IE are considered as part of the way 

to fulfill it. Therefore, something that was required in the parent may not be needed 

anymore in the child.  

 Incoming Dependency Links: On the contrary, incoming dependencies may not be 

deleted, because an incoming dependency means that some other part of the model 

needs (expected behavior) what is provided by the actor. And the “expected behavior” 

of the subactor is expected to be provided by the subactor (according to the LSP). 

However, reallocation of incoming dependencies is allowed.   

 Other types of links: Since neither the type of the IE nor the satisfactibility predicate 

are allowed to change, the redefined IE will still participate under the same conditions 

in any other stated relationship.  

Specialization Operation 8. Intentional element redefinition 

Rationale. The way to achieve the IE in the superactor is no longer correct for the subactor. 

The subactor needs to define a new way to achieve the IE, although the new decomposition 

may keep some of the IEs that are decomposing the IE in the superactor. The IEs that are not 

belonging to the new decomposition, when they are not the source of any other link to other 

IE, will be removed together with their decomposition. 

Declaration. redefineIEWithDecompositionLink(M, b, iered, IES, t, v, D) 

being M the model, b the subactor where the IE redefinition takes place, iered the IE under 

redefinition, IES the new set of source IEs that will be linked to iered, t the type of 

decomposition link, v the value associated to that link (if necessary) and D the new set of 

dependencies that remains on iered and the new ones. Both the set of sources IES and the set 

of dependencies D include both the superactor’s IEs or dependencies that remain on the 

                                                           

19 The elements that are not kept in an IE decomposition and are not participating in other link, are not 

inherited because if they were, they would become main IE in the subactor. 
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subactor and the new ones to be added. Figure 8-1 shows all the elements that take part in the 

operation. In this example D = {d1, d3} and IES = {ie1, …, iep}. 

 
Figure 8-1. redefineIEWithDecomposition: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), iered, IES, t, v and D 

such that b ∈ A and iered ∈ IEb, the operation redefineIEWithDecompositionLink(M, b, iered, 

IES, t, v, D) yields a model M’ defined as: 

M’ = substituteActor(b, b1, Mdep+) where 

b1 = traceIEb1(b2, iered, iered) (6) 

b2 = replaceIELink(b3, iered, sources(iered, IELb3) ∩ IES, t, v)  (5) 

b3 = addIEDecomposition(b4, iered, IES \ sources(iered, IELb4), t, v)  (4) 

b4 = deleteIEDecomposition(b, sources(iered, IELb) \ IES)  (3) 

Mdep+ = addDependencies(Mdep-, D)   (2) 

Mdep- = deleteDependencies(M, outgoingDependencies(b, iered, DL))  (1) 

For this operation, it is necessary to fit the new dependencies and decomposition for the IE 

under redefinition (iered).  

(1) All the outgoing dependencies of the redefined IE are deleted, using the function 

outgoingDependencies to identify them, generating the model Mdep-.  
(2) Then the new dependencies are added to the model generating the model Mdep+. 
(3) The IEs that do not belong to the new decomposition (IES) are deleted generating actor 

b4. 
(4) The IEs from the new decomposition (IES), that were not included in the original one, are 

added generating actor b3. We define IELb4 = intentionalElements(b4). 
(5) After deleting and adding IEs to achieve the final decomposition, the type and value for 

the links that are kept from the superactor must be changed to the new values because 

they can be changed generating actor b2. We define IELb3 = intentionalElements(b3). 
(6) b1 is generating marking the redefined IE to substitute actor b in Mdep+ to generate M’. 
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Notice that not all decomposition is deleted in (3) because when an IE is deleted, if it is not 

included as source of another IE link, it is permanently deleted (including its own 

decomposition) because of an intermediate node cannot be transformed to a main IE. 

Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta): 

 iered must be decomposed in the superactor; outgoing dependencies are considered 

part of the decomposition. 

∥ sources(iered, IELb) ∥ > 0 ∨ outgoingDependencies(b, iered, DL) ≠ ∅ 

 Redefinition can be applied over an inherited and no-specialized element. 

is_ie_inherited(iet, b, M) 

 At least one IE from a is not present in the new decomposition for b (IES), otherwise 
the operation would be extension. 

IES ∩ sources(iered, IELa) ⊂  sources(iered, IELa) 

 None of the elements in IES can be a main IE: 

ie ∈ IES: ie ∉ mainIEs(b) 

 No incoming dependencies exist in in iered descendants, if it were the case they would 
be deleted violating LSP: 

∀ie ∈ descendants(iered, IELb): incomingDependencies(b, ie, M) = ∅ 

Additional conditions. There is no restriction on the number of new IEs linked to the IE under 

redefinition. The restriction about the types of new IEs and links (e.g., the target of a task-

decomposition must be a task) are given by the i* language definition as presented in Section 

4.1). 

Graphical representation. Since the redefined element is inherited and modified, it has to be 

included in the subactor model in regular lines. The whole name must appear between square 

brackets in order to identify which is the IE in the superactor and identify that the operation is 

a redefinition. The source IE is depicted as usual in i* if it is new, or using dotted lines if it is 

inherited. The new links are depicted as usual in i*. If the new element contributes to inherited 

elements, they will also appear and in dotted lines too. For the removed decomposition links, 

the graphical representation depends on: 

 The link appears crossed out: When the target IE remains in the model, because it 

belongs to other decomposition. 

 The link appears in regular lines and the target IE appears crossed out: When the 

target IE is removed from the model. In this case, any outgoing dependency from this 

target IE or any of its descendants appears as crossed out stemming from it. 

In Table 8-1 there are some examples of using redefinition for IEs.  
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Table 8-1. Intentional Elements Redefinition 

For Low Cost TA, redefinition 

of the goal Assistance 

Provided only for deleting 
Synchronous Support 

goal. In this case, only the 

removed element is shown 

to remark that it has been 

removed. 

