
On the Need of a Reference Algebra for OLAP

Oscar Romero and Alberto Abelló

Universitat Politècnica de Catalunya

Abstract. Although multidimensionality has been widely accepted as
the best solution to conceptual modeling, there is not such agreement
about the set of operators to handle multidimensional data. This paper
presents a comparative of the existing multidimensional algebras trying
to find a common backbone, as well as it discusses about the necessity
of a reference multidimensional algebra and the current state of the art.

1 Introduction

OLAP tools are conceived to exploit the Data Warehouse for analysis tasks based
on multidimensionality, the main feature of these tools. The multidimensional
conceptual view of data is distinguished by the fact/dimension dichotomy and it
is characterized by representing data as if placed in an n-dimensional space, al-
lowing us to easily understand and analyze data in terms of facts and dimensions
showing the different points of view where a subject can be analyzed from.

Lots of efforts have been devoted to multidimensional modeling, and up to
now, several models have been introduced in the literature (most of them sur-
veyed in [1] and [2]). However, we can not yet benefit from an standard multidi-
mensional model, and a common framework in which to translate and compare
the research efforts in the area is missing. As discussed in [3] and [4], experi-
ences in the field of databases have proved that a common framework to work
with is crucial for the evolution of the area: (1) conceptual modeling is vital
for the design, evolution and optimization of a data warehouse, whereas (2) a
multidimensional algebra is crucial for a satisfactory navigation and analysis
(i.e. querying) of data contained in the data warehouse. Specifically, a reference
set of operators would help to develop design methodologies oriented to im-
prove querying, better and accurate indexing techniques as well as to facilitate
query optimization; issues even more critical than in an operational database,
due to the huge amount of data stored in a data warehouse. However, although
multidimensionality (i.e. to model in terms of facts and dimensions) has been
widely accepted as the best solution to data warehouse modeling, there is no
such agreement about the set of operators to handle multidimensional data. To
our knowledge, it does not even exist a comparative of algebras in the literature.

Thus, section 3 compares existing multidimensional algebras trying to find a
common backbone, whereas section 4 discusses why the relational algebra (used
by ROLAP tools) does not directly fit to multidimensionality. Due to the lack of a
reference model, section 2 presents the multidimensional framework used in this
paper. Section 5 discusses about the necessity of a reference multidimensional
algebra as well as the current state of the art, and section 6 concludes this paper.

2

2 Our Framework

Due to the lack of an standard multidimensional model, and hence, the lack of
a common notation, we need a reference framework in which to translate and
compare the multidimensional algebras presented in the literature. Otherwise, a
comparison among all those different algebras would be rather difficult. In this
section we introduce a multidimensional data structure and a set of operators
(introduced in detail in [5]) used in this paper to concisely and univocally define
the multidimensional concepts, as well as to provide a common notation. From
here on, these concepts will be bold faced for the sake of comprehension.

First, we introduce our framework data structure, where a Dimension con-
tains a hierarchy of Levels representing different granularities (or levels of detail)
to study data, and a Level contains Descriptors. We differentiate between
identifier Descriptors (univocally identifying each instance of a Level) and
non-identifier. On the other hand, a Fact contains Cells which contain Mea-
sures. One Cell represents those individual cells of the same granularity that
show data regarding the same Fact (i.e. a Cell is a “Class” and cells are its in-
stances). We call a Base to those minimal set of Levels identifying univocally a
Cell, that would result in “primary keys” in ROLAP tools. A set of cells placed
in the multidimensional space with regard to the Base is called a Cube; One
Fact and several Dimensions to analyze it give rise to a Star.

Next, we present our reference multidimensional operations set:

– Selection: By means of a logic clause C over a Descriptor, this opera-
tion allows to choose the subset of points of interest out of the whole n-
dimensional space.

– Roll-up: It groups cells in the Cube based on an aggregation hierarchy.
This operation modifies the granularity of data by means of a many-to-one
relationship which relates instances of two Levels in the same Dimension,
corresponding to a part-whole relationship. As argued in [6] about Drill-
down (i.e. the inverse of Roll-up), it can only be applied if we previously
performed a Roll-up and did not lose the correspondences between cells.

