
PhD THESIS
Thesis presented to obtain the qualification of Doctor in Software from the

Universitat Politècnica de Catalunya.

THE NOTION OF SPECIALIZATION IN THE i*

FRAMEWORK

Lidia López Cuesta

Advisors:

Dr. Xavier Franch

Dr. Jordi Marco

Barcelona, February 2013

i

ACKNOWLEDGMENTS

First, I would like to thank my PhD advisors, Professors Xavier Franch and Jordi Marco, for all

the support they have provided me over the years: to Xavier Franch for accepting me as a PhD

student and keeping me on the right track, and to Jordi Marco for making the journey easier. I

am also grateful to Paul Grünbacher and Norbert Seyff, the first researchers I have

collaborated internationally with; from this collaboration came up my PhD subject, and they

made my first steps in research really a pleasure.

Next, I would like to thank everybody in my research group (GESSI), where I was accepted from

the very beginning as a full member. In particular, to my doctorate companions David and

Marc: we have shared this journey together. And a special mention to Claudia, who ended

when I was starting, but with whom nevertheless I established a bond that still remains. A big

thank you also to everyone who helped me to improve my job, reviewing and discussing my

proposals.

I would also like to acknowledge the Professors of the Escola d’Enginyeria de Terrassa (ETT),

who helped me to combine my teaching job with my research. In particular, thanks are due to

Pepa, Angela and Pau, who have been there from the beginning.

And last, but not least, I owe a huge debt of gratitude to my family, for their love, patience and

support over the many years that I worked in this PhD thesis. I thank Félix, and just in case

someday my children Sergi and Sara read this, I would also like to tell them that through their

birth, they were part of the process. Finally, a very particular thank you to my parents, for

whom my higher education was of the utmost importance: without them, I would never have

arrived here.

This work has been possible thanks to the Departament de Llenguatges i Sistemes Informàtics,

and in particular Jordi Marco, in charge of the ETT section, for giving me the opportunity to

teach while working on my thesis. And the Spanish projects HU2005-0021, TIN2007-64753,

AT2009-0015 and TIN2010-19130-C02-01, for giving me the opportunity to participate in

research events in order to share and improve my research results.

iii

ABSTRACT

This thesis provides a formal proposal for the specialization relationship in the i* framework

that allows its use in a well-defined manner. I root my proposal over existing works in different

areas that are interested in representing knowledge: knowledge representation from Artificial

Intelligence and conceptual modeling and object-oriented programming languages from

Software Development. Also, I use the results of a survey conducted in the i* community that

provides some insights about what i* modelers expect from specialization. As a consequence

of this twofold analysis, I identify three specialization operations: extension, refinement and

redefinition. For each of them, I:

 motivate its need and provide some rationale;

 distinguish the several cases that can occur in each operation;

 define the elements involved in each of these cases and the correctness conditions

that must be fulfilled;

 demonstrate by induction the fulfilment of the conditions identified for preserving

satisfaction;

 provide some illustrative examples in the context of an exemplar about travel agencies

and travelers.

The specialization relationship is offered by the i* framework through the is-a construct

defined over actors (a subactor is-a superactor) since it was first released. Although the

overall meaning of this construct is highly intuitive, its effects at the level of intentional

elements and dependencies are not always clear, hampering seriously its appropriate use.

In order to be able to reason about correctness and satisfaction, I define previously the

conditions that must be preserved when a specialization takes place. In addition, I provide a

methodology with well-defined steps that contextualize the formal aspects of this thesis in a

development process.

As a conclusion, this thesis is making possible the use of the specialization relationship in

i* in a precise, non-ambiguous manner.

v

 CONTENTS

Chapter 1. Introduction ... 1

1.1 The Context: i* language .. 2

1.2 The Problem: Specialization in i* ... 3

1.3 Research Goal ... 4

1.4 Methodological Approach .. 5

1.5 Research Context ... 8

1.6 Structure of this Document .. 9

Chapter 2. Research Method .. 11

2.1 Antecedents ... 11

2.2 Exemplar ... 12

2.3 Research Stages .. 13

2.3.1 First Stage: Initial Proposal .. 14

2.3.2 Second Stage: Consolidation of the Proposal .. 16

2.3.3 Third Stage: Validation of the Proposal ... 17

Chapter 3. Background .. 19

3.1 The i* Language .. 19

3.2 A Tour to Inheritance ... 20

3.2.1 Knowledge Representation .. 21

3.2.2 Software Development .. 22

3.2.3 Conceptual Modeling ... 22

3.2.4 Summary .. 23

3.3 Specialization in the i* Framework .. 25

3.3.1 A Literature Review .. 25

3.3.2 Gathering the Community Perception ... 28

Chapter 4. Formalization ... 33

4.1 Formalization of i* Models ... 33

4.2 Formal Support for Specialization .. 44

4.2.1 Additional Functions for Specialization Operations ... 44

4.2.2 Additional Functions for Specialization Process ... 50

4.3 Order Relationships .. 53

vi

4.3.1 Order Relationship for Intentional Element Types ... 53

4.3.2 Order Relationship for Qualitative Contribution Values .. 54

4.3.3 Order Relationship for Strength Values ... 55

Chapter 5. Towards the Formal Definition of Actor Specialization in i* 57

5.1 Actor Specialization .. 58

5.2 Specialization in i* Models ... 59

5.3 Types of Specialization Operations .. 60

5.4 Model Correctness ... 60

5.5 Model Satisfactibility Formalization ... 61

5.6 Specialization Operations Validation ... 64

5.7 Graphical Representation of Subactors ... 65

Chapter 6. Extension ... 67

6.1 Actor Extension .. 67

6.2 Intentional Element Extension ... 72

Chapter 7. Refinement .. 79

7.1 Actor’s Intentional Elements Refinement .. 80

7.2 Qualitative Contribution Link Refinement ... 83

7.3 Dependency Refinement .. 85

Chapter 8. Redefinition ... 91

8.1 Actor Intentional Elements Redefinition .. 91

8.2 Actor Qualitative Contribution Link Redefinition ... 97

8.3 Dependency Redefinition ... 98

Chapter 9. The Specialization Process ... 101

9.1 The Specialization Process ... 101

9.2 Reallocating Dependencies .. 104

9.2.1 Preventive Incoming Reallocation ... 104

9.2.2 Outgoing/Incoming Reallocation ... 105

9.3 Tool Support ... 105

9.4 The Complete Exemplar ... 108

vii

Chapter 10. Conclusions and Future Work.. 121

10.1 Contributions .. 121

10.2 Future Work ... 124

Publications in Relation to this Thesis .. 127

Publications directly related to the PhD thesis ... 127

Other publications related to the PhD thesis .. 129

References .. 131

Appendix A. Survey: Using is-a links in i* models .. 141

viii

LIST OF FIGURES

Figure 1-1. Excerpt of an i* model for an academic tutoring system. ... 3

Figure 1-2. Meeting Scheduler Example (extracted from Yu’s thesis [Yu95]).................................. 4

Figure 1-3. Research Activities ... 7

Figure 1-4. Relationship among Thesis’ Chapters, Research Activities and Publications 10

Figure 2-1. Case Study: Travel Agency SD Model ... 12

Figure 2-2. Case Study: External Services SD Model .. 13

Figure 3-1. Inheritance Evolution ... 24

Figure 3-2. Meeting Schedule SD Diagram ... 25

Figure 3-3. Meeting Scheduler Problem using Tropos ... 26

Figure 3-4. Actor Classification Example .. 26

Figure 3-5. Multiple Inheritance Example .. 27

Figure 3-6. Flood warning systems subactor's SR diagrams (S1 left, S2 right) 27

Figure 3-7. From i* to UML Conceptual Models example ... 28

Figure 3-8. Results for Q1 (left side) and Q2 (right side). For each cluster, the first number is the

number of answers and the second the percentage over the total of answers 29

Figure 3-9. Results for Q3 (left side) and Q4 (right side).. 30

Figure 3-10. Tendencies depending on the is-a use for Q2 ... 30

Figure 3-11. Tendencies depending on the is-a use for Q3 ... 31

Figure 3-12. Tendencies depending on the is-a use for Q4 ... 31

Figure 4-1. Summary of Domains and Functions used in the i* formalization 34

Figure 4-2. Intentional Element Links direction definition (p: source; q: target) 38

Figure 4-3. Supported combinations of Intentional Element Links ... 39

Figure 4-4. Actor Links Direction Definition (a: source, b: target) ... 41

Figure 4-5. Actor Ancestors .. 42

Figure 4-6. Goal Refinement and Extension ... 45

Figure 4-7. Reallocating a Dependency .. 50

ix

Figure 4-8. Re-reallocating a Dependency ... 51

Figure 5-1. An example of use of the is-a link ... 57

Figure 5-2. IE Decomposition Scenarios ... 63

Figure 5-3. Applying graphical rules ... 66

Figure 6-1. extendActorWithOutogoingDependency: Involved Elements 68

Figure 6-2. extendActorWithMainIE: Involved Elements ... 70

Figure 6-3. extendIEWithDecomposition: Involved Elements ... 73

Figure 7-1. refineIE: Involved Elements .. 80

Figure 7-2. refineContributionLink: Involved Elements .. 84

Figure 7-3. refineDependency: Involved Elements ... 86

Figure 8-1. redefineIEWithDecomposition: Involved Elements .. 93

Figure 8-2. Incoming Dependency Reallocation .. 96

Figure 8-3. redefineContributionLink: Involved Elements .. 97

Figure 8-4. redefineDependency: Involved Elements ... 99

Figure 9-1. Specialization Process .. 104

Figure 9-2. Reallocating Outgoing Dependencies after extension ... 105

Figure 9-3: SD diagrams using REDEPEND-REACT .. 106

Figure 9-4. Meeting Scheduler as represented in HiME .. 107

Figure 9-5. Travel Agency complete SD Diagram ... 109

Figure 9-6. Travel Agency SR Diagram (without TA & Customer subactors) 110

Figure 9-7. Superactor TA and subactor FTA SR Diagram .. 111

Figure 9-8. Superactor Customer and subactor Family SR Diagram .. 112

Figure 9-9. Subactors Family and FTA SR Diagram ... 113

Figure 9-10. Superactor TA and subactor UTA SR Diagram ... 114

Figure 9-11. Superactor Customer and subactor Researcher SR Diagram 115

Figure 9-12. Subactors Researcher and UTA SR Diagram .. 116

Figure 9-13. Superactor Customer and subactor Affluent Customer SR Diagram 117

x

Figure 9-14. Superactor TA and subactor Luxury TA SR Diagram jointly with the subactor

Affluent Customer .. 118

Figure 9-15. Superactor TA and subactor Secure TA SR Diagram jointly with superactor

Customer and subactor PayPal .. 119

Figure 9-16. Superactor TA and subactor LowCost TA SR Diagram ... 120

LIST OF TABLES

Table 1-1. Shaw’s characterization of Software Engineering Research Questions 5

Table 1-2. Shaw’s characterization of Software Engineering Research Products 6

Table 1-3. Shaw’s characterization of Software Engineering Research Validation 7

Table 2-1. Summary of activities for Research Stages and Research Questions 14

Table 3-1. i* Published Papers (2006-2011) ... 19

Table 3-2. i* Workshop Editions .. 20

Table 3-3. Inheritance features in Information Systems .. 24

Table 3-4. is-a Survey Questions .. 29

Table 4-1. Concepts and Functions formalized in this section ... 35

Table 5-1.Specialization Operations Information .. 60

Table 5-2. Subactor Elements Syntax ... 65

Table 6-1. Extending an actor with outgoing dependencies .. 68

Table 6-2. Extending an actor with main IEs .. 71

Table 6-3. Intentional Element Extension: Adding Decomposition Links (Means-end) 75

Table 6-4. Intentional Element Extension: Adding Decomposition Links (Contribution and task-

decomposition) .. 76

Table 7-1. Intentional Element Refinement ... 81

Table 7-2. Qualitative Contribution Link Refinement .. 85

Table 7-3. Dependencies Refinement: Refining Dependum .. 87

Table 7-4. Dependencies Refinement: Refining Strengths .. 88

Table 8-1. Intentional Elements Redefinition .. 95

xi

Table 8-2. Qualitative Contribution Redefinition ... 98

Table 8-3. Dependency Redefinition .. 100

Table 9-1. Specialization Operations Summary ... 103

Table 10-1. Model elements changes for specialized actors ... 123

LIST OF SPECIALIZATION OPERATIONS

Specialization Operation 1. Actor specialization. ... 58

Specialization Operation 2. Actor extension with an outgoing dependency. 67

Specialization Operation 3. Actor extension with a main intentional element 70

Specialization Operation 4. Intentional element extension with a decomposition link 73

Specialization Operation 5. Intentional element refinement .. 80

Specialization Operation 6. Qualitative Contribution link refinement 83

Specialization Operation 7. Dependency refinement .. 85

Specialization Operation 8. Intentional element redefinition ... 92

Specialization Operation 9. Qualitative contribution link redefinition 97

Specialization Operation 10. Dependency redefinition ... 99

Chapter 1. Introduction

Goal-oriented modeling approaches are widely used in requirements engineering (RE)

[Lamsweerde01]. The definition of goal formulated by Lamsweerde [Lamsweerde01] is “a goal

is an objective the system under consideration should achieve“. Goals allow capturing

requirements at different levels of abstraction, from high level, representing strategic

concerns, to low level, technical concerns. A remarkable quality is the possibility of recording

the rationale behind them (the why), complementing the what and how dimensions that

classical modeling approaches address. In goal-oriented RE the relationship between the

requirements and their motivating goals is represented explicitly. Goals can be used for

requirements elaboration, verification or conflict management. They are also used to explain

requirements to stakeholders, and the notion of goal refinement provides a natural

mechanism for structuring complex requirement documents.

Agent and multi-agent systems, which use agents as main abstraction entity, are a

consolidated type of systems in software engineering. According to [Jennings-etal98] “an agent

is a computer system, situated in some environment that is capable of flexible autonomous

action in order to meet its design objectives”. The use of agents as abstractions helps in the

development of complex and distributed systems: as mentioned in [Jennings-etal99] [Jennings-

etal00], agent-oriented decompositions are an effective way of partitioning the problem space

of a complex system, the key abstractions of the agent-oriented mindset are a natural means

of modeling complex systems and the agent-oriented philosophy for dealing with

organizational relationships is appropriate for complex systems. In [Wooldridge-etal00] some

other important reasons about the necessity of adopting this approach can be found. Agent-

oriented models became really popular in several disciplines of software engineering, and here

the link with RE appears. There are some proposals for agent-oriented models in RE, and some

of them focus in goal-oriented RE.

The i* framework, presented by Prof. Eric Yu in his PhD thesis (advised by Prof. John

Mylopoulos) [Yu95], falls into this category. i* (pronounced eye-star) is a goal- and agent-

oriented framework. Although primarily conceived in the RE context, i* can also be applied to

business process reengineering, organizational impact analysis and software process modeling,

among others. The i* framework is composed of a modeling language and some reasoning

techniques. In this thesis I am primarily interested in the language, which I name the i*

language in the rest of the document. This language blends concepts that come from goal-

2 Chapter 1. Introduction

oriented RE (e.g., goal), agent-oriented RE (e.g., agent), modeling in general (e.g., aggregation,

specialization) and the i* framework in particular (e.g., dependency). As a goal-oriented

language, its aim is including the why of the decisions taken during system development. As an

agent-oriented language, it includes the notion of agent and even more generally, the notion

of actor. The concept of interest for this PhD thesis is that of specialization, which appears in

the i* language in the form of is-a link between actors.

1.1 THE CONTEXT: I* LANGUAGE

The i* framework [Yu95] was formulated for representing, modeling and reasoning about

socio-technical systems. It has been applied for modeling organizations, business processes

and system requirements, among others. Its modeling language (the i* language) is

constituted basically by a set of graphic constructs which can be used in two types of diagrams.

Firstly, the Strategic Dependency (SD) diagram, which allows the representation of

organizational Actors, specialized on Roles, Positions and Agents. Actors can be related by is-a,

is-part-of, covers, instance-of, plays and occupies relationships. Actors can also have social

dependencies. A Dependency is a relationship among two actors, one of them, named

Depender, which depends for the accomplishment of some internal intention from a second

actor, named Dependee. The dependency is then characterized by an intentional element

(Dependum) which represents the dependency’s element. The primary intentional elements

are: Resource, Task, Goal and Softgoal. A softgoal represents a goal that can be partially

satisfied, or a goal that requires additional agreement about how it is satisfied. They have

usually been used for representing non-functional requirements and quality concerns.

Secondly, the Strategic Rationale (SR) diagram represents the internal actors’ rationale. The

separation between the external and internal actor’s worlds is represented by the actor’s

boundary. Inside this boundary, the rationale of each actor is represented using the same

types of intentional elements described above. Additionally these intentional elements can be

interrelated by using relationships such as Means-end (e.g., a task can be a mean to achieve a

goal), Contributions (e.g., some resource could contribute to reach a quality concern or

softgoal) and Decompositions (e.g., a task can be divided into subtasks).

Figure 1-1 shows an excerpt of an i* model for an academic tutoring system. There appear

most of constructs already described. The intuitive meaning of this model should help to

capture the practical use and the semantics of the i* framework.

For a more complete description, I refer to [Yu95]. A summary and a comparative of dialects

can be found in [Ayala-etal05], and a reference model in [Yu11, ch.17].

1.2 The Problem: Specialization in i* 3

Figure 1-1. Excerpt of an i* model for an academic tutoring system.

1.2 THE PROBLEM: SPECIALIZATION IN I*

Specialization was proposed as part of i* from the very beginning. To illustrate its usage, I

consider an example introduced by Yu in his PhD thesis about a meeting scheduler system.

Figure 1-2 shows this example. It shows two actors, Meeting Initiator and Meeting Participant,

that collaborate in order to jointly achieve the overall goal of organizing a meeting. The two

actors depend on each other through some dependencies: if one actor fails on satisfying some

dependency, the other may fail too. It can be observed in the diagram a third actor, Important

Participant, defined as a specialization (subactor) of Meeting Participant (superactor).

In spite of its use in this and other examples, Yu did not define in the rest of his thesis what the

implications of specialization are, so several questions arise:

 Are all the dependencies defined on the superactor inherited by the subactor?

 Are the subactors’ goals exactly the same as their superactor’s?

 May a subactor have additional goals?

 May a subactor get rid of some superactor’s goal?

As an example, in Figure 1-2, Important Participant has two incoming dependencies. Yu did not

explain how the subactor behavior changes because of them. It seems that the subactor’s

goals are exactly the same as its superactor’s. In fact, when Yu presented the actor goals, he

modeled Meeting Participant’s goals, but he did not mention anything about Important

Participant’s. So, it can be interpreted as: Important Participant’s goals are the same as

Meeting Participant’s. However, Important Participant has new incoming dependencies, and

this can be also interpreted as: Important Participant’s behavior is not exactly the same as the

Meeting Participant’s.

Actors

Role

Position

Agent

Generic Actor

Intentional Elements

Goal

Softgoal

Task

Resource

Dependencies

Task-dependency

Intentional Relationships

Means-end Contribution

Help | …| Hurt

Decomposition

Actor’s Relationships

is_a | is_part_of | instance_of |

covers | plays | occupies

An actor and its boundary

StudentTutor

Optimal

satisfaction

Timely

attention

Other
functions

done

Doubts
solved

Doubts
clarified

Ask for
information

Information
about career

Solve
doubts

by email

D

Pay attention
to students

Help

Some+

Solve
doubts

personaly

D

D

D
D

D

Hurt

X

Strengths

X Critical

Committed

O Open

Supervise
students’ career

Information
about career

provided

4 Chapter 1. Introduction

Figure 1-2. Meeting Scheduler Example (extracted from Yu’s thesis [Yu95])

One could argue that maybe the amount of information included in this i* seminal work (Yu’s

thesis) was so high that it is justifiable to find some incomplete points as such. However, this

situation has not changed ever since. As I will show in Section 3.3, modern approaches either

do not tackle specialization at all or use it without stating the consequences. Therefore, the

need for providing formal semantics to this fundamental modeling construct, as it happened in

other modeling languages or paradigms, still remains.

1.3 RESEARCH GOAL

This thesis is motivated by the silences and ambiguities in the interpretation of is-a link

construct, as outlined in the previous section and presented in more detail in the state of the

art in Section 3.3.

I argue that the meaning of specialization should be inferred from the valid methodological

uses of this construct. From a modeling point of view, this means determining which is the

valid set of modeling operations that can be applied using the is-a construct. Therefore, the

general goal of this work can be stated as:

Presenting a set of specialization operations applicable in the process of

building models with the i* language.

As a result of my investigation, the following general research question may be expected to be

answered:

RQ1: How can actor specialization be applied when building models with

the i* language?

However, when this research questions started to be investigated, a new challenge arose. As

reported in many works (e.g., [Cares-etal11]), there are literally dozens of variations of i* in

the literature, from minor ones to major variants merging i* with other languages. So a first

decision was to decide which of these variations I was going to use. Since I wanted to be as

inclusive as possible, I decided to select the most widely acknowledged constructs, what I

name the i* language core, then a second research question naturally emerged:

RQ2: What constructs configure the i* language core?

1.4 Methodological Approach 5

1.4 METHODOLOGICAL APPROACH

Shaw provides several ways of characterizing software engineering research, in terms of what

she describes as research settings, research products, and validation techniques [Shaw01].

Table 1-1, 1-2 and 1-3 summarize these characterizations.

Table 1-1. Shaw’s characterization of Software Engineering Research Questions

Research Setting Sample Question

Feasibility Is there an X, and what is it? Is it possible to accomplish X at all?

Characterization What are the important characteristics of X? What is X like? What, exactly, do we mean
by X? What are the varieties of X, and how are they related?

Method/Means How can we accomplish X? What is a better way to accomplish x? How can I automate
doing X?

Generalization Is X always true of Y? Given X, what will Y be?

Selection How do I decide between X and Y?

The settings of this research, in terms of Shaw’s characterizations (Table 1.1), are feasibility,

characterization, and method/means. RQ2 is clearly related to Characterization, but RQ1 is

involving the three settings so I decompose it into three subquestions:

 RQ1-1: How is the is-a link defined and used by modelers? (Feasibility)

 RQ1-2: Which are the admissible modifications in a subactor? (Characterization)

o RQ1-2.1: How is specialization defined in other related areas?

o RQ1-2.2: Which are the types of changes over a superactor that can be done in

the subactor?

o RQ1-2.3: How are these changes included in the diagrams?

 RQ1-3: How can these changes be applied? (Method/Means)

Besides the research questions directly related to the proposal definition, a question related to

the proposal validation must be added. In order to validate the models where specialization is

applied, the following research question rose:

 RQ3: How can the model correctness be validated when specialization is used in i*

models? (Method/Means)

Referent to the definition of the is-a construct (RQ1-1), I have focused my research exploring in

which part of the i* models, and under which conditions, it may be applied. Also, I have

analyzed how is-a affects specialized goals and dependencies, and how its goals can be

modified to achieve these new dependencies or if it is possible that this modified behavior can

create new outgoing dependencies.

As part of the definition of admissible changes (RQ1-2.2), it is important to determine how

these changes will be translated into the diagrams (RQ1-2.3). This is especially important since

the i* language is a notation in which graphical representation plays a fundamental role.

6 Chapter 1. Introduction

A deep knowledge about the language is required (RQ2) for defining the admissible changes

(RQ1-2.2).

These questions have been addressed and refined by an empirical iterative process detailed in
Chapter 3.

Table 1-2. Shaw’s characterization of Software Engineering Research Products

Research Product Research Approach or Method

Qualitative or

Descriptive model

Organize & report interesting observations about the world. Create & defend
generalizations from real examples. Structure a problem area; formulate the right
questions. Do a careful analysis of a system or its development.

Technique Invent new ways to do some tasks, including procedures and implementation techniques.

Develop a technique to choose among alternatives

System Embody result in a system, using the system development as both source of

insight and carrier of results

Empirical
predictive model

Develop predictive models from observed data

Analytic model Develop structural (quantitative or symbolic) models that permit formal analysis

The products of this methodological process, in terms of Shaw’s characterization (Table 1-2),

can be described as:

 RQ1-1: A careful analysis of the definition and use of is-a construct (Descriptive model).

o Studying how the is-a construct has been used in models presented by the

research community.

o Conducting a survey over the research community (experts) about the

consequences of using the is-a construct over i* Diagrams.

 RQ1-2:

o RQ1-2.1: A careful analysis of the use of specialization in other areas

(Descriptive model). Based on the result of the previous analysis, a proposal of

(Technique):

 RQ1-2.2: a set of operations applied over the superactor to obtain the

subactors, and

 RQ1-2.3: their graphical representation in the i* diagrams.

 RQ1-3: A methodology to apply specialization operations (Technique).

 RQ2:

o A systematic analysis of the definition of the i* language and its dialects

(Descriptive model).

o A model definition in order to facilitate the specialization operations

formalization (Analytic model).

 RQ3:

o Definition of model validation for models that contains specialization

(Technique).

1.4 Methodological Approach 7

The corresponding research products are descriptive and analytic models and techniques. The

validation techniques used in validating this research, in terms of Shaw’s characterizations

(Table 1-3) are:

 V1: Present an academic exemplar for validating methodologically the proposed

operations (Persuasion).

 V2: Formalize the specialization operations to validate formally their correctness

(Analysis).

 V3: Formal validation for the operations using the chosen technique resulting from

RQ3 (Analysis).

 V4: Include specialization operations in an existing tool (Implementation).

Table 1-3. Shaw’s characterization of Software Engineering Research Validation

Technique Grounds

Persuasion A technique, design or example.

Implementation Of a system or technique.

Evaluation With respect to a descriptive model, a qualitative model, an empirical quantitative model.

Analysis Of an analytic formal model, an empirical predictive model.

Experience Expressed in a qualitative or descriptive model, as decision criteria or an empirical predictive
model.

The four different validation techniques are added to the activities defined to produce the

research products to have a complete list of activities related to the results of this dissertation.

The complete list of research activities, corresponding to produced products and validation, is

shown in Figure 1-3. There is a detailed list of these activities allocated in the three stages that

this thesis has been conducted (see Chapter 2).

Figure 1-3. Research Activities

Specialization Semantic Definition (RQ1-2.2)

Specialization Syntax Definition (RQ1-2.3)

i* Models Formalization (RQ2)

Validation

Specialization in i* Models (RQ1-1)

Specialization in Other Areas (RQ1-2.1)

Research Products

Methodology Definition(RQ1-3)

Academic Exemplar (V1)

Tool Support (V4)

Specialization Formalization (V2)Specialization Survey (RQ1-1)

i* Models Definition (RQ2)

Correctness Definition in i* models (RQ3)

Model Correctness Validation (V3)

Correctness Formalization in i* models (RQ3)

8 Chapter 1. Introduction

1.5 RESEARCH CONTEXT

The research in this thesis has been conducted within the GESSI (Software Engineering for

Information System) research group from the Universitat Politècnica de Catalunya -

BarcelonaTech (UPC). The GESSI group conducts research in many fields of software

engineering, with particular emphasis on requirements engineering, software quality, software

architecture, service-oriented computing, open source software, software modeling and

empirical research.

This thesis is focused on the i* modeling language, which can be connected to requirements

engineering and software modeling research lines, which have been progressing through

several projects the group has carried out and is currently carrying out. Some of the most

representative are: Requirements Engineering for Multi-stakeholder Distributed Systems

[MSDS], Definition of the i* format by using the metamodel compiler ADOxx v1.0 [ADOxx] and

Requirement-based production of service-oriented software [ProsReq]. I have been involved in

all of them, in fact [MSDS] was the initial point of this thesis.

In the [MSDS] project, the group collaborated with the Christian Doppler Laboratory for

Automated Software Engineering at the Johannes Kepler Universität (Linz, Austria) for creating

a framework that traces the requirements through all life-cycle of the system, including

deployment and runtime. The first proposal of this framework was presented in [Clotet-etal07]

and the collaboration has pervaded the end of the project, for instance, [Clotet-etal08] and

[Grunbacher-etal07] present how model variability for Service-oriented Systems and [Franch-

etal11] presents the current stage of the framework proposed called MAeSOS. This framework

has as starting point the system requirements modeled using i*. When these models were

constructed, the intensive use of the is-a construct was necessary, and after discovering the

state of art as reported in Section 3.3, we defined some ad-hoc rules [Clotet-etal07bis] that

quickly become too shallow. At that point the necessity of a full definition of the construct, the

main aim of this thesis, arose.

The [ADOxx] project was a collaboration with the Department of Knowledge Engineering (DKE)

of the Universität Wien (Vienna, Austria). DKE offers a tool for creating modeling tools based

on metamodels. The main aim of this collaboration was to use the i* reference model of our

group as the metamodel used to create a modeling tool and applying all the techniques and

algorithms provided for DKE tool for i* models. Since our reference model includes

specialization, the connection with this thesis is also clear.

The [ProsReq] project is an ongoing collaboration with the Centro de Investigación en Métodos

de Producción de Software (PROS) at the Universidad Politécnica de Valencia (Valencia, Spain).

It consists on defining, designing and implementing a software production process for service-

oriented software systems. This production process consist on modeling functional and non-

functional requirements and determine the transformation of these requirements into a

testable service-oriented architecture model ready to be used as starting point by later code

generation processes. Since i* is one of the models chosen for the requirements phase, the

connection with this thesis also appears.

1.6 Structure of this Document 9

At the time of writing this thesis, further collaborations are on the way. For instance, GESSI is

starting a collaboration with the NEMO group at Universidade do Espirito Santo (Vitoria, Brasil)

fostering the use of foundational ontologies in general, and UFO in particular [Guizzardi05], as

a way to clarify the meaning of i* and as the basis to propose a normative definition. Our first

contribution in this line is presented in [Franch-etal11bis]. However, this work is not part of

this thesis and it is reported here just for information purposes.

1.6 STRUCTURE OF THIS DOCUMENT

The thesis document is structured in the following 10 chapters:

 Chapter 1. Introduction. In this chapter I provide an introduction to the work, the

objectives of the thesis and an overview of the proposal.

 Chapter 2. Research Method. It presents the research process used to produce the set

of operations for actor specialization proposed in this thesis.

 Chapter 3. Related Work. In this chapter there is an overview of the state-of-the-art

on the use of inheritance in i* and in some related areas (knowledge representation,

conceptual modeling and object oriented programming). It is also presented the

results of a survey over the research community, about the consequences of using is-a

construct over the i* diagrams.

 Chapter 4. Formalization. This chapter presents the formalization of i* models. As well

as some functions needed for the specialization operations formalization presented in

Chapters from 6 to 8 .This formalization is done in algebraic way. It is also including the

model correctness formalization in terms of satisfaction.

 Chapter 5. Towards the Formal Definition of Actor Specialization in i*. This chapter

provides an overview of the operations (semantic and syntax) that will be detailed in

Chapters from 6 to 8.

 Chapter 6. Extension. This chapter contains a detailed description and formalization of

the operations related to add new information to the specialized actors. Including

examples extracted from the case study presented in Section 2.2. The methodological

validation, in terms of actor satisfaction, is also included in this chapter.

 Chapter 7. Refinement. This chapter contains a detailed description and formalization

of the operations related to change, in a restricted way, some inherited elements in

the specialized actors. Including examples extracted from the case study presented in

Section 2.2. The methodological validation, in terms of actor satisfaction, is also

included in this chapter.

 Chapter 8. Redefinition. This chapter contains a detailed description and formalization

of the operations related to change, even delete some inherited elements in the

specialized actors. Including examples extracted from the case study presented in

10 Chapter 1. Introduction

Section 2.2. The methodological validation, in terms of actor satisfaction, is also

included in this chapter.