 

 

Redefinition of the task Sell 

Travels only for deleting 
Travels Bought Cheaply 
softgoal. The removement of 

this IE implies the remo-

vement of the outgoing 

dependency that stems from 

it.  

 

For Luxury TA, redefinition of 

the resource Booking 

Reference replacing Send 
Booking Info by e-mail 
by the new IE Inform 

Booking Info by Phone. 

The removement of this IE 

implies the removement of 

the outgoing dependency 

that stems from it.  

 

The first example shown in Table 8-1 leaves the goal Assistance Provided with only one 

means (Asysnchronous Support). This fact, allows the modeler to reallocate the incoming 

depency Assistance Provided from goal Assistance Provided in to Asynchronous 

Support. 
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Figure 8-2. Incoming Dependency Reallocation 

When an actor has IEs, the satisfaction depends on its main IEs. Therefore, this operation 

directly affects to the actor satisfaction only when the redefined IE (iered) is a main IE. When 

the redefined IE is not a main IE, the main IEs in b’ remains the same s in b (see demonstration 

for specialization operation extendIEWithDecompositionLink, Section 6.2). The following 

demonstration is intended to proof the theorem when the refined IE is a main IE. 

Theorem. The operation redefineIEWithDecompositionLink(M, b, iered, IES, t, v, D) is 

correct.  

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the 

redefinition in the model M’.20  

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b) 

is_satisfied(b’, M’) ⟺ (1)  

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2) 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟺  IBC 

∀ie ∈ mainIEs(a): is_satisfied(ie)⟺  (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  
(2) Since the elements in IES are not added as main IEs, mainIEs(b) = mainIEs(b’). 
(3) Actor a does not suffer any change in M’, therefore mainIEs(a) is the same in both 

models M and M’. 

Inductive Hypothesis (IH): 

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie) 

  
                                                           

20 This demonstration is analogous to that of operation extendIEWithDecompositionLink(M, b, iered, IES, t, 

v, D) (see Section 6.2) 
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Inductive Step:  

is_satisfied(b’, M’) ⟺ (1)  

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)  

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH 

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺ (1)  

is_satisfied(a, M’) 

(1) Actor satisfaction definition for actor with IEs.  

(2) Since the elements in IES are not added as main IE, mainIEs(b) = mainIEs(b’). 

8.2 ACTOR QUALITATIVE CONTRIBUTION LINK REDEFINITION 

The only difference between redefining and refinement of a qualitative contribution is that in 

redefinition there is no restriction about the type of change in the value (see Specialization 

Operation 6 in Section 7.2).  

Specialization Operation 9. Qualitative contribution link redefinition 

Rationale. The value for a contribution link has to be changed in a subactor and the new value 

does not maintain the satisfaction implication from subactor to superactor.  

Declaration. redefineContributionLink(M, b, iel, v), 

being M the model, b the subactor where the softgoal appears, iel  the qualitative contribution 

link under redefinition in b, and v the new value for the contribution link between these IEs in 

the subactor. Figure 8-3 shows all the elements that take part in the operation. 

 
Figure 8-3. redefineContributionLink: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), iel = (ies, sg, 

contribution, vold) and v such that b ∈ A and iel ∈ IELb, the operation 

redefineContributionLink(M, b, iel, v) yields a model M’ defined as: 

M’ = substituteActor(b, b’, M) where  

b’ = (nb, IEb, (IELb \ {iel}) ∪ {(ies, sg, contribution, v)}, tb)  
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Correctness conditions. 

 The link has to be a qualitative contribution to softgoal.  

type(iel) = contribution ∧ value(iel) ∉ DCT 

 Redefinition can be applied over an inherited and non-specialized contribution link. 

is_cl_inherited(iel, b, M) 

 In order to be considered redefinition and not refinement, the value has to be greater 
than the value under redefinition. 

value(iel) < v 

Graphical representation. The refined link is inherited and modified; it has to be included in 

the subactor model in regular lines. The source and target IEs also will be included in the 

model in regular or dotted lines depending on if they have been refined or not. 

In Table 8-2 there is an example of using redefinition for contributions.  There is no graphical 

difference between redefined and refined qualitative contribution links without comparing 

them with the original link. 

Table 8-2. Qualitative Contribution Redefinition 

Redefining the 
Make 

Contribution 
Link into a 
Some+ (Some+ 
≥ Make) 

 

This operation does not affect directly to the satisfaction of an actor. When the specialized 

actor has IEs linked using qualitative contribution links, satisfaction depends on the main IE 

and they do not change using these operations (see demonstration for specialization operation 

redefineIEWithDecompositionLink, Section 8.1).  

8.3 DEPENDENCY REDEFINITION 

This operation is used when it is needed to change the value for any of the strengths into a 

weaker (i.e., not stronger) value (see order relation in Section 4.3.3). If only the dependum has 

to be changed, then the operation to apply is dependency refinement (see Section 7.3) instead 

of redefinition. A dependency can be redefined only if at least one of the actors involved is a 

subactor. The dependum can be also refined, using the same rules stated for the refinement of 

an intentional element in the Specialization Operation 5 (Section 7.1). Therefore, similarly to 

what happened with qualitative contribution links, the only difference between refining and 
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redefining a dependency is whether the change of strengths respects the order relation 

“stronger than” or not (see Specialization Operation 7 in Section 7.3).  

Specialization Operation 10. Dependency redefinition 

Rationale. A dependency has to be redefined because one of its participating actors (or both) 

has been specialized in a way that the dependency has to adapt correspondingly. This 

redefinition consist on weakening of the strength values (at least one), on the specialized actor 

side, according to the order relation “weaker than” between strength values. The dependum 

can be also refined (given its condition of IE) as part of the redefinition. 

