
Experience with Empirical Studies in Industry: Building Parametric Models

Response

Dewayne E Perry ACE 5.124 ARISE

perry@mail.utexas.edu

Immediate Response

- * In violent agreement ©
- * A great approach appropriate emphasis on data
- * A really good method
- * Lots of good examples
- * Meanful results
- * Complaint not enough about THEORY!
 - * Provides a great approach to create/evolve theories
 - * General SE problem: not nearly enough emphasis on theory
 - > As bases for our work
 - > As results for our work

Parametric Models

- Barry's "Parametric Model" is a software system interpretation/analogy of basic empirical study structure
 - ★ Outcomes = F(Parameters)
 - A Treatment (F) manipulates the Independent Variables (Parameters) producing results in the Dependent Variables (Outcomes)
- * Basic software system questions:
 - * Are we building the right system?
 - * Are we building it right?
 - * Is it doing what we expect it to do?
 - * What is it useful for?
- * Basic empirical studies questions:
 - * Are we measuring/evaluating what we mean to measure/evaluate?
 - ***** Are the results due solely to our manipulations?
 - ***** Are our conclusions justified
 - * What are the results applicable to?

Validity Issues

- * Sequentially dependent
- * Construct validity
 - * Are we evaluating/measuring what we meant to evaluate/measure?
 - ***** Abstract constructs
 - ***** Concrete, observable constructs
- * Internal Validity
 - * Are the results due solely to our manipulations?
 - * Or are there confounding variables- ie, alternative explanations
- * Analysis Logic and Statistical Validity
 - * Are our conclusions justified?
- * External Validity
 - * What are the results applicable to?
 - * Several alternative interpretations here

Construct Validity

- * Are we measuring what we intend to measure
 - * Akin to the requirements problem: are we building the right system
 - * If we don't get this right, the rest doesn't matter
- * Constructs: abstract and concrete concepts
 - ***** Abstract: theoretical constructions
 - * Must be operationalized into concrete for the experiment
- * Necessary condition for successful experiment
- * Divide construct validity into three parts:
 - * Intentional Validity
 - > Do the constructs adequately represent what we intend to study
 - * Representation Validity
 - > Do the constructs adequately represent what we intend to study
 - ***** Observation Validity
 - > How good are the measures themselves

CESI 2013

Internal Validity

- Are the values of the dependent variables solely the result of the manipulations of the independent variables
 * Analogously, is the output solely a function of the input
- * Have we ruled out rival hypotheses
- * Have we eliminated confounding variables
 - ***** Participant variables
 - ***** Experimenter variables
 - ***** Stimulus, procedural and situational variables
 - ***** Instrumentation
 - ***** Nuisance variables

Internal Validity

- * Confounding effects
 - * Treatment effect and some other effect cannot be separated
- * Confounding sources of internal invalidity
 - * History
 - > Takes place between pre and post test
 - > May contaminate post test results
 - ***** Maturation
 - > Older/wiser/better between pre/post
 - \star Instrumentation
 - > Change due to test instrument
 - ***** Selection
 - > nature of subjects
 - > Control over assignment may have effects

Statistical Conclusion Validity

- Are the presumed causal variable X and its effect Y statistically related
 - * Ie, do they co-vary
 - ***** If unrelated then the one cannot be the cause of the other
- * 3 questions (sequentially dependent)
 - \star Are there enough data points
 - ***** Is the study sufficiently sensitive
 - * What is the evidence that they co-vary
 - * How strongly do they co-vary

External Validity

- * Several positions
 - * The generalizability beyond that studied/observed
 - > Strongest: generalizes to all types of domains/systems
 - * The extent to which the results support the claims of generalizability
 - The specific claim is limited but fully supported to the extent of the claim
 - * Generalizability not an issue
 - > Eg, demonstrating that the treatment produces the effects predicted from the corresponding theory

CESI 2013

Dewayne E Perry - ARiSE

Copyright © 2005 Creators Syndicate, Inc.