 Chapter 9. Specialization Process. This chapter presents how to use specialization

operations from the methodological point of view.

 Chapter 10. Conclusions and Future Work. This chapter summarizes the contributions

of the thesis and the future work.

 Published Papers for this Thesis. The list of publications related to this thesis.

Figure 1-4 shows the relationship among the thesis’ chapters summarized in this section,

research activities described on Section 1.4 and the papers related to this thesis dissertation

presented in Publications in Relation to this Thesis. Further details about activities and

publications can be found in Section 2.3.

Figure 1-4. Relationship among Thesis’ Chapters, Research Activities and Publications

Chapter 2. Research Method

The research undertaken in this thesis has been conducted in three stages, each one with well-

defined objectives and activities. The results of each stage have been analyzed and used to

refine the objectives and activities of the succeeding ones.

This section first introduces the antecedents that motivated the thesis. Then, it introduces a

summary of the exemplar that I will use in the document to develop the proposal. Last, I

describe the three research stages, including a brief description of their objectives, the

activities performed and the main findings resulting from them.

2.1 ANTECEDENTS

As mentioned in Section 1.5, the research in this thesis was originated from previous research

projects. All started with the project Requirements Engineering for Multi-stakeholder

Distributed Systems (MSDS) in 2006-07. The aim of this project was to present a framework to

represent and negotiate requirements for MSDS. The i* framework was selected because the

notion of stakeholder fits very naturally with that of actor, stakeholders’ needs can be easily

represented as actors goals, and dependencies are very useful to represent relationships

among them. In this context, we faced often the need of representing different types of

stakeholders that were defined as a specialization of general ones (e.g., Family Travel Agency

and University Travel Agency as specialization of Travel Agency). This need also arose with

actors representing software (e.g., Credit Card Payment System and Bank Transfer System as

specialization of Payment System). In this situation we experimented the problem reported in

the introduction of this thesis: it is very natural to introduce the is-a link to represent actors’

classification but the effects of this link when developing the corresponding models were not

clear at all.

After confirming that there were no proposals addressing this problem, we formulated some

ad-hoc rules. These rules were defined first to this project’s models but after gaining some

experience I generalized them to be used in general i* models.

12 Chapter 2. Research Method

2.2 EXEMPLAR

The exemplar presented in this section is an academic exemplar that arose in the project

[MSDS] mentioned in the previous section. It is complex enough to allow introducing the

different specialization operations that are the kernel of this thesis as well as the method I am

going to formulate for driving specialization formulation.

In this exemplar, I consider an actor for a Travel Agency that offers a customized online travel

platform to their customers. Travel agencies may address different types of customers, and I

decide to declare new actors as specializations using the is-a link. Figure 2-1 below shows two

of such specializations, University Travel Agency and Family Travel Agency. University Travel

Agency represents travel agencies specialized in supporting researchers in planning trips,

whilst Family Travel Agency is focusing on trips for families with kids. Figure 2-1 shows a piece

of SD model with some specialization.

Figure 2-1. Case Study: Travel Agency SD Model

There are two kinds of stakeholders: customers and travel agencies, which are specialized

depending on the type of customers. The superactor Customer states the dependencies that a

general customer has on travel agencies represented by the superactor Travel Agency: the

general softgoal of getting Cheap Travels and the resource that results from this goal, the

Travel Offering itself. In return, the Customer is expected to provide the Customer Data

requested by the Travel Agency. The Customer’s subactor Family has an additional

dependency on Family Travel Agency asking for Children Activities Offered, whilst the other

Customer’s subactor Researcher requests an additional facility to University Travel Agency for

Search Conferences when planning trips1.

1 A recurrent matter of discussion when building i* models is the classification of the intentional elements

into their types. For instance, one could have also modelled the Search Conference task as a more general

goal, Conferences Obtained. In this thesis I will not justify these decisions since it does not affect the

proposal itself, I may refer e.g. to [Franch-etal07] for a methodological discussion about this issue.

2.3 Research Stages 13

Figure 2-2. Case Study: External Services SD Model

In this example, specialization is also used for the external services used by the system. Figure

2-2 shows an excerpt that models the relationships between the Travel Agency and the

external services. The external services have been modeled using the general actor Services

Provider. There are two specializations for this actor grouping the services by type: Travel

Services Provider and Payment Services Provider.

In the following sections small pieces of the whole model are included to illustrate

corresponding specialization operation. In Section 9.4, after all operations definitions, the

whole example is included.

2.3 RESEARCH STAGES

My research has been conducted through three stages designed to answer the research

questions presented in the previous chapter. Each research question has associated some

activities that have been developed in one or more stages. Table 2-1 shows how the activities

have been allocated into the different stages associated with the research questions that are

addressed to answer or the validation method.

The following subsections detail the information shown in Table 2-1, including the objectives

that correspond to each stage and the results and publications for each one.

14 Chapter 2. Research Method

Table 2-1. Summary of activities for Research Stages and Research Questions

 Initial Proposal Proposal Consolidation Proposal Validation

RQ1-1: is-a link? Inheritance in i* Models

Inheritance Survey

RQ1-2.1: Inheritance? Inheritance in Other

Areas

RQ1-2.2: Semantics Initial Specialization

Semantics

Complete Specialization

Semantics

RQ1-2.3: Syntax Initial Specialization

Syntax

Complete Specialization

Syntax

RQ1-3: Method Methodology Definition

RQ2: i* Constructs? i* Model Definition &

Formalization

RQ3: Correctness? Correctness in i* Models

Definition &

Formalization

V1: Exemplar Initial Proposal

Validation

Complete Proposal

Validation

Method Validation

V2: Formalization Specialization Formalization

V3: Correctness Model Correctness Validation

V4: Tool Support Analyze i* Tools

Definition &

Development of new

functionalities in a Tool

Complete Tool Support

2.3.1 FIRST STAGE: INITIAL PROPOSAL

Objectives

 O1.1: Identify the is-a link usage in i* models (RQ1-1).

 O1.2: Identify the use of specialization and related concepts (inheritance, ...) in other

areas (RQ1-2.1).

 O1.3: Identify an initial set of specialization operations in an informal way (RQ1-2.2

and RQ1-2.3).

 O1.4: Include the proposal in the GESSI i* reference model2 (RQ1-2.2) and the iStarML

model interchange format (RQ1-2.3).

 O1.5: Apply these operations to the exemplar (V1).

 O1.6: Decide if these operations can be included in an existing i* modeling tool (V4).

2 The i* reference model formulated by the research group GESSI as presented in [Yu11, ch.17].

2.3 Research Stages 15

Activities

 Perform a bibliographic review of the state-of-the-art on how the is-a link is used in i*

models (O1.1).

 Conduct a survey in the research community (experts) asking for the expected changes

in i* diagrams when an actor is a specialization of another (O1.1).

 Perform a literature review of the state-of-the-art on the use of specialization and

related concepts in other modeling areas. The areas identified are knowledge

representation, conceptual modeling and object oriented programming (O1.2).

 Elicit, from the state of the art, an initial set of operations defined in an informal way,

validated by application to an exemplar (O1.3 and O1.5).

 Update the GESSI i* reference model (O1.4).

 Include the necessary information into the iStarML model interchange format (O1.4).

 Analyse the existing i* modeling tools (O1.6).

 Specify and implement the new functionalities needed for supporting specialization

operations in a modeling tool (O1.6).

Results

 i* modelers use the is-a link in the same way as presented in Yu’s thesis, i.e., it is used

for actor specialization without further consequences in any of the two involved actors

(O1.1).

 The survey results reveal that i* modelers think that it should be possible to introduce

changes in the specialized actor (O1.1).

 Related research areas share the same concerns about this construct. In some cases

specialization only allows the addition of new information to the specialized concept,

and sometimes some modification can be done. In knowledge representation both

options are present, in conceptual modeling the majority do not allow modifications

and in object oriented programming the majority allows modifications (O1.2).

 This proposal adopts the more general view for the sake of generality. Some

reflections on the consequences of this issue are provided. Operations are extension,

refinement and redefinition, which will be defined in detail in the next chapters.

Semantic and syntactic (graphical) definitions for these operations are provided (O1.3

and O1.5).

 The reference model is updated to support the specialization operations (O1.4).

 The iStarML interchange format is updated to support the specialization operations

(O1.4).

 Due to the proposed syntax, it is possible to represent information in the specialized

actor using the existing tool REDEPEND with minor changes (O1.6).

 The functionality of the existing tool HiME [HiME] created by the GESSI group (the

model edition part of the former J-PRiM tool [Grau-etal06]) is enhanced to support

these operations (O1.6).

16 Chapter 2. Research Method

Published Results

[Clotet-etalt07bis] includes a short summary about how the is-a construct is used in i* models

and the initial set of operations over the intentional elements. The exemplar presented in

Section 2.2 is used to illustrate the operations with examples. It was published in the

Proceedings of the 17th International Workshop on Agent-Oriented Information Systems (AOIS

2007), as part of the CAiSE 2007 Proceedings of Workshops and Doctoral Symposium.

[Lopez-etal08] is a position paper that present the objectives of this research and the initial set

of operations to the i* community. It was published in the Proceedings of the 3rd International

i* Workshop (iStar 2008).

[Lopez09] presents the PhD proposal to senior researchers in a PhD Colloquium. It also

contains the result of the research until that moment. It was published in the Proceedings of

the ER 2009 PhD Colloquium, affiliated to the 28th International Conference on Conceptual

Modeling (ER 2009).

[Lopez-etal09] presents the functionalities added to the HiME tool in order to support the

specialization operations, including the modification of the iStarML interchange format to

include specialization. It was published in Revista de Informática Teórica e Aplicada. Volume 16

– number 2. This publication corresponds to the Proceedings of the ER 2009 posters and

demonstrations session, affiliated to the 28th International Conference on Conceptual

Modeling (ER 2009).

2.3.2 SECOND STAGE: CONSOLIDATION OF THE PROPOSAL

Objectives

 O2.1: Get the final proposal of specialization operations in an informal way (RQ1-2.2

and RQ1-2.3).

 O2.2: Include the proposal in the GESSI i* reference model (RQ1-2.2) and the iStarML

model interchange format (RQ1-2.3).

 O2.3: Define a specialization process (RQ1-3).

 O2.4: Identify how model correctness can be validaded (RQ3).

 O2.5: Apply these operations to the exemplar using the defined process (V1).

 O2.6: Have a tool that supports the complete proposal (V4).

Activities

 Complete the set of operations defined in the first stage to embed all types of i* model

elements (O2.1).

 Perform the necessary modifications to the i* reference model used by GESSI (O2.2).

 Include the necessary information into the iStarML model interchange format (O2.2).

 Define the method that coordinates the activities to undertake when defining a is-a

specialization link (O2.3).

 Perform a bibliographic review in related areas to define the model correctness in i*

models for validating specialization operations (O2.4).

 Validate the set of operations applying them over the exemplar (O2.5).

 Increase the functionality of the HiME tool for including the complete proposal (O2.6).

2.3 Research Stages 17

Results

 The final set of operations with a full analysis of all the cases of application found (O2.1

and O2.5).

 The GESSI i* reference model updated to support the new version of specialization

operations (O2.2).

 The iStarML model interchange format updated to support the new version of

specialization operations (O2.2).

 The specialization operations defined such that only one operation can be applied over

an inherited element. Therefore, the order in which the operations are applied does

not alter the resultant model (O2.3).

 Actor satisfaction as technique for correctness validation (O2.4).

 A formal definition for actor satisfaction (O2.4).

 The HiME tool updated to include all the functionalities needed for support the

complete proposal (O2.6).

Published Results

[Cares-etal10] presents the current stage of the research group GESSI respect to the i*

metamodel proposal. As part of this research, it is reported how the is-a link between two

actors affects to the other model elements in the metamodel. It was published in the

Proceedings of the 4th International i* Workshop (iStar 2010).

2.3.3 THIRD STAGE: VALIDATION OF THE PROPOSAL

Objetives

 O3.1: Define a formalization of i* models (RQ2).

 O3.2: Provide a formal validation of the operations (V2).

 O3.3: Define a formalization of satisfaction in i* models (RQ3).

 O3.4: Conduct a validation in terms of model satisfaction (V3).

Activities

 Provide a convenient formalization of i* models in an algebraic way (O3.1).

 Formulate a set of assumptions/decisions needed to formalize i* models (O3.1).

 Provide formalization of the specialization operations in an algebraic way (O3.2).

 Provide formalization for model elements’ satisfaction in an algebraic way(O3.3).

 Study the model elements’ satisfaction when a specialization operation is applied over

an element that appears in a subactor (O3.4).

Results

 A formal definition of the i* language core (O3.1).

 A formal definition of the specialization operations (O3.2).

 A formal definition of model elements’ satisfaction (O3.3).

 Methodological validation taking into account the assumption that the specialized

actor satisfaction must imply the general actor satisfaction (O3.4).

18 Chapter 2. Research Method

Published Results

[Lopez-etal11] presents the ambiguities and silences that were found during the formalization

of i* models and the decisions that I made in the formalization. A metamodel for this final

proposal, name “i* core”, is presented. Also, some modifications to the core are proposed to

be discussed. It has been published as full research paper in the Proceedings of the 30th

International Conference on Conceptual Modeling (ER 2011).

[Lopez-etal12] presents the specialization operations that correspond to extension and

refinement jointly with the formalization of the model and these operations. It has been

published as a full research paper in the Proceedings of the 31st International Conference on

Conceptual Modeling (ER 2012). It got the Best Student Paper Award.

[Lopez-etal12bis] is a research report that complements the results published in [Lopez-

etal12]. It includes all the operations’ correctness proofs and the full text of the survey, which

could not be included in [Lopez-etal12] for lack of space.

Chapter 3. Background

In this chapter I provide the necessary background for understanding the thesis proposal.

3.1 THE I* LANGUAGE

i* is currently one of the most widespread goal- and agent-oriented modeling and reasoning

frameworks. As an indicator of this usage, [Cares-etal11] presented a review conducted over

the following conferences and journals for the period 2006-2010: ER, CAiSE, REJ, DKE, IS

Journal, RE, RiGiM, WER, i* workshop, and it included also the recent book on i* [Yu11]. I have

extended it to include also year 2011. This literature review shows that the requirements

engineering community is paying a lot of attention to this framework. Table 3-1 and Table 3-2

show some numbers that refer to the number of contributions. Table 3-1 shows the number of

contributions in the conferences and journals aforementioned, not including neither the i*

workshop nor the i* book. Almost 50% of the contributions are proposing some change to the

original proposal. In the i* Related column appears the number of papers where i* is used with

modeling purposes and the i* with Changes column shows the number of these papers where

some new constructs has been included to the Yu’s proposal to fit the work presented in them.

Table 3-1. i* Published Papers (2006-2011)

 Venue Reviewed Papers i* Related i* with Changes

Journals REJ 89 17 6

DKE 532 3 1

ISJ 294 1 1

International

Conferences

CAiSE 184 21 14

RE 348 22 9

ER 251 20 14

Workshops RIGIM (20073-2009) 15 8 4

WER 98 17 3

TOTAL 1811 109 52

3 The first edition was held at 2007 and then 2008 and 2009. The 4th edition was run in 2012.

20 Chapter 3. Background

As a second indicator, I show the growth of the i* community in relation to their participation

in the i* workshop, see Table 3-2. These numbers show that the interest is growing, the time

between editions is shortening and the contributions increased. This table also shows that in

every edition there is some contribution that includes a change to the original proposal (only

contribution with explicit changes has been counted as changes) and remarkably the number

of proposals of changes has increased in a significant way in the last two editions (up to the

50% in the last one). It has to be also mentioned that in 2011, in addition to the regular

scientific workshop, an industrial showcase (Exploring the Goals of your Systems and

Businesses4) was organized in London with more than 40 attendees.

Table 3-2. i* Workshop Editions

i* Workshop Edition Colocated with Contributions i* with changes

2001 Stand-alone 13 5

2005 Stand-alone 11 1

2008 IDEAS 205 2

2010 CAISE 23 7

2011 RE 25 12

TOTAL 92 27

3.2 A TOUR TO INHERITANCE

As detailed below, specialization is an abstraction mechanism based on the concept of

inheritance. This section reviews the general concept of inheritance in different areas and how

the is-a link is used in the i* framework. I include also the results of a survey conducted on

the i* community about how the is-a link is used.

The idea of organizing concepts into hierarchies (taxonomies) comes from several centuries

ago. Taxonomy comes from the two Greek words taxis (meaning “order” or “arrangement”)

and nomos (meaning “law” or “science”), and Aristotle (384-322 BC) already classified species

in his Historia Animalum6. The idea is starting by making broad groups (general) and then

subdividing those groups into smaller groups (specializations) repeating until you have small

enough groups to easily handle.

In the Information Systems engineering discipline, several abstraction mechanisms are used to

improve the quality of the software produced, among them specialization and its dual

mechanism, generalization. Inheritance is presented as an inference rule for generalization; as

stated by Mylopoulos “generic concepts have been traditionally organized into taxonomies,

4 http://www.city.ac.uk/informatics/school-organisation/centre-for-human-computer-interaction-

design/istar11

5 There is one article generic for modelling languages, not specifically to i*.

6 The illustration used in the cover corresponds to the Arbor naturalis et logicalis by Ramon Llull (logica

nova, 1303), that includes a version of the Tree of Porphyry, it is a classic classification of a "genera of

being" created by the philosopher Porphyry (234–c. 305 BC) applying the Aristotle’s Categories.

3.2 A Tour to Inheritance 21

referred to as is-a or generalization hierarchies, which organize all classes in terms of a partial

order relation determined by their generality/specificity” [Mylopoulos98]. Danforth and

Tomlinson state that “to inherit is to receive properties or characteristics of another, normally

as a result of some special relationship between the giver and the receiver” [Danforth-

Tomlinson88].

Inheritance has been used in different related contexts. In the rest of this subsection, I go over

the use of inheritance for knowledge representation and reasoning (the same information is

not stored at different places) and for software development (the same code is not written at

different places). Between these two areas lies Conceptual Modeling, focusing on how to

represent knowledge/information oriented to develop software and store data (the same

information and behavior are not stored and developed in different places).

3.2.1 KNOWLEDGE REPRESENTATION

Inheritance was first introduced by M.R. Quillian in 1966 as part of his proposal for semantic

networks [Quillian66] based on semantic nets for machine translation of natural languages

[Richens56]. A semantic network was at that time a new way to represent knowledge by

means of a graph of concepts, based on the way how the long-term memory information in

human brain (semantic memory) is organized and retrieved. Nodes (representing concepts,

events, ideas, etc.) were connected using links representing semantic relationships like is-a,

for instance “an elephant is-a mammal”, creating a hierarchy of nodes. Nodes have attributes

associated to properties, like “mammal has 4 legs” or “birds can fly”. On this hierarchy, the

lowest nodes have their own attributes and inherit all the attributes from the nodes that

precede them in the hierarchy. The attributes are located following the cognitive economy

principle, which refers to the fact that the attributes are stored at the highest possible level in

the hierarchy and not re-represented at lower levels. There are different uses for is-a links, as

shown by Brachman who collects different meanings depending on what kind of nodes are

linked (individual or general concepts) [Brachman83]. In the previous example, elephant and

mammal can be considered general concepts. But in the example “Clyde is-a elephant”, the

is-a link is also used to denote the relation between the individuals and their general concept.

Ever since semantic networks emerged, other proposals have included inheritance as the way

to represent information, for example NETL [Fahlman79] and SNePS [Shapiro79]. These

proposals can be named as Inheritance Networks. These networks consider two kinds of

inheritance: strict and defeasible [Brachman-Levesque04]. In strict inheritance, a concept

inherits all the attributes of its predecessors on the is-a hierarchy and can add its own

attributes. On the other hand, defeasible inheritance allows in addition cancelling some

attributes from the concept’s predecessors. If “birds can fly” and “a penguin is a bird”, for

penguins the property “can fly” has to be cancelled (overridden). According to Brachman,

cancellations can be interpreted as real world exceptions and it is really difficult to represent

knowledge without this concept [Brachman83]. Although cancellation can help us to represent

knowledge, it poses some problems for inferring information [Brachman83] [Brachman85].

22 Chapter 3. Background

3.2.2 SOFTWARE DEVELOPMENT

In software development, inheritance first appeared in the definition of programming

languages. In fact, inheritance is one of the main (if not the main) characteristics in object-

oriented programming (OOP) [Liskov87][Wegner87][Danforth-Tomlinson88][Meyer97,p.26],

for code sharing and reuse. Simula 67 [Dahl68] can be considered the seed of OOP. It was the

first programming language that included the concepts of class and inheritance. When some

classes have common properties, these are collected in a separate class. The concept of

inheritance appeared to denote that all properties of a superclass were included in all of its

subclasses. Considering the inheritance classification used in inheritance networks (see above),

Simula 67 adhered to strict inheritance (only new information was allowed to be added in

subclasses).

Nowadays, the use of inheritance in programming languages follows the path open by Simula

67. A common variation is the possibility of modifying the implementation of a method

(overriding). This overriding can be interpreted as a kind of inheritance network’s cancellation,

i.e. programming languages use the concept of defeasible inheritance proposed in inheritance

networks. Overriding was firstly included in Smalltalk-80 [Golberg-Robson83] in 1980, then C++

in 1983 [Stroustrup97] and Delphi released latter on 1995, the same year as Java [Gosling-

etal05] and more recently C# released on 2002 [Hejlsberg-etal10]. Inheritance was fully

included in Visual Basic .NET, released on 2003, including the possibility of cancelling

(“shadowing”, using their terminology) properties and/or methods from the superclass.

As a compromise between strict and defeasible compliant approaches, Eiffel [Meyer92]

introduces the concept of contract for methods in 1985. These contracts are used to delimit

the changes included in an overridden method. It is a semantic rather than merely syntactic

relation because it intends to guarantee semantic interoperability of types in a hierarchy.

In top of the language constructs, I may think about the method of using inheritance. The main

concern of Software Engineering is developing high quality software, defining techniques and

methodologies to achieve it. Among the several proposals used, I am interested in Meyer’s

proposal as presented in 1988 [Meyer97]. Meyer introduces some categories of inheritance

and summarizes their correct usage in the “Taxomania rule” (the conjunction of words taxo

from taxonomia and mania referent to that all classes have to be organized) that is stated as:

“Every heir must introduce a feature, redeclare an inherited feature, or add an invariant

clause” [Meyer97, p.820].

3.2.3 CONCEPTUAL MODELING

Software development is not only programming, the code has to be maintained and extended

throughout the system lifespan. To make these tasks possible, some knowledge about the

domain and the functions that the system provides is needed to be generated and stored. As

early as 1958, Young and Kent [Young-Kent58] worked on how to specify a system

independently from its implementation, and they presented a model known as logical model.

In the early 1970s, database management systems appeared to support the design of the

information to be stored in information systems. The notion of “conceptual model” appeared

in 1975 for “the enterprise’s view of the structure it is attempting to model in the data base”

3.2 A Tour to Inheritance 23

[ANSI75]. Around the same time, the first semantic data model was proposed [Abrial74], the

most popular being the Entity-Relationship model (ER) [Chen76]. In 1977 the concept of

generalization was introduced in database modeling [Smith-Smith77] according to the concept

of strict inheritance. The entity generalization was one of the characteristics included in the

Extended Entity-Relationship (EER), EER is not a standard and there are several extensions.

Generalization is included as an ER extension by several authors, like [Scheuermann-etal80],

[Atzeni-etal81] and [Navathe-Cheng83].

Conceptual models are created for organizing information in terms of abstraction mechanisms,

such as generalization, specialization, aggregation and classification. The most used modeling

language currently is the Unified Modeling Language (UML) created by the Object

Management Group, whose version 1.0 was presented in 1997 [UML]. UML allows developing

different kind of models to represent different features of the software (structure, behavior

and interaction). Class diagrams are used to represent the structure of knowledge, being

“class” the counterpart in UML of the “concept” in inheritance networks. Inheritance is used in

class diagrams (structure) initialy in the same way it was used the semantic data models, and

in the use case diagram (behavior) in the sense of a task can be extended by other. In version

2.0 (2005), the notion of redefinition has extensibely included, some features can be renamed

(attributes and association roles) or some can be restricted (formal param types, cardinatilies,

default values, visibility,…). Borgida et al. consider two alternatives for what they call IS-A

hierarchies: class as template (strict inheritance) or as prototype (defeasible inheritance

allowing only attribute refinement) [Borgida-etal82]. They present a software specification

methodology based on generalization and specialization that uses the prototype alternative. In

a conceptual model, properties can have restrictions about values (e.g., the class Person has an

attribute Age with values between 0 and 120). Refining an attribute means enforcing the

restriction in the sense that the rank of values of the attribute in the subclass must be a subset

of the superclass’ (e.g., if an Undergraduate-student is-a Person, with an Age between 18 and

120).

3.2.4 SUMMARY

After reviewing the different definitions and uses of inheritance (and consequently,

specialization and its dual concept, generalization) along areas and time, I conclude that the

main message behind the concept is the need of sharing information for concept reuse.

Despite of their differences, the various approaches concur that all the instances of a

subconcept must be instances of the superconcept, changing the words instances and concept

depending on the area.

Table 3-3 shows the features found in the different areas and approaches. They are classified

with respect to the Taxomania rule because this is the rule that encloses all possible changes

(introduce feature, add invariant and redeclare feature). Some approaches are similar in what

can be done, and even the way of doing it. For example, most of OO languages do not allow

cancelling properties, but it can be simulated accessing properties via methods (throwing an

exception when a method for a “cancelled” property is called). Following the Taxomania

naming, feature means method and property, also named attribute depending on the area.

24 Chapter 3. Background

Table 3-3. Inheritance features in Information Systems

Area Approach Introduce feature Add invariant Redeclare feature

Semantic/
Inheritance
Networks

Strict

New Attributes

No No

Defeasible No
Attribute

Cancellation

OO
Languages

Simula 67

New Properties
 & Methods

Simulation accessing
properties via methods

No

Smalltalk-80 Overrides for methods
Simulation for

properties accessing
via methods

C++/C#

Java

Delphi

Visual Basic
Overrides and shadows

for properties and
methods

Eiffel Adding invariants

Renaming and
redefinition for routines

and procedures using
contracts

Conceptual
Modelling

Semantic Data
Models (EER)

New Attributes
& Methods

No No

UML Features Restriction
(cardinality, visibility,…)

Attributes and Roles
Renaming

Borgida and
Mylopoulos

For attributes
No

Figure 3-1 shows the evolution of the concepts presented in this section and the interaction

between them.

Figure 3-1. Inheritance Evolution

Taking the concepts of strict and defeasible inheritance from inheritance networks, I remark

that all OO languages except for Simula67 are adopting defeasible inheritance. Meanwhile

conceptual modeling approaches are adopting strict inheritance. In the case of Borgida and

Mylopoulos is more permissive than strict inheritance but less than defeasible inheritance,

because it is only allows refinement (that is not overriding or cancelling) for attributes.

Generali
zation
(1977)

Semantic
Networs
(1966)

NETL
(1977)

Database
Management

Systems
(1970)

Semantic
Data Model

(1974)

UML
(1997)

OOP:
Simula 67

(1968)
Smalltalk-80

(1980)
Eiffel

(1985)
Visual Basic
.NET (2003)

C++
(1983)

Delphi
(1995)

Java
(1995)

“Conceptual
Model”
(1975)

EER

Template vs
Prototype

(1982)

Humans solve
problems dividing
into sub-problems

Human classifies

information in
hierarchies

ER
(1976)

1965 1970 1975 1980 1985 1990 1995 2000 2005

How manage

information
in computers

Contracts &
Taxomania

(1985)

SNePS
(1979)

Inheritance Networks

3.3 Specialization in the i* Framework 25

3.3 SPECIALIZATION IN THE I* FRAMEWORK

3.3.1 A LITERATURE REVIEW

Specialization appeared in the i* language from the very beginning. Yu included in his PhD

thesis the is-a relationship as actor specialization. Specifically in the Meeting Scheduler

example [Yu95], the actor Important Participant is related with the actor Meeting

Participant using the is-a link as is shown in Figure 3-2. The following two problems arose:

 This link is only used in SD models between actors. But when actors’ SR models are

developed, no SR model is defined for the subactor Important Participant.

 In spite of using manipulating the subactor (it has some new incoming dependencies),

policies of use are not explicitly defined in the i* definition.

Figure 3-2. Meeting Schedule SD Diagram

As mentioned in section 3.1, there are some i* dialects. The main ones are: the Goal-oriented

Requirement Language (GRL), which is part of the User Requirements Notation (URN) [URN];

and Tropos, an agent-oriented software methodology that adopts a slightly modified version

of i* as its modelling language [Susi-etal05]. It is worth to remark that none of them define the

is-a link in their metamodels. GRL does not have any type of actor links and Tropos only

defines other types of links between types of actors (plays, covers and occupies).

Since its appearance, the is-a construct has been used by several authors, in several contexts.

Normally this use has been limited to reproduce the use in Meeting Schedule Diagram, as a

pure modeling instrument. In other words, the is-a link has been used to link actors in SD

diagrams. In these examples, subactors have not been involved in dependencies and the SR

has not been developed. Therefore, these authors have not deal with consequences. As

examples, I may mention:

 Giunchiglia et al [Giunchiglia-etal02] presents the use of Tropos for the meeting

scheduler problem. Important Participant (IP) and Active Participant (AP) appear in

early requirement analysis fase as Potential Participant (PP) subactors (see Figure 3-3).

But this relation disappears, although actors remain, in late requirement analysis fase

with no explanation. A remarkable curiosity is that in Tropos metamodel is-a link is

26 Chapter 3. Background

not defined. It is also curious that this example is also used in [Sannicolo-etal02],

where the Tropos metamodel is studied in depth and is-a link is not included.

Figure 3-3. Meeting Scheduler Problem using Tropos

 Marin et al [Marin-etal04] uses specialization in the early requirement analysis fase,

from Tropos methodology, for modeling what the authors name agro-food products

delivery chain (see Figure 3-4). This is a simple example that uses especializaton for

different kinds of agro-food industries (actor classification).

Figure 3-4. Actor Classification Example

 Mouratidis et al. [Mouratidis-etal06] that uses is-a link in the context of the

development of security-critical applications. A case study in the e-commerce domain

is presented, Card Issuer (actor) is-a Load-Acquierer (role). The authors write “It is

worth mentioning that card issuers can take on the roles of load acquirers.” This

comment leads the reader to wonder whether the link used in this case should be

plays, taking into account the types of the involved actors.

 Franch [Franch05] that proposes hierarchies using is-a links for representing different

types of software packages in a software selection scenario. In this case, the author

defined explicitly two integrity constraints about the is-a link: an actor shall not be a

specialization of itself and specialization shall preserve the type of the specialized

intentional element.

3.3 Specialization in the i* Framework 27

 Castro et al. [Castro-etal12] that uses the link in the context of modeling requirements

using i* to generate architectural models, in this case the link is used for human actors

Travelers. Figure 3-5 shows how this link is used for modeling multiple inheritance

(more than one superactor), subactor Travelers has Advise Giver and Advise

Receiver as superactors.

Figure 3-5. Multiple Inheritance Example

Although it is not usual, some authors do develop SR diagrams for subactors. For example, on

the context of dynamically adaptive systems, [Goldsby-etal08] uses the specialization concept

to represent the different states associated to a system. Specifically a Flood warning system,

the system’s behavior depends on a river flow. Subactor’ diagrams represent the system

behavior depending if the flow is normal (S1), flow increase (S2) or flood (S3). In this case the

subactor diagrams are very similar (see Figure 3-6 where differences are marked), but the

superactor is not developed. The superactor’s SR diagram did not appear in subsequent

publications of these authors related to the same case study either [Welsh-Sawyer09][Welsh-

Sawyer10][Welsh-Sawyer10bis]. So, the authors did not deal with the differences between

superactor and subactor behavior.