Declaration. redefineDependency(M, d, sr, se, dmnew), 

being M the model, d the dependency under redefinition, sr and se the new strengths at the 

depender’s and dependee’s side for the redefined dependency and dmnew the dependum for 

the redefined dependency. Figure 8-4 shows all the elements that take part in the operation. 

 

 
Figure 8-4. redefineDependency: Involved Elements 

Definition. Given an i* model M = (A, DL, DP, AL), d = ((b, ieb, sb), (c, iec, sc), dmd) such that 

d ∈ DL, sr, se and dmnew, the operation redefineDependency(M, d, sr, se, dmnew) yields a 

model M’ defined as: 

M’ = (A, DL \ {d} ∪ {dnew}, DP ∪ {dmref}, AL) where  

dnew = ((b, ieb, sr), (c, iec, se), dmref)  

Correctness conditions.  

 A redefinition can only be applied over an inherited and non-specialized dependency.  

is_dl_inherited(d, M) 

 At least one of the strengths has to be “weaker than” to be redefined. If the change 
were for a “stronger than” it would be a refinement, not a redefinition. 

sr < sb ∨  se < sc 

Graphical representation. The new dependency is included in the model. Lines will be drawn 

using regular lines, but the dependum will appear in dotted or regular depending on if it has 

been refined or not. No other information needs to be depicted. There is no graphical 

difference between redefined and refined strengths without comparing with the original 

dependency. 

In Table 8-3 there are some examples of using redefinition of dependencies.  
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Table 8-3. Dependency Redefinition 

Redefining the 
Committed strength in 
the depender side. Open 
in Family is  ≥ than 
Committed for 
Customer 

 

For Luxury TA is easier 
(weaker strength) to get 
the resource Travel 

Offerings because they 
do not have money 
restrictions 

 

This operation affects in a different way the satisfaction of an actor depending if the actor 

contains IEs or not. 

When actor contains IEs, the operation does not affect directly the satisfaction of the subactor 

regardless of whether the dependency under redefinition is incoming or outgoing. Outgoing 

dependencies are involved in IEs satisfaction, but not directly to the actor satisfaction, that 

depends on the main IE that does not change using this operation (see demonstration for 

specialization operation redefineIEWithDecompositionLink, Section 8.1).  

When actor does not contain IEs, then the redefinition only affects to the depender’s 

satisfaction in the same way that dependency refinement does. Therefore the demonstration 

is the same as refineDependency (see Section 7.3). 

 



 

 

Chapter 9.  The Specialization 
Process 

This chapter presents the specialization process that defines how the specialization operations 

must be used (Section 9.1). It is also includes some justifications for the process (Sections 0) 

and about the tool supporting the specialization operations (Section 9.3). 

9.1 THE SPECIALIZATION PROCESS 

From a methodological point of view, the specialization of an actor can be seen as a 2-step 

process: 

o Step 1. Applying the specialization operation that declares the is-a link. This means that all 

the elements from the superactor are inherited by the subactor.  

o Step 2. Specializing the subactor. We distinguish two activities: 

o Activity 2.1. Applying several specialization operations to the subactor-related model 

elements21. The resulting model is composed then of those superactor’s inherited 

elements not changed or even removed by specialization operations, plus those new 

model elements added by the application of specialization operations (which may be 

really new, or variations of inherited ones). There is no restriction on the number of 

new model elements connected by means of IE links and dependencies to the 

inherited ones. Constraints about the types of new model elements (e.g., the target of 

a task-decomposition must be a task) are given by the i* language definition as 

presented in Section 4.1). 

  

                                                           

21 See Section 4.2.1, for the definition of actor-related model elements. 
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o Activity 2.2. Adding new model elements in the subactor. These new elements can be 

related to those added in Activity 2.1. They can be: 

 Actor links, when the subactor is linked to other actors through a link 

different from is-a (since multiple inheritance is not allowed, see Chapter 4, 

Assumption 3). Links that are inherited from the superactor do not need to 

be redeclared. 

 Outgoing dependencies, when a subactor’s element depends on some other 

actor. 

 Qualitative contribution links, when an element added in Activity 2.1 

influences some inherited element, or when a new element influences some 

inherited o new element.  

 Decomposition subtrees, when an element added in Activity 2.1 needs to be 

decomposed. IEs in these trees may have their own outgoing dependencies 

and contribution links. This includes refined elements (when an element is 

refined, it is considered as new in the context of the subactor). The only 

restriction is that when a new IE is added, its name cannot be duplicated with 

respect to the superactor’s IEs. We need this restriction because if 

duplication is only checked with respect to the IEs that appear explicitly in 

the subactor, it could be possible that this name were the name of a 

removed IE. 

Besides the activities defined in Step 2, there are two situations that require the reallocation of 

an inherited dependency (see further details in subsection 0): 

 When the dependee IE is deleted due to a redefinition. In this case the reallocation is 

mandatory and I name it Preventive Incoming Reallocation. 

 When the either the depender or the dependee IE remains in the model, but there is 

some new IE more appropriate to be the dependency end in the subactor’s scope I name 

this reallocation Incoming/Outgoing Reallocation. 

Since only one operation can be applied over any superactor’s IE, the order in which the 

operations are applied in Step 2 is not relevant, and the activities can be intertwined and 

iterated at any desired extent, with just the obvious requirement that the elements added in 

Activity 2.2 must refer to elements already added in Activity 2.1.  