– ChangeBase: This operation reallocates exactly the same instances of a
Cube into a new n-dimensional space with exactly the same number of
points, by means of a one-to-one relationship. Actually, it allows two differ-
ent kinds of changes in the space Base: we can just rearrange the multidi-
mensional space by reordering the Levels or, if exists more than one set of
Dimensions identifying the cells (i.e. alternative Bases), by replacing the
current Base by one of the alternatives.

– Drill-across: This operation changes the subject of analysis of the Cube by
means of a one-to-one relationship. The n-dimensional space remains exactly
the same, only the cells placed on it change.

– Projection: It selects a subset ofMeasures from those shown in the Cube.
– Set Operations: These operations allow to operate two Cubes containing

the same Cells if both are defined over the same n-dimensional space. We
consider Union, Difference and Intersection as the most relevant ones.

3

Union
Algebra Operator Selection Projection Roll-up changeBase Drill-across Difference Remarks

Drill-down Intersection
“Add Dimension” Xp

“Transfer” ∼
[7] “Cube Aggr.” X

“Rc-join” X
“Union” X
“Push” Xp Semantic

Rels.
“Pull” D Xp Semantic

[8] Rels.
“Destroy Dimension” D Xp

“Restriction” X
“Join” X
“Merge” X

“Selection” X
“Projection” X

“Cartesian Product” ∼
[9] “Union/Diff./Inters.” X

“Fold/Unfold” Xp
“Classification” D
“Summarization” D
“Restriction” X

“Metric Projection” X
“Aggregation” X

“Cartesian Product” ∼
[10] “Join” X

“Union/Diff.” X
“Extract” Xp Semantic

Rels.
“Force” Xp Semantic

Rels.

“Slicing” X
“Roll-up/Drill-down” X

[11] “Split/Merge” ∼
“Implicit/Explicit Aggr.” Xp

“Cell Operators” Derived
Measures

“Cartesian Product” ∼
“Natural Join” X

“Roll-up” D
“Aggregation” D

[12] “Level Description” Xp Semantic
Rels.

“Scalar Function App.” Derived
Measures

“Selection” X
“Simple Projection” X Xp

“Abstraction” X+ Xp+
“Restrict” X
“Destroy” Xp

[13] “join” X
“Join” X+ X+
“Aggr” X

“Selection” X
“Projection” X
“Union/Diff.” X

“Identity-based Join” ∼
“Aggregate Formation” Xp

[14] “Value-based Join” X
“Duplicate Removal” Base

definition
“SQL-like Aggr.” Xp

“Star-join” X+ X+
“Roll-up/Drill-down” X

“Navigate” X
[15] “Selection” X

“Split Measure” X
“Derived Measures” Derived

Measures
[16] “Join” Xp

“Slice/Multislice” X
“Union/Diff./Inters.” X
“Selection Cube” X

[17] “Decoration” Xp
“Fed. Gen. Projection” X+ X+ X+

Table 1. Summary of the comparative between multidimensional algebras.

4

3 The Multidimensional Algebras

This section presents a thorough comparative among the multidimensional al-
gebras presented in the literature. To the best of our knowledge, it is the first
comparative about multidimensional algebras carried out. In [2], a survey de-
scribing the multidimensional algebras in the literature is presented. However,
unlike us, it does not compare them.

Results presented along this section are summarized in table 1. There, rows,
representing an algebraic operator, are grouped according to which algebra they
belong to (also ordered chronologically), whereas columns represent multidimen-
sional algebraic operators in our framework (notice Roll-up and Drill-down
are considered together since one is the inverse of the other).

The notation used is the following: a X cell means that those operations
represent the same conceptual operator; a ∼ stands for operations with similar
purpose but different proceeding making them slightly different; a Xp means that
the operation partially performs the same data manipulation than the reference
algebra operator despite the last also embraces other functionalities, and a X+

means that this operation is equal to combine the marked operators of our
reference algebra, meaning it is not an atomic operator. Analogously, there are
some reference operators that can be mapped to another algebra combining more
than one of its operators. This case is showed in the table with aD (from derived).
Keep in mind this last mark must be read vertically unlike the rest of marks.
Finally, notice we have only considered those operations manipulating data and
therefore, those aimed to manipulate the data structure are not included:

[7] introduces a multidimensional algebra as well as its translation to SQL.
To do so, they introduce an ad hoc grouping algebra extending the relational one
(i.e. with grouping and aggregation operators). Prior to present its operators,
notice it was one of the first multidimensional algebras introduced, and their
main effort was to construct Cubes from local operational databases.