Figure 3-6. Flood warning systems subactor's SR diagrams (S1 left, S2 right)

28 Chapter 3. Background

In the context of generation of UML specifications from i* models, e.g., for Use Case Diagrams

[Santander-Castro02] maps the is-a link to a <<generalization>> relationship between actors

and for Class Diagrams [Alencar-etal02] maps the is-a link to a class

generalization/specialization. This is also used in the model-driven development process

proposed in [Alencar-etal09] to generate UML diagrams from i* models. [Alencar-etal09] has

some rules to map the is-a link to inheritance between classes, but there is a lack of

information about how some elements inside the subactor Photographer boundary are placed

into the superclass CandidateEmp (see Figure 3-7). For example resource A description about

photo equipment in Photographer ends as the attribute descEquipment in class

CandidateEmp.

Figure 3-7. From i* to UML Conceptual Models example

We can conclude that the proposals that have used the i* specialization concept have not

solved the problems that we have enumerated for the seminal Yu’s proposal.

3.3.2 GATHERING THE COMMUNITY PERCEPTION

On the other hand, I decided to complement this literature analysis with an empirical study in

the form of a community-oriented perception of the construct. Therefore, I designed and

conducted a survey about this issue. This survey was conducted over the research community

and it is focused in the consequences of this construct over SD diagrams, specifically subactor

dependencies, and SR diagrams, specifically differences between superactor and subactor IEs

3.3 Specialization in the i* Framework 29

and IE links. For facilitating the analysis, I decided to provide closed answers to the questions.

Table 3-4 shows the list of questions included in this survey. Appendix A contains the complete

survey text. Q1 and Q2 are of exploratory nature and addressed to know if the construct is

used by modelers and if they have clear its use (only one option can be chosen). Q3 and Q4 are

of interpretative nature and addressed to know what consequences have this link for the

actors involved, Q3 is addressed to dependencies in SD diagram and Q4 is addressed to IE and

IE links in SR diagrams. The possible answers for Q3 and Q4 are if the involved actor models

are the same or if some elements can be added, modified or deleted (multiple options can be

chosen).

Table 3-4. is-a Survey Questions

Q1 How often do you use is-a links in the i* models that you develop?

Q2 If you use is-a links, do you have any doubts about their usage?

Q3 If A is-a B, what is the consequence regarding dependencies at the SD model level?

Q4 If A is-a B, what is the consequence regarding the SR model level?

I have obtained 21 valid answers, most of them collected during the Fourth International i*

Workshop (held during June 2010) and a few by later interactions with community members. I

consider this a sufficient sample of the i* core research community7. The survey was

responded anonymously.

Figure 3-8 shows the results for the first two questions. For each answer, the chart shows two

data: the number of answers and the percentage that it represents. According to those results

the construct is frequently used (57% answered “sometimes” or more in Q1) but most

modelers recognize doubts about its usage (84% of the total answered “yes” in Q2). From Q2’s

answers, it is possible to conclude that the lack of definition is because researchers use this

construct but it is not in the focus of their research (68% use this construct but they consider

that is not fundamental for their models).

Figure 3-8. Results for Q1 (left side) and Q2 (right side). For each cluster, the first number is the number of

answers and the second the percentage over the total of answers

7 In a survey about the use of i* presented in CAISE 11 [Cares-etal11], I have counted 196 different authors. If I

consider this number as indicative, the population sample of the survey is covering the 10.7% of the core research

community population. If I consider the information contained in the i* wiki, the list of community members includes

up to 139 researchers, and this case the sample grows up to the 15.1% of the community population.

30 Chapter 3. Background

Figure 3-9 shows the results for questions Q3 and Q4. When actor A is-a actor B, the

tendency is that new elements (dependencies for Q3 and intentional elements for Q4) can be

added in the actor A (85% for dependencies and 90% for IEs). There is less agreement about

modification (38% for dependencies and 14% for IEs). Finally, almost none of the respondents

allow removing elements (4.7% for dependencies and 9.5% for IEs).

Figure 3-9. Results for Q3 (left side) and Q4 (right side)

Respondents were asked for what kind of modification could be allowed (Q3 and Q4). All the

respondents said that the intentional elements should be modified using the OO specialization

concept, with no more information about what does OO specialization means.

I have studied the results for questions Q2, Q3 and Q4 depending on the frequency of use (Q1:

Everyone, Never, Rarely, Sometimes, Often and Very Often) and the results are almost the

same that taking all the answers. Analyzing the trends that the graphics show from Figure 3-10

to Figure 3-12, only the Often (2/21) and Very Often (1/21) results have some slight

differences. In both cases, they have no doubts about the construct (Q2) and the Very Often

do not agree with the rest of the answers (included the Often) about removal of elements.

Figure 3-10. Tendencies depending on the is-a use for Q2

8

18

1

8

0
0

5

10

15

20

No Changes Add Remove Modify Other

Q3: Dependencies...

3

19

2
3

0
0

5

10

15

20

No Changes Add Remove Modify Other

Q4: SR Elements...

3.3 Specialization in the i* Framework 31

Figure 3-11. Tendencies depending on the is-a use for Q3

Figure 3-12. Tendencies depending on the is-a use for Q4

The result of this survey leads to the following main conclusions, independently of the

frequency of use of the construct:

 Although the construct is used, it is used with some doubts.

 The community agrees on allowing adding extra information to subactors, has doubts

about whether the inherited information can be modified and mostly agreed in not

allowing removal of inherited information.

Chapter 4. Formalization

One necessary outcome of this thesis is to provide a formal validation of the proposed

specialization operations. For achieving this validation, it is necessary first to provide a formal

formulation of i* models, and this is the main purpose of this chapter. Moreover, I will

establish some ontological assumptions in those points where the classical definition of i* is

not clear enough. Finally, I will provide some auxiliary functions that will be useful in the rest of

the document.

4.1 FORMALIZATION OF I* MODELS

This section presents the domains and functions that I consider in the formalization of the i*

modeling language. The full formalization is summarized in Figure 4-1. The general layout of

this formalization consists on defining elements as tuples of sub-elements and then functions

with a meaningful name to obtain these sub-elements (e.g., given a model, an operation actors

returns the set of actors of that model). Some functions filter a domain of elements according

to categories that form an enumeration domain (represented as boxes in Figure 4-1.; e.g.,

actors are filtered using the functions genericActors, roles, positions and agents); conversely, a

given element may be queried for its type using a function type that ranges over the

corresponding enumeration domain (e.g., the type of an actor may be obtained). In addition, I

may use functions to obtain the name of those elements that have name (e.g., actors). For the

sake of brevity, these two types of operations are not defined in the text (in fact, name does

not appear in the figure either). Correctness conditions are stated when needed. This

formalization is based in the ’95 Yu’s definition [Yu95] although the different types of

contributions proposed in its wiki evolution [iwiki] have been incorporated into the definition

since they provide more expressive power to the models with several types of positive and

negative contributions and also the ability to decompose softgoals using and and or. Some

particular i* constructs are not completely defined in Yu’s thesis and I include assumptions to

solve these ambiguities [Lopez-etal11]. In general, the formalization provided in the section

could be adapted to the slight variations proposed in the different i* dialects mentioned in the

introduction.

Since this thesis is focused in the effects of specialization both at the level of actors and

intentional elements, it is not necessary to introduce in the model the concepts of SD and SR

34 Chapter 4. Formalization

diagrams. Formalization presented in this section is the model formalization, this model is

representing a SD or SR diagrams depending on the information included in it. For instance, for

SD diagrams actors does not have intentional elements inside.

Figure 4-1. Summary of Domains and Functions used in the i* formalization

Meanwhile the Figure 4-1 contains the complete domains and functions for a complete

formalization, Table 4-1 contains the list of domains and functions that are formalized in this

chapter. This list corresponds to the necessary domains and functions for specialization

operations.

dependums(M)

goalDependums(M)

softgoalDependums(M)

taskDependums(M)

resourceDependums(M)

intentionalElements(a)

mainIEs(a)

goals(a)

softgoals(a)

tasks(a)

resources(a)

intentionalElementLinks(a)

decompositionLinks(IEL)

meansEnds(IEL)

tasksDecompositions(IEL)

contribution(IEL)

type(a)

type(ie)

type(d)

type(iel)

value(iel)

source(iel)

target(iel)

ActorLink

Actor

Model

Dependency

Dependum

Intentional

Element

Intentional

Element

Linkactors(M)

genericActors(M)

agents(M)

roles(M)

positions(M)

instances(M)

sources(ie,IEL)

targets(ie,IEL)

ancestors(ie,IEL)

descendants(ie,IEL)

dependum(dl)

strength(de)

dependencies(M)

goalDepencies(M)

softgoalDepenciesM)

taskDepencies(M)

resourceDepencies(M)

outgoingDependencies(a,DL)

incomingDependencies(a,DL)

original_outgoing_dependencies(a,M)

original_incomint_dependencies(a,M)

outgoingDependencies(a,ie,DL)

incomingDependencies(a,ie,DL)

souce(al)

target(al)

type(al)actorLinks(M)

isaLinks(M)

ispartofLinks(M)

playsLinks(M)

coversLinks(M)

occupiesLinks(M)

instanceLinks(M)

ALT

is-a

is-part-of

plays

covers

occupies

instance

AT

generic

agent

role

position

IET

goal

softgoal

task

resource

IELT

means-end

task-decomposition

contributions

CT

Make,Some+,Help,

Break,Some-,Hurt,

And,Or

Unknown

ST

open

commited

critical

Dependency

End

deperderEnd(dl)

dependeeEnd(dl)

intentionalElement(de)

actor(de)

decomposition(ie, IEL)

ANDdecompositions(ie,IEL)

ORdecompositions(ie,IEL)

original_decomposition(ie, a)

addIEDecomposition(a,...)
deleteIEDecomposition(a, IEdel)

original_link(l, a)

addDependencies(M,D)

deleteDependencies(M,D)

reallocateOutgoing(M,d,ie)

reallocateIncoming(M,d,ie)

reallocatePreventiveIncoming(M,d,ie)

substituteActor(a,M)

ancestors(a,AL,t)

descendants(a,AL,t)

superactor(a,M)

substituteIE(ie,ie’,a,M)

addIEDecomposition(a,ie,IE,t,v)

deleteIEDecomposition(a,IE)

replaceIELinks(a,ie,IE,t,v)

original_dependency(dl.M)
original_dependencyEnd(de,M)

4.1 Formalization of i* Models 35

Table 4-1. Concepts and Functions formalized in this section

Domain/Function Description Definition & Page

Actor Basic concept of the i* language Definition 2, pg. 37

actor(n, A) Function that returns the actor with this
name

Definition 2, pg. 37

ActorLink Basic concept of the i* language Definition 6, pg. 41

actorLinks(M) Set of Actor Links from the model M Definition 6, pg. 41

actors(M) Set of Actors from the model M Definition 2, pg. 37

addDependencies(M, D) Function that add the set of dependencies D Definition 16, pg. 50

addIEDecomposition(a, ie, IES, t, v) Function that add the set of IEs IES to the ie
decomposition

0, pg. 49

ALT Actor Link Types set of Values Definition 6, pg. 41

ancestors(a, AL, t) Actor ancestors from actor a through the
same actor link type

Definition 6, pg. 41

ancestors(ie, IEL) ie predecessors though decomposition links Definition 4, pg. 38

ANDdecomposition(ie, IEL) ie targets when decomposition type is AND Definition 4, pg. 38

AT Actor Types set of Values Definition 2, pg. 37

Boundary Basic concept of the i* language Definition 2, pg. 37

CT Contribution Types set of Values Definition 4, pg. 38

DCT Decomposition Contribution Types set of
Values

Definition 4, pg. 38

decomposition(ie, IEL) ie targets when the IE link is a
decomposition link

Definition 4, pg. 38

decomposition-link(iel) Returns if iel is an IE decomposition type link Definition 4, pg. 38

decompositionLinks(IEL) Returns all IE decomposition links from IEL Definition 4, pg. 38

decompositionTypes(ie, IEL) Returns all IE decomposition types from IEL Assumption 2, pg. 40

deleteDependencies(M, D) Function that delete the set of
dependencies D

Definition 15, pg. 50

deleteIEDecomposition(a, IEdel) Function that deleted the set of IEs IEdel
from actor a

Definition 12, pg. 49

Dependency Basic concept of the i* language Definition 7, pg. 43

Dependency End Basic concept of the i* language Definition 7, pg. 43

dependencies(M) Set of Dependencies from the model M Definition 7, pg. 43

Dependum IEs in a dependency Definition 5, pg. 40

dependums(M) Set of Dependums from the model M Definition 5, pg. 40

dependums(DL) Set of Dependum from a set of
dependencies

Definition 7, pg. 43

descendants(ie, IEL) IEs that belong to ie decomposition Definition 4, pg. 38

incomingDependencies(a, DL) Function to get all incoming dependencies
that arrives to an actor a

Definition 7, pg. 43

Intentional Element Basic concept of the i* language Definition 3, pg. 38

Intentional Element Link Basic concept of the i* language Definition 4, pg. 38

intentionalElementLinks(a) Set of Intentional Element Links in a Definition 4, pg. 38

IELT Intentional Element Link Type set of Values Definition 4, pg. 38

intentionalElements(a) Set of Intentional Elements in a Definition 3, pg. 38

IET Intentional Element Type set of Values Definition 3, pg. 38

is_dl_inherited(dl, M) Returns if the dl is inherited and not
modified

Definition 17, pg. 51

36 Chapter 4. Formalization

Domain/Function Description Definition & Page

is_ie_extended(ie, a, M) Returns if an extension has been applied
over ie

Definition 9, pg. 45

is_ie_specialized(ie,a) Returns if any specialization operation has
been applied over ie

Definition 9, pg. 45

is_ie_inherited(ie, a, M) Returns if the ie is inherited and not
modified

Definition 9, pg. 45

is_iel_inherited(l, a, M) Returns if the contribution link value has
not been changed respect to the inherited

Definition 9, pg. 45

mainIEs(a) IEs in a that do not have ancestors Definition 4, pg. 38

Model i* model Definition 1, pg. 37

modelElements(a, M) Actor-related model elements Definition 8, pg. 44

movedDL(M, dl) Partial function that returns the original
dependency when dl has been reallocated.
If it is not reallocated, returns dl

Definition 17, pg. 51

NCT Negative Contribution Types set of Values Definition 4, pg. 38

ORdecomposition(ie,IEL) ie targets when decomposition type is OR Definition 4, pg. 38

original_link(l, a) Link where the IEs has been changed by the
original in case they have been specialized

Definition 9, pg. 45

original_decomposition(ie, a) set of decomposition sources of ie, when
the source is specialized the inherited value
is included in the set

Definition 9, pg. 45

original_dependency(dl, M) Function that returns the dependency that
corresponds to dl involving the superactor
elements

Definition 17, pg. 51

original_dependencyEnd(de, M) Function that returns the dependency end
that corresponds to de involving the
superactor elements

Definition 17, pg. 51

original_incoming_dependencies(a, M) Function to get all the original incoming
dependencies for actor a

Definition 17, pg. 51

original_outgoing_dependencies(a, M) Function to get all the original outgoing
dependencies for actor a

Definition 17, pg. 51

outgoingDependencies(a, DL) Function to get all outgoing dependencies
that stem from actor a

Definition 7, pg. 43

outgoingDependencies(a, ie, DL) Function to get all outgoing dependencies
that stem from the IE ie of actor a

Definition 7, pg. 43

PCT Positive Contribution Types set of Values Definition 4, pg. 38

reallocateIncoming(M,d,ie) Function to change the dependee ie in a
dependency d

Definition 19, pg. 52

reallocateOutgoing(M, d, ie) Function to change the depender ie in a
dependency d

Definition 17, pg. 51

reallocatePreventiveIncoming(M,d,ie) Function to change the dependee for ie in a
dependency d when dependee IE is going to
be removed

Definition 20, pg. 53

replaceIELink(a, ie, IES, t, v) Function that changes type and value for all
exiting links between ie and the set of IEs
IES

Definition 14, pg. 49

specializedIEa(ie) Partial function that returns the original IE
when ie has been specialized in subactor a

Definition 9, pg. 45

ST Strength Type set of Values Definition 7, pg. 43

4.1 Formalization of i* Models 37

Domain/Function Description Definition & Page

Strength Basic concept of the i* language Definition 7, pg. 43

superactor(a, M) Function to get the immediate ancestor
using the is-a link

Definition 6, pg. 41

substituteActor(a, b, M) Substitutes actor a by actor b in the model
M

Definition 10, pg. 47

substituteIE(ie, ie’, a, M) Substitutes ie by ie’ in the actor a Definition 11, pg. 47

traceDL(M, dl’, dl) Function to store that dl’ replaces dl Definition 17, pg. 51

traceIE(a, ie’, ie) Function to store that ie’ replaces ie in actor
a

Definition 9, pg. 45

Definition 1. i* model.

Let 𝕄 be the set of all possible i* models defined as:

𝕄 = {M | M = (A, DL, DP, AL)}

where A is a set of actors, DL a set of dependencies, DP a set of dependums and AL a set of

actor links.

Definition 2. Actor. Actor Boundary. Set of actors of a model.

An actor a is a 4-tuple a = (n, IE, IEL, t) where n is a name, IE a set of intentional elements,

IEL a set of intentional element links, and t a type of actor, t ∈ AT, where:

AT = {generic, role, position, agent}

The data included in the 4-tuple that corresponds to an actor is named actor boundary.

Let 𝔸 be the set of all possible actors, defined as:

𝔸 = {a | a = (na, IEa, IELa, ta)}

Given an actor a= (na, IEa, IELa, ta), there are four functions to return each one of the

elements of the actor’s tuple8:

name(a)= na

intentionalElements(a)= IEa

intentionalElementLinks(a)= IELa

type(a)= ta

Given an i* model M = (A, DL, DP, AL), the set of actors A of the model M is a set:

A ⊆ 𝔸 such that ∀a, b ∈ A: a ≠ b ⇔ na ≠ nb

8 Functions that return the elements of the different tuples for following definition are not included

although they implicitiy exist.

38 Chapter 4. Formalization

The following function returns the actor that corresponds to a specific name:

actor(n, A) = a | a ∈ A ∧ name(a) = n

Definition 3. Intentional element. Set of intentional elements of an actor.

An intentional element ie is a 2-tuple ie = (n, t) where n is a name, and t a type of intentional

element t, t ∈IET, where:

IET = {goal, softgoal, task, resource}

Let 𝕀𝔼 be the set of all possible intentional elements defined as:

𝕀𝔼 = {ie | ie = (nie, tie)}

Given an actor a = (na, IEa, IELa, ta), the set of intentional elements of the actor a is a set:

IEa ⊆ 𝕀𝔼 such that ∀x, y ∈ IEa: x ≠ y ⇔ nx ≠ ny

Note that the condition above means that two different actors are allowed to have two

intentional elements with the same name.

Definition 4. Intentional element link. Decomposition links. Set of intentional
element links of an actor. Main intentional elements of an actor.

An intentional element link l is a 4-tuple l = (p, q, t, v) where p and q are intentional elements

(the source and the target respectively), t a type of intentional element link, t ∈ IELT, and v a

contribution value, v ∈ CT ∪ {}, where:

IELT = {means-end, task-decomposition, contribution}

CT = PCT ∪ NCT ∪ DCT ∪ {Unknown} where:

PCT = {Make, Some+, Help}, are the positive contributions

NCT = {Break, Some-, Hurt}, are the negative contributions

DCT = {And, Or}, decompose softgoals

Figure 4-2 shows which IEs are the source (p) and the target (q) in an intentional element link.

Figure 4-2. Intentional Element Links direction definition (p: source; q: target)

An intentional element link l = (p, q, t, v) is a decomposition link if it breaks an IE into more

fine-grained IEs:

decomposition-link(l) ⇔ t ∈ {means-end, task-decomposition} ∨

 (t = contribution ∧ v ∈ DCT)

q

p

q

p

q

p

Type

4.1 Formalization of i* Models 39

In particular, it is remarkable that not all contribution links are considered decomposition links.

For avoiding confusion I use the name of softgoal decomposition for contributions with values

that belong to DCT and qualitative contributions for the rest.

Given an actor a = (na, IEa, IELa, ta), the set of intentional element links of the actor a is a set:

IELa ⊆ {iel | iel = (piel, qiel, tiel, viel)} such that:

 ∀iel ∈ IELa: piel ∈ IEa ∧ qiel ∈ IEa

 tiel = means-ends ⇒ type(qiel) ≠ softgoal ∧ value(iel) =

 tiel = task-decomposition ⇒ type(qiel) = task ∧ value(iel) =

 tiel = contribution ⇒ type(qiel) = softgoal ∧ value(iel) ≠

 ∀x ∈ IELa: x ∉ ancestors(x, IELa), with:

ancestors(ie, IEL) = {y | (ie, y, t, v) ∈ decompositionLinks(IEL) ∨

(∃r: (ie, r, t, v) ∈ decompositionLinks(IEL) ∧ y ∈ ancestors(r, IEL))}

 where decompositionLinks(IEL) = {iel | iel ∈ IEL ∧ decomposition-

link(iel)}

The function descendants(ie, IEL), analogue to the ancestors function, is also needed.

The first bullet requires the source and the target to be intentional elements of the involved

actor, the three next bullets declare which elements may be linked with a given type of link

(see Figure 4-3), whilst the last item avoids cycles in the directed graph formed by the links.

The ancestors of an IE are considered only for decomposition links.

Figure 4-3. Supported combinations of Intentional Element Links

Given an intentional element iel = (p, q, t, v), the functions source(iel) = p and target(iel) =

q are defined.

Given an actor a = (na, IEa, IELa, ta), the main IEs of the actor a, mainIEs(a), are the subset of

its intentional elements that are not part of a decomposition:

mainIEs(a) = {ie ∈ IEa | ancestors(ie, IELa) = ∅}

Note that due to the last bullet in the definition of set of intentional element links, for a valid

actor it always holds that:

Goal Task

Goal Soft

Goal

Task
Resou

rce

Resou

rce

Goal Soft

Goal

Task
Resou

rce

Goal Soft

Goal

Task
Resou

rce

Task

Goal
Soft

Goal
Task

Resou

rce
Goal

Soft

Goal
Task

Resou

rce

Soft

Goal
Type

Type
Type

Type

40 Chapter 4. Formalization

IEa ∅ ⇔ mainIEs(a) ∅

Several functions are going to be needed in later chapters for retrieving IEs directly connected

to another through decomposition links, either as source or target. One for retrieving the

direct descendants using decomposition IE links (decomposition) and other two for

distinguishing the type of decomposition:

decomposition(ie ,IEL) = {p | l = (p, ie, t, v) ∈ IEL ∧ decomposition-link(l)}

ANDdecomposition(ie, IEL) = {p | (p, ie, t, v) ∈ IEL ∧

 (t = task-decomposition ∨

 (t = contribution ∧ v = and))}

ORdecomposition(ie, IEL) = {p | (p, ie, t, v) ∈ IEL ∧

 (t = means-end ∨

 (t = contribution ∧ v = or))}

Assumption 1. The decomposition of an intentional element is considered
incomplete.9

Given a set of decomposition links that decompose a given q, {l = (pi, q, ti, vi) | l ∈ IEL ∧

decomposition-link(l)}, there is no means in the i* language to state whether q still allows

additional decompositions (pj, q, tj, vj) or not. To solve this ambiguity in the most general way

without changing the language (e.g., not allowing annotations), I consider in the rest of the

thesis that decomposition of IEs is not complete. This is an important assumption related to the

definition of specialization provided later in the section.

Assumption 2. An intentional element can be decomposed just with one type of
decomposition link.

Given a set of decomposition links that decompose a given IE, there is no explicit mention in

the i* language about the possibility of decomposing it using more than one type of link. I

assume that a given IE can be decomposed just using one type of decomposition link (means-

end, task-decomposition, softgoal decompositions).

∀ie ∈ IEa: ∥decompositionTypes(ie, IELa)∥ = 1, where

decompositionTypes(ie, IELa) = {(t, v) |

∃iel ∈ decompositionLinks(IELa): ie = target(iel) ∧ t = type(iel) ∧ v = value(iel)}

If more than one descomposition type is used for the same IE, the model can be ambiguous

because ambiguity provably appears in the way to interpret the combination of them. This

situation can be modeled using intermediate IEs with the unambiguous combination.

Definition 5. Dependum. Set of dependums of a model.

A dependum d is an intentional element.

Given an i* model M = (A, DL, DP, AL), the set of dependums of the model M is a set:

9 [Yu95] states “…This is allowed due to the inherent openness (incompleteness) assumed by the

modelling framework.” when it is talking about using means-end between two tasks (Task-Task Link).

4.1 Formalization of i* Models 41

DP ⊆ {dp | dp = (ndp, tdp)} such that ∀x, y ∈ DP: x ≠ y ⇔ nx ≠ ny

Note that it is not allowed to have two dependums with the same name in the model.

Definition 6. Actor link. Set of actor links of a model.

An actor link l is a 3-tuple l = (a, b, t) where a and b are actors (the source and the target

respectively), and t a type of actor link, t ∈ ALT, where:

ALT = {is-a, is-part-of, plays, covers, occupies, instance}

Figure 4-4 shows which are the source (a) and the target (b) in an actor link.

Figure 4-4. Actor Links Direction Definition (a: source, b: target)

Given an i* model M = (A, DL, DP, AL), the set of actor links of the model M is a set:

AL ⊆ {al | al = (aal, bal, tal)} such that:

 ∀al ∈ AL: aal ∈ A ∧ bal ∈ A

 tal = is-a ∨ tal = is-part-of ⇒ type(aal) = type(bal)

 tal = is-a ⇒ aal ∉ instances(M) ∧ bal ∉ instances(M)

 tal = instance ⇒ type(aal) = agent ∧ type(bal) = agent ∧ bal ∉ instances(M)

 tal = covers ⇒ type(aal) = position ∧ type(bal) = role

 tal = occupies ⇒ type(aal) = agent ∧ type(bal) = position

 tal = plays ⇒ type(aal) = agent ∧ type(bal) = role

 ∀a ∈ A: a ∉ ancestors(a, AL, t), with:

ancestors(x, AL, t) = {y | (x, y, t) ∈ AL ∨

 ∃r: (x, r, t) ∈ AL ∧ y ∈ ancestors(r, AL, t) ∨

 ∃r: (x, r, is-a) ∈ AL ∧ y ∈ ancestors(r, AL, t)}

The first bullet requires the source and the target to be actors of the model, the six following

bullets are declaring which types of actors may be linked with a given type of link, whilst the

last avoids cycles in the directed graph formed by the links. Depending on the type of link

there are different assumptions. For is-a and is-part-of, the types for both actors must be the

b

a

is-a

b

a

plays

42 Chapter 4. Formalization

same, this restriction comes from the reference model that is included in [Yu11] and from the

i* wiki10. For instance:

 If an actor is an instance-of another, it must not be involved in is-a links.

 An agent cannot be an instance of an agent.

 For the rest of rules about link and actor types, they are defined in the thesis.

The ancestor function groups the actor links that are connected by the same type of link (actor

links are transitive) and the actor links inherited from the ancestors (actor links are inherited

by descendants). For the model shown in Figure 4-5, the set of actor a that are ancestors with

respect to is-part-of is {d, e, c}. Actors d and e are ancestors because of the is-part-of

transitivity and actor c because the is-part-of is inherited from actor b.

Figure 4-5. Actor Ancestors

Assumption 3. No multiple inheritance

In this proposal I am considering models without multiple inheritance.

∀a ∈ A : ||{b | (a, b, is-a) ∈ AL}|| 1

Given an i* model M and an actor a ∈ actors(M), the superactor of the actor a in M,

superactor(a, M), is the actor which appears in the only (Assumption 3) actor link as a target

when a is the source and the type link is is-a:

 superactor(a, M) = {
, ∄𝑏 | (a, b, is-a) ∉ actorLinks(M)
𝑏, ∃! 𝑏 | (a, b, is-a) ∈ actorLinks(M)

The main problem with multiple inheritance is identifying when more than one superactor

contains the same IE (same name, type and decomposition), in this case the IE only should

appear once in the subactor. This is an implementation problem and it does not affect to

which operations can be applied over the inherit elements.

10 i* wiki states as a guideline “Use 'ISA' and "Is part of' Association Links only between actors of the

same type”.

4.1 Formalization of i* Models 43

Definition 7. Dependency. Dependency end. Strength. Set of dependencies of a
model.

A dependency d is a 3-tuple d = (dr, de, dm) where dr and de are dependency ends (the

depender and the dependee respectively), and dm a dependum. A dependency end dend is a

3-tuple dend = (a, ie, s) where a is an actor, ie an optional intentional element of this actor,

and s a strength, s ∈ ST, where:

ST = {open, committed11, critical}

Let 𝔻𝕃 be the set of all possible dependencies defined as:

𝔻𝕃 = {d | d = (drd, ded, dmd)}

Given an i* model M = (A, DL, DP, AL), the set of dependencies of the model M is a set:

DL ⊆ 𝔻𝕃 such that:

 ∀d ∈ DL: actor(drd)∈ A ∧ actor(ded)∈ A ∧ actor(drd) ≠ actor(ded) ∧

actor(drd) ∉ ancestors(actor(ded), AL, is-a) ∧

actor(ded) ∉ ancestors(actor(drd), AL, is-a)

 ∀d ∈DL:

intentionalElement(drd) ∈ {} ∪ intentionalElements(actor(drd)) ∧

intentionalElement(dre) ∈ {} ∪ intentionalElements(actor(dre))

The first bullet forces a dependency to link two different model actors and avoids reflexive

dependencies and dependencies between actors related using the is-a link (direct or

indirectly), and the second bullet specifies that if the depender (dependee) involves an

intentional element, then this element must belong to the actor declared in the same

dependency end.

The functions below will be needed in later chapters for retrieving outgoing and incoming

dependencies from an actor and an IE inside an actor.

outgoingDependencies(a, DL) = {d | d ∈ DL ∧ actor(dependerEnd(d)) = a}

outgoingDependencies(a, ie, DL) = {d | d ∈ DL ∧ actor(dependerEnd(d)) = a ∧

intentionalElement(dependerEnd(d)) = ie}

incomingDependencies(a, DL) = {d | d ∈ DL ∧ actor(dependeeEnd(d)) = a}

It is also used in the following chapter a function that returns the dependum from a set of

dependency links.

dependums(DL) = {dependum(d) | d ∈ DL}

11 In the graphical notation, when there is no symbol for the strengths, it means that the value is

committed.

44 Chapter 4. Formalization

Assumption 4. When the boundary of an actor includes intentional elements, its
incoming and outgoing dependencies have to be linked to one of its
IE.

∀d ∈DL:

intentionalElement(depender(d))= ⇔ intentionalElements(actor(depender(d)))=∅

∧

intentionalElement(dependee(d))= ⇔

intentionalElements(actor(dependee(d)))=∅

The actor IEs are intended for giving answers to the questions how and why for the

dependencies. Therefore, when IEs exist, these IEs must be linked to the dependencies to give

the answers.

4.2 FORMAL SUPPORT FOR SPECIALIZATION

In this section some functions and order relations are defined on the top of the concepts

introduced in the previous section. Although possible, it is not recommended to read this

section sequentially, but just when some definition is referenced in later chapters.