Table 9-1 presents a summary of the type of modifications that can be done in a subactor 

during activities 2.1 and 2.2.  In the table, “inherited IE” means having exactly the same name 

and type on the subactor as in the superactor. 
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Table 9-1. Specialization Operations Summary 

 In the subactor it is allowed to… When… Activity 
 add new actor link Always 2.2 

D
e

p
e

n
d

e
n

ci
e

s 

add new outgoing dependency  From actor (no IEs in boundary): Always (using extension) 2.1 

From new IE: Always 2.2 

From inherited IE: Only with redefinition 2.1 

From refined IE: Always 2.2 

add new incoming dependency Always 2.2 

refine dependency Refine strengths: Critical  Committed  Open 

Refine dependum (if needed): see IE refinement 

Refine depender/dependee: If it corresponds to… 

 an actor: new depender must be the subactor itself 

 an IE: the same IE or a refinement of it in the 
subactor 

2.1 

redefine dependency Redefine strengths: Open  Commited  Critical 

Refine dependum (if needed): see IE refinement 

Refine depender/dependee (see refining dependency) 

2.1 

 delete inherited outgoing 

dependency 

From actor: No 

From inherited IE: Only with redefinition 

From refined IE: No 

2.1 

 add new IE Main IE: Always (using extension) 2.1 

Intermediate IE: Always 2.2 

In
te

n
ti

o
n

a
l E

le
m

e
n

ts
 

extend an inherited IE New IE links to: 

 new IEs: Yes 

 inherited IEs: Yes 
New outgoing dependencies: No 

2.1 

refine an inherited IE Softgoal Goal, Goal Task and Goal  Resource 2.1 

redefine an inherited IE Only when IE is decomposed: 

 New IE links to new IEs: Yes 

 New IE links to inherited IEs: Yes 

 New outgoing dependencies: Yes 

2.1 

In
te

n
ti

o
n

a
l E

le
m

e
n

t 
Li

n
ks

 

add new IE link Decomposition Link: If the decomposed IE is… 

 new: Always 
2.2 

 inherited: Using extension/redefinition 2.1 

 refined: Always 2.2 

Qualitative Contribution: Always 2.2 

refine IE link Decomposition Contribution Links: No 

Qualitative Contributions: Yes 

 Positive values: MakeHelpSome+Unknown  

 Negative values: HurtBreakSome-Unknown 

2.1 

redefine IE Link Decomposition Contribution Links: No 

Qualitative Contributions: Yes 

 Positive values: UnknownSome+ Help Make  

 Negative values: Unknown Some-Break Hurt 

2.1 

Figure 9-1 shows how, after Step 1, activities in Step 2 can be combined in order to generate 

the model of a subactor. In between these activities, it could be necessary or recommended to 

reallocate some dependencies, see following section for further details (Section 9.2). From 

some activities there are more than activity destination, due to the order is not relevant, the 

modeler can go any of them with no restriction.  
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Figure 9-1. Specialization Process 

9.2 REALLOCATING DEPENDENCIES 

In this subsection I analyze the two situations in which reallocating dependencies takes place: 

 Preventive Incoming Reallocation: The reallocation is mandatory when the IE in the 

dependee side (incoming dependency) is going to be deleted from the model. 

 Incoming/Outgoing Reallocation: The reallocation is recommended when, although the 

IE still remains in the model, a new IE is more suitable to be involved in the dependency 

(both incoming and outgoing dependency). 

9.2.1 PREVENTIVE INCOMING REALLOCATION 

When an IE is being removed from the subactor due to a redefinition operation, outgoing 

dependencies have to be also removed, but the incoming dependencies that arrive to it must 

be reallocated due to Model Correctness Condition 1 (see Section 5.4). If the incoming 

dependency is not reallocated, the redefinition is not allowed, since this would mean that the 

dependum would not be satisfied.  

There is no restriction about where the incoming dependency can be reallocated: it can be 

reallocated to an inherited element (in case that another superactor’s IE is capable of 

providing the dependum) or to a new one.  

Preventive Incoming Reallocation is formally defined with the function 

reallocatePreventiveIncoming (see Definition Definition 20, Section 4.2.2.2).    

Extension

Redefinition

Refinement

Activity 2.1

Actor Link

Dependency

Decomposition subtree

Activity 2.2

Preventive
Incoming 

Reallocation?

Outgoing/Incoming 
Reallocation?

Outgoing/Incoming
Reallocation?

Step 2Step 1

is-a 
link

Qualitative Contribution
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9.2.2 OUTGOING/INCOMING REALLOCATION 

The reallocation of dependencies must be considered when a decomposition of an inherited IE 

changes in the subactor. Both outgoing and incoming can be reallocated after a new or 

modified IE appears in the subactor due to a specialization operation (Activity 1.1) or adding 

decomposition (Activity 1.2).  

When the outgoing dependency is stemming from an IE, it is possible to reallocate it to a new 

descendant (one or more levels below), if this new element is the one really requiring the 

outgoing dependency. For instance, Figure 9-2 shows an example where there is a general goal 

ie in the superactor a, and in the subactor b, ie has been extended with means new g1 and 

new g2, such that the outgoing dependency d is recommended to be reallocated to the new g2 

goal because it is the one that really needs the dependency. The modeler is specifying where 

the outgoing dependency is really needed. 

 

Figure 9-2. Reallocating Outgoing Dependencies after extension 

For incoming dependencies, there is no restriction about where the incoming dependency can 

be reallocated: it can be reallocated to an inherited element (in case that another superactor’s 

IE is capable of providing the dependum) or to a new one.  

Outgoing/Incoming Reallocation corresponds to functions reallocateOutgoing and 

reallocateIncoming (see Definition 18 and Definition 19, Section 4.2.2.2). 

9.3 TOOL SUPPORT 

Models shown in this document have been developed using the tool REDEPEND-REACT tool 

[Grau-etal05], a variant of REDEPEND tool resulting of the colaboration between the City 

University and Universitat Politècnica de Catalunya. It is a template for Microsoft Visio that 

allows the edition of classical i* models. It does not support inheritance but the fact of being a 

Vision template allows changing lines to use dotted lines when they are needed, which is the 

main change required in the context of my work. More specifically, to adequate models to my 

proposal I have to carry out the following changes manually: 
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 Intentional elements and intentional element links: Changing regular lines by dotted 

lines for inherited and non-modified elements. 