More precisely, it defines five multidimensional operators representing map-
pings between either Cubes or relations and Cubes. The “Add dimension” and
“Transfer” operators are aimed to rearrange the multidimensional space similar
to a changeBase: while “Add dimension” adds a new analysis Dimension to
the current Cube, “Transfer” transfers a Dimension attribute (i.e. a Descrip-
tor) from one Dimension to another via a “Cartesian Product”. Since multi-
dimensional concepts are directly derived from non-multidimensional relations,
Dimensions may be rather vaguely defined, justifying the transfer operator;
the “Cube Aggregation” operator performs grouping and aggregation over data,
being equivalent to a Roll-up and finally, the “Rc-join” operator, that allows
us to join a relational table with a Dimension of the Cube, Selecting the
Dimension values also present in the table. This low level operator is tightly
related to the multidimensional model presented, and it is introduced to relate
non-multidimensional relations with relations modeling Cubes.

[8] presents an algebra composed by six operators rather relevant, since they
inspired many following algebras. First, “Push” and “Pull” transform aMeasure
into a Dimension and viceversa, since in their model Measures and Dimen-

5

sions are handled uniformly. In our framework they would be equivalent to
define semantic relationships between the proper Dimensions and Cells and
then, Drill-across and changeBase respectively; “Destroy Dimension” drops
a Cube Dimension rearranging the multidimensional space and hence, being
equivalent to a changeBase, whereas the “Restriction” operator is equivalent to
a Selection; “Merge” to a Roll-up and “Join” to an unrestricted Drill-across.
Consequently, the latter can even be performed without common Dimensions
between two Cubes, giving rise to a “Cartesian Product”. However, a “Cartesian
Product” does not make any multidimensional sense if it is not restricted, since
it would not preserve disjointness when aggregating data ([18]). Finally, notice
we can Project data by means of “Pull”ing the Measure into a Dimension
and performing a “Destroy Dimension” over it.

[9] presents an algebra based on the classical algebraic operations. Therefore,
it includes “Selection”, “Projection”, “Union” / “Intersection” / “Difference” and
the “Cartesian Product”; all of them being equivalent to their analogous operators
in our reference algebra except for the latter; mappable to an unrestricted Drill-
across as discussed above. The “Fold” and “Unfold” operators add / remove a
Dimension, like in a changeBase; whereas Roll-up is decomposed in two
operators: “Classification of Tables” (i.e. grouping of data) and “Summarization
of Tables” (aggregation of data). Hence, this algebra proposes to differentiate
grouping (i.e. the conceptual change of Levels through a part-whole relationship
or in other words, the result of mapping data into groups) from aggregation (i.e.
aggregating data according to an aggregation function).

[10] and [19] present an algebra with eight operators based on the algebra pre-
sented in [8]. Therefore, the “Restriction” operator is equivalent to a Selection;
the “Metric Projection” to a Projection; the “Aggregation” to a Roll-up and
the “Union” / “Difference” operators to those with the same name in our refer-
ence algebra. Moreover, like in [8], Measures can be transformed into Dimen-
sions and viceversa. Hence, the “Force” and “Extract” operators are equivalent
to the “Push” and “Pull” operators. Finally, the “Cubic Product” is equivalent
to the “Join” operator in [8]. However, since, in general, a “Cartesian Product”
does not make multidimensional sense, they also remark the specific case of a
“Cubic Product” over two Cubes with common Dimensions (i.e. preserving
disjointness if joined through their shared Dimensions). They call “Join” to
this restricted “Cubic Product”.