4.2.1 ADDITIONAL FUNCTIONS FOR SPECIALIZATION OPERATIONS

Functions presented in this subsection, are supporting the specialization operations presented

in Chapters from 5 to 8.

4.2.1.1 ACTOR-RELATED MODEL ELEMENTS

Actor-related model elements are those superactor model elements that will be transferred

into the subactor at the moment that an is-a link is created between a subactor and this

superactor. These elements include only the inherited elements that can be modified by

specialization operations. The actor links are not copied, although they are inherited, because

they cannot be modified during the specialization process.

Definition 8. Actor-related model elements.

Given an i* model M = (A, DL, DP, AL) and an actor a = (n, IE, IEL, t) such that a ∈ A, the

model elements related to a, modelElements(a, M), are defined as:

modelElements(a, M) = (IE, IEL, DLa) where

DLa = {(dr, de, dm) ∈ DL | actor(dr) = a ∨ actor(de) = a}

4.2.1.2 TRACING SPECIALIZED INTENTIONAL ELEMENTS

Further chapters introduce some specialization operations that modify an inherited IE inside

an actor and I need to identify them.

Part of the following figure (Figure 4-6), presents the result of applying a refinement over the

IE G in the superactor a to obtain the IE [G] ref in the subactor b. For some aspects of the

formalization of the specialization operations, when an operation is going to be applied over

4.2 Formal Support for Specialization 45

an IE inside the subactor, I need to know that goal [G] ref in subactor was originally the goal

G inherited from the superactor.

Figure 4-6. Goal Refinement and Extension

I use a partial function to maintain this relation between the specialized and original IE in the

subactors (specializedIE). This function must be partial because only the specialized IEs are

part of its domain (Dom(specializedIE)), it is also partial evaluated because it depends on the

actor where the IE belongs to. It is partial evaluated because in the same model more than

one actor can have the same IE (tuple name, IE type). This restriction fixes the actor and I have

a partial function for each actor in the model, for example the refined [G] ref will be included

in the domain of specializedIEb and extended G will be included in the domain of

specializedIEc. The operation traceIE is the responsible to modify the domain and establish

the result for the specializedIE function when an IE is specialized.

In model shown in Figure 4-6, the specializedIE function has the following values:

 specializedIEb(([G] ref, goal)) = (G, goal) and Dom(specializedIEb) = {([G] ref, goal)}

 specializedIEc((G, goal)) = (G, goal) and Dom(specializedIEc) = {(G, goal)}

Definition 9. specializedIE.

Given an actor a, the partial function specializatedIEa is defined as:

specializatedIEa: intentionalElements(a) 𝕀𝔼

specializatedIEtraceIE(a,iepecialized,ieoriginal)(iespecialized) = ieoriginal

∀a ∈ 𝔸: ∀op: 𝔸 𝔸 | op ≠ traceIE:

specializatedIEop(a)(ie) = specializatedIEa(ie)

The partial function is defined over the set of actor IEs and the result is an IE. For any actor and

any operation over an actor that returns an actor, different to the operation traceIE, the result

for specializedIE function is the same in both actors.

The domain for partial function specializedIE is:

∀a ∈ 𝔸 | intentionalElements(a) = ∅: Dom(specializatedIEa) = ∅

 ∀a ∈ 𝔸: ∀op: 𝔸 𝔸 | op ≠ traceIE :

 Dom(specializatedIEop(a)) = Dom(specializatedIEa)

is-a

G

a

[G] ref

b
c

G

is-a

T

46 Chapter 4. Formalization

Dom(specializatedIEtraceIE(a,iespecialized,ieoriginal)) = Dom(specializatedIEa) ∪

{iespecialized}

In the specialization operations, I need to know when an IE or an IE link has been inherited (it

is not new) and it does not have been specialized. Therefore, I use the partial function

specializedIE to define the following predicates:

is_ie_inherited(ie, a, M)⇔ie ∈ intentionalElements(superactor(a, M)) ∧

 ¬is_ie_especializated(ie, a)

is_iel_inherited(l, a, M)⇔

 original_link(l, a) ∈ intentionalElementLinks(superactor(a, M))

where

is_ie_specialized(ie, a) ⇔ ie ∈ Dom(specializedIEa)

original_link(l, a) = (s, t) | ((s = source(l) ∧ ¬is_ie_specialized(source(l), a)) ∨

 (s = specializedIEa(source(l)) ∧ is_ie_specialized(source(l), a))) ∧

((t = target(l) ∧ ¬is_ie_specialized(target(l), a)) ∨

(t = specializedIEa(target(l)) ∧ is_ie_specialized(target(l), a))

The function original_link(l, a) constructs the link taking into account the IEs before

specialization operation, in case that an specialization operation has been applied over the

source or the target.

It is also necessary to know when an IE has been specialized using the extension operation. In

this case, besides the specializedIE function, the decomposition in the subactor must be

compared with the decomposition in the superactor. It is an extension when the

decomposition in the superactor is a subset from the subactor.

is_ie_extended(ie, a, M) ⇔ is_ie_specialized(ie, a) ∧ specializedIEa(ie) = ie ∧

decomposition(ie, intentionalElementLinks(superactor(a, M)))

original_decomposition(ie, a)

Where original_decompostion(ie, a) is the set of decomposition sources for the IE links where

ie is the target with the particularity than in case of an specialized IE, the original IE belongs to

the inherited IE instead of the specialized one.

original_decomposition(ie, a) = SOURCESspec ∪ SOURCESnospec, where

 SOURCESspec = {specializedIEa(ie) | ie ∈ decomposition(ie, a) ∧

is_ie_specialized(ie, a)}

 SOURCESnospec = {ie | ie ∈ decomposition(ie, a) ∧ ¬is_ie_specialized(ie, a)}

4.2.1.3 ACTOR AND INTENTIONAL ELEMENT SUBSTITUTION

When the specialization operation i applied over an IE, an IE link or a dependency, sometimes

the IE or even the actor must be substituted in the model. The necessary substitution functions

are:

4.2 Formal Support for Specialization 47

 substituteActor: Responsible of substituting an actor by another in the model.

 substituteIE: Responsible of substituting an IE inside an actor’s boundary by another.

This change implies modifying the actor in the model and using the function traceIE to

include the new IE in the function specializedIE associated to the modified actor.

Definition 10. Actor substitution in the model.

Given an i* model M = (A, DL, DP, AL) and two actors a, b and an IE ie, such that a ∈ A,b ∉ A,

where b is the actor that is going to substitute a, the operation substituteActor(a, b, M) yields

a model M’ defined as:

M’ = (A’, DL’, DP, AL’) such that:

 A’ = A \ {a} ∪ {b}

 DL’ = DLothers ∪ DLer ∪ DLee

 DLothers = {dl = ((x,iex,sx), (y, iey,sy), dm) | dl ∈ DL ∧ x ≠ a ∧ y ≠ a}

 DLer = {((b,iea,sa), (y, iey,sy), dm) |

 ((a,iea,sa), (y, iey,sy), dm) ∈ DL ∧ iea ∈ {} ∪ intentionalElements(b)}

 DLee = {((x,iex,sx),(b,iea,sa),dm) |

 ((x,iex,sx), (a,iea,sa) ,dm) ∈ DL ∧ iea ∈ {} ∪ intentionalElements(b)}

 AL’ = ALothers ∪ ALsource ∪ ALtarget

 ALothers = {l = (x, y, t) | l ∈ AL ∧ x ≠ a ∧ y ≠ a}

 ALsource = {(b, y, t) | (a, y, t) ∈ AL}

 ALtarget = {(x, b, t) | (x, a, t) ∈ AL}

The first bullet substitutes the “old” actor a by the new one b in the actors’ set (A). The second

bullet generates the new dependency links’ set with dependencies where a is not involved

(DLothers) and adds those it is depender (DLer) and dependee (DLee) substituting it with b. The

last bullet follows the same strategy but for actor links.

Definition 11. Intentional Element substitution in the model

Given an i* model M = (A, DL, DP, AL), an actor a = (na, IEa, IELa, ta), the IEs ie and ie’ and

the specialization operation name op such that a ∈ A, ie ∈ IEa, ie’ is the intentional element

that is going to substitute ie on actor a, the operation substituteIE(ie, ie’, a, M) yields a model

M’ defined as:

 M’ = (A’, DL’, DP, AL’) such that:

 A’ = A \ {a} ∪ {traceIE(a’, ie’, ie)} where
 a’ = (na, IE’, IEL’, ta)} where

 IE’ = IEa \ {ie} ∪ {ie’}

 IEL’ = IELothers ∪ IELsource ∪ IELtarget where

 IELothers = {l = (p, q, t, v) | l ∈ IELa ∧ p ≠ ie ∧ q ≠ ie}

48 Chapter 4. Formalization

 IELsource = {(ie’, q, t, v) | (ie, q, t, v) ∈ IELa}

 IELtarget = {(p, ie’, t, v) | (p, ie, t, v) ∈ IELa}

 DL’ = DLothers ∪ DLer1 ∪ DLee1 ∪ DLer2 ∪ DLee2 where

 DLothers = {dl = ((x, iex, sx), (y, iey, sy), dm) | dl ∈ DL ∧ x ≠ a ∧ y ≠ a}

 DLer1 = {((a’, iea, sa), (y, iey, sy), dm) | ((a, iea, sa), (y, iey, sy), dm) ∈ DL ∧ iea ≠ ie}

 DLee1 = {((x, iex, sx), (a’, iea, sa), dm) | ((x, iex, sx), (a, iea, sa), dm) ∈ DL ∧ iea ≠ ie}

 DLer2 = {((a’, ie’, sa), (y, iey, sy), dm) | ((a, iea, sa), (y, iey, sy), dm) ∈ DL ∧ iea = ie}

 DLee2 = {((x, iex, sx), (a’, ie’, sa), dm) | ((x, iex, sx),(a, iea, sa), dm) ∈ DL ∧ iea = ie}

 AL’ = ALothers ∪ ALsource ∪ ALtarget where

 ALothers = {l = (x, y, t) | l ∈ AL ∧ x ≠ a ∧ y ≠ a}

 ALsource = {(a’, y, t) | (a, y, t) ∈ AL}

 ALtarget = {(x, a’, t) | (x, a, t) ∈ AL}

First bullet substitutes the “old” actor a by the result of marking the replaced IE ie’ as

specialized inside the new one a’ in the actors set (A). a’ is generated replacing the ie for the

new ie’ in the intentional elements set (IE’) and intentional element links set (IEL’). The new

IEL’ is generated with links where ie is not involved (IELothers), and where it is involved as

source (IELsource) and target (IELtarget). The second bullet generates the new dependency links

set (DL’) with dependencies where a is not involved (DLothers), and where it is depender and

dependee and ie is not involved (DLer1, DLee1) and where it is depender and dependee and ie is

involved (DLer2, DLee2). The last bullet generates the new actor links set (AL’) with links where

a is not involved (ALothers) and where it is source (ALsource) and target (ALtarget).

4.2.1.4 REDEFINING INTENTIONAL ELEMENTS

In this subsection, all the functions that support the redefinition are formalized. Redefinition

consists on removing part of the decomposition inherited from the superactor and eventually

adding some new element. Removing part of the decomposition includes removing outgoing

dependencies and all the descendants that belong to the IE that has to be deleted. An IE is only

deleted if, although has to be deleted from the redefined IE decomposition, is not belonging to

other IE decomposition.

The functions needed to support redefinition are:

 deleteIEDecomposition: Responsible of deleting part of the IE decomposition (some IEs

and their IE links). The list of IEs to be removed is required as a parameter.

 addIEDecomposition: Responsible of adding the new IE decomposition elements. The list

of the IEs to be added is required as a parameter.

 replaceIELink: Responsible of defining the same type and value for all IE links that belongs

to an IE decomposition. For the case that the decomposition is changing from AND (task-

decompostion, AND contribution link) to OR (means-end, OR contribution link) or vice

versa.

 deleteDependencies: Responsible of deleting all the outgoing dependencies that stem

from the IE.

4.2 Formal Support for Specialization 49

 addDependencies: Responsible of adding all the outgoing dependencies that still remains

in the decomposition and the new ones.

Definition 12. Intentional Element Decomposition removal

Given an actor a = (na, IEa, IELa, ta) and the set of IEs to be deleted, jointly with their

decomposition, such that IEdel IEa the operation deleteIEDecomposition(a, IEdel) yields an

actor a’ defined as:

a’ = (na, IE’, IEL’, ta) where

 IE’ = IEa \ {ie | ie ∈ IE’’ ∧ (∄ie’ ∉IE’’ | ie ∈ descendants(ie’, IELa))} where

 IE’’ = IEdel ∪ {ie | ∃ie’ ∈ ancestors(ie, IEL) ∧ ie’ ∈ IEdel}

 IEL’ = {l = (p, q, t, v) | l ∈ IELa ∧ p ∈ IE’ ∧ q ∈ IE’}

a’ is generated deleting the set of IEs IEdel and all the IEs that belongs to their decompositions

in the intentional elements set of a (IEa). With the exception of the IEs that belong to a

decomposition of an IE that is not intended to be deleted. The new IEL’ is generated with links

where source and target still remain in actor a’.

Definition 13. Intentional Element Decomposition addition

Given an actor a = (na, IEa, IELa, ta), the set of IEs IES and the new type t and value v for the IE

link such that ie ∈IEa the operation addIEDecomposition(a, ie, IES, t, v) yields an actor a’

defined as:

a’ = (na, IE’, IEL’, ta) where

 IE’ = IEa ∪ IES

 IEL’ = IELa ∪ {l = (s, ie, t, v) | s ∈ IES}

a’ is generated adding the new IEs defined in IES in the intentional elements set (IE’). The new

IEL’ is generated adding to IEa the new links between IEs in IES, as source, and ie as target.

Definition 14. Decomposition Link modification

Given an actor a = (na, IEa, IELa, ta), the set of intentional element links IEL to be replaced and

the new type t and value v, the operation replaceIELink(a, ie, IES, t, v) yields an actor a’

defined as:

a’ = (na, IEa, IEL’, ta) where

IEL’ = IELa \ {l ∈ IELa | source(l) ∈ IES ∧ target(l) = ie} ∪

{ l = (s, ie, t, v) | s ∈ IES}

a’ is generated replacing the old IE links defined in IEL by the new ones with the new type and

value l and v in the intentional element links set (IEL’).

50 Chapter 4. Formalization

Definition 15. Dependencies removal

Given an i* model M = (A, DL, DP, AL) and the set of dependencies to be deleted D, the

operation deleteDependencies(M, D) yields a model M’ defined as:

M’ = (A, DL \ D, DP, AL)

Definition 16. Depedencies addition

Given an i* model M = (A, DL, DP, AL) and the set of dependencies to be added D, the

operation addDependencies(M, D) yields a model M’ defined as:

 M’ = (A, DL ∪ D, DP, AL)

4.2.2 ADDITIONAL FUNCTIONS FOR SPECIALIZATION PROCESS

Functions presented in this subsection, are supporting the operations for moving

dependencies added in the specialization process operations, presented in Chapter 9.

4.2.2.1 TRACING MOVED DEPENDENCIES

Further chapters introduce some specialization operations that modify an inherited

dependency between two actors. I need to identify over which dependencies have been

applied a specialization operation. In case of dependencies, to identify the original inherited

dependency from the superactor, I need to record which dependencies are reallocated, i.e.

when the IE in one (or both) dependency end has changed inside the actor.

Following figure (Figure 4-7) presents an inherited dependency d1 which has to be reallocated

after the extension of IE G in the subactor b. In this case, the IE in the depender end has been

changed to T2, a descendant of the original IE G.

Figure 4-7. Reallocating a Dependency

I use a function to know the relation between the moved dependency d2 and the original

inherited one d1. In this case, unlike function specializedIE, the defined function movedDL is

total. It is defined over all the elements in the set of dependency links. The result for non-

moved dependency is the dependency itself. The operation traceDL is the responsible to

establish the result for the function movedDL when a dependency is moved.

 In the model shown in Figure 4-7, the movedDL function has the following values:

movedDL(M, d2) = d1

4.2 Formal Support for Specialization 51

Dependencies can be moved twice, once for each dependency end. Figure 4-8 shows the

model after reallocate dependency d2 from Figure 4-7 to d3 where the dependee end has

been changed to G1, a descendant of the original IE T. In this case the value for movedDL

function is the original d1 (previous to the first reallocation) instead of d2. The reason is

because I need to know the original dependency inherited from superactor.

Figure 4-8. Re-reallocating a Dependency

Definition 17. movedDL

Given an i* model M, the partial function movedDL is defined as:

movedDL: 𝕄 × 𝔻𝕃 𝔻𝕃

movedDL(traceDL(M,dlmoved,dloriginal),dlmoved)

= {
dloriginal, ¬is_dl_moved(dloriginal)

movedDL(dloriginal), is_dl_moved(dloriginal)

where is_dl_moved(dl, M) ⇔ movedDL(M, dl) ≠ dl

∀op: 𝕄 𝕄 | op ≠ traceDL ∧ ∀dl ∈ :
movedDL(op(M), dl) = movedDL(M, dl)

 ∀M ∈ 𝕄 | dependencies(M) = ∅: movedDL(M, dl) = dl

For any operation over a model that returns a model, different to the operation traceDL, the

result for function movedDL is the same in both models.

In specialization operation, I need to know when a dependency has been inherited (it is not

new) and it does not have been specialized. Therefore, I use the total function movedDL to

define de following predicate:

is_dl_inherited(dl, M) ⇔ original_dependency(dl, M) ∈ depencencies(M)

Given a dependency link dl, the function that constructs the possible original dependency link

involving the original elements from the superactor is defined as:

original_dependency(dl, M) =

(original_dependencyEnd(dependerEnd(movedDL(M, dl)), M),

original_dependencyEnd(dependeeEnd(movedDL(M, dl)), M),

dependum(dl))

52 Chapter 4. Formalization

and given a dependency end de = (a, ie, s), that it has been moved to the original IE in case

of dependency reallocation, the function that construct the possible original dependency

end involving the elements from the superactor is defined as:

 original_dependencyEnd(de, M)

= {
(superactor(a, M), specializedIEa(ie), s), is_ie_specialized(ie, a)

(superactor(a, M),ie, s), ¬is_ie_specialized(ie, a)

When the original dependency end is constructed, there are two possible situations:

 is_ie_specialized: It means that the IE has been inherited (the IE is in a subactor) and it

has been specialized. Therefore, the original IE is the result the partial function

specializedIE.

 is_ie_inherited: It means that the IE has been inherited (the IE is in a subactor) and it

has not been specialized or is new. Therefore, the original IE is itself.

For some checking I need to get the original dependencies from a subactor. Concretely, it is

needed to compare them with the outgoing dependencies of its superactor or to assure Model

Correctness Condition 1.

original_outgoing_dependencies(a, M) = {original_dependency(d, M) |

d ∈ outgoingDependencies(a, dependencyLinks(M))}

original_incoming_dependencies(a, M) = {original_dependency(d, M) |

d ∈ incomingDependencies(a, dependencyLinks(M))}

4.2.2.2 MOVING DEPENDENCIES

This subsection formalizes the functions to reallocate incoming and outgoing dependencies

needed for the specialization process.

Definition 18. Outgoing Dependency Reallocation

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a,

iea, sa), (b, ieb, sb), dm) and the new ie where the dependency has to be connected to as

depender, such that ie ∈ ancestors(intentionalElementLinks(a), iea) or ie ∈

descendants(intentionalElementLinks(a), iea) and superactor(a, M) ≠ , the operation

reallocateOutgoing(M, d, ie) yields a model M’ defined as:

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as:

DL' = DL \ {d} ∪ {dlnew} where dlnew = ((a, ie, sa), (b, ieb, sb), dm)

Outgoing dependencies only can be reallocated in a subactor and when the target IE belongs

to the depender, concretely to the original IE decomposition.

Definition 19. Incoming Dependency Reallocation

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a,

iea, sa), (b, ieb, sb), dm) and the new ie where the dependency has to be connected to as

4.3 Order Relationships 53

dependee, such that ie ∈ intentionalElementLinks(b) and superactor(b, M) ≠ , the

operation reallocateIncoming(M, d, ie) yields a model M’ defined as:

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as

 DL' = DL \ {d} ∪ {dlnew} where dlnew = ((a, iea, sa), (b, ie, sb), dm)

Incoming dependencies can be reallocated in a subactor, when the original IE is not going to be

removed, to any IE that belongs to the actor.

Definition 20. Incoming Dependency Preventive Reallocation

Given an i* model M = (A, DL, DP, AL) and given the dependency to be reallocated d = ((a,

iea, sa), (b, ieb, sb), dm), the new ie where the dependency has to be connected to as

dependee, such that ie ∈ intentionalElementLinks(b), ie ≠ ieb and superactor(b, M) ≠ , the

operation reallocatePreventiveIncoming(M, d, ie) yields a model M’ defined as:

M’ = traceDL((A, DL’, DP, AL), dlnew, d) such as

 DL' = DL \ {d} ∪ {dlnew} where dlnew = ((a, iea, sa), (b, ie, sb), dm)

Incoming dependencies can be reallocated in a subactor, when the original IE (ieb) is going to

be removed, to a destination IE that belongs to the dependee actor.

4.3 ORDER RELATIONSHIPS

In order to formalize some constraints over specialization operation, I need to define some

order relations. These order relation are defined for the elements that has a type and this type

can be changed using a specialization operation.

4.3.1 ORDER RELATIONSHIP FOR INTENTIONAL ELEMENT TYPES

According to the elements’ definition that appears in the Yu’s thesis, the meaning of the

different IE types is:

 Goal: is a condition or state of affairs in the world that the actor would like to achieve.

How the goal is to be achieved is not specified, allowing alternatives to be considered.

 Softgoal: is a condition in the world which the actor would like to achieve, but unlike

the concept of (hard-)goal, the criteria for the condition being achieved is not sharply

defined a priori, and is subject to interpretation.

 Task: specifies a particular way of doing something.

 Resource: is an entity (physical or informational) that is not considered problematic by

the actor. The main concern is whether it is available (and from whom, if it is an

external dependency)

Goals and softgoals are related to express a “desire”, something that the actor would like to

achieve, it is not important how this “desire” is achieved. Meanwhile, tasks and resources are

54 Chapter 4. Formalization

related to performing or having something concrete. So, I establish the following relationships

between them:

 Goals vs. softgoals: Softgoals do not have a clear fit criterion to know when the

“desire” is satisfied. Therefore, it can be said that softgoals are more generic than

goals; defining a clear fit criterion for a softgoal implies having a goal.

 Goals vs. tasks: Goals do not specify how the “desire” has to be achieved; it can be

said that goals are more generic than tasks because knowing how to achieve a “desire”

implies having a task.

 Goals vs. resources: Goals do not specify how the “desire” has to be achieved; it can be

said that goals are more generic than resources because knowing an entity that

achieves a “desire” imply having a resource.

 Tasks vs. resources: These two intentional types of IE are not related because

meanwhile task is representing the way to do something, the resource is representing

the way to have something (informational or physical entity).

Due to these “more generic than” relationship and preserving that less generic values must

imply more generic values, the following order relationship is defined.

Definition 21. Order relation “more generic than” between intentional element
types.

The “more generic than” is a strict partial order for the set IET, represented by the operator

“” and it is defined as:

softgoal goal

goal task

goal resource

From “”, two related operators are derived, “more specific than” denoted by “” and “as

specific as”, denoted by “=”.

4.3.2 ORDER RELATIONSHIP FOR QUALITATIVE CONTRIBUTION VALUES

It is necessary to define the “more generic than” order relation for the different values for

contribution links. This order relation has been defined taking into account the definitions that

appear on the i* wiki [wiki]:

 Make: A positive contribution strong enough to satisfice a softgoal.

 Some+: A positive contribution whose strength is unknown.

 Help: A partial positive contribution, not sufficient by itself to satisfice the softgoal.

 Unknown: A contribution to a softgoal whose polarity is unknown.

 Break: A negative contribution sufficient enough to deny a softgoal.

 Some-: A negative contribution whose strength is unknown.

 Hurt: A partial negative contribution, not sufficient by itself to deny the softgoal

4.3 Order Relationships 55

With the aim that less generic values must imply more generic values, the following order

relationship is defined.

Definition 22. Order relation “more generic than” between qualitative contribution
links values.

This relation is only defined for the values with the same “polarity”. For each group, the “more

generic than” is a strict partial order for the set {CT} \ {DCT}, represented by the operator

“” and it is defined as:

For positive and unknown values: Unknown Some+ Help Make

For negative and unknown values: Unknown Some- Break Hurt

From “”, two related operators are derived, “more specific than” denoted by “” and “as

generic as”, denoted by “=”.

4.3.3 ORDER RELATIONSHIP FOR STRENGTH VALUES

It is necessary to define the “stronger ” order relation for the different values of strengths.

The meaning of strength values depends on where it is placed; when it is placed in the

depender side, it indicates the level of vulnerability of the depender if the dependum is not

provided by de dependee; in the dependee side, it indicates how difficult is for the dependee

providing the dependum to the depender. According to Yu’s thesis, the meaning for the three

strength degrees is:

 Open: Failure to obtain the dependum would affect the depender’s goals to some

extent, but the consequences are not serious. On the dependee side, an open

dependency is a claim by the dependee that it is able to achieve the dependum for

some depender.

 Commited: the depender has goals which would be significantly affected in that some

planned course of action would fail if the dependum is not achieved. On the dependee

side, a committed dependency means that the dependee will try its best to deliver the

dependum.

 Critical: the depender has goals which would be seriously affected in that all known

courses of action would fail if the dependum is not achieved. For the dependee side is

not defined, but I can assume that the meaning is that the dependee thinks that is

difficult to achieve the dependum.

With the aim that less critical values must imply more critical ones, the following order

relationship is defined. The order is directly extracted from the Yu’s thesis, it defines different

degrees of strengths and claims that “… a stronger dependency means the depender is more

vulnerable” and “…stronger dependency implies that the dependee will make a greater effort

in trying to deliver the dependum” depending on the strength side (depender or dependee).

56 Chapter 4. Formalization

Definition 23. Order relation “stronger than” between strength values.

The “stronger than” is a total order for the ST set, represented by the operator “” and it is

defined as:

Critical Open Committed

From “”, two related operators are derived, “weaker than” denoted by “” and “as strong

as”, denoted by “=”.

Chapter 5. Towards the Formal
Definition of Actor
Specialization in i*

As shown in Chapter 3, the idea of the is-a link in i* is quite simple. It describes conceptual

relationships between actors such as a Family Travel Agency is-a Travel Agency (see Figure

5-1).

Figure 5-1. An example of use of the is-a link

While this notion is fairly intuitive, it is necessary to determine accurately what its meaning is

and what can be done with the specialized actors. I call this problem the i* specialization

problem. First, I need to fix which elements from an actor need to be considered when it is

specialized. These elements are: its IEs, the links between them, the links with other actors,

and the dependencies that involve the actor as depender or dependee.

Then, the i* specialization problem may be stated as follows. Given an i* model, and given two

actors a and b such that b is-a a, the i* specialization problem consists on determining the

specialization operations that may be applied over the elements inherited by b:

 which operations,

 under which conditions, and

 with which consequences.

Before defining these operations, I need to define the characteristics that I want over i*

models from specialization in the other areas. And for defining the conditions we need to

define when i* model that includes specialization is correct.

Family

Travel

Agency

Travel

Agency

University

Travel

Agency

is-a is-a

58 Chapter 5. Towards the Formal Definition of Actor Specialization in i*

5.1 ACTOR SPECIALIZATION

Adding an is-a link to a set of actor links is not only adding the link inside the set. I need to

define an operation because adding this link implies that the actor playing the role of subactor

must have specific characteristics. When an actor b becomes subactor of a: 1) b inherits all the

information that a has, but 2) not all of this information is transferred to b’s model, only that

information that can be modified or deleted in b, i.e., a’s actor-related model elements (see

Definition 8 at Chapter 4).

Specialization Operation 1. Actor specialization.

Rationale. The modeler needs an actor whose semantics can be considered a specialization of

another actor that already exists in the model. According to the i* language, the new actor will

be added to the model and linked to the existing one using an is-a link. This operation just

establishes this actor-related link as a necessary step before applying more fine-grained

operations at the level of dependencies, IEs and IE links.

Declaration. specializeActor (M, a, n),

being M an i* model, a the existing actor that is going to be specialized (superactor) and n the

name for the new actor (subactor).

Definition. Given an i* model M = (A, DL, DP, AL), given a = (na, IEa, IELa, ta), and n such that

a ∈ A, the operation specializeActor(M, a, n) yields a model M’ defined as:

M’ = (A’, DL’, DP, AL’) such that:

 A’ = A ∪ {b}, being b = (n, IEa, IELa, ta)

 DL’ = DL ∪ DLer ∪ DLee, being

 DLer = {((b, iea, sa), (y, iey, sy), dm) | ((a, iea, sa), (y, iey, sy), dm) ∈ DL }

 DLee = {((x, iex, sx), (b, iea, sa), dm) | ((x, iex, sx), (a, iea, sa), dm) ∈ DL }

 AL’ = AL ∪ {(b, a, is-a)}

The first bullet adds the new actor (subactor) to the set of actors; this actor only differs from

the superactor in its name. The second bullet duplicates all the superactor’s dependencies

substituting the superactor a by the subactor b in the corresponding dependency ends

(depender or dependee). The third bullet adds the new is-a link between the superactor and

the subactor. Actor links from the superactor are not transferred to the subactor because they

are inherited through the new is-a link added to the AL. The new is-a link is not introducing

a cycle with respect to this type of link because the target actor is always a new one.

Correctness conditions. The actor a must belong to the set of actors (a ∈ A) and there must not

exist an actor in the model with the name used for the subactor (n).

actor(n, A) = ∅

Graphical representation. The subactor must be represented as a regular i* actor in the
model. The is-a link is also explicitly represented. None of the elements transferred from a to
b are shown as result of this operation (other operations may provoke later their appearance).

5.2 Specialization in i* Models 59

5.2 SPECIALIZATION IN I* MODELS

As the state of the art conducted in Chapter 3 uncovered, specialization is a conceptual

mechanism widely used in other paradigms and particularly is of paramount importance in

knowledge representation, conceptual modeling and object-orientation. I do not want to

reinvent the specialization concept; therefore a goal of my proposal is to be rooted in the

knowledge and experience coming from these communities. In all of them, there is a clear

consensus that heirs may add new information (mainly properties or methods). The survey

presented in Section 3.3.2 shows that a vast majority of i* researchers agree with this position.

The main difference among the i* researchers is whether to include “modifications” to

inherited information or not. The adaption of the two alternatives considered in [Borgida-

etal82] can be announced as:

 In the case of templates, the superactor-related model elements are inherited by all its

subactors (strict inheritance). For instance, if a superactor has a goal G that is achieved

by a task T (expressed with a means-end link from T to G), all its subactors must keep

the goal G and also keep the task T as a means to achieve it.

 In the case of prototype, the superactor-related model elements can be “refined” in a

subactor. The superactor-related model elements has, “unless-otherwise-told”, a

default nature (defeasible inheritance). For example, a particular subactor can achieve

the goal G by a different task T.

My proposal is based on the prototype alternative, the main reason being the flexible nature

of the i* framework. This choice complies with the result of the survey conducted over the i*

community about the specialization concept (see Section 3.3.2), showing that new information

would be welcome and some refinements could be allowed.

But I also want to borrow some other characteristics from the related areas. Concretely, I like

to borrow the open/closed principle from object-orientation for reuse and exception

modeling.