 Dependencies: 

o Adding text for the strengths values (strenghts are not supported in 

REDEPEND-REACT). 

o Adding text for contribution links values (REDEPEND-REACT supports only + 

and – contribution links). 

o When I need to combine regular and dotted lines in a dependency, I have to 

combine two shapes for drawing a complete dependency (one IE and two 

dependency links) instead of the shape defined for dependencies. 

 

Figure 9-3 shows an example of SD diagram in the REDEPEND-REACT tool. The model is 

graphically represented at the right side of the window and at the left side there are two 

palettes where the model elements are grouped depending SD or SR diagrams. For SD 

diagrams are actor and dependencies. For SR diagrams are actor, boundary and the differend 

kinds of intentional elements (goal, softgoal, resource and task) and links (dependency, means-

end, task-decomposition and contribution to softgoal). 

 
Figure 9-3: SD diagrams using REDEPEND-REACT 
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Besides using REDEPEND-REACT to develop models graphically, I have included specialization 

in the i* editor HiME [Lopez-etal09]. HiME (Hierarchical i* Model Editor) does not represent i* 

models graphically through the language symbology, but shows them as a folder-tree directory 

in a file system. Figure 9-4 shows the Meeting Scheduler example (see Figure 1-2) as displayed 

by HiME.  

 
Figure 9-4. Meeting Scheduler as represented in HiME  

The i* Model Navigator (left windows) shows the model hierarchically, (1) shows the Meeting 

Initiator as the depender for Attends Meeting dependency, meanwhile in (2) the Meeting 

Initiator  as the dependee. The i* Model Statistics (right window) includes some information 

about the model for each actor:  

 Number of outgoing and incoming dependencies, the number of IEs and IE link, Root 

IEs (main IES) and Shared IEs (IEs belonging to more than one decomposition). 

 Dependencies: Number of outgoing and incoming dependencies for each actor. The 

most vulnerable is the actor with the higher number of outgoing dependencies. The 

crucial is the actor with the higher number of incoming dependencies. 

 Complexity: It is the number of IEs and IE links22 

                                                           

22 In the example shown in the figure, there is no information about complexity because it is a SD model 

(actor without IEs) 
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The current version23 (2.0) can be found and downloaded at [HiME], where also the user guide 

is available. Besides the usual functionality for an i* editor (managing actors, actor links, 

dependencies, IEs and IE links), it includes some of the specialization operations presented in 

this proposal. Besides the Specialize Actor operation (“Add Is-A Relation”), HiME includes the 

specialization operations referent to IEs: IE extension with a decomposition link, IE refinement 

and IE redefinition. It is also allowed the actor extension with an outgoing dependency (“Add 

Dependency Link”) and actor extension with a main intentional element (“Create a i* root 

model element”). For the last two specialization operations, the modeler is responsible to use 

them properly, the editor do not check any correctness condition.  

 As is the tool developed by GESSI, it uses the i* metamodel included in the book [Yu11, 

chapter 17] extended to include the specialization [Cares-etal10]. This tool uses iStarML 

[Cares-etall11bis2] for storing model. iStarML is an XML-based format for enabling 

interoperability among i* tools. HiME was part of a proof of concept of using iStarML for tool 

interoperability [Colomer-etal11] [Cares-etal11bis]. 

9.4 THE COMPLETE EXEMPLAR 

After all the specialization operations have been defined, the complete exemplar can be 

presented. This model contains three actor categories: customers, travel agencies and service 

providers.  Figure 9-5 contains the complete SD Diagram corresponding to the exemplar used 

throught this thesis dissertation. Figure 9-6 contains the SR Diagram corresponding to the 

exemplar excluding subactors for customers and travel agencies, for space reasons. These 

subactors are included separate figures, showing the differences with their superactor and the 

dependencies to the other actors in the model. 

                                                           

23 Current version is a rich client application developed using eclipse. The available package contains an 

executable file to be executed under MS Windows. 
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Figure 9-5. Travel Agency complete SD Diagram 
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Figure 9-6. Travel Agency SR Diagram (without TA & Customer subactors) 

In the following figures, the SR for each pair superactor and subactor are shown jointly witn 

the pair of subactor and relate subactors (e.g. for FTA, the related subactor is Family). 
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Figure 9-7. Superactor TA and subactor FTA SR Diagram 

Figure 9-7 shows the piece of the SR diagram that shows superactor TA and subactor FTA SR 

diagrams. In the subactor diagram the following elments are included: 

 Inherited elements when needed (dotted lines). This need can be originated because 

this IE has a new link from other IE, for example softgoal Good Quality-Price Rate 

appears because the new task Provide Child Discounts contributes to them. It can 

be also included for informative reasons, for example Book Travel is only included to 

have the complete decomposition in the subactor (the other subtasks from the 

superactor are incluced for other reasons). 

 Specialized elements (name contains brakets): When an element is specialized is 

mandatory that appears in the subactor SR diagram, for example [Travels 

Contracted Increase], [Sell Travels] and [Charge Travel] are extensions, 
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Provide [Synchronous Support] by Phone and Family [Travel Information] 

are IE refinements and the contribution link from Portal Highly Customized and 

Relation with Customers Kept Minimized a contribution link redefinition. 

 New elements (regular lines and no brakets). For example Family Facilities 

Offered and its decomposition. 

Figure 9-8 shows the piece of the SR diagram that shows superactor Customer subactor 

Family SR diagrams. In the subactor diagram the following elments are included: 

 Inherited elements: In this case the task Pay Travel has been included only not to 

loose the relation between [Buy a Travel] and [Booking Reference], they must 

be included because they are specialized. The softgoal Travels Bought Easily is included 

due to the link from [Assistance Obtained] by Phone. 

 Specialized elments: Extended [Buy a Travel] and [Booking Reference] and 

refined [Assistance Obtained] by Phone. Regarding links, the qualitative 

contribution link from [Assistance Obtained] by Phone to Travels Bought Easily. 

 New elements: The decompition for extension Family Facilities Obtained 

 
Figure 9-8. Superactor Customer and subactor Family SR Diagram 
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Figure 9-9. Subactors Family and FTA SR Diagram 

Figure 9-9 shows the piece of the SR diagram that corresponds to the SR diagrams for the 

Family and FTA subactors. For superactor dependencies, are only included which ones that 

suffers some specialization at subactor level. In this piece of digram appears, besides the SR 

diagram elements for each subactor: 

 Specialized dependencies (name containing or not brakets and regular or dotted lines). 

For example [Assistance Obtained] by Phone only refines de dependum (name 

with brakets and dotted lines), Detailed [Travel Offerings] is refining the 

dependum and the strength on the dependee side (regular line for the refined 

strength side) and Invoice redefines the strength on the depender side (regular line 

for the redefined strengthe side). 
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 New dependencies (regular lines and no brakets), for example Pets Allowed Lodging 

and Children Info. 

The following figures Figure 9-10, Figure 9-11 and Figure 9-12 shows the SR Diagrams 

corresponding to the specializations TA – UTA, Customer – Researcher and the dependencies 

between both subactors repectively. 

 
Figure 9-10. Superactor TA and subactor UTA SR Diagram 
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From Figure 9-11 is wothly remarkable that the new resource Conference Information has 

been used for the extension of two specialized elements: task [Name a Price] and softgoal 

[Good Service Received]. 

 
Figure 9-11. Superactor Customer and subactor Researcher SR Diagram 
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Figure 9-12. Subactors Researcher and UTA SR Diagram 
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The following figures Figure 9-13 and Figure 9-14 shows the SR Diagrams corresponding to the 

specializations Customer – Affluent Customer and dependencies between Affluent 

Customer and Luxury TA respectively. In this case, the specialization TA – Luxury TA has been 

included in the same as figure as the dependencies between subactors. 

 

 
Figure 9-13. Superactor Customer and subactor Affluent Customer SR Diagram 

From Figure 9-13 is wothly remarkable the [Buy a Travel] task redefinition, for Affluent 

Customer subactor, the Travels Bought Cheaply subsoftgoal has been removed. The trip 

price is not important for affluent customers. 
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Figure 9-14. Superactor TA and subactor Luxury TA SR Diagram jointly with the subactor Affluent Customer 
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And finally Secure TA and Low Cost TA are subactors that do not have specific subactor for 

Customer actor. In Figure 9-15 shows how Secure TA refines task Charge Travel into 

[Charge Travel] Using Pay Pal, the decomposition from the actor remains in the subactor, 

and dependencies appear to Pay Pal service provider and to Customer. 

 
Figure 9-15. Superactor TA and subactor Secure TA SR Diagram jointly with superactor Customer and subactor 

PayPal 
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Figure 9-16 shows how LowCost TA redefines the goal Assistance Provided for providing 

only Asynchronous Assistance, which contributes negatively to softgoal Customer be 

Happy. 

 
Figure 9-16. Superactor TA and subactor LowCost TA SR Diagram



 

 

Chapter 10.     Conclusions and 
Future Work 

This PhD. thesis belongs to the area of modeling languages, more precisely in the i* language 

provided for the i* framework. This chapter reviews the main contributions of my research as 

well as some future lines of investigation which have emerged along with the work. 

Contributions 

10.1 CONTRIBUTIONS 

The aim of this thesis has been to clarify the ambiguity found in the use of specialization in i* 

models. Linked to this concern, the aim has been to study the consequences of a specialization 

relationship declared at the actor level. I have identified three main specialization operations: 

extension, refinement and redefinition, and for each of them, I have identified three concrete 

operations. 

Answering the main research question expressed in the first chapter “RQ1: How can actor 

specialization be applied when building models with the i* language?”, the two main 

contributions of this thesis are: 

 a formal definition of a set of specialization operations applicable in the process of 

building i* models 

 a methodology to apply them 

The specialization operations are: 

 Extension. Adding new actor-related model elements establishing some kind of 

relationships with the inherited ones. 

o Adding outgoing dependencies to an actor to cover a new subactor 

dependency not needed by the superactor. 

o Adding new main IEs to an actor to cover new subactor intentionality not 

covered by the superactor. 
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o Adding new decomposition link (means-end, task-decomposition or softgoal 

decomposition link) to an inherited IE stemming from another IE. This other IE 

can be new or inherited. 

 Refinement.  Enforcing inherited actor-related model element in order to fit with the 

subactor context. The subactor model element satisfactibility predicate must imply the 

superactor’s. The allowed elements to be enforced are: 

o IE semantics, including the possibility of changing the IE type (from Softgoal to 

Goal, from Goal to Task or from Goal to Resource). 

o Qualitative Contribution link values in the same “polarity” (from Unknown to 

Some+, from Some+ to Help, from Help to Make, Unknown to Some-, from 

Some- to Break and from Break to Hurt). 

o Dependency dependums (in the same way as IEs) and strength values (from 

Critical to Committed and from Committed to Open). 