 Specialization is also used in object-orientation as a technique for dealing with the

open/closed principle, presented by Meyer in 1988 [Meyer97], “Software entities

(classes, modules, functions, etc.) should be open for extension, but closed for

modification”. In i* models I want to keep this idea at the level of actors. For the

preservation of this principle, it is necessary to allow using a defined actor and make the

needed changes in a separate actor (subactor).

 Exceptions appear frequently in the context of specialization, e.g. a penguin is a bird

although it does not fly. For strict inheritance, penguin cannot be a subclass of class bird,

birds has to be classified into flying and non-flying birds (intermediate classes) and then

a penguin has to be a non-flying bird. But in a software engineering context, sometimes

it is not possible to extend the is-a hierarchy to cover all combination of features in

separate intermediate classes because the hierarchy has been defined elsewhere and

cannot be reengineered.

60 Chapter 5. Towards the Formal Definition of Actor Specialization in i*

5.3 TYPES OF SPECIALIZATION OPERATIONS

For complementing the prototype choice, and taking into account the open/closed principle

and the exception modeling, I found useful the Taxomania rule formulated by Bertrand Meyer

that proposes a neat framework to work upon: “Every heir must introduce a feature, redeclare

an inherited feature, or add an invariant clause”. This rule adds the concept of element

modification (redeclare) besides of refinement (from prototype). I apply this rule in the i*

framework for obtaining three different types of specialization operations:

 Extension (from Taxonomia’s rule “introducing a feature”). A new actor-related model

element is added establishing some kind of relationships with the inherited ones.

 Redefinition (“redeclaring an inherited feature”). The decomposition of some inherited

actor-related model element is changed.

 Refinement (“adding an invariant clause”). The satisfactibility predicate of an inherited

actor-related model element is enforced.

Of course, extensions, refinements or redefinitions cannot be arbitrary. I will define precisely

the operations and enumerate the conditions that must hold in Chapters 6 to 8. The definition

of each operation consists on defining the information shown in Table 5-1.

Table 5-1.Specialization Operations Information

Rationale Why this operation is applied

Declaration Definition and explanation of the operation’s signature

Definition A formal definition of the model after the application of the operation
(postcondition)

Correctness conditions When it can be applied (precondition)

Additional remarks Any additional information needed

Graphical representation How the final model is represented.

There is one correctness condition that applies to all specialization operations where a new or

a renamed IE is included in the subactor: neither the superactor a nor the subactor b can have

an IE with the same name as the new or refined IE’s name n12. More formally, given an i*

model M and two actors a, b such that b ∈ actors(M) and a = superactor(b, M):

∀x: x ∈ intentionalElements(b) ∪ intentionalElements(a): name(x) ≠ n

5.4 MODEL CORRECTNESS

For the definition of the rest of specialization operations, I will require the resulting model to

be correct. For all the areas presented in Section 3.2, the common idea of using specialization

12 Given the definition of IE, it is not possible to have two IEs with the same name (correctness

condition), but depending on the specialization operations applied, it is possible that a superactor’s IE is

not present on the subactor. This condition is for avoiding the confusion of having in the subactor an IE

with the same name as a removed one, which would be valid from a formal point of view, but confusing

from a methodological perspective.

5.5 Model Satisfactibility Formalization 61

is that all the instances of a subclass must be instances of the superclass (changing the words

instances and class depending on the area). For formalizing this idea, in the area of object-

orientation, Barbara Liskov stated in 1987 the Liskov Substitution Principle (LSP) [Liskov87] as:

“If for each object o1 of type S there is an object o2 of type T such that for all

programs P defined in terms of T, the behavior of P is unchanged when o1 is

substituted for o2, then S is a subtype of T.”

The basic idea behind the LSP is that the objects of a subtype can be used instead of the

objects of a supertype maintaining the expected behavior. The difference between

programming, even modeling in general, and i* models is that i* diagrams are not intended to

model the expected behavior. They reveal the objectives/desires of the actors and the

dependencies between them. Therefore, to apply this principle to i* models, I have considered

that the only type of information that can be considered as the “expected behavior” of an

actor a are its incoming dependencies because they state what other actors expect from a.

Model Correctness Condition 1: Superactor’s incoming dependencies must be kept in

subactors

Given an i* model M = (A, DL, DP, AL) and two actors a, b such that b ∈ A and a =

superactor(b, M):

incomingDependencies(a, DL) ⊆ original_incoming_dependencies(b, M)13

On the other hand, regarding the actor itself, I consider that the aim of the model is to reflect

the actor’s intentions that state its own satisfaction (the expected objectives/intentions). And

taking into account that the subactors can be placed instead of their superactors (LSP), the

specification operations must be defined assuming that the subactor’s expected

objectives/intentions must imply the superactor’s ones. In terms of actor satisfaction:

Model Correctness Condition 2: Subactor satisfaction must imply superactor satisfaction

Given an i* model M = (A, DL, DP, AL) and two actors a, b such that b ∈ A and a =

superactor(b, M):

is_satisfied(b, M) ⇒ is_satisfied(a, M)

5.5 MODEL SATISFACTIBILITY FORMALIZATION

The notion of satisfactibility is needed due to Model Correctness Condition 2, defined in the

previous section. Besides the Model Correctness Condition 1, I will use the concept of

satisfactibility to ensure the correctness of a specialization operation. Satisfactibility will

establish the conditions that have to be met in the subactor with respect to the superactor.

13 original_incoming_dependencies(b, M) changes the subactor b, that appears in the dependee end, for its

superactor a. Incoming dependencies cannot be deleted in subactor, therefore superactor’s incoming

dependencies are a subset of subactor’s.

62 Chapter 5. Towards the Formal Definition of Actor Specialization in i*

The concept may be applied to different types of model elements: actors, dependencies and

intentional elements.

When I am referring to satisfaction of an IE, intuitively, an IE states some objective that may be

satisfied or not. I assume that satisfactibility is denoted by a Boolean predicate. I will represent

satisfactibility of an IE x by the Boolean predicate is_satisfied(x)14. The same assumption and

notation is done for actors and dependencies.

Actor satisfaction depends on whether the actor’s rationale exists or not. In the first case,

satisfaction depends on the satisfaction of its IEs, in the second case of its dependencies.

Definition 24. Actor Satisfaction

Given an i* model M = (A, DL, DP, AL), and the actor a ∈ A, the actor satisfaction

is_satisfied(a, M) is defined as:

is_satisfied(a, M) ⇔

(intentionalElements(a) ≠ ∅ ∧ ∀ie ∈ mainIEs(a): is_satisfied(ie)) ∨

(intentionalElements(a) = ∅ ∧ ∀d ∈outgoingDependencies(a, DL):

is_satisfied(d))

I define the satisfaction of an actor as the satisfaction of all its main objectives. In the case of

an actor without intentional elements, i.e. without main objectives, it is like the actor would

contain a single main goal mygoal that corresponds to “all my outgoing dependencies

achieved”. All outgoing dependencies that are steaming from the actor is like would be

steaming from this non-decomposed virtual goal. The IE satisfaction, when it has outgoing

dependencies is defined as (see Definition 26):

is_satisfied(a, M) ⇔ ∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)

is_satisfied(mygoal) ⇔ (2)

∀d ∈ outgoingDependencies(a, mygoal, DL): is_satisfied(d)) ⇔ (3)

∀d ∈ outgoingDependencies(a, DL): is_satisfied(d))

(1) mainIES(a) = {mygoal}

(2) Satisfaction definition for a non-decomposed IE with outgoing dependencies.

(3) mygoal is a virtual IE. Actually, the outgoing dependencies belong to the actor.

Definition 25. Dependency Satisfaction

The satisfaction of a dependency is the satisfaction of the IE that plays the role of dependum.

Given an i* model M = (A, DL, DP, AL), and a dependency d ∈ DL, the dependency

satisfaction is_satisfied(d) is defined as:

14 We are aware that when we are talking about softgoals, the predicate is not indicating if the softgoal is

satisfied or not. In this case is indicating if it is satisfied enough (satisficed). But we use the same name

for all kind of IEs for simplicity.

5.5 Model Satisfactibility Formalization 63

is_satisfied(d) ⇔ is_satisfied(dependum(d))

The satisfaction respect to the depender and dependee ends must accomplish following

predicates:

is_satisfied(actor(dependerEnd(d))) ⇒ is_satisfied(dependum(d))

is_satisfied(actor(dependeeEnd(d))) ⇒ is_satisfied(dependum(d))

The exact meaning of satisfactibility depends on the type of the IE: goal satisfactibility means

that the goal attains the desired state; task satisfactibility means that the task follows the

defined procedure; resource satisfactibility means that the resource is produced or delivered;

softgoal satisfactibility means that the modeled conditions fulfills some agreed fit criterion.

In case of IEs, the IE satisfaction itself is not defined. IE satisfaction is defined by the modeler,

when the IE is a leaf. When it is not a leaf, the only thing that can be done is to identify several

properties depending on the type of links involved.

Definition 26. Intentional Element Satisfaction Properties

Given an i* model M = (A, DL, DP, AL), an actor a = (na, IEa, IELa, ta) ∈ A and an IE ie ∈ IELa,

the satisfaction is_satisfied(ie) is defined in the following way (see Figure 5-2):

 ie is neither decomposed nor has outgoing dependencies. The satisfaction has to be
explicitly provided by the analyst/modeler.

 ie is decomposed (Figure 5-2a). The satisfaction depends on the link used for the
decomposition (AND, OR).

∀ieand ∈ ANDdecomposition(ie, IELa): is_satisfied(ie) ⇒ is_satisfied(ieand)

∀ieor ∈ ORdecomposition(ie, IELa): is_satisfied(ieor) ⇒ is_satisfied(ie)

 ie is a softgoal with contribution links. The satisfaction is defined as in [Horkoff-Yu10].

 ie has outgoing dependencies (Figure 5-2b). The satisfaction relies on the satisfaction
of all outgoing dependencies.

∀di ∈ outgoingDependencies(a, ie, DL): is_satisfied(ie) ⇒ is_satisfied(di)

Note that the all the cases except the first one can happen simultaneously; in this case, the

involved conditions apply altogether (Figure 5-2c).

(a)

(b)

(c)

Figure 5-2. IE Decomposition Scenarios

64 Chapter 5. Towards the Formal Definition of Actor Specialization in i*

5.6 SPECIALIZATION OPERATIONS VALIDATION

In Section 5.4, two conditions to maintain the model correctness have been presented. Model

Correctness Condition 1, referred to the expected behavior (incoming dependencies), will be

always kept because the specialization operations will be defined with sufficient constraints to

avoid deleting an incoming dependency. Regarding the Model Correctness Condition 2,

referred to actor satisfaction, the satisfaction of subactor’s main objectives and outgoing

dependencies have to imply the satisfaction of the superactor’s ones.

Therefore, in Chapters from 6 to 8, besides the specialization operation definition, the formal

proof that Model Correctness Condition 2 is kept will be included. These proofs will be

conducted by induction with the following structure:

 Induction Base Case (IBC): the operation that is going to be applied is the first

specialization operation applied over the subactor15. This means that: 1) the IEs and IE

links inside the subactor boundary are the same as the superactor’s and as a

consequence the main IEs in both actors are the same, and 2) the subactor has the

same dependencies (incoming and outgoing) as its superactor, therefore the

dependums are the same. More formally, given two actors a, b such that b ∈ A and a

= superactor(b, M), due to the result of the Actor Specialization operation (See

Section 5.1):

1. mainIEs(a) = mainIEs(b)

2. depedums(outgoingDependencies(b,DL))=depedums(outgoingDependencies(a,

DL))

Induction Hypothesis (IH): I assume a state in which after several specialization operations

have been applied, still the Model Correctness Condition 2 holds. Model Correctness

Condition 2 claims:

is_satisfied(b, M) ⟹ is_satisfied(a, M)

Despite of actor satisfaction definition, when actor contains IEs, this implication is equivalent

to:

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie)

Induction Step (IS): It is presented the demonstration that if the operation whose correctness

is being proved, is applied over a subactor that satisfies the Model Correctness Condition 2

according to the IH, the resulting subactor satisfies it too. It is noteworthy that this

demonstration will take in all the cases a similar form to the one conducted in the induction

base case.

Taking into account the definition for actor satisfaction, presented in Section 5.5, the

demonstration will use main IEs or outgoing dependencies depending on the subactor has or

not IEs.

15 Beware that the operation specializeActor is not a specialization operation applied over a subactor. This

operation is applied over a superactor.

5.7 Graphical Representation of Subactors 65

5.7 GRAPHICAL REPRESENTATION OF SUBACTORS

Given the fundamental graphical nature of the i* modeling language, it is utterly important to

decide how to represent the elements that appear in the subactors. I have applied a minimum

redundancy principle: when an inherited model element is neither modified nor referenced, it

will not be included in the subactor. For “modified elements” I refer to those that have been

object of a specialization operation and have experimented some change, whilst “referenced

elements” are those that being the same as in the superactor, are involved in an IE link from a

new IE of the subactor (e.g., because a new element contributes positively to an inherited

one).

Concerning the graphical representation, I use the same distinction to state the following

general drawing rules16:

 New model elements must be included in the subactor using a solid line shape (since
they are “regular” i* elements).

 Inherited and modified elements must be included in the subactor using a solid line
and the inherited name must appear in the modified element between square
brackets.

 Referenced inherited model elements must be included using a dotted line shape.

 Other inherited model elements can be included to improve legibility. In this case, they
must be included using dotted line shape.

 Removed model element must be included crossed out.

Table 5-2 summarizes the syntax for the different model elements in the subactor SR Diagram.

Table 5-2. Subactor Elements Syntax

 IE Link Dependency

New regular lines regular lines regular lines

Inherited & non-modified dotted lines dotted lines dotted lines

Extended

dotted lines

complete name into
brakets

Refined

regular lines

part of the name into
brakets

regular lines regular lines if the
dependum is refined

regular lines for link from
actor to dependum if the
strength is refined

Redefined

regular lines

complete name into
brakets

regular lines regular lines if the
dependum is refined

regular lines for the link
from actor to dependum if
the strength is redefined

Deleted Cross out Cross out links crossed out

16 Some slight variations will be mentioned depending on the specialization operation applied.

66 Chapter 5. Towards the Formal Definition of Actor Specialization in i*

According with the rules presented above, the specialized IEs contain square brackets in their

name, and the specialization operation can be identified by:

 [] for the whole name + dotted lines = extension

 [] for the whole name + regular lines = redefinition

 [] for part of the name + regular lines = refinement

I refer to Chapters from 6 to 8 to explore in more detail the impact of this rule in each

specialization operation.

Figure 5-3. shows the graphical representation in a particular example. The goal Travels

Contracted Increased for superactor TA has been extended in the subactor FTA. The result

of applying an extension operation over this goal is the addition of the new goal Family

Facilities Offered. Then, new tasks Provide Child Discounts and Provide Familiar

Destinations are identified as means to achieve the new added goal. Following the drawing

rules, the new elements appear in solid lines whilst the extended element from the superactor

is drawn in dotted lines (it is exactly the same IE as in the superactor). Also, since the modeler

determines that the new tasks contribute to the superactor’s softgoals Good Quality-Price

Rate and Many Kind of Travels Offered, these softgoals have been included and drawn in

dotted lines. Finally, the modeler has decided to include also the main goal but just for

legibility purposes, its presence is not mandatory.

Figure 5-3. Applying graphical rules

Chapter 6. Extension

As defined in Section 5.3, the i* extension operation consists on adding a new actor-related

model element either to the subactor (actor extension) or to one of its IEs, inherited from the

superactor (IE extension). Functions, predicates and assumptions used in this section are

defined in Chapter 4.

6.1 ACTOR EXTENSION

Actors admit two different extension operations:

 New outgoing dependency links: When the subactor depends on another actor. Due to

Assumption 4, this operation can be applied only if there are no IEs inside the

subactor.

 New main IEs: When the subactor has a new intentionality that is not covered by the

superactor’s main IEs. This operation can be applied only if there are IEs inside the

superactor.

Operations described below show that although the actor-related model elements include

incoming dependencies, extension (at actor level) can only be applied over outgoing ones.

Incoming dependencies are added when other parts of the model are built and will be

analyzed then from the perspective of the actors at the other end (i.e., where they are

outgoing dependencies). Therefore, incoming dependencies are not involved in the actor

specialization process.

Specialization Operation 2. Actor extension with an outgoing dependency.

Rationale. The subactor is not able to achieve a given intentionality without the support of

another external actor. Therefore, a dependency onto this actor needs to be added.

Declaration. extendActorWithOutgoingDependency(M, b, s, de, dm),

being M an i* model, b the subactor to extend (acting as depender), s the strength of the new

dependency on the depender side, de the dependency end that corresponds to the dependee,

and dm the new dependum. Note that, as stated inDefinition 7 (See Section 4.1), the

dependee may involve an actor or an IE (that belongs to an actor). Figure 6-1 shows all the

elements that take part in the operation.

68 Chapter 6. Extension

Figure 6-1. extendActorWithOutogoingDependency: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL) and given b, s, de, dm such that b ∈ A and

actor(de) ∈ A, the operation extendActorWithOutgoingDependency(M, b, s, de, dm) yields a

model M’ defined as:

M’ = (A, DL ∪ {dnew}, DP ∪ {dm}, AL), where dnew = ((b, , s), de, dm)

Correctness conditions. In addition to Assumption 4 accomplishment, the superactor must not

have any outgoing dependency with the same dependee actor and dependum, regardless of

the dependee strength and which IE arrives to (if any). The correctness condition can be

written as:

intentionalElements(b) = ∅ ∧

(∄((superactor(b, M), , sa), dea, dm) ∈ DL such that actor(dea) = actor(de))

Additional remarks. There is no restriction about the type or number of new outgoing

dependencies that may stem from the subactor.

Graphical representation. The new dependency is depicted as usual in i*. No other information
needs to be depicted.

Table 6-1 shows two examples of using extension for adding outgoing dependencies. The first
row shows a new outgoing dependency Travelling Preferences in which also an incoming
dependency (Travel Offerings) arriving to the subactor is. The second row shows a new
outgoing dependency linking two subactors. The operation definition analyses the correctness
of the dependency from the point of view of Family (depender, thus outgoing dependency).

Table 6-1. Extending an actor with outgoing dependencies

New outgoing dependency
Traveling Preferences

New outgoing dependency
Children Activities

Provided to the subactor
FTA

6.1 Actor Extension 69

Theorem17. The operation extendActorWithOutgoingDependency(M, b, s, de, dm) is

correct.

Proof. is_satisfied(b, M’) ⟹is_satisfied(a, M’)

Inductive Base Case (IBC): No specialization operation has been applied, therefore the

subactor has the same outgoing dependencies as the superactor (further details in Section

5.6), therefore the same dependums:

depedums(outgoingDependencies(b, DL)) = depedums(outgoingDependencies(a, DL))

is_satisfied(b, M’) ⇔ (1)

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔ (2)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ∧ is_satisfied(dnew)⟹ (3)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (4)

 ie ∈depedums(outgoingDependencies(b, DL)): is_satisfied(ie)⇔ IBC

 ie ∈depedums(outgoingDependencies(a, DL)): is_satisfied(ie)⇔ (4)

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (5)

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor without IEs.
(2) outgoingDependencies(b, DL’) = outgoingDependencies(b, DL) ∪ dnew, since dnew is

added as outgoing dependency for actor b in the model M’, which contains DL’.
(3) Since X ∧ Y ⟹ X.

(4) Dependency Satisfaction definition.
(5) Actor a remains unchanged, therefore outgoingDependencies(a, DL) =

 outgoingDependencies(a, DL’).

Induction Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M)

Inductive Step:

is_satisfied(b, M’) ⇔ (1)

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔ (2)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹ (3)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (1)

 is_satisfied(b, M) ⟹ IH

is_satisfied(a, M) ⇔ (1)

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (4)

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)

is_satisfied(a, M’)

17 In all the demonstrations in this and the next chapters, we follow the general form presented in Section

5.6.

70 Chapter 6. Extension

(1) Actor satisfaction definition for actor without IEs.
(2) outgoingDependencies(b, DL’) = outgoingDependencies(b, DL) ∪ dnew, since dnew is

added as outgoing dependency for actor b in the model M’, which contains DL’.
(3) Since X ∧ Y ⟹X.

(4) Actor a has no change, therefore outgoingDependencies(a, DL) =
outgoingDependencies(a,

DL’).

Specialization Operation 3. Actor extension with a main intentional element

Rationale. The subactor has an intentionality that is not covered by the superactor’s main IEs.

Therefore, a new main IE needs to be added.

Declaration. extendActorWithMainIE(M, b, ienew),

being M the model, b the subactor to extend, and ienew the IE that will be included in the

subactor as main IE. Figure 6-2 shows all the elements that take part in the operation.

Figure 6-2. extendActorWithMainIE: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL) and given b = (nb, IEb, IELb, tb) and ienew

such that b ∈ A and ienew ∉ IEb, the operation extendActorWithMainIE(M, b, ienew) yields a

model M’ defined as:

M’ = substituteActor(b, b’, M) where b’=(nb, IEb ∪ {ienew}, IELb, tb)

Correctness conditions. The superactor must have IEs:

intentionalElements(b) ≠ ∅

Additional remarks. There is no restriction about the type or number of new main IEs that may

be added to the subactor.

Graphical representation. The new IE is depicted as usual in i*. No other information needs to

be depicted.

Table 6-2 shows two examples of using extension at the actor level referent to IE extension.

The example shown in row 1 presents a new main IE, therefore the subactor has two main IEs

in its boundary. The second example in row 2 a new main IE (Travels Services Provided),

which can be further decomposed and can even involve in the decomposition some inherited

elements (Encrypt Data, therefore depicted with dotted lines).

6.1 Actor Extension 71

Table 6-2. Extending an actor with main IEs

New goal Process

Payment as a main

objective

New decomposed main

goal Travel Services

Provided. Inherited IE

Encrypt Data is a

subtask of the new IE
Contract Travels

Theorem. The operation extendActorWithMainIE(M, b, ienew) is correct.

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the

extension in the model M’.

Inductive Base Case (IBC): No specialization operation has been applied, therefore the

subactor has the same main IEs as the superactor (further details in Section 5.6).

mainIEs(a) = mainIEs(b)

is_satisfied(b’, M’) ⇔ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⇔ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie,) ∧ is_satisfied(ienew) ⟹ (3)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⇔ IBC

∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)

 is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) mainIEs(b’) = mainIEs(b) ∪ {ienew} , since b’ = (name(b), IE(b) ∪ ienew, IEL(b),

type(b)) because ienew is added as main IE in actor b’ in the model M’.
(3) Since X ∧ Y ⟹ X.

Inductive Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M) ⇔

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie)

72 Chapter 6. Extension

Inductive Step:

is_satisfied(b’, M’) ⇔ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⇔ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⇔ IH

∀ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)

 is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) mainIEs(b’) = mainIEs(b) ∪ {ienew}, since b’ = (name(b), IE(b) ∪ ienew, IEL(b),

type(b)) because ienew is added as main IE in actor b’ in the model M’.
(3) Since X ∧ Y ⟹ X.

6.2 INTENTIONAL ELEMENT EXTENSION

An IE inherited from a superactor can be extended in a subactor by adding a new

decomposition link stemming from another IE. This other IE can be new or inherited from the

superactor. Any of the three types of decomposition link may be added:

 Softgoal decomposition link: By defining a softgoal decomposition link, the element

linked is considered AND-ed or OR-ed (depending on the contribution value) with the

elements that contribute to the softgoal in the superactor.

 Task-decomposition link: An element may be part of any task-decomposition link,

because task-decompositions are not necessarily complete (according to Assumption

1). It is therefore always possible to add more detail to the way in which a task is

performed. By defining a task-decomposition link, the linked element is considered

AND-ed with the elements that decompose the task in the superactor.

 Means-end link: An element may be considered as a new means to achieve an end. By

defining a means-end link, the linked element is considered OR-ed with the means that

appear in the superactor.

There are several remarkable facts:

 In all three variants, the case in which the IE in the superactor is not decomposed is

just a particular situation that falls into the general case.

 It is worth to mention that adding a new qualitative contribution link is not considered

an extension. The reason is that contribution links express relationships among IEs

that appear in the model, but we do not add IEs just to declare contributions.

Specialization operations are only defined for softgoal decomposition links because

they are considered as decomposition links.

6.2 Intentional Element Extension 73

 Outgoing dependencies cannot be added to an inherited IE: the reason is that if a

superactor is able to achieve an IE by itself, its subactors must be able to do so as well.

However, a new IE defined in the subactor as extension of an IE inherited from the

superactor, can depend on other actors. The meaning is that the new IE, and not the

inherited one, is the one that has the need represented by the dependency.

 The IE that acts as source of the link may exist in the superactor or not. Although this

second case will be the usual one, the first case may occur, meaning that the

contributor IE was already playing a part in the superactor’s intentions. The IEs inside

an actor may, in general, form a graph and not just a tree.

The three types of links are applied in a similar way; therefore only one type of IE

specialization operation is defined for all of them:

Specialization Operation 4. Intentional element extension with a decomposition link

Rationale. An IE in the subactor needs new IEs in order to be achieved. Therefore, a new

decomposition link is added with an IE to be linked to the former. The source IE can be a new

IE or an inherited one.

Declaration. extendIEWithDecompositionLink(M, b, iet, ies, t, v),

being M the model, b the subactor where the IE extension takes place, iet the target IE to be

extended in the subactor, ies the source IE that will be linked to iet, t the type of

decomposition link and v is the value associated to that link (applicable just in case of softgoal

decomposition link, where the value And or Or is needed). Figure 6-3 shows all the elements

that take part in the operation.

Figure 6-3. extendIEWithDecomposition: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL) and given b = (nb, IEb, IELb, tb), iet, ies, t

and v such that b ∈ A and iet ∈ IEb, the operation extendIEWithDecompositionLink(M, b, iet,

ies, t, v) yields a model M’ defined as:

M’ = substituteActor(M, b, traceIE(b’, iet, iet)) where

b’ = (nb, IEb ∪ {ies}, IELb ∪ {(ies, iet, t, v)}, tb)

74 Chapter 6. Extension

Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta):

 Extension can be applied over an inherited and no-specialized element or over an

extended one.

is_ie_inherited(iet, b, M) ∨ is_ie_extended(iet, b, M)

 the ies cannot be a main IE:

ies ∉ mainIEs(b)

 If the extended IE iet has descendants, the type of decomposition link must be the

same as the one specified as a parameter in the operation (for preserving Assumption

2). In case of softgoal decomposition, besides the link type t, the value associated to

the link v has to be the same (AND or OR):

∀l = (x, iet, tx, vx) ∈ decompositionLinks(IELb): tx = t ∧ vx = v

Additional remarks. There is no restriction about the number of IEs (new or inherited) that

may be added to the decomposition of the extended IE in the subactor.

Graphical representation. Since the extended element is inherited but not modified, it has to

be included in the subactor model in dotted lines. The source IE is depicted as usual in i* if it is

new, or using dotted lines if it is inherited. The new link is depicted as usual in i* because it is

new. Inherited IEs that decompose the extended IE in the superactor (if any) can be included in

the subactor for legibility, drawn in dotted lines. If the source IE is new and contributes to

inherited elements, they will also appear and also in dotted lines.

In Table 6-3 and Table 6-4 there are some examples of using extension at intentional element

level grouped by link type. Some of the extended IEs are already decomposed in superactor

(Table 6-3 rows 1 and 3) and some non-decomposed (Table 6-2, row 2). Some of the examples

show how the new IEs can be linked to the inherited ones (Table 6-3 row 1 and Table 6-4 row

2), in these cases inherited elements are included to the model using dotted lines because of

the new link.

6.2 Intentional Element Extension 75

Table 6-3. Intentional Element Extension: Adding Decomposition Links (Means-end)

Means-end

Extension of the goal
Travels Contracted

Increased with a new
decomposed goal
Family Facilities

Obtained.
Contributions to the
inherited softgoals are
included.

Extension of the non-
decomposed goal
Asynchronous

Support for UTA

Extension of the
decomposed task Pay
Travel with the new
non-decomposed task
Transfer. Inherited
subtasks are depicted
for legibility purposes.

The second row from Table 6-4 (task-decomposition) shows how task Name a Price is

extended with a non-decomposed IE Conference Information and a decomposed IE Trips

Found. Once the IE has been extended, a new contribution to the existing Travels Bought

Easily softgoal is added. In row 6, besides showing how the task Buy Travel is extended with

the new goal Family Facilities Obtained, it is shown how this new goal is also

decomposed by two goals and each one needs a new outgoing dependency to the subactor

FTA.

76 Chapter 6. Extension

Table 6-4. Intentional Element Extension: Adding Decomposition Links (Contribution and task-decomposition)

Contributions

For researchers, resource
Conference Information

is also needed (AND) to
consider Good Service

Received

Task-decomposition

Name a Price task is not
decomposed in Customer, it is
decomposed in Researcher

adding the resource
Conference In-formation

and decomposed goal Trips
Found

Extension of decomposed task
Buy Travel with a
decomposed goal Family

Facilities Obtained

6.2 Intentional Element Extension 77

Theorem. The operation extendIEWithDecompositionLink(M, b, iet, ies, t) is correct.

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the

extension in the model M’.

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b)

is_satisfied(b’, M’) ⟺ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟺ IBC

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) Since ies is not added as main IE (correctness condition), mainIEs(b) = mainIEs(b’).

Inductive Hypothesis (IH):

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie)

Inductive Step:

is_satisfied(b’, M’) ⟺ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) Since ies is not added as main IE, mainIEs(b) = mainIEs(b’).

Chapter 7. Refinement

As defined in Section 5.3, the i* refinement operation consists on restricting the satisfactibility

predicate of an actor-related model element. In other words, the satisfactibility of the new

element in the subactor must imply the satisfactibility of the original element inherited from

the superactor. The elements that have associated a satisfaction predicate are IEs, qualitative

contribution links and dependencies, therefore these are the ones that can be refined. The

refinement operation is not applied to actors, because the only way to refine an actor is

specializing it into a subactor and this is already done by the is-a link.

I define three refinement operations, one for each of the three types of elements above:

 IEs: with the following meaning (according to their definition, see Definition 3, Section

4.1):

o Goals and Softgoals: the set of states attained by the new IE is a subset of the

states attained in the original IE.

o Tasks: the procedure to be undertaken in the new IE is more prescriptive than

the procedure to be undertaken in the original IE.

o Resources: the entity represented by the new IE entails more information than

the entity represented by the original IE.

 Qualitative contribution links: the value of the new contribution must be more

restrictive than the value of the original contribution (i.e., it must be enforced).

 Dependencies: two different options:

o Dependum: in the same way as IEs.

o Strengths: the value of the new strength must be more restrictive (i.e.,

stronger) than the value of the original strength.

In the rest of the chapter, the subactor’s model element before the refinement (i.e., as

inherited from the superactor) is denoted as “element under refinement”, and the subactor’s

model element result of the refinement, as “refined element”. Functions, predicates and

assumptions used in this chapter are defined in Chapter 4.

80 Chapter 7. Refinement

7.1 ACTOR’S INTENTIONAL ELEMENTS REFINEMENT

An IE inherited from the subactor can be refined enforcing the satisfactibility predicate. This

enforcement can be applied only for the IE semantics or even its type.

Specialization Operation 5. Intentional element refinement

Rationale. An IE in the subactor needs to be restricted in order to fit into a new context.

Therefore, its satisfactibility predicate is enforced in a way such that it implies the original one.

This enforcement can include the need of changing the type of the IE in the subactor according

to the order relation “more specific than” between IEs.

Declaration. refineIE(M, b, ieref, n, t),

being M the model, b the subactor where the IE refinement takes place, ieref the IE under

refinement, n the new name given to the refined IE and t the type for the refined IE. Figure 7-1

shows all the elements that take part in the operation.