 Redefinition. Changing some inherited actor-related model element without the 

restriction of enforcing the satisfactibility predicate. In this case the changes can be 

applied over: 

o  IE decomposition (this change do not change the IE semantics, only the way to 

be achieved). The inherited decomposition is no longer correct for the 

subactor. Therefore a new decomposition must be provided (at least one of 

the IEs in the inherited decompition must disappear to be considered a 

redefinition). 

o Qualitative Contribution link values with no restriction.  

o Dependency strength values with no restriction. 

Besides the specialization operations, the syntax is utterly important given the fundamental 

graphical nature of the i* modeling language. Table 10-1 shows how the model changes 

depending on the specialization operation applied. These changes can add, modify or delete 

some model elements.  

From a methodological point of view, the modifications applied over the subactor are grouped 

in two different activities: 

 Activity 2.1. Applying several specialization operations to the subactor-related model 

elements.  

 Activity 2.2. Adding new model elements in the subactor. 

Since only one operation can be applied over any superactor’s IE, the order in which the 

operations are applied is not relevant, and the activities can be intertwined and iterated at any 

desired extent, with just the obvious requirement that the elements added in Activity 2.2 must 

refer to elements already added in Activity 2.1.  
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Table 10-1. Model elements changes for specialized actors 

Operations New Modified Deleted 

extendActorWithOutgoingDependency outgoing 

dependency 

  

extendActorWithMainIE IE   

extendIEWithDecompositionLink IE Link 

source IE 

  

refineIE  IE name 

IE type 

 

refineContributionLink  Link value  

refineDependency  Dependum name 

Dependum type 

Strengths value 

 

redefineIEWithDecompositionLink source IE 

IE Link 

 source IE 

IE Link 

outgoing 

dependency 

redefineContributionLink  Link value  

redefineDependency  Strengths value  

As a consequence of the first main contribution, and answering research question “RQ2: What 

constructs configure the i* language core?“, this thesis also contributes with: 

 a formalization for the i* language core modeling constructs 

This thesis also includes the formal validation for the specialization operations answering the 

research question”RQ3: How can the model correctness be validated when specialization is 

used in i* models? ”. This validation uses the concept of model correctness, aligned to the 

actor satisfaction. This proposal has been complemented giving: 

 a formal definition for satisfaction at actor-level able to deal with specialization 

The satisfaction is used in the sense of all the instances of the subactor must be instances of 

the superactor, adapting LSP to the i* language.  

I would like to remark the main strengths of the specialization operations included in this 

proposal: 

 It relies on the theory of specialization as defined by some milestone references 

[Borgida82][Liskov87][Meyer97]. Therefore, the proposal is compliant with the most 

recognized principles in this context. 

 I avoided adding new constructs to i*. This is an important issue since we avoid 

committing the proposal to a particular version of the language that would have 

increased the complexity of the language. I have just introduced some diagrammatic 

convention (e.g., dotted lines) for legibility purposes. 

 We have analyzed the effects of the several specialization constructs to the diversity of 

intentional elements, links and dependencies that are in i* definition. 
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Regarding the methodology, it is worth mentioning that the order in which the operations are 

applied to build the model is not relevant. 

The domains studied to define the specialization operations have been knowledge 

management, software development (concretely object-oriented software development) and 

conceptual modeling. Although the i* language is a conceptual modeling language, this 

proposal is “more” aligned to the other two areas. Redefinition is the operation that differs 

from conceptual modeling point of view, but using only Extension and Refinement makes this 

proposal compliant to conceptual modeling principles. Redefinition however may be useful in 

some development contexts and this is why I have incorporated it in my proposal. 

A positive remark of this proposal is that, although I included part of the specialization 

operations in an existing i* editor (HiME), I have been able to use an external24 tool 

(REDEPEND-REACT) with no modifications (although a manual processing to change some line 

shapes is required). 

10.2 FUTURE WORK 

Directly connected to the proposal it is planned use this proposal in the context of a European 

Project where I just initially involved. RISCOSS project intents to develop advanced tools and 

methods to offer community-based and industry-supported risk management in Open Source 

Software (OSS) ecosystems. Concretelly, actor specialization will be used for modelling OSS 

ecosystems, where the kinds of the different agents that composes the ecosystem arises the 

necessity of actor specialization.  

It is also planned to verify the proposal in the context of the increasement of language 

complexity. I planned to conduct an experiment taking as subjects of the experiment the 

students of the subject Software Engineering I in the Master in Information Technology offered 

by Facultat d’Informàtica de Catalunya (FIB). 

On the line of consolidating the i* model formalization, as mentioned in Section 1.5 (Research 

Context), we are involved in a collaboration giving ontological meaning to i* constructs to 

validate our decisions/assumptions. [Franch-etal11bis] presents an initial work on this line, 

giving ontological meaning to the means-end link. In this paper the foundational ontology UFO 

is used to study this link from the ontological point of view. The idea is giving this ontological 

background for all i* model elements.   

Even though all the research questions presented in the first chapter of this thesis have been 

answered, some new arose during the process. Below are some of these new concerns directly 

connected to the subject of this thesis: 

 Studying the possibility of allowing multiple inheritance. Initially, aligning with other 

related areas, OO programing in particular, the main problem of multiple inheritance 

is solving overlapping when more than one superactor has the same or equivalent IEs. 

                                                           

24 A tool developed outside the research group. 
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It must be defined when two IEs can be considered equivalent and how can be 

represented in the subactor.  

 Investigate the joint application of refinement and redefinition. According with the 

proposal none of the other combinations of operations would make sense. But, when 

an IE is refined, it would be necessary also change its decomposition.  

 Including automatic dependencies reallocation. For the automatic reallocation it 

would be necessary to have a proper definition for the consequences that an 

incoming dependency arrives to an IE or to an IE that belongs to its decomposition. If 

these consequences are welldefined, it would be possible to reallocate them to the IE 

descendants of ancestors when it is specialized. A deep research is needed for this 

option, the consequencies could increase the complexity of the proposal. This 

automatic reallocation could force the order of specialization operations application. 