Figure 7-1. refineIE: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), ieref, n and t such

that b ∈ A and ieref ∈ IEb, the operation refineIE(M, b, ieref, n, t) yields a model M’ defined as:

M’ = substituteIE(ieref, ienew, b, M) where ienew = (n, t)

Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta):

 Refinement can only be applied over an inherited and non-specialized element.

is_is_inherited(iet, b, M)

 The refined IE is more restrictive than the IE under refinement (from the satisfaction

point of view).

is_satisfied(ienew) ⟹ is_satisfied(ieref)

 If the IE under refinement is decomposed, the new IE must fit with the decomposition

of the IE under refinement:

ieand ∈ ANDdecomposition(ieref, IELb): is_satisfied(ienew) ⟹ is_satisfied(ieand)

ieor ∈ ORdecomposition(ieref, IELb): is_satisfied(ieor) ⟹ is_satisfied(ienew)

di ∈ outgoingDependencies(b, ieref, DL): is_satisfied(ienew) ⟹ is_satisfied(di)

7.1 Actor’s Intentional Elements Refinement 81

 When the IE type changes, the type of the refined IE must be “more specific than” ()

the type of the IE under refinement:

t ≤ type(ieref)

Graphical representation. Since the refined IE is a modification of the inherited element under

refinement, it has to be included in the subactor model in regular lines. The new name must

include the name of the IE under refinement in order to identify which is the IE in the

superactor, the part of the name corresponding to the IE under refinement (name that

appears in the superactor) must appear between square brackets.

Table 7-1. Intentional Element Refinement

Maintaining IE type

The decomposed task

Charge Travel is refined

into Charge Travel

using PayPal.

This task decomposition

and the dependency to

actor Payment Service

Provider are kept. The

new outgoing dependency

PayPal Account to

Customer appears.

For Family TA, the
Travel Information

non-decomposed Resource

has to be refined to Family
[Travel Information]

to include information

about families (age of

children, for instance).

Refining IE type

The goal Synchronous

Support is refined into
Provide [Synchronous

Support] by Phone

82 Chapter 7. Refinement

In Table 7-1 there are several examples using refinement for IEs. In some of them, new actor-

related model elements are included. For instance, in the first row, the task Charge Travel in

the superactor TA is refined for subactor Secure TA into [Charge Travel] using PayPal.

Once the IE has been refined, two new dependencies appear, one to actor Customer

(customers need a PayPal Account to contract their travels) and the other to actor PayPal

(because the payment has to be accepted by PayPal service). In this case, decomposition

and Payment Info incoming dependency are both inherited but only the decomposition (tasks

Charge using Credit Card and Charge using Debit Card) has been included in the

subactor for facilitating its legibility.

As stated in the correctness conditions, when the IE under refinement is decomposed and/or

has outgoing dependencies, the refined IE must not produce any conflict with the

decomposition and/or outgoing dependencies because the decomposition and/or outgoing

dependencies are still present in the subactor. For example, the task under refinement Charge

Travel (Table 7-1, row 1) cannot be refined as Charge Travel in Cash because the inherited

means Charge using Credit Card and Charge using Debit Card would not be correct

means for the refined IE any longer.

When an actor has IEs, the satisfaction depends on its main IEs. Therefore, this operation

directly affects to the actor satisfaction only when the refined IE (ieref) is a main IE. When the

refined IE is not a main IE, the main IEs in b’ remains the same as in b (see demonstration for

specialization operation extendIEWithDecompositionLink, Section 6.2). The following

demonstration is intended to proof the theorem when the refined IE is a main IE.

Theorem. The operation refineIE(M, b, ieref, n, t) is correct.

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the

refinement in the model M’.

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b)

is_satisfied(b’, M’) ⇔ (1)

ie ∈ mainIEs(b’): is_satisfied(ie) ⇔ (2)

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3)

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ieref) ⇔ (4)

ie ∈ mainIEs(b): is_satisfied(ie) ⇔ IBC

ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) mainIEs(b’) = mainIEs(b) \ {ieref} ∪ {ienew= (n, t)} , since ieref is replaced by ienew as

main IE in actor b’ in the model M’.
(3) is_satisfied(ienew) ⟹ is_satisfied(ieref) is a correctness condition of the operation.
(4) Since X \ Y ∪ Y = X when Y ∈ X and ieref ∈ mainIEs(b).

Inductive Hypothesis (IH):

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie)

7.2 Qualitative Contribution Link Refinement 83

Inductive Step:

is_satisfied(b’, M’) ⇔ (1)

ie ∈ mainIEs(b’): is_satisfied(ie) ⇔ (2)

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ienew) ⟹ (3)

ie ∈ mainIEs(b) \ {ieref}: is_satisfied(ie) ∧ is_satisfied(ieref) ⇔ (4)

ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH

ie ∈ mainIEs(a): is_satisfied(ie) ⇔ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) mainIEs(b’) = mainIEs(b) \ {ieref} ∪ {ienew = (n, t)} , since ieref is replaced by ienew as

main IE in actor b’ .
(3) is_satisfied(ienew) ⟹ is_satisfied(ieref) is a correctness condition of the operation.
(4) Since X \ Y ∪ Y = X when Y ∈ X and ieref ∈ mainIEs(b)

7.2 QUALITATIVE CONTRIBUTION LINK REFINEMENT

Qualitative contribution link refinement means changing the value of a contribution link that is

stated from an IE to a softgoal, both of them appearing in the superactor. As it happened with

the change of IE type in IE refinement, not all the changes must be allowed. To proceed

similarly to that case, it is necessary to define some rules to guarantee the refinement rule, i.e.

the satisfaction of the refined link’s value implies the link under refinement’s value.18

Specialization Operation 6. Qualitative Contribution link refinement

Rationale. A contribution value needs to be restricted in order to fit in a new context.

Therefore, the satisfactibility predicate for this value is enforced in a way such that it implies

the original one. This enforcement consist on changing the value of the contribution in the

subactor according to the order relation “more specific than” between contribution values.

Declaration. refineContributionLink(M, b, iel, v),

being M the model, b the subactor where the IE link is stated, iel = (ies, sg, contribution, vold)

is the qualitative contribution link under refinement, and v the new value for the refined

qualitative contribution link between these IEs in the subactor. Figure 7-2 shows all the

elements that take part in the operation.

18 This operation is also available because I have considered more than one value for positive and

negative contributions. If I were using a version with only + and – (e.g., as the original i* definition in

Yu’s thesis) this operation would not apply.

84 Chapter 7. Refinement

Figure 7-2. refineContributionLink: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL) and b = (nb, IEb, IELb, tb), iel = (ies, sg,

contribution, vold) and v such that b ∈ A and iel ∈ IEb, the operation

refineContributionLink(M, b, iel, v) yields a model M’ defined as:

M’ = substituteActor(M, b, b’) where

b’ = (nb, IEb, (IELb \ {iel}) ∪ {(ies, sg, contribution, v)}, tb)

Correctness conditions.

 Only qualitative contributions can be refined:

type(iel) = contribution ∧ value(iel) ∉ DCT

 Refinement can be applied over an inherited and non-specialized contribution link.

is_cl_inherited(iel, b, M)

 The change of the value must maintain the condition that the satisfaction of the

refined contribution link implies the satisfaction of the contribution link under

refinement. To guarantee this implication, the type can only change from more generic

in the superactor to more specific in the subactor. The new value cannot be the same

as the existing one because if the refinement implies changing the value, it is the only

property that can be refined in this link.

value(iel) > v

Graphical representation. The refined link is inherited and modified, therefore it has to be

included in the subactor model in regular lines. The source and target IEs also will be included

in the model in regular or dotted lines depending on if they have been refined (by another

operation) or not.

7.3 Dependency Refinement 85

In Table 7-2 there are some examples of using refinement for qualitative contributions.

Table 7-2. Qualitative Contribution Link Refinement

Help Contribution is refined

into Make Contribution

because of the task Provide
Synchronous Support by

Phone, which is not the

source of the link

Refining Help Contribution

Link to Travels Bought

Easily because the source

goal Assistance Obtained

is refined

This operation does not affect directly to the satisfaction of an actor. When the specialized

actor has IEs linked using qualitative contribution links, satisfaction depends on the main IE

and they do not change using these operations (see demonstration for specialization operation

extendIEWithDecompositionLink, Section 6.2).

7.3 DEPENDENCY REFINEMENT

A dependency is the combination of the actors involved (depender and dependee), the

strengths at each side and the intentional element (dependum) that the depender expects

from dependee. A dependency can be refined only if at least one of the actors involved in the

refined dependency is a subactor. Refining a dependency means refining at least one of the

strengths in the dependency ends or the dependum.

Dependums are refined using the same rules stated for the refinement of an intentional

element in the Specialization Operation 4 (Section 6.2).

Specialization Operation 7. Dependency refinement

Rationale. A dependency has to be refined because one of its participating actors (or both) has

been specialized in a way that the dependency has to adapt correspondingly. This refinement

can consist on the refinement of the dependum (given its condition of IE) and/or the

enforcement of the strength values, on the specialized actor side, according to the order

relation “stronger than” between strength values.

86 Chapter 7. Refinement

Declaration. refineDependency(M, d, sr, se, dmnew), being M the model, dref the dependency

under refinement, sr and se the new strengths for depender and dependee side, and dmnew

the new dependum for the refined dependency. Figure 7-3 shows all the elements that take

part in the operation.

Figure 7-3. refineDependency: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL), d = ((b, ieb, sb), (c, iec, sc), dm), sr, se and

dmnew = (n, t) such that d ∈ DL, the operation refineDependency(M, d, sr, se, dmnew) yields a

model M’ defined as:

M’ = (A, DL \ {d} ∪ {dnew}, DP ∪ {dmnew}, AL) where

dnew = ((b, ieb, sr), (c, iec, se), dmnew)

Correctness conditions

 A refinement can only be applied over an inherited and non-specialized dependency.

is_dl_inherited(d, M)

 At least one of the strengths or the dependum has to be refined:

sr > sb ∨ se > sc ∨ dmnew ≠ dmref

Graphical representation. The new dependency is included in the model. Each line included in

the dependency (from depender to dependum and from dependum to dependee) will be

drawn using regular lines, when the strength end is changed, and dotted when kept the same

value. The dependum will appear in regular or dotted depending on if it has been refined or

not. No other information needs to be depicted.

In Table 7-3 there are some examples using refinement of dependencies when the dependum
has been refined. Meanwhile, Table 7-4 shows examples where the refinement implies only
the strengths. The last row in Table 7-3 corresponds to an example where dependencies and
strengths have been refined.

7.3 Dependency Refinement 87

Table 7-3. Dependencies Refinement: Refining Dependum

Refining Dependum

Refining the dependum

Customer Info into
University&[Customer

Info] without changes in

actors’ IEs

Refining the dependum

Assistance Obtained for

Families because of the

refined IE [Assistance

Obtained] by Phone on

the depender side

Refining Dependum and Strengths

Refining dependum Travel

Offerings for Families.

This refinement caused by

new depender needs,

causes the refinement of

the IE Family [Travel

Information] on the

depender side and it is

more difficult (X) for the

dependee attends this

necessity

88 Chapter 7. Refinement

Table 7-4. Dependencies Refinement: Refining Strengths

Refining Strengths

Refining depender strength

because Researchers

needs the Invoice to be

paid for the University

Refining dependee strength

because of the Travel

Offerings is search by

Conference in UTA and it is

more difficult (X) to achieve.

This operation affects the satisfaction of an actor differently depending if the actor contains IEs

or not. When actor has IEs, it does not affect directly the satisfaction of an actor regardless

whether it is an incoming or outgoing dependency. The outgoing dependencies are involved in

the IE satisfaction, but not directly to the actor satisfaction, that depends on the main IE and

they do not change using this operation (see demonstration for specialization operation

extendIEWithDecompositionLink, Section 6.2). Incoming dependencies do not affect

dependee’s satisfaction.

When actor has not IEs, then the refinement only affects to the depender satisfaction.

Therefore the following demonstration is only affecting actors with outgoing dependencies

refined.

Theorem. The operation refineDependency(M, dref, sr, se, dmnew) is correct.

Proof. is_satisfied(b, M’) ⟹ is_satisfied(a, M’), where b is the depender (without changes)

and M’ is the resulting model after the outgoing dependency refinement in model M.

Inductive Base Case (IBC):

depedums(outgoingDependencies(b, DL)) = depedums(outgoingDependencies(a, DL))

7.3 Dependency Refinement 89

is_satisfied(b, M’) ⇔ (1)

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔ (2)

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹ (3)

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dref) ⇔ (4)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔(5)

 ie ∈depedums(outgoingDependencies(b, DL)): is_satisfied(ie)⇔ IBC

 ie ∈depedums(outgoingDependencies(a, DL)): is_satisfied(ie)⇔ (5)

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (6)

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor without IEs.
(2) DL’ = DL \ {dref} ∪ {dnew}, since dref is replaced by dnew in the dependency links set DL’ in

the model M’.
(3) is_satisfied(dnew) ⟹ is_satisfied(dref) is a correctness condition of the operation.
(4) Since X \ Y ∪ Y = X when Y ∈ X and dref ∈ outgoingDependencies(b, DL).
(5) Dependency Satisfaction definition.
(6) Actor a has not changed, therefore outgoingDependencies(a, DL) =

 outgoingDependencies(a, DL’).

Induction Hypothesis (IH): is_satisfied(b, M) ⟹ is_satisfied(a, M)

Inductive Step:

is_satisfied(b, M’) ⇔ (1)

dl ∈ outgoingDependencies(b, DL’): is_satisfied(dl) ⇔ (2)

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dnew) ⟹(3)

dl ∈ outgoingDependencies(b, DL\{dref}): is_satisfied(dl) ∧ is_satisfied(dref) ⇔ (4)

dl ∈ outgoingDependencies(b, DL): is_satisfied(dl) ⇔ (1)

is_satisfied(b, M) ⟹ IH

is_satisfied(a, M) ⇔ (1)

dl ∈ outgoingDependencies(a, DL): is_satisfied(dl) ⇔ (5)

dl ∈ outgoingDependencies(a, DL’): is_satisfied(dl) ⇔ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor without IEs.
(2) DL’ = DL \ {dref} ∪ {dnew}, since dref is replaced by dnew in the dependency links set DL’ in

the model M’.
(3) is_satisfied(dnew) ⟹ is_satisfied(dref) is a correctness condition of the operation.
(4) Since X \ Y ∪ Y = X when Y ∈ X and dref ∈ outgoingDependencies(b, DL).
(5) Actor a has no change, therefore outgoingDependencies(a, DL) =

outgoingDependencies(a, DL’).

Chapter 8. Redefinition

As defined in Section 5.3, the i* redefinition operation consists on changing an actor-related

model element. There are two kinds of changes that are mutually exclusive:

 Changing the semantics of the element under redefinition. The elements whose

meaning can be changed are those that have an associated property with some

allowed values. These elements are: qualitative contributions to softgoal and

dependency strengths.

 Changing the way to achieve the semantics of the element under redefinition. The

elements whose way to be achieved can be redefined are those IEs inside actors’

boundary that are decomposed with any type of decomposition link. In this case, the

redefinition consists on changing the decomposition for this element. Note that in

particular, unlike qualitative contributions to softgoal, softgoal decompositions fall into

this category.

This specialization operation is the most controversial one because its use makes it possible

that some IEs are not present in the subactor when they exist in the superactor, provided that

some correctness conditions (related to dependencies, see Section 8.1) hold. In spite of this

controversy (that becomes evident e.g. in the empirical study that we conducted in the

community), I have decided to include it in this thesis. The main reason is that it fits when a

usual situation in the system development process: the need of representing exceptions over

reusable actors provided off-the-shelf. On the other hand, it is worth to remark that as

reported in Chapter 3, other researchers have identified this need and in fact, OO

programming languages may offer this feature. At the end, the modeler may decide not using

this operation if she considers that the drawbacks are greater than the benefits.

8.1 ACTOR INTENTIONAL ELEMENTS REDEFINITION

Redefinition of IEs is meant to change the way an IE behaves, but without altering its

observable behavior. In other words, redefinition implies that the IE in the superactor is

decomposed in a particular manner and then this decomposition is changed in the subactor.

The main difference among IE redefinition and refinement is that redefinition does not allow

changing the satisfactibility predicate (thus, the IE type and name must be kept).

92 Chapter 8. Redefinition

In the case of tasks and softgoals, I allow changing from AND to OR (and vice versa)

decomposition in the sense of not inheriting the original links and adding new links with the

other value. More precisely, being x the IE under redefinition, some means-end links in the

superactor where x is the end, or task-decomposition that decompose x in the superactor, or

softgoal decomposition that decompose x, are not inherited in the subactor. For each of these

links that are not inherited, if they do not participate in any other link (e.g., a qualitative

contribution link or another decomposition link), they are not inherited in the subactor since

they are not needed19. Finally, new decomposition links can be added using new elements or

existing from other decompositions in the superactor.

When an IE is under redefinition, it may participate in relationships with other elements: it

may be the depender or dependee of some dependencies, it may be part of a task, or means

towards an end, or contribute to some softgoal. Here I provide details on how redefinition may

affect these relationships:

 Outgoing Dependency Links: Although the IE in the subactor must fulfill the same

objective as the IE in the superactor, its redefinition means that the way to fulfill may

change and the dependencies that stem from the IE are considered as part of the way

to fulfill it. Therefore, something that was required in the parent may not be needed

anymore in the child.

 Incoming Dependency Links: On the contrary, incoming dependencies may not be

deleted, because an incoming dependency means that some other part of the model

needs (expected behavior) what is provided by the actor. And the “expected behavior”

of the subactor is expected to be provided by the subactor (according to the LSP).

However, reallocation of incoming dependencies is allowed.

 Other types of links: Since neither the type of the IE nor the satisfactibility predicate

are allowed to change, the redefined IE will still participate under the same conditions

in any other stated relationship.

Specialization Operation 8. Intentional element redefinition

Rationale. The way to achieve the IE in the superactor is no longer correct for the subactor.

The subactor needs to define a new way to achieve the IE, although the new decomposition

may keep some of the IEs that are decomposing the IE in the superactor. The IEs that are not

belonging to the new decomposition, when they are not the source of any other link to other

IE, will be removed together with their decomposition.

Declaration. redefineIEWithDecompositionLink(M, b, iered, IES, t, v, D)

being M the model, b the subactor where the IE redefinition takes place, iered the IE under

redefinition, IES the new set of source IEs that will be linked to iered, t the type of

decomposition link, v the value associated to that link (if necessary) and D the new set of

dependencies that remains on iered and the new ones. Both the set of sources IES and the set

of dependencies D include both the superactor’s IEs or dependencies that remain on the

19 The elements that are not kept in an IE decomposition and are not participating in other link, are not

inherited because if they were, they would become main IE in the subactor.

8.1 Actor Intentional Elements Redefinition 93

subactor and the new ones to be added. Figure 8-1 shows all the elements that take part in the

operation. In this example D = {d1, d3} and IES = {ie1, …, iep}.

Figure 8-1. redefineIEWithDecomposition: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), iered, IES, t, v and D

such that b ∈ A and iered ∈ IEb, the operation redefineIEWithDecompositionLink(M, b, iered,

IES, t, v, D) yields a model M’ defined as:

M’ = substituteActor(b, b1, Mdep+) where

b1 = traceIEb1(b2, iered, iered) (6)

b2 = replaceIELink(b3, iered, sources(iered, IELb3) ∩ IES, t, v) (5)

b3 = addIEDecomposition(b4, iered, IES \ sources(iered, IELb4), t, v) (4)

b4 = deleteIEDecomposition(b, sources(iered, IELb) \ IES) (3)

Mdep+ = addDependencies(Mdep-, D) (2)

Mdep- = deleteDependencies(M, outgoingDependencies(b, iered, DL)) (1)

For this operation, it is necessary to fit the new dependencies and decomposition for the IE

under redefinition (iered).

(1) All the outgoing dependencies of the redefined IE are deleted, using the function

outgoingDependencies to identify them, generating the model Mdep-.
(2) Then the new dependencies are added to the model generating the model Mdep+.
(3) The IEs that do not belong to the new decomposition (IES) are deleted generating actor

b4.
(4) The IEs from the new decomposition (IES), that were not included in the original one, are

added generating actor b3. We define IELb4 = intentionalElements(b4).
(5) After deleting and adding IEs to achieve the final decomposition, the type and value for

the links that are kept from the superactor must be changed to the new values because

they can be changed generating actor b2. We define IELb3 = intentionalElements(b3).
(6) b1 is generating marking the redefined IE to substitute actor b in Mdep+ to generate M’.

94 Chapter 8. Redefinition

Notice that not all decomposition is deleted in (3) because when an IE is deleted, if it is not

included as source of another IE link, it is permanently deleted (including its own

decomposition) because of an intermediate node cannot be transformed to a main IE.

Correctness conditions. Let a = superactor(b, M), such that a = (na, IEa, IELa, ta):

 iered must be decomposed in the superactor; outgoing dependencies are considered

part of the decomposition.

∥ sources(iered, IELb) ∥ > 0 ∨ outgoingDependencies(b, iered, DL) ≠ ∅

 Redefinition can be applied over an inherited and no-specialized element.

is_ie_inherited(iet, b, M)

 At least one IE from a is not present in the new decomposition for b (IES), otherwise
the operation would be extension.

IES ∩ sources(iered, IELa) ⊂ sources(iered, IELa)

 None of the elements in IES can be a main IE:

ie ∈ IES: ie ∉ mainIEs(b)

 No incoming dependencies exist in in iered descendants, if it were the case they would
be deleted violating LSP:

∀ie ∈ descendants(iered, IELb): incomingDependencies(b, ie, M) = ∅

Additional conditions. There is no restriction on the number of new IEs linked to the IE under

redefinition. The restriction about the types of new IEs and links (e.g., the target of a task-

decomposition must be a task) are given by the i* language definition as presented in Section

4.1).

Graphical representation. Since the redefined element is inherited and modified, it has to be

included in the subactor model in regular lines. The whole name must appear between square

brackets in order to identify which is the IE in the superactor and identify that the operation is

a redefinition. The source IE is depicted as usual in i* if it is new, or using dotted lines if it is

inherited. The new links are depicted as usual in i*. If the new element contributes to inherited

elements, they will also appear and in dotted lines too. For the removed decomposition links,

the graphical representation depends on:

 The link appears crossed out: When the target IE remains in the model, because it

belongs to other decomposition.

 The link appears in regular lines and the target IE appears crossed out: When the

target IE is removed from the model. In this case, any outgoing dependency from this

target IE or any of its descendants appears as crossed out stemming from it.

In Table 8-1 there are some examples of using redefinition for IEs.

8.1 Actor Intentional Elements Redefinition 95

Table 8-1. Intentional Elements Redefinition

For Low Cost TA, redefinition

of the goal Assistance

Provided only for deleting
Synchronous Support

goal. In this case, only the

removed element is shown

to remark that it has been

removed.

Redefinition of the task Sell

Travels only for deleting
Travels Bought Cheaply
softgoal. The removement of

this IE implies the remo-

vement of the outgoing

dependency that stems from

it.

For Luxury TA, redefinition of

the resource Booking

Reference replacing Send
Booking Info by e-mail
by the new IE Inform

Booking Info by Phone.

The removement of this IE

implies the removement of

the outgoing dependency

that stems from it.

The first example shown in Table 8-1 leaves the goal Assistance Provided with only one

means (Asysnchronous Support). This fact, allows the modeler to reallocate the incoming

depency Assistance Provided from goal Assistance Provided in to Asynchronous

Support.

96 Chapter 8. Redefinition

Figure 8-2. Incoming Dependency Reallocation

When an actor has IEs, the satisfaction depends on its main IEs. Therefore, this operation

directly affects to the actor satisfaction only when the redefined IE (iered) is a main IE. When

the redefined IE is not a main IE, the main IEs in b’ remains the same s in b (see demonstration

for specialization operation extendIEWithDecompositionLink, Section 6.2). The following

demonstration is intended to proof the theorem when the refined IE is a main IE.

Theorem. The operation redefineIEWithDecompositionLink(M, b, iered, IES, t, v, D) is

correct.

Proof. is_satisfied(b’, M’) ⟹ is_satisfied(a, M’), where b’ is the resulting actor after the

redefinition in the model M’.20

Inductive Base Case (IBC): mainIEs(a) = mainIEs(b)

is_satisfied(b’, M’) ⟺ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟺ IBC

∀ie ∈ mainIEs(a): is_satisfied(ie)⟺ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.
(2) Since the elements in IES are not added as main IEs, mainIEs(b) = mainIEs(b’).
(3) Actor a does not suffer any change in M’, therefore mainIEs(a) is the same in both

models M and M’.

Inductive Hypothesis (IH):

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ ∀ie ∈ mainIEs(a): is_satisfied(ie)

20 This demonstration is analogous to that of operation extendIEWithDecompositionLink(M, b, iered, IES, t,

v, D) (see Section 6.2)

8.2 Actor Qualitative Contribution Link Redefinition 97

Inductive Step:

is_satisfied(b’, M’) ⟺ (1)

∀ie ∈ mainIEs(b’): is_satisfied(ie) ⟺ (2)

∀ie ∈ mainIEs(b): is_satisfied(ie) ⟹ IH

∀ie ∈ mainIEs(a): is_satisfied(ie) ⟺ (1)

is_satisfied(a, M’)

(1) Actor satisfaction definition for actor with IEs.

(2) Since the elements in IES are not added as main IE, mainIEs(b) = mainIEs(b’).

8.2 ACTOR QUALITATIVE CONTRIBUTION LINK REDEFINITION

The only difference between redefining and refinement of a qualitative contribution is that in

redefinition there is no restriction about the type of change in the value (see Specialization

Operation 6 in Section 7.2).

Specialization Operation 9. Qualitative contribution link redefinition

Rationale. The value for a contribution link has to be changed in a subactor and the new value

does not maintain the satisfaction implication from subactor to superactor.

Declaration. redefineContributionLink(M, b, iel, v),

being M the model, b the subactor where the softgoal appears, iel the qualitative contribution

link under redefinition in b, and v the new value for the contribution link between these IEs in

the subactor. Figure 8-3 shows all the elements that take part in the operation.

Figure 8-3. redefineContributionLink: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL), b = (nb, IEb, IELb, tb), iel = (ies, sg,

contribution, vold) and v such that b ∈ A and iel ∈ IELb, the operation

redefineContributionLink(M, b, iel, v) yields a model M’ defined as:

M’ = substituteActor(b, b’, M) where

b’ = (nb, IEb, (IELb \ {iel}) ∪ {(ies, sg, contribution, v)}, tb)

98 Chapter 8. Redefinition

Correctness conditions.

 The link has to be a qualitative contribution to softgoal.

type(iel) = contribution ∧ value(iel) ∉ DCT

 Redefinition can be applied over an inherited and non-specialized contribution link.

is_cl_inherited(iel, b, M)

 In order to be considered redefinition and not refinement, the value has to be greater
than the value under redefinition.

value(iel) < v

Graphical representation. The refined link is inherited and modified; it has to be included in

the subactor model in regular lines. The source and target IEs also will be included in the

model in regular or dotted lines depending on if they have been refined or not.

In Table 8-2 there is an example of using redefinition for contributions. There is no graphical

difference between redefined and refined qualitative contribution links without comparing

them with the original link.

Table 8-2. Qualitative Contribution Redefinition

Redefining the
Make

Contribution
Link into a
Some+ (Some+
≥ Make)

This operation does not affect directly to the satisfaction of an actor. When the specialized

actor has IEs linked using qualitative contribution links, satisfaction depends on the main IE

and they do not change using these operations (see demonstration for specialization operation

redefineIEWithDecompositionLink, Section 8.1).

8.3 DEPENDENCY REDEFINITION

This operation is used when it is needed to change the value for any of the strengths into a

weaker (i.e., not stronger) value (see order relation in Section 4.3.3). If only the dependum has

to be changed, then the operation to apply is dependency refinement (see Section 7.3) instead

of redefinition. A dependency can be redefined only if at least one of the actors involved is a

subactor. The dependum can be also refined, using the same rules stated for the refinement of

an intentional element in the Specialization Operation 5 (Section 7.1). Therefore, similarly to

what happened with qualitative contribution links, the only difference between refining and

8.3 Dependency Redefinition 99

redefining a dependency is whether the change of strengths respects the order relation

“stronger than” or not (see Specialization Operation 7 in Section 7.3).

Specialization Operation 10. Dependency redefinition

Rationale. A dependency has to be redefined because one of its participating actors (or both)

has been specialized in a way that the dependency has to adapt correspondingly. This

redefinition consist on weakening of the strength values (at least one), on the specialized actor

side, according to the order relation “weaker than” between strength values. The dependum

can be also refined (given its condition of IE) as part of the redefinition.

Declaration. redefineDependency(M, d, sr, se, dmnew),

being M the model, d the dependency under redefinition, sr and se the new strengths at the

depender’s and dependee’s side for the redefined dependency and dmnew the dependum for

the redefined dependency. Figure 8-4 shows all the elements that take part in the operation.

Figure 8-4. redefineDependency: Involved Elements

Definition. Given an i* model M = (A, DL, DP, AL), d = ((b, ieb, sb), (c, iec, sc), dmd) such that

d ∈ DL, sr, se and dmnew, the operation redefineDependency(M, d, sr, se, dmnew) yields a

model M’ defined as:

M’ = (A, DL \ {d} ∪ {dnew}, DP ∪ {dmref}, AL) where

dnew = ((b, ieb, sr), (c, iec, se), dmref)

Correctness conditions.

 A redefinition can only be applied over an inherited and non-specialized dependency.

is_dl_inherited(d, M)

 At least one of the strengths has to be “weaker than” to be redefined. If the change
were for a “stronger than” it would be a refinement, not a redefinition.

sr < sb ∨ se < sc

Graphical representation. The new dependency is included in the model. Lines will be drawn

using regular lines, but the dependum will appear in dotted or regular depending on if it has

been refined or not. No other information needs to be depicted. There is no graphical

difference between redefined and refined strengths without comparing with the original

dependency.

In Table 8-3 there are some examples of using redefinition of dependencies.

100 Chapter 8. Redefinition

Table 8-3. Dependency Redefinition

Redefining the
Committed strength in
the depender side. Open
in Family is ≥ than
Committed for
Customer

For Luxury TA is easier
(weaker strength) to get
the resource Travel

Offerings because they
do not have money
restrictions

This operation affects in a different way the satisfaction of an actor depending if the actor

contains IEs or not.

When actor contains IEs, the operation does not affect directly the satisfaction of the subactor

regardless of whether the dependency under redefinition is incoming or outgoing. Outgoing

dependencies are involved in IEs satisfaction, but not directly to the actor satisfaction, that

depends on the main IE that does not change using this operation (see demonstration for

specialization operation redefineIEWithDecompositionLink, Section 8.1).

When actor does not contain IEs, then the redefinition only affects to the depender’s

satisfaction in the same way that dependency refinement does. Therefore the demonstration

is the same as refineDependency (see Section 7.3).

Chapter 9. The Specialization
Process

This chapter presents the specialization process that defines how the specialization operations

must be used (Section 9.1). It is also includes some justifications for the process (Sections 0)

and about the tool supporting the specialization operations (Section 9.3).

9.1 THE SPECIALIZATION PROCESS

From a methodological point of view, the specialization of an actor can be seen as a 2-step

process:

o Step 1. Applying the specialization operation that declares the is-a link. This means that all

the elements from the superactor are inherited by the subactor.

o Step 2. Specializing the subactor. We distinguish two activities:

o Activity 2.1. Applying several specialization operations to the subactor-related model

elements21. The resulting model is composed then of those superactor’s inherited

elements not changed or even removed by specialization operations, plus those new

model elements added by the application of specialization operations (which may be

really new, or variations of inherited ones). There is no restriction on the number of

new model elements connected by means of IE links and dependencies to the

inherited ones. Constraints about the types of new model elements (e.g., the target of

a task-decomposition must be a task) are given by the i* language definition as

presented in Section 4.1).

21 See Section 4.2.1, for the definition of actor-related model elements.

102 Chapter 9. The Specialization Process

o Activity 2.2. Adding new model elements in the subactor. These new elements can be

related to those added in Activity 2.1. They can be:

 Actor links, when the subactor is linked to other actors through a link

different from is-a (since multiple inheritance is not allowed, see Chapter 4,

Assumption 3). Links that are inherited from the superactor do not need to

be redeclared.

 Outgoing dependencies, when a subactor’s element depends on some other

actor.

 Qualitative contribution links, when an element added in Activity 2.1

influences some inherited element, or when a new element influences some

inherited o new element.

 Decomposition subtrees, when an element added in Activity 2.1 needs to be

decomposed. IEs in these trees may have their own outgoing dependencies

and contribution links. This includes refined elements (when an element is

refined, it is considered as new in the context of the subactor). The only

restriction is that when a new IE is added, its name cannot be duplicated with

respect to the superactor’s IEs. We need this restriction because if

duplication is only checked with respect to the IEs that appear explicitly in

the subactor, it could be possible that this name were the name of a

removed IE.

Besides the activities defined in Step 2, there are two situations that require the reallocation of

an inherited dependency (see further details in subsection 0):

 When the dependee IE is deleted due to a redefinition. In this case the reallocation is

mandatory and I name it Preventive Incoming Reallocation.

 When the either the depender or the dependee IE remains in the model, but there is

some new IE more appropriate to be the dependency end in the subactor’s scope I name

this reallocation Incoming/Outgoing Reallocation.

Since only one operation can be applied over any superactor’s IE, the order in which the

operations are applied in Step 2 is not relevant, and the activities can be intertwined and

iterated at any desired extent, with just the obvious requirement that the elements added in

Activity 2.2 must refer to elements already added in Activity 2.1.

Table 9-1 presents a summary of the type of modifications that can be done in a subactor

during activities 2.1 and 2.2. In the table, “inherited IE” means having exactly the same name

and type on the subactor as in the superactor.

9.1 The Specialization Process 103

Table 9-1. Specialization Operations Summary

 In the subactor it is allowed to… When… Activity
 add new actor link Always 2.2

D
e

p
e

n
d

e
n

ci
e

s

add new outgoing dependency From actor (no IEs in boundary): Always (using extension) 2.1

From new IE: Always 2.2

From inherited IE: Only with redefinition 2.1

From refined IE: Always 2.2

add new incoming dependency Always 2.2

refine dependency Refine strengths: Critical Committed Open

Refine dependum (if needed): see IE refinement

Refine depender/dependee: If it corresponds to…

 an actor: new depender must be the subactor itself

 an IE: the same IE or a refinement of it in the
subactor

2.1

redefine dependency Redefine strengths: Open Commited Critical

Refine dependum (if needed): see IE refinement

Refine depender/dependee (see refining dependency)

2.1

 delete inherited outgoing

dependency

From actor: No

From inherited IE: Only with redefinition

From refined IE: No

2.1

 add new IE Main IE: Always (using extension) 2.1

Intermediate IE: Always 2.2

In
te

n
ti

o
n

a
l E

le
m

e
n

ts

extend an inherited IE New IE links to:

 new IEs: Yes

 inherited IEs: Yes
New outgoing dependencies: No

2.1

refine an inherited IE Softgoal Goal, Goal Task and Goal Resource 2.1

redefine an inherited IE Only when IE is decomposed:

 New IE links to new IEs: Yes

 New IE links to inherited IEs: Yes

 New outgoing dependencies: Yes

2.1

In
te

n
ti

o
n

a
l E

le
m

e
n

t
Li

n
ks

add new IE link Decomposition Link: If the decomposed IE is…

 new: Always
2.2

 inherited: Using extension/redefinition 2.1

 refined: Always 2.2

Qualitative Contribution: Always 2.2

refine IE link Decomposition Contribution Links: No

Qualitative Contributions: Yes

 Positive values: MakeHelpSome+Unknown

 Negative values: HurtBreakSome-Unknown

2.1

redefine IE Link Decomposition Contribution Links: No

Qualitative Contributions: Yes

 Positive values: UnknownSome+ Help Make

 Negative values: Unknown Some-Break Hurt

2.1

Figure 9-1 shows how, after Step 1, activities in Step 2 can be combined in order to generate

the model of a subactor. In between these activities, it could be necessary or recommended to

reallocate some dependencies, see following section for further details (Section 9.2). From

some activities there are more than activity destination, due to the order is not relevant, the

modeler can go any of them with no restriction.

104 Chapter 9. The Specialization Process

Figure 9-1. Specialization Process

9.2 REALLOCATING DEPENDENCIES

In this subsection I analyze the two situations in which reallocating dependencies takes place:

 Preventive Incoming Reallocation: The reallocation is mandatory when the IE in the

dependee side (incoming dependency) is going to be deleted from the model.

 Incoming/Outgoing Reallocation: The reallocation is recommended when, although the

IE still remains in the model, a new IE is more suitable to be involved in the dependency

(both incoming and outgoing dependency).

9.2.1 PREVENTIVE INCOMING REALLOCATION

When an IE is being removed from the subactor due to a redefinition operation, outgoing

dependencies have to be also removed, but the incoming dependencies that arrive to it must

be reallocated due to Model Correctness Condition 1 (see Section 5.4). If the incoming

dependency is not reallocated, the redefinition is not allowed, since this would mean that the

dependum would not be satisfied.

There is no restriction about where the incoming dependency can be reallocated: it can be

reallocated to an inherited element (in case that another superactor’s IE is capable of

providing the dependum) or to a new one.

Preventive Incoming Reallocation is formally defined with the function

reallocatePreventiveIncoming (see Definition Definition 20, Section 4.2.2.2).

Extension

Redefinition

Refinement

Activity 2.1

Actor Link

Dependency

Decomposition subtree

Activity 2.2

Preventive
Incoming

Reallocation?

Outgoing/Incoming
Reallocation?

Outgoing/Incoming
Reallocation?

Step 2Step 1

is-a
link

Qualitative Contribution

9.3 Tool Support 105

9.2.2 OUTGOING/INCOMING REALLOCATION

The reallocation of dependencies must be considered when a decomposition of an inherited IE

changes in the subactor. Both outgoing and incoming can be reallocated after a new or

modified IE appears in the subactor due to a specialization operation (Activity 1.1) or adding

decomposition (Activity 1.2).

When the outgoing dependency is stemming from an IE, it is possible to reallocate it to a new

descendant (one or more levels below), if this new element is the one really requiring the

outgoing dependency. For instance, Figure 9-2 shows an example where there is a general goal

ie in the superactor a, and in the subactor b, ie has been extended with means new g1 and

new g2, such that the outgoing dependency d is recommended to be reallocated to the new g2

goal because it is the one that really needs the dependency. The modeler is specifying where

the outgoing dependency is really needed.

Figure 9-2. Reallocating Outgoing Dependencies after extension

For incoming dependencies, there is no restriction about where the incoming dependency can

be reallocated: it can be reallocated to an inherited element (in case that another superactor’s

IE is capable of providing the dependum) or to a new one.

Outgoing/Incoming Reallocation corresponds to functions reallocateOutgoing and

reallocateIncoming (see Definition 18 and Definition 19, Section 4.2.2.2).

9.3 TOOL SUPPORT

Models shown in this document have been developed using the tool REDEPEND-REACT tool

[Grau-etal05], a variant of REDEPEND tool resulting of the colaboration between the City

University and Universitat Politècnica de Catalunya. It is a template for Microsoft Visio that

allows the edition of classical i* models. It does not support inheritance but the fact of being a

Vision template allows changing lines to use dotted lines when they are needed, which is the

main change required in the context of my work. More specifically, to adequate models to my

proposal I have to carry out the following changes manually:

106 Chapter 9. The Specialization Process

 Intentional elements and intentional element links: Changing regular lines by dotted

lines for inherited and non-modified elements.

 Dependencies:

o Adding text for the strengths values (strenghts are not supported in

REDEPEND-REACT).

o Adding text for contribution links values (REDEPEND-REACT supports only +

and – contribution links).

o When I need to combine regular and dotted lines in a dependency, I have to

combine two shapes for drawing a complete dependency (one IE and two

dependency links) instead of the shape defined for dependencies.

Figure 9-3 shows an example of SD diagram in the REDEPEND-REACT tool. The model is

graphically represented at the right side of the window and at the left side there are two

palettes where the model elements are grouped depending SD or SR diagrams. For SD

diagrams are actor and dependencies. For SR diagrams are actor, boundary and the differend

kinds of intentional elements (goal, softgoal, resource and task) and links (dependency, means-

end, task-decomposition and contribution to softgoal).

Figure 9-3: SD diagrams using REDEPEND-REACT

9.3 Tool Support 107

Besides using REDEPEND-REACT to develop models graphically, I have included specialization

in the i* editor HiME [Lopez-etal09]. HiME (Hierarchical i* Model Editor) does not represent i*

models graphically through the language symbology, but shows them as a folder-tree directory

in a file system. Figure 9-4 shows the Meeting Scheduler example (see Figure 1-2) as displayed

by HiME.

Figure 9-4. Meeting Scheduler as represented in HiME

The i* Model Navigator (left windows) shows the model hierarchically, (1) shows the Meeting

Initiator as the depender for Attends Meeting dependency, meanwhile in (2) the Meeting

Initiator as the dependee. The i* Model Statistics (right window) includes some information

about the model for each actor:

 Number of outgoing and incoming dependencies, the number of IEs and IE link, Root

IEs (main IES) and Shared IEs (IEs belonging to more than one decomposition).

 Dependencies: Number of outgoing and incoming dependencies for each actor. The

most vulnerable is the actor with the higher number of outgoing dependencies. The

crucial is the actor with the higher number of incoming dependencies.

 Complexity: It is the number of IEs and IE links22

22 In the example shown in the figure, there is no information about complexity because it is a SD model

(actor without IEs)

108 Chapter 9. The Specialization Process

The current version23 (2.0) can be found and downloaded at [HiME], where also the user guide

is available. Besides the usual functionality for an i* editor (managing actors, actor links,

dependencies, IEs and IE links), it includes some of the specialization operations presented in

this proposal. Besides the Specialize Actor operation (“Add Is-A Relation”), HiME includes the

specialization operations referent to IEs: IE extension with a decomposition link, IE refinement

and IE redefinition. It is also allowed the actor extension with an outgoing dependency (“Add

Dependency Link”) and actor extension with a main intentional element (“Create a i* root

model element”). For the last two specialization operations, the modeler is responsible to use

them properly, the editor do not check any correctness condition.

 As is the tool developed by GESSI, it uses the i* metamodel included in the book [Yu11,

chapter 17] extended to include the specialization [Cares-etal10]. This tool uses iStarML

[Cares-etall11bis2] for storing model. iStarML is an XML-based format for enabling

interoperability among i* tools. HiME was part of a proof of concept of using iStarML for tool

interoperability [Colomer-etal11] [Cares-etal11bis].

9.4 THE COMPLETE EXEMPLAR

After all the specialization operations have been defined, the complete exemplar can be

presented. This model contains three actor categories: customers, travel agencies and service

providers. Figure 9-5 contains the complete SD Diagram corresponding to the exemplar used

throught this thesis dissertation. Figure 9-6 contains the SR Diagram corresponding to the

exemplar excluding subactors for customers and travel agencies, for space reasons. These

subactors are included separate figures, showing the differences with their superactor and the

dependencies to the other actors in the model.

23 Current version is a rich client application developed using eclipse. The available package contains an

executable file to be executed under MS Windows.

9.4 The Complete Exemplar 109

Figure 9-5. Travel Agency complete SD Diagram

110 Chapter 9. The Specialization Process

Figure 9-6. Travel Agency SR Diagram (without TA & Customer subactors)

In the following figures, the SR for each pair superactor and subactor are shown jointly witn

the pair of subactor and relate subactors (e.g. for FTA, the related subactor is Family).

9.4 The Complete Exemplar 111

Figure 9-7. Superactor TA and subactor FTA SR Diagram

Figure 9-7 shows the piece of the SR diagram that shows superactor TA and subactor FTA SR

diagrams. In the subactor diagram the following elments are included:

 Inherited elements when needed (dotted lines). This need can be originated because

this IE has a new link from other IE, for example softgoal Good Quality-Price Rate

appears because the new task Provide Child Discounts contributes to them. It can

be also included for informative reasons, for example Book Travel is only included to

have the complete decomposition in the subactor (the other subtasks from the

superactor are incluced for other reasons).

 Specialized elements (name contains brakets): When an element is specialized is

mandatory that appears in the subactor SR diagram, for example [Travels

Contracted Increase], [Sell Travels] and [Charge Travel] are extensions,

112 Chapter 9. The Specialization Process

Provide [Synchronous Support] by Phone and Family [Travel Information]

are IE refinements and the contribution link from Portal Highly Customized and

Relation with Customers Kept Minimized a contribution link redefinition.

 New elements (regular lines and no brakets). For example Family Facilities

Offered and its decomposition.

Figure 9-8 shows the piece of the SR diagram that shows superactor Customer subactor

Family SR diagrams. In the subactor diagram the following elments are included:

 Inherited elements: In this case the task Pay Travel has been included only not to

loose the relation between [Buy a Travel] and [Booking Reference], they must

be included because they are specialized. The softgoal Travels Bought Easily is included

due to the link from [Assistance Obtained] by Phone.

 Specialized elments: Extended [Buy a Travel] and [Booking Reference] and

refined [Assistance Obtained] by Phone. Regarding links, the qualitative

contribution link from [Assistance Obtained] by Phone to Travels Bought Easily.

 New elements: The decompition for extension Family Facilities Obtained

Figure 9-8. Superactor Customer and subactor Family SR Diagram

9.4 The Complete Exemplar 113

Figure 9-9. Subactors Family and FTA SR Diagram

Figure 9-9 shows the piece of the SR diagram that corresponds to the SR diagrams for the

Family and FTA subactors. For superactor dependencies, are only included which ones that

suffers some specialization at subactor level. In this piece of digram appears, besides the SR

diagram elements for each subactor:

 Specialized dependencies (name containing or not brakets and regular or dotted lines).

For example [Assistance Obtained] by Phone only refines de dependum (name

with brakets and dotted lines), Detailed [Travel Offerings] is refining the

dependum and the strength on the dependee side (regular line for the refined

strength side) and Invoice redefines the strength on the depender side (regular line

for the redefined strengthe side).

114 Chapter 9. The Specialization Process

 New dependencies (regular lines and no brakets), for example Pets Allowed Lodging

and Children Info.

The following figures Figure 9-10, Figure 9-11 and Figure 9-12 shows the SR Diagrams

corresponding to the specializations TA – UTA, Customer – Researcher and the dependencies

between both subactors repectively.

Figure 9-10. Superactor TA and subactor UTA SR Diagram

9.4 The Complete Exemplar 115

From Figure 9-11 is wothly remarkable that the new resource Conference Information has

been used for the extension of two specialized elements: task [Name a Price] and softgoal

[Good Service Received].

Figure 9-11. Superactor Customer and subactor Researcher SR Diagram

116 Chapter 9. The Specialization Process

Figure 9-12. Subactors Researcher and UTA SR Diagram

9.4 The Complete Exemplar 117

The following figures Figure 9-13 and Figure 9-14 shows the SR Diagrams corresponding to the

specializations Customer – Affluent Customer and dependencies between Affluent

Customer and Luxury TA respectively. In this case, the specialization TA – Luxury TA has been

included in the same as figure as the dependencies between subactors.

Figure 9-13. Superactor Customer and subactor Affluent Customer SR Diagram

From Figure 9-13 is wothly remarkable the [Buy a Travel] task redefinition, for Affluent

Customer subactor, the Travels Bought Cheaply subsoftgoal has been removed. The trip

price is not important for affluent customers.

118 Chapter 9. The Specialization Process

Figure 9-14. Superactor TA and subactor Luxury TA SR Diagram jointly with the subactor Affluent Customer

9.4 The Complete Exemplar 119

And finally Secure TA and Low Cost TA are subactors that do not have specific subactor for

Customer actor. In Figure 9-15 shows how Secure TA refines task Charge Travel into

[Charge Travel] Using Pay Pal, the decomposition from the actor remains in the subactor,

and dependencies appear to Pay Pal service provider and to Customer.

Figure 9-15. Superactor TA and subactor Secure TA SR Diagram jointly with superactor Customer and subactor

PayPal

120 Chapter 9. The Specialization Process

Figure 9-16 shows how LowCost TA redefines the goal Assistance Provided for providing

only Asynchronous Assistance, which contributes negatively to softgoal Customer be

Happy.

Figure 9-16. Superactor TA and subactor LowCost TA SR Diagram

Chapter 10. Conclusions and
Future Work

This PhD. thesis belongs to the area of modeling languages, more precisely in the i* language

provided for the i* framework. This chapter reviews the main contributions of my research as

well as some future lines of investigation which have emerged along with the work.

Contributions

10.1 CONTRIBUTIONS

The aim of this thesis has been to clarify the ambiguity found in the use of specialization in i*

models. Linked to this concern, the aim has been to study the consequences of a specialization

relationship declared at the actor level. I have identified three main specialization operations:

extension, refinement and redefinition, and for each of them, I have identified three concrete

operations.

Answering the main research question expressed in the first chapter “RQ1: How can actor

specialization be applied when building models with the i* language?”, the two main

contributions of this thesis are:

 a formal definition of a set of specialization operations applicable in the process of

building i* models

 a methodology to apply them

The specialization operations are:

 Extension. Adding new actor-related model elements establishing some kind of

relationships with the inherited ones.

o Adding outgoing dependencies to an actor to cover a new subactor

dependency not needed by the superactor.

o Adding new main IEs to an actor to cover new subactor intentionality not

covered by the superactor.

122 Chapter 10. Conclusions and Future Work

o Adding new decomposition link (means-end, task-decomposition or softgoal

decomposition link) to an inherited IE stemming from another IE. This other IE

can be new or inherited.

 Refinement. Enforcing inherited actor-related model element in order to fit with the

subactor context. The subactor model element satisfactibility predicate must imply the

superactor’s. The allowed elements to be enforced are:

o IE semantics, including the possibility of changing the IE type (from Softgoal to

Goal, from Goal to Task or from Goal to Resource).

o Qualitative Contribution link values in the same “polarity” (from Unknown to

Some+, from Some+ to Help, from Help to Make, Unknown to Some-, from

Some- to Break and from Break to Hurt).

o Dependency dependums (in the same way as IEs) and strength values (from

Critical to Committed and from Committed to Open).

 Redefinition. Changing some inherited actor-related model element without the

restriction of enforcing the satisfactibility predicate. In this case the changes can be

applied over:

o IE decomposition (this change do not change the IE semantics, only the way to

be achieved). The inherited decomposition is no longer correct for the

subactor. Therefore a new decomposition must be provided (at least one of

the IEs in the inherited decompition must disappear to be considered a

redefinition).

o Qualitative Contribution link values with no restriction.

o Dependency strength values with no restriction.

Besides the specialization operations, the syntax is utterly important given the fundamental

graphical nature of the i* modeling language. Table 10-1 shows how the model changes

depending on the specialization operation applied. These changes can add, modify or delete

some model elements.

From a methodological point of view, the modifications applied over the subactor are grouped

in two different activities:

 Activity 2.1. Applying several specialization operations to the subactor-related model

elements.

 Activity 2.2. Adding new model elements in the subactor.

Since only one operation can be applied over any superactor’s IE, the order in which the

operations are applied is not relevant, and the activities can be intertwined and iterated at any

desired extent, with just the obvious requirement that the elements added in Activity 2.2 must

refer to elements already added in Activity 2.1.

10.1 Contributions 123

Table 10-1. Model elements changes for specialized actors

Operations New Modified Deleted

extendActorWithOutgoingDependency outgoing

dependency

extendActorWithMainIE IE

extendIEWithDecompositionLink IE Link

source IE

refineIE IE name

IE type

refineContributionLink Link value

refineDependency Dependum name

Dependum type

Strengths value

redefineIEWithDecompositionLink source IE

IE Link

 source IE

IE Link

outgoing

dependency

redefineContributionLink Link value

redefineDependency Strengths value

As a consequence of the first main contribution, and answering research question “RQ2: What

constructs configure the i* language core?“, this thesis also contributes with:

 a formalization for the i* language core modeling constructs

This thesis also includes the formal validation for the specialization operations answering the

research question”RQ3: How can the model correctness be validated when specialization is

used in i* models? ”. This validation uses the concept of model correctness, aligned to the

actor satisfaction. This proposal has been complemented giving:

 a formal definition for satisfaction at actor-level able to deal with specialization

The satisfaction is used in the sense of all the instances of the subactor must be instances of

the superactor, adapting LSP to the i* language.

I would like to remark the main strengths of the specialization operations included in this

proposal:

 It relies on the theory of specialization as defined by some milestone references

[Borgida82][Liskov87][Meyer97]. Therefore, the proposal is compliant with the most

recognized principles in this context.

 I avoided adding new constructs to i*. This is an important issue since we avoid

committing the proposal to a particular version of the language that would have

increased the complexity of the language. I have just introduced some diagrammatic

convention (e.g., dotted lines) for legibility purposes.

 We have analyzed the effects of the several specialization constructs to the diversity of

intentional elements, links and dependencies that are in i* definition.

124 Chapter 10. Conclusions and Future Work

Regarding the methodology, it is worth mentioning that the order in which the operations are

applied to build the model is not relevant.

The domains studied to define the specialization operations have been knowledge

management, software development (concretely object-oriented software development) and

conceptual modeling. Although the i* language is a conceptual modeling language, this

proposal is “more” aligned to the other two areas. Redefinition is the operation that differs

from conceptual modeling point of view, but using only Extension and Refinement makes this

proposal compliant to conceptual modeling principles. Redefinition however may be useful in

some development contexts and this is why I have incorporated it in my proposal.

A positive remark of this proposal is that, although I included part of the specialization

operations in an existing i* editor (HiME), I have been able to use an external24 tool

(REDEPEND-REACT) with no modifications (although a manual processing to change some line

shapes is required).

10.2 FUTURE WORK

Directly connected to the proposal it is planned use this proposal in the context of a European

Project where I just initially involved. RISCOSS project intents to develop advanced tools and

methods to offer community-based and industry-supported risk management in Open Source

Software (OSS) ecosystems. Concretelly, actor specialization will be used for modelling OSS

ecosystems, where the kinds of the different agents that composes the ecosystem arises the

necessity of actor specialization.

It is also planned to verify the proposal in the context of the increasement of language

complexity. I planned to conduct an experiment taking as subjects of the experiment the

students of the subject Software Engineering I in the Master in Information Technology offered

by Facultat d’Informàtica de Catalunya (FIB).

On the line of consolidating the i* model formalization, as mentioned in Section 1.5 (Research

Context), we are involved in a collaboration giving ontological meaning to i* constructs to

validate our decisions/assumptions. [Franch-etal11bis] presents an initial work on this line,

giving ontological meaning to the means-end link. In this paper the foundational ontology UFO

is used to study this link from the ontological point of view. The idea is giving this ontological

background for all i* model elements.

Even though all the research questions presented in the first chapter of this thesis have been

answered, some new arose during the process. Below are some of these new concerns directly

connected to the subject of this thesis:

 Studying the possibility of allowing multiple inheritance. Initially, aligning with other

related areas, OO programing in particular, the main problem of multiple inheritance

is solving overlapping when more than one superactor has the same or equivalent IEs.

24 A tool developed outside the research group.

10.2 Future Work 125

It must be defined when two IEs can be considered equivalent and how can be

represented in the subactor.

 Investigate the joint application of refinement and redefinition. According with the

proposal none of the other combinations of operations would make sense. But, when

an IE is refined, it would be necessary also change its decomposition.

 Including automatic dependencies reallocation. For the automatic reallocation it

would be necessary to have a proper definition for the consequences that an

incoming dependency arrives to an IE or to an IE that belongs to its decomposition. If

these consequences are welldefined, it would be possible to reallocate them to the IE

descendants of ancestors when it is specialized. A deep research is needed for this

option, the consequencies could increase the complexity of the proposal. This

automatic reallocation could force the order of specialization operations application.

 Studying how the proposed operations affects to the properties and treatments

defined in the i* framework.

 Including strengths in the dependency satisfaction definition. Dependency satisfaction

definition is aligned to other authors’ definition that only involves the dependum

satisfaction.

Finally, in the sense of having a complete definition for all actor links, it would be interesting to

know if is possible to generalize the results of this thesis to the other actor links (is-part-of,

plays, covers and occupies). Initialy, I have in mind that plays, covers and occupies can be

considered as is-a link between diferent types of actor (for exemple an agent plays a role).

Therefore, the specialization operations presented in this proposal can be also applied over

the source actor in the link (for example, in the plays link, specialization operation would be

applied over the agent). It is also worthly to mention that redefinition would not apply for this

links. To consolidate this assumption, more research in needed in the sense to understand the

peculiarities of the different actor types (agent, role and position).

Published Papers for this Thesis

In this section there is the list of my publications during the period I have done my research for

my thesis. Due to the collaboration in some projects of my research group (see Section 1.5),

some of them are directly related to my PhD thesis matter, and some of them are related but

not directly connected.

PUBLICATIONS DIRECTLY RELATED TO THE PHD THESIS

Journals not indexed in the JCR

[Lopez-etal09] Lopez, L.; Franch, X. and Marco, J.: HiME: Hierarchical i* Modeling Editor.

In Revista de Informática Teórica e Aplicada. 2009, Volume 16, Number 2,

pp. 57 - 60. ISSN: 0103-4308. Publishing the posters and demonstrations

session for the 28th International Conference on Conceptual Modeling (ER

2009).

Conference Proceedings

[Lopez-etal12] Lopez, L.; Franch, X. and Marco, J.: Specialization in i* Strategic Rationale

Diagrams. In Proceeding of the 31th International Conference on

Conceptual Modeling (ER 2012). 15-18 October, Florence, Italy. Lecture

Notes in Computer Science, 2012, Volume 7532, pp. 267-281. ISBN: 978-3-

642-34001-7. Best Student Paper Award.

ER: CORE-A25, 17% AR26

[Lopez-etal11] Lopez, L.; Franch, X. and Marco, J.: Making Explicit some Implicit i*

Language Decisions. In Proceedings of the 30th International Conference

on Conceptual Modeling (ER 2011). 31 October-2 November, Brussels,

Belgium. Lecture Notes in Computer Science, 2011, Volume 6998, pp. 62-

77. ISBN: 978-3-642-24606-7.

ER: CORE-A, 15.9% AR

Workshops Proceedings

[Cares-etal10] Cares, C.; Franch, X.; Lopez, L. and Marco, J.: Definition and uses of the i*

metamodel. In Proceedings of the 4th International i* Workshop (iStar

2010). June 07-08 2010, Hammamet, Tunisia. Co-located with the 22nd

Conference for Advanced Information Systems Engineering (CAiSE 2010).

CEUR Workshop proceedings. Volume 586, pp. 20 - 25. ISSN 1613-0073.

25 ERA Conference List, February 2008.

26 AR: Acceptance Rate for regular papers.

128 Published Papers for this Thesis

[Lopez-etal08] Lopez, L.; Franch, X. and Marco, J.: Defining Inheritance in i* at the Level

of SR Intentional Elements. In Proceedings of the 3rd International i*

Workshop (iStar 2008). 11-12 February 2008, Recife, Brazil. CEUR

Workshop proceedings. Volume 322, pp. 71 – 74. ISSN: 1613-0073.

[Clotet-etal07bis] Clotet, R.; Franch, X.; Lopez, L.; Marco, J.; Seyff, N. and Grünbacher, P.:

On the Meaning of Inheritance in i*. In Proceedings of the 17th

International Workshop on Agent-Oriented Information Systems (AOIS

2007), 11 June 2007, Trondheim, Norway. In CAiSE 2007 Proceedings of

Workshops and Doctoral Symposium. Tapir Academic Press, 2007,

Volume 2, pp. 651-665. ISBN 978-82-519-2246-3.

AOIS: CORE-B

Doctoral Symposiums

[Lopez09] Lopez, L.: A complete definition of the inheritance construct in i*. In

Proceedings of the ER 2009 PhD Colloquium, affiliated to the 28th

International Conference on Conceptual Modeling (ER 2009). 9 November

2009, Gramado, Brazil. CEUR Workshop proceedings. Volume 597, paper

4. ISSN: 1613-0073.

Technical Reports

[Lopez-etal12bis] Lopez, L.; Franch, X. and Marco, J.: Specialization in i* Strategic Rationale

Diagrams. Research Report ESSI-TR-12-4, Universitat Politècnica de

Catalunya. 2012.

Published Papers for this Thesis 129

OTHER PUBLICATIONS RELATED TO THE PHD THESIS

The nexus among all the publications in this section is the framework i*. The knowledge about

i* modeling language made me possible to be involved in several research lines with different

authors.

Conference Proceedings

[Clotet-etal07] Clotet, R.; Franch, X.; Grünbacher, P.; López, L.; Marco, J.; Quintus M. and

Seyff, N.: Requirements Modelling for Multi-Stakeholder Distributed

Systems: Challenges and Techniques. In Proceedings of the 1st IEEE

International Conference on Research Challenges in Information Science

(RCIS 2007). 23-26 April 2007, Ouarzazate, Marrakech. pp. 413-424. ISSN:

0302-9743.

RCIS: CORE-B, 30% AR.

Workshops Proceedings

[Cares-etal10] Cares, C.; Franch, X.; Colomer, D. and López, L.: Tool Interoperability

using iStarML. In Proceedings of the 5th International i* Workshop

(iStar11). 29-30 August 2011, Trento, Italy. Co-located with the 19th

IEEE International Requirements Engineering Conference (RE 2011).

CEUR Workshop Proceedings. Volume 766, pp. 166-168. ISSN 1613-

0073.

[Franch-etal11bis] Franch, X.; Guizzardi, R.; Guizzardi, G. and López, L.: Ontological

Analysis of Means-End Links. In Proceedings of the 5th International i*

Workshop (iStar 2011). 29-30 August 2011, Trento, Italy. Held in

conjunction with the 19th IEEE International Requirements

Engineering Conference (RE 2011). CEUR Workshop proceedings.

Volume 766, pp. 37 - 42. ISSN 1613-0073.

[Franch-etal11] Franch, X.; Grünbacher, P.; Oriol, M; Burgstaller, B.; Dhungana, D.;

López, L.; Marco, J. and Pimentel, J.: Goal-driven Adaptation of

Service-Based Systems from Runtime Monitoring Data. In Proceedings

of the 5th International IEEE Workshop on Requirements Engineering

for Services (REFS 2011). Co-located with the IEEE 35th Annual

Computer Software and Applications Conference (COMPSAC 2011),

18-22 July 2011, Munich, Germany. pp. 458 - 463. ISBN: 978-0-7695-

4459-5.

[Colomer-etal11] Colomer, D; López, L.; Cares, C. and Franch, X.: Model Interchange and

Tool Interoperability in the i* Framework: A Proof of Concept. In

Proceedings of the The 14th Workshop on Requirements Engineering

(WER 2011). 27-29 April 2011, Rio de Janeiro, Brazil. Held in

conjunction with the 14th Ibero-American Conference on Software

Engineering (CibSE 2011). ISBN: 978-85-8006-032-4.