 Studying how the proposed operations affects to the properties and treatments 

defined in the i* framework. 

 Including strengths in the dependency satisfaction definition. Dependency satisfaction 

definition is aligned to other authors’ definition that only involves the dependum 

satisfaction. 

Finally, in the sense of having a complete definition for all actor links, it would be interesting to 

know if is possible to generalize the results of this thesis to the other actor links (is-part-of, 

plays, covers and occupies). Initialy, I have in mind that plays, covers and occupies can be 

considered as is-a link between diferent types of actor (for exemple an agent plays a role). 

Therefore, the specialization operations presented in this proposal can be also applied over 

the source actor in the link (for example, in the plays link, specialization operation would be 

applied over the agent). It is also worthly to mention that redefinition would not apply for this 

links. To consolidate this assumption, more research in needed in the sense to understand the 

peculiarities of the different actor types (agent, role and position). 
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Appendix A. Survey: Using is-a links 
in i* models 

 

Using is-a links in i* models 

1. How often do you use is-a links in the i* models that you develop? 
a. Never b.   Rarely          c.   Sometimes d.   Often e.   Very often 

2. If you use is-a links, do you have any doubts about their usage?  
a. No, I have really clear the consequences of using this type of link. 
b. Yes, but these doubts are not fundamental for my models. 
c. Yes, and thus I have defined some rules to use this type of link (please describe 

briefly these rules in the back of this sheet). 

3. If A is-a B, what is the consequence regarding dependencies at SD model level?  More 
than one option can be chosen. 
a. A must have exactly the same dependencies, with the same characteristics, as B. 
b. A can add dependencies (incoming and/or outgoing) that are not in B. 
c. A can remove some dependencies that are in B. 
d. A can modify the dependencies that are in B as follows: 

d1. The dependum can be different (please describe briefly how in the back of 
this sheet). 

d2. The depender strength can be different. 
d3. The dependee strength can be different. 

e. Other (please describe briefly in the back of this sheet). 

4. If A is-a B, what is the consequence regarding the SR model level? More than one 
option can be chosen. 
a. A must have exactly the same SR model as B. 
b. A can add new intentional elements that are not in B. 

b1. New intentional elements can be linked only to other new intentional 
elements. 

b2. New intentional elements can be linked to both new or B intentional 
elements. 

c. A can remove some intentional elements that are in B. 
d. A can modify intentional elements from B (please describe briefly how in the 

back of this sheet). 
e. Other (please describe briefly in the back of this sheet). 

Thanks for your cooperation!! 

          Lidia López, PhD student 

 The GESSI group, http://www.essi.upc.edu/~gessi/ 
Please use the back of this sheet for any additional information 
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Table A-1 presents all answers for the 21 survey responses. These responses have been 

grouped depending on the answer for the Q1 (How often do you use is-a links in the i* 

models that you develop?). Option d for Q3 and option b for Q4 are intended to collect 

information about wheather the responder considers that some element can be modified. 

Some responders do not mark these options, but he or she marked some of subanswers for 

the allowed modification, for example in E3 the responder did not mark Q3-d but he or she 

marked Q3-d3 and Q3-d4. Therefore, these options have been filled as marked when some of 

the subanswers have been marked. These modifications are marked in grey in the table. 

Table A - 1: Results for i* Survey 

  Q1 Q2 Q3 Q4     

  a b c d E a b c A b c d e d1 d2 d3 a b c d e b1 b2 

E1 1               1 1               1           

E2 1                 1               1         1 

E3 1           1   1 1   1     1 1   1         1 

E4   1         1     1               1       1   

E5   1         1     1   1           1           

E6   1         1     1   1   1       1         1 

E7   1           1 1 1   1     1 1 1 1   1     1 

E8   1         1   1 1   1   1     1 1 1 1   1 1 

E19   1         1     1               1           

E9     1       1   1               1             

E10     1       1     1               1         1 

E11     1         1   1   1           1         1 

E12     1       1   1                 1         1 

E13     1       1   1 1               1         1 

E14     1       1   1                 1         1 

E15     1     1       1               1         1 

E21     1         1   1   1   1 1 1               

E20     1       1     1               1         1 

E16       1   1       1   1   1       1   1     1 

E18       1     1     1               1       1 1 

E17         1 1       1 1             1 1     1   

  
    

        
     

  
 

  
     

    

  
    

        
     

  
 

  
     

    

TOTAL 3 6 9 2 1 3 13 3 8 18 1 8 0 4 3 3 3 19 2 3 0 4 14 

Q1: a   
    

0 1 0 2 3 0 1 0 0 1 1 0 3 0 0 0 0 2 

Q1: b   
    

0 5 1 2 6 0 4 0 2 1 1 2 6 1 2 0 2 3 

Q1: c   
    

1 6 2 4 6 0 2 0 1 1 1 1 7 0 0 0 0 7 

Q1: d   
    

1 1 0 0 2 0 1 0 1 0 0 0 2 0 1 0 1 2 

Q1: e           1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 
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As is presented in Section 3.3.2, the responders’ comments suggest that the specialization 

should follow the object-orientation rules. For the following comments, A is the subactor and B 

the superactor. 

 

 

Figure A- 1. Survey Responders Comments about following Object-Orientation way 

Some comments refer to specific operations like “specialize”, “refine” or “redefinition” with no 

more information. Or pointing to “inheritance traditional way”. Even, a responder mentioned 

the idea of overloading decompositions (that corresponds to the redefintion operation in this 

proposal). 

 

 

 

Figure A- 2. Survey Responders Comments about allowed changes 
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Regarding representation, they suggest to include only the changes in the subactor.  

 

 

 

 

Figure A- 3. Survey Responders Comments about representation 

 