130 Published Papers for this Thesis

WER: 31.25% AR

[Clotet-etal08] Clotet, R.; Dhungana, D.; Franch, X.; Grünbacher, P.; López, L.; Marco,

J. and Seyff, N.: Dealing with Changes in Service-Oriented Computing

Through Integrated Goal and Variability Modelling. In the Proceedings

of the 2nd International Workshop on Variability Modelling of

Software-Intensive System (VaMoS 2008). 16-18 January 2008,

Universität Duisburg-Essen, Germany. ICB Research Report 2008,

Number 22, pp. 43-52.

[Grunbacher-etal07] Grünbacher, P.; Dhungana, D.; Seyff, N.; Quintus, M.; Clotet, R.;

Franch, X.; López, L. and Marco, J.: Goal and Variability Modeling for

Service-oriented System: Integrating i* with Decision Models. In

Proceedings of Software and Services Variability Management

Workshop - Concepts Models and Tools (SSVM 2007). 19-20 April

2007, Helsinki, Finland. pp. 99 - 104. ISBN: 978-951-22-8747-5.

References27

[Abrial74] Abrial, J.R.: Data semantics. In Proceedings of the IFIP Working

Conference Data Base Management, 1-5 April 1974, Cargèse, Corsica,

France. In J.W. Klimbie & K.L. Koffeman (Eds.), Database Management

Systems. North Holland, 1974. pp. 1–59.

[Alencar-etal02] Alencar, F. M. R.; Filho, G. A. C; and Castro, J.: Support for structuring

mechanism in the integration of organizational requirements and object

orientation. In Proceeding of the 5th Workshop em Engenharia de

Requisitos (WER 2002), 11-12 November 2002, Valencia, España. pp.

147-161.

[Alencar-etal09] Alencar, F. M. R.; Marín, B.; Giachetti, G.; Pastor, O.; Castro, J. and

Pimentel, J. H.: From i* Requirements Models to Conceptual Models of a

Model Driven Development Process. In Proceedings of the 2nd IFIP WG

8.1 Working Conference on The Practice of Enterprise Modeling (PoEM

2009), 18-19 November 2009, Stockholm, Sweden. Lecture Notes in

Business Information Processing, 2009, Volume 39, Part 4, pp. 99-114.

ISSN: 1865-1348.

[Amyot-etal10] Amyot, D.; Ghanavati, S.; Horkoff, J.; Mussbacher, G.; Peyton, L. and Yu,

E.: Evaluating Goal Models within the Goal-Oriented Requirement

Language. In International Journal of Intelligent Systems. 2010, Volume

25, Issue 8, pp. 841-877.

[ANSI75] NSI/X3/SPARC Study Group on Data Base Management Systems. Interim

report. ACM SIGMOD 7, 1975.

[Atzeni-etal81] Atzeni, P.; Batini, C.; Lenzerini, M. and Villanelli, F.: INCOD: A system for

conceptual design of data and transactions in the entity-relationship

model. In Proceedings of the 2nd International Conference on the Entity-

Relationship Approach to Information Modeling and Analysis (ER 1981).

12-14 October 1981, Washington DC, USA. pp. 375-410. ISBN: 0-444-

86747-3.

[Ayala-etal05] Ayala, C.P.; Cares, C.; Carvallo, J.P.; Grau, G.; Haya, M.; Salazar, G.;

Franch, X.; Mayol, E. and Quer, C.: A Comparative Analysis of i*-Based

Agent-Oriented Modeling Languages. In Proceedings of the 17th

International Conference on Software Engineering and Knowledge

Engineering (SEKE 2005), 14-16 July 2005, Taipei, Taiwan, Republic of

China. pp.259-266.

[Borgida-etal82] Borgida, A.; Mylopoulos, J. and Wong, H.K.T:

Generalization/Specialization as a Basis for Software Specification. In On

Conceptual Modelling, Perspectives from Artificial Intelligence,

Databases, and Programming Languages, Book resulting from the

27 Papers authored by me are marked in bold

132 References

Intervale Workshop 1982. Springer, 1984, Topics in Information Systems,

pp. 87-117.

[Brachman83] Brachman, R.J.: What IS-A Is and Isn't: An Analysis of Taxonomic Links in

Semantic Networks. In IEEE Computer, 1983, Volume 16, Number 10, pp.

30-36. ISSN: 0018-9162.

[Brachman85] Brachman, R.J.: I Lied About the Trees, Or, Defaults and Definitions in

Knowledge Representation. In AI Magazine, 1985, Volume 6, Number 3,

pp. 80-93. ISSN 0738-4602.

[Brachman-Levesque04] Brachman, R.J. and Levesque, H.J.: Knowledge Representation and

Reasoning. San Francisco: Elsevier, 2004. ISBN 1-55860-932-6.

[Brachman-Schmolze85] Brachman, R.J. and Schmolze, J.G.: An overview of the KL-ONE

knowledge representation system. In Cognitive Science, 1985, Vokume 9,

Issue 2, pp. 171–216.

[Cares-etal11bis] Cares, C.; Franch, X.; Colomer, D. and López, L.: Tool Interoperability

using iStarML. In Proceedings of the 5th International i* Workshop

(iStar11). 29-30 August 2011, Trento, Italy. Co-located with the 19th IEEE

International Requirements Engineering Conference (RE 2011). CEUR

Workshop Proceedings. Volume 766, pp. 166-168. ISSN 1613-0073.

[Cares-etal11] Cares, C. and Franch, X.: A Metamodelling Approach for i* Model

Translations. In Proccedings of the 23rd International Conference on

Advanced Information Systems Engineering (CAISE 2011). 20-24 June

2011, London, United Kingdom. Lecture Notes in Computer Science,

2011, Volume 6741, pp. 337 - 351.

[Cares-etal10] Cares, C.; Franch, X.; Lopez, L. and Marco, J.: Definition and uses of the

i* metamodel. In Proceedings of the 4th International i* Workshop

(iStar 2010). June 07-08 2010, Hammamet, Tunisia. Co-located with the

22nd Conference for Advanced Information Systems Engineering (CAiSE

2010). CEUR Workshop proceedings. Volume 586, pp. 20 - 25. ISSN

1613-0073.

[Cares-etall11bis2] Cares, C.; Franch, X.; Perini, A. and Susi, A.: Towards Interoperability of i*

Models Using iStarML. In Computer Standards & Interfaces Journal, 2011,

Volume 33, Issue 1, pp. 69-79. ISSN: 0920-5489.

[Castro-etal12] Castro, J.; Lucena, M.; Silva, C.; Alencar, F.; Santos, E. and Pimentel, J.:

Changing Attitudes Towards the Generation of Architectural Models. In

Journal of Systems and Software, 2012, Volume 85, Number 3, pp. 463 -

479.

[Chen76] Chen, P.: The Entity-Relationship Model-Toward a Unified View of Data.

In ACM Transactions on Database Systems, 1976, Volume 1, Number 1,

pp. 9 – 36. ISSN 0362-5915.

[Clotet-etal07] Clotet, R.; Franch, X.; Grünbacher, P.; López, L.; Marco, J.; Quintus M.

and Seyff, N.: Requirements Modelling for Multi-Stakeholder

Distributed Systems: Challenges and Techniques. In Proceedings of the

1st IEEE International Conference on Research Challenges in Information

References 133

Science (RCIS 2007). 23-26 April 2007, Ouarzazate, Marrakech. pp. 413-

424. ISSN: 0302-9743.

[Clotet-etal07bis]

Clotet, R.; Franch, X.; Lopez, L.; Marco, J.; Seyff, N. and Grünbacher, P.:

On the Meaning of Inheritance in i*. In Proceedings of the 17th

 International Workshop on Agent-Oriented Information Systems (AOIS

2007), 11 June 2007, Trondheim, Norway. In CAiSE 2007 Proceedings of

Workshops and Doctoral Symposium. Tapir Academic Press, 2007,

Volume 2, pp. 651-665. ISBN 978-82-519-2246-3.

[Clotet-etal08] Clotet, R.; Dhungana, D.; Franch, X.; Grünbacher, P.; López, L.; Marco, J.

and Seyff, N.: Dealing with Changes in Service-Oriented Computing

Through Integrated Goal and Variability Modelling. In the Proceedings

of the 2nd International Workshop on Variability Modelling of Software-

Intensive System (VaMoS 2008). 16-18 January 2008, Universität

Duisburg-Essen, Germany. ICB Research Report 2008, Number 22, pp.

43-52.

[Colomer-etal11] Colomer, D; López, L.; Cares, C. and Franch, X.: Model Interchange and

Tool Interoperability in the i* Framework: A Proof of Concept. In

Proceedings of the The 14th Workshop on Requirements Engineering

(WER 2011). 27-29 April 2011, Rio de Janeiro, Brazil. Held in

conjunction with the 14th Ibero-American Conference on Software

Engineering (CibSE 2011). ISBN: 978-85-8006-032-4.

[Dahl68] Dahl, O.; Myhrhaug, B. and Nygaard, K.: SIMULA 67: common base

language. Oslo: Norwegian Computing Center, 1968, Number S-2.

[ADOxx] Definition of the i* format by using the metamodel compiler ADOxx v1.0.

Research Group. GESSI group. Acciones Integradas programme (AT2009-

0015). Founded by Spanish government.

[Danforth-Tomlinson88] Danforth, S. and Tomlinson, C.: Type theories and object-oriented

programming. In Journal ACM Computing Surveys, 1988, Volume 20,

Issue 1, pp. 29-72. ISSN: 0360-0300.

[Fahlman79] Falhman, S.E.: NETL: A System for Representing and Using Real-World

Knowledge. Cambridge: MIT Press, 1979. ISBN: 978-02-625-6167-9.

[Franch05] Franch, X.: On the lightweight use of goal-oriented models for software

package selection. In Proceedings of the 17th International Conference on

Advanced Information Systems Engineering (CAISE 2005), 13-17 June

2005, Porto, Portugal. In Berlin: Springer-Verlag, 2005, pp. 551-566.

ISBN: 3-540-26095-1.

[Franch-etal07] Franch, X.; Grau, G.; Mayol, E.; Quer, C.; Ayala, C.P.; Cares, C.; Navarrete,

F.; Haya, M. and Botella, P.: Systematic Construction of i* Strategic

Dependency Models for Socio-technical Systems. In International

Journal of Software Engineering and Knowledge Engineering (IJSEKE).

2007, Volume 17, Issue 1, pp. 79-106.

[Franch-etal11] Franch, X.; Grünbacher, P.; Oriol, M,; Burgstaller, B.; Dhungana, D.;

134 References

López, L.; Marco, J. and Pimentel, J.: Goal-driven Adaptation of Service-

Based Systems from Runtime Monitoring Data. In Proceedings of the

5th International IEEE Workshop on Requirements Engineering for

Services (REFS 2011). Co-located with the IEEE 35th Annual Computer

Software and Applications Conference (COMPSAC 2011), 18-22 July

2011, Munich, Germany. pp. 458-463. ISBN: 978-0-7695-4459-5.

[Franch-etal11bis] Franch, X.; Guizzardi, R.; Guizzardi, G. and López, L.: Ontological Analysis

of Means-End Links. In Proceedings of the 5th International i* Workshop

(iStar 2011). 29-30 August 2011, Trento, Italy. Co-located with the 19th

IEEE International Requirements Engineering Conference (RE 2011).

CEUR Workshop proceedings. Volume 766, pp. 37 - 42. ISSN 1613-0073.

[Giorgini-etal04] Giorgini, P.; Massacci, F.; Mylopoulous, J. and Zannone. N.: Requirements

Engineering meets Trust Management: Model, Methodology, and

Reasoning. In Proceedings of the 2nd International Conference on Trust

Management (iTrust’04). 29 March – 1 April 2004, Oxford, United

Kingdom. Lecture Notes in Computer Science, 2004, Volume 2995, pp.

176–190.

[Giunchiglia-etal02] Giunchiglia, F.; Perini, A. and Sannicolò, F: Knowledge Level Software

Engineering. In Proceedings of the 8th International Workshop on

Intelligent Agents (ATAL 2001). August 1-3, Seattle, WA, USA. Lecture

Notes in Computer Science, 2002, Volume 2333, pp. 6-20. ISBN: 3-540-

43858-0.

[Golberg-Robson83] Goldberg, A. and Robson, D.: Smalltalk-80: the language and its

implementation. Boston: Addison-Wesley Longman Publishing Co., 1983.

Addison-Wesley series in Computer Science. ISBN: 978-02-011-1371-6.

[Goldsby-etal08] Goldsby, H. J.; Sawyer, P.; Bencomo, N.; Cheng, B. H.C. and Hughes, D.:

Goal-Based Modeling of Dynamically Adaptive System Requirements. In

Proceedings of the 15th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems (ECBS 2008).

31 March- 4 April 2008, Belfast, North Ireland. pp. 36-45. ISBN: 978-0-

7695-3141-0.

[Grau-etal05] Grau, G.; Franch, X. and Maiden, N.: REDEPEND-REACT: an Architecture

Analysis Tool. In Proceedings of the 13th IEEE International Requirements

Engineering Conference (RE 2005). 29 August – 2 September 2005, Paris,

France. pp. 455-456. ISBN: 0-7695-2425-7.

[Grau-etal06] Grau, G.; Franch, X. and Ávila, S.: J-PRiM: A Java Tool for a Process

Reengineering i* Methodology. In Proceedings of the 14th IEEE

International Conference on Requirements Engineering (RE 2006), 11-15

September 2006, Minneapolis/St.Paul, Minnesota, USA. IEEE Computer

Society, September 2006, pp. 359-360. ISBN 0-7695-2555-5.

[GRL] GRL Website: GRL - Goal-oriented Requirement Language. University of

Toronto, Canada. [Query: 1st February 2013]. URL:

References 135

http://www.cs.toronto.edu/km/GRL/

[Grunbacher-etal07] Grünbacher, P.; Dhungana, D.; Seyff, N.; Quintus, M.; Clotet, R.;

Franch, X.; López, L. and Marco, J.: Goal and Variability Modeling for

Service-oriented System: Integrating i* with Decision Models. In

Proceedings of Software and Services Variability Management

Workshop - Concepts Models and Tools (SSVM 2007). 19-20 April 2007,

Helsinki, Finland. pp. 99 - 104. ISBN: 978-951-22-8747-5.

[Guizzardi05] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models,

PhD Thesis, University of Twente, The Netherlands, 2005. CTIT Ph.D.-

thesis series Number 05-74. ISBN 90-75176-81-3.

[Hejlsberg-etal10] Hejlsberg, A.; Torgersen, M.; Wiltamuth, S. and Golde P.: The C#

Programming Language. 4th Edition. Addison-Wesley Professional, 2010.

Microsoft .NET Development Series. ISBN-10: 0-321-74176-5 (1st edition

in 2001).

[HiME] HiME Tool Website: Hierarchical i-star Modelling Editor. Responsible

Lidia López. Version 2.0.0 (4th February 2011). GESSI Research Group,

Universitat Politècnica de Catalunya. [Query: 1st February 2013]. URL:

www.upc.edu/gessi/HIME/

[Horkoff06] Horkoff, J.: Using i* models for evaluation. Master thesis, Departament

of Computer Sciences, University Toronto, 2006.

[Horkoff-Yu10] Horkoff J. and Yu E.: Finding Solutions in Goal Models: An Interactive

Backward Reasoning Approach. In Proceedings of the 29th International

Conference on Conceptual Modeling (ER 2010), 1-4 November 2010,

Vancouver, BC, Canada. Lecture Notes in Computer Science, 2010,

Volume 6412, pp. 59-75. ISBN: 978-3-642-16372-2.

[iwiki] i* Wiki webpage. (i* Quick Guide last modified 18 July 2011). [Query: 1st

February 2013]. URL: www.istarwiki.org

[Jennings-etal98] Jennings, N.R.; Sycara, K. and Wooldridge, M.: A Roadmap of Agent

Research and Development. In International Journal of Autonomous

Agents and Multi-Agent Systems. 1998, Volume 1, Number 1, pp. 7 - 38.

ISSN: 1387-2532.

[Jennings-etal99] Jennings, N.R.: Agent-Oriented Software Engineering. In Proceedings of

the 9th European Workshop on Modelling Autonomous Agents in a Multi-

Agent World: Multi-Agent System Engineering (MAAMAW 1999), 30

June-2 July 1999, Valencia, Spain. Lecture Notes in Computer Science,

1999, Volume 1647, pp. 1 - 7. ISBN 3-540-66281-2.

[Jennings-etal00] Jennings, N.R.: On Agent-Based Software Engineering. In Journal

Artificial Intelligence, 2000, Volume 117, Issue 2, pp. 277 – 296. ISSN:

0004-3702.

136 References

[Gosling-etal05] Gosling, J; Joy, B; Steele. G.L Jr. and Bracha, G.: The Java Language

Specification, 3rd Edition, Addison-Wesley Professional, 2005, ISBN 0-

321-24678-0 (1st edition in 1996).

[Lamsweerde01] Lamsweerde, A.v.: Goal-oriented requirements engineering: A guided

tour. In Proceedings of 5th IEEE International Symposium on

Requirements Engineering (RE 2001).27-31 August 2001, Toronto,

Canada, pp. 249-263. ISBN: 0-7695-1125-2.

[Liskov87] Liskov, B.: Data Abstraction and Hierarchy. In Proceedings of the 12th

Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA 1987), 4-8 October 1987, Orlando, Florida, USA.

pp. 17-34. ISBN 0-89791-247-0. Newsletter in ACM SIGPLAN Notices -

Special issue: OOPSLA '87: Addendum to the proceedings, 1988, Volume

23, Issue 5, pp. 17-34. ISSN: 0362-1340.

[Lopez-etal08] Lopez, L.; Franch, X. and Marco, J.Defining Inheritance in i* at the Level

of SR Intentional Elements. In Proceedings of the 3rd International i*

Workshop. 11-12 February 2008, Recife, Brazil. CEUR Workshop

proceedings. Volume 322, pp. 71 – 74. ISSN: 1613-0073.

[Lopez09] Lopez, L.: A complete definition of the inheritance construct in i*. In

Proceedings of the ER 2009 PhD Colloquium, affiliated to the 28th

International Conference on Conceptual Modeling (ER 2009). 9

November 2009, Gramado, Brazil. CEUR Workshop proceedings.

Volume 597, paper 4. ISSN: 1613-0073.

[Lopez-etal09] Lopez, L.; Franch, X. and Marco, J.: HiME: Hierarchical i* Modeling

Editor. In Revista de Informática Teórica e Aplicada. 2009, Volume 16,

Number 2, pp. 57 - 60. ISSN: 0103-4308.

[Lopez-etal11] Lopez, L.; Franch, X. and Marco, J: Making Explicit some Implicit i*

Language Decisions. In Proceedings of the 30th International

Conference on Conceptual Modeling (ER 2011). 31 October-2

November, Brussels, Belgium. Lecture Notes in Computer Science,

2011, Volume 6998, pp. 62-77. ISBN: 978-3-642-24606-7.

[Lopez-etal12] Lopez, L.; Franch, X. and Marco, J.: Specialization in i* Strategic

Rationale Diagrams. In Proceedings of the 31st International Conference

on Conceptual Modeling (ER 2012). 15-18 October, Florence, Italy.

Lecture Notes in Computer Science, 2012, Volume 7532, pp. 267-281.

ISBN: 978-3-642-34001-7.

[Lopez-etal12bis] Lopez L., Franch X. and Marco J.: Specialization in i* Strategic Rationale

Diagrams. Research Report ESSI-TR-12-4, Department of Service and

Information System Engineering, Universitat Politècnica de Catalunya.

Juny 2012.

References 137

[Marin-etal04] Marin, F; Bresciani, P.; Sannicolò, F. and Martinelli, L.: Requirements

Engineering for the Business Process Re-Engineering: An Example in the

Agro-Food Supply Chain. In Proceedings of the 6th International

Conference on Enterprise Information Systems (ICEIS 2004). April 14-17,

Porto, Portugal, pp.538-542

[Meyer92] Meyer, B.: Eiffel: the language. 1992. Upper Saddle River, NJ, USA:

Prentice Hall International (UK) Ltd., 1992. ISBN 0-13-247925-7.

[Meyer97] Meyer, B.: Object-Oriented Software Construction. 2nd Edition. Santa

Barbara: Prentice-Hall, 1997. ISBN: 0-13-629155-4 (1st edition 1988).

[Mouratidis-etal06] Mouratidis, H.; Jürjens, J. and Fox, J. Towards a comprehensive

framework for secure systems development. In Proceedings of the 18th

International Conference on Advanced Information Systems Engineering

(CAiSE 2006). Lecture Notes on Computer Science, 2006, Volume 4001,

pp. 48-62. ISBN: 978-3-540-34652-4.

[Mylopoulos98] Mylopoulos, J.: Information modeling in the time of the revolution. In

Journal Information Systems. Special issue with selected papers from the

9th International Conference on Advanced Information Systems

Engineering (CAISE 1997), 1998, Volume 23, Issue 3-4, pp. 127-155.

[MSDS] Requirements Engineering for Multi-stakeholder Distributed Systems.

Research Project. GESSI group. Acciones Integradas program (HU2005-

0021). Founded by Spanish government.

[Navathe-Cheng83] Navathe, S. and Cheng, A.: A methodology for database schema mapping

from extended entity relationship models into the hierarchical model. In

Proceedings of the 3rd International Conference on Entity-Relationship

Approach (ER 1983). Anaheim, California, USA. pp. 223-248. ISBN 0-444-

86777-5.

[ProsReq] Requirement-based production of service-oriented software. Research

Project. GESSI group. Founded by Spanish government (TIN2010-19130-

C02-00).

[Quillian66] Quilliam, M.R.: Semantic memory. Unpublished doctoral dissertation,

Carnegie Institute of Technology, 1966. Reprinted in part in M. Minsky

(ed.), Semantic Information Processing. Cambridge: MIT Press, 1969.

ISBN: 0-262-13044-0.

[Richens56] Richens, R.H.: General program for mechanical translation between any

two languages via an algebraic interlingua. Report on Research:

Cambridge Language Research Unit. In Mechanical Translation. 1956,

Volume 3, Number 2, pp. 36-37.

[Santander-Castro02] Santander, V. F. A. and Castro J.: Deriving use cases from organizational

modeling. In Proceedings of the 10th IEEE Joint International Conference

138 References

on in Requirements Engineering (RE 2002). 9-13 September 2002, Essen,

Germany, pp. 32-39. ISBN: 0-7695-1465-0.

[Sannicolo-etal02] Sannicolo, F.; Perini, A. and Giunchiglia, F.: The Tropos Modeling

Language. A User Guide. Technical Report #DIT-02-0061, Department of

Information and Communication Technology, Univerity of Trento.

February 2002.

[Scheuermann-etal80] Scheuermann, P.; Scheffner, G. and Weber, H.: Abstraction capabilities

and invariant properties modelling within the entity-relationship

approach. In Proceedings of the 1st International Conference on the

Entity-Relationship Approach to Systems Analysis and Design. 1980,

North-Holland, Amsterdam, pp. 121-140. ISBN: 0-444-85487-8.

[Shapiro79] Shapiro, S.C: The SNePS semantic network processing systems. In

Nicholas V. Findler (Editor). Associative Networks: Representation and

Use of Knowledge by Computers. Academic Press, New York, 1979, pp.

179-203.

[Shaw01] Shaw, M.: The coming-of-age of software architecture research. In

Proceedings of the 23rd International Conference on Software

Engineering (ICSE 2001), 12-19 May 2001, Toronto, Canada, pp. 657–

664. ISBN: 0-7695-1050-7.

[Smith-Smith77] Smith J.M. and Smith D.C.P.: Database Abstractions: Aggregation and

Generalization. In Journal ACM Transactions on Database Systems. 1977,

Volume 2, Issue 2, pp. 105 – 133. ISSN: 0362-5915.

[Stroustrup97] Stroustrup, B.: The C++ Programming Language. 3rd Edition. Addison-

Wesley, 1997. ISBN 0-201-88954-4 (1st edition in 1985).

[Susi-etal05] Susi, A.; Perini, A.; Mylopoulos, J. and Giorgini P.: The Tropos Metamodel

and its Use. In Informatica, 2005, Volume 29, Number 4, pp. 401-408.

[Thalheim09] Thalheim, B.: Extended entity-relationship model. , in Encyclopedia of

Database Systems. Springer, 2009, pp. 1083-1091. ISBN 978-0-387-

35544-3.

[UML] Unified Modeling Language (UML) web site. Object Management Group,

Inc. [Query: 1st February 2013]. URL: http://www.uml.org/.

[URN] ITU-T Recommendation Z.151 (11/08): User Requirements Notation

(URN) - Language Definition. International Telecommunication Union,

2008.

[Welsh-Sawyer09] Welsh, K. and Sawyer, P.: Requirements Tracing to Support Change in

Dynamically Adaptive Systems. In Proceedings of the 15th International

Working Conference on Requirements Engineering (REFSQ 2009). Lecture

Notes in Computer Science, 2009, Volume 5512, pp. 59-73. ISBN: 978-3-

References 139

642-02049-0.

[Welsh-Sawyer10] Welsh, K. and Sawyer, P.: Managing Testing Complexity in Dynamically

Adaptive Systems: A Model-Driven Approach. In Proceedings of the 3rd

Software Testing, Verification, and Validation Workshops (ICSTW 2010).

6-10 April 2010, Paris, France, pp. 290-298. ISBN: 978-0-7695-4050-4.

[Welsh-Sawyer10bis] Welsh, K. and Sawyer, P.: Understanding the Scope of Uncertainty in

Dynamically Adaptive Systems. In In Proceedings of the 16th

International Working Conference on Requirements Engineering (REFSQ

2010). 30 June - 2 July 2010, Essen, Germany. Lecture Notes in Computer

Science, 2010, Volume 6182, pp. 2-16. ISBN 978-3-642-14191-1.

[Wegner87] Wegner P.: Dimensions of object-based language design. In Proceedings

of the Conference proceedings on Object-oriented programming

systems, languages and applications (OOPSLA 1987). 4-8 October 1987,

Orlando, Florida, USA. Newsletter in ACM SIGPLAN Notices. 1987,

Volume 22, Issue 12, pp. 168 – 182. ISBN: 0-89791-247-0.

[Wooldridge-etal00] Wooldridge, M.; Jennings N. R. and Kinny, D.: The Gaia methodology for

agent-oriented analysis and design. Journal on Autonomous Agents

Multi-Agents Systems. 2000, Volume 3, Number 3, pp. 285 - 312. ISSN:

1387-2532.

[Young-Kent58] Young, J.; John, W. and Kent, H.K. An abstract formulation of data

processing problems. In Preprints of papers presented at the 13th

national meeting of the Association for Computing Machinery (ACM

1958). New York, NY, USA: ACM Press, 1958, pp. 1-4.

[Yu95] Yu, E.: Modeling strategic relationships for process reengineering. Ph.D.

dissertation, Univ. Toronto, 1995.

[Yu11] Yu, E.: Social Modeling for Requirements Engineering. Cambridge, Mass.:

The MIT Press, 2011. Cooperative Information Systems Series. ISBN: 978-

0-262-24055-0.

Appendix A. Survey: Using is-a links
in i* models

Using is-a links in i* models

1. How often do you use is-a links in the i* models that you develop?
a. Never b. Rarely c. Sometimes d. Often e. Very often

2. If you use is-a links, do you have any doubts about their usage?
a. No, I have really clear the consequences of using this type of link.
b. Yes, but these doubts are not fundamental for my models.
c. Yes, and thus I have defined some rules to use this type of link (please describe

briefly these rules in the back of this sheet).

3. If A is-a B, what is the consequence regarding dependencies at SD model level? More
than one option can be chosen.
a. A must have exactly the same dependencies, with the same characteristics, as B.
b. A can add dependencies (incoming and/or outgoing) that are not in B.
c. A can remove some dependencies that are in B.
d. A can modify the dependencies that are in B as follows:

d1. The dependum can be different (please describe briefly how in the back of
this sheet).

d2. The depender strength can be different.
d3. The dependee strength can be different.

e. Other (please describe briefly in the back of this sheet).

4. If A is-a B, what is the consequence regarding the SR model level? More than one
option can be chosen.
a. A must have exactly the same SR model as B.
b. A can add new intentional elements that are not in B.

b1. New intentional elements can be linked only to other new intentional
elements.

b2. New intentional elements can be linked to both new or B intentional
elements.

c. A can remove some intentional elements that are in B.
d. A can modify intentional elements from B (please describe briefly how in the

back of this sheet).
e. Other (please describe briefly in the back of this sheet).

Thanks for your cooperation!!

 Lidia López, PhD student

 The GESSI group, http://www.essi.upc.edu/~gessi/
Please use the back of this sheet for any additional information

B

A

is-a

http://www.essi.upc.edu/~gessi/

142 Appendix A. Survey: Using is-a links in i* models

Table A-1 presents all answers for the 21 survey responses. These responses have been

grouped depending on the answer for the Q1 (How often do you use is-a links in the i*

models that you develop?). Option d for Q3 and option b for Q4 are intended to collect

information about wheather the responder considers that some element can be modified.

Some responders do not mark these options, but he or she marked some of subanswers for

the allowed modification, for example in E3 the responder did not mark Q3-d but he or she

marked Q3-d3 and Q3-d4. Therefore, these options have been filled as marked when some of

the subanswers have been marked. These modifications are marked in grey in the table.

Table A - 1: Results for i* Survey

 Q1 Q2 Q3 Q4

 a b c d E a b c A b c d e d1 d2 d3 a b c d e b1 b2

E1 1 1 1 1

E2 1 1 1 1

E3 1 1 1 1 1 1 1 1 1

E4 1 1 1 1 1

E5 1 1 1 1 1

E6 1 1 1 1 1 1 1

E7 1 1 1 1 1 1 1 1 1 1 1

E8 1 1 1 1 1 1 1 1 1 1 1 1

E19 1 1 1 1

E9 1 1 1 1

E10 1 1 1 1 1

E11 1 1 1 1 1 1

E12 1 1 1 1 1

E13 1 1 1 1 1 1

E14 1 1 1 1 1

E15 1 1 1 1 1

E21 1 1 1 1 1 1 1

E20 1 1 1 1 1

E16 1 1 1 1 1 1 1 1

E18 1 1 1 1 1 1

E17 1 1 1 1 1 1 1

TOTAL 3 6 9 2 1 3 13 3 8 18 1 8 0 4 3 3 3 19 2 3 0 4 14

Q1: a

0 1 0 2 3 0 1 0 0 1 1 0 3 0 0 0 0 2

Q1: b

0 5 1 2 6 0 4 0 2 1 1 2 6 1 2 0 2 3

Q1: c

1 6 2 4 6 0 2 0 1 1 1 1 7 0 0 0 0 7

Q1: d

1 1 0 0 2 0 1 0 1 0 0 0 2 0 1 0 1 2

Q1: e 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0

Appendix A. Survey: Using is-a links in i* models 143

As is presented in Section 3.3.2, the responders’ comments suggest that the specialization

should follow the object-orientation rules. For the following comments, A is the subactor and B

the superactor.

Figure A- 1. Survey Responders Comments about following Object-Orientation way

Some comments refer to specific operations like “specialize”, “refine” or “redefinition” with no

more information. Or pointing to “inheritance traditional way”. Even, a responder mentioned

the idea of overloading decompositions (that corresponds to the redefintion operation in this

proposal).

Figure A- 2. Survey Responders Comments about allowed changes

144 Appendix A. Survey: Using is-a links in i* models

Regarding representation, they suggest to include only the changes in the subactor.

Figure A- 3. Survey Responders Comments about representation