[11] presents an algebra composed by five operators. “Slicing” reduces the
multidimensional space in the same sense than Selection, whereas “Roll-up”
and “Drill-down” and the “Split” and “Merge” operators are equivalent to Roll-
up and Drill-down. Despite they represent the same conceptual operators, its
model data structure, that differentiates two analysis phases of data, justifies
them: while “Roll-up” and “Drill-down” find and interesting context in a first
phase, “Split” and “Merge” modify the data granularity dynamically along the
“dimensional attributes” (non-identifiers Descriptors) defined in the “classifi-
cation hierarchies” nodes of the data structure. It also introduces two operators
to aggregate data: the “Implicit” and the “Explicit” aggregation. The first one is

6

implicitly used when navigating by means of “Roll-up”s, whereas the second one
can be explicitly stated by the end-user. Since they are equivalent, these oper-
ators are just differentiated because of the conceptual presentation followed in
the paper. Finally, the “Cell-oriented operator” derives new data preserving the
same multidimensional space by means of “unary operators” (-, abs and sign)
or “binary operators” (*, +, -, /, min and max). “Binary operators” ask for two
multidimensional objects aligned (i.e. over the same multidimensional space). In
our framework it is obtained defining Derived Measures in design time.

[20], [21] and [12] present an algebra with nine operators. Similar to [9],
Roll-up is decomposed into “Roll-up” (i.e. grouping) and “Aggregation”; “Level
description” is equivalent to an specific changeBase: it changes a Level by
another one related through a one-to-one relation to it. In our framework we
should define a semantic relationship among Levels involved and perform a
changeBase; “Simple projection” projects out selected Measures and reduce
the multidimensional space dropping Dimensions: it can just drop Measures
(equivalent to a Projection), Dimensions (to a changeBase) or combine
both. Finally, “Abstraction” is equivalent to the “Pull” operator in [8] and “Se-
lection”, “Cartesian Product” and “Natural Join” to those already discussed along
this section.

[13] presents a Description Logics based algebra developed from that pre-
sented in [8]. Therefore, it also introduces the “Restrict” operator; the “Destroy”
one equivalent to the “Destroy Dimension” and the “Aggr” operator equivalent
to a “Merge”. Furthermore, the “join” and “Join” operators can be considered an
extension of the “Join” operator in [8]: both operators restrict it to make multi-
dimensional sense and consequently, being equivalent to a Drill-across; despite
the second one also allows to group and aggregate data before showing it (i.e.
being equivalent to a Drill-across plus a Roll-up).

[14] presents an algebra where “Selection”, “Projection”, “Union” / “Differ-
ence” and Roll-up and Drill-down are equivalent to those with the same name
presented in our framework, whereas the “Value-based join” is equivalent to a
Drill-across and the “Identity-based join” to a “Cartesian product”. Moreover,
it also differentiates the “Aggregate operation” from the “Roll-up” (i.e. grouping);
the “Duplicate Removal” operator is aimed to remove cells characterized by the
same combination of dimensional values. In our framework it can never happen
because of theBase definition introduced. Finally, it presents a set of non-atomic
operators; the “star-join” operator combines a Selection with a Roll-up, by the
same aggregation function, over a set of Dimensions, and the “SQL-like aggre-
gation” applies the “Aggregate operation” to a certainDimensions and projects
out the rest (that is, performs a changeBase).

[15] presents an algebra with three operators focusing on the most common
multidimensional operators: “Navigation” allows us to Roll-up, and according
to [22] it is performed by means of “Level-Climbing” -reducing the granularity
of data-, “Packing” -grouping data- and “Function Application” -aggregating by
means of an aggregation function-. Finally, “Split a Measure” is equivalent to a
Projection and a “Selection” to the reference Selection.

7

[17] presents an algebra over an XML and OLAP federation: “Selection Cube”
allows us to Select data, while “Decoration” adds newDimensions to theCube
(i.e. mappable to a changeBase) and a “Federation Generalized Projection”
Roll-ups the Cube and removes unspecified Dimensions (changeBase) and
Measures (Projection). Notice despite Roll-up is mandatory, this operator
can combine it with a Projection or/and a changeBase.

An algebra with four operations is presented in [16]. “Slice” and “Multislice”
Select a single or a range of dimensional values; “Union” / “Intersection” /
“Difference” combine two aligned Cubes according to their semantics, whereas
“Join” is rather close to Drill-across but in a more restrictive way, forcing both
Cubes to share the same multidimensional space. Finally, “Derived Measures”
derives new Measures from already existent. In our framework, as already said,
derived Measures should be defined in design time. Finally, notice that Roll-
up is not included in their set of operators, since it is considered in their model
data structure.

Finally, to conclude our comparative, we would like to remark that some of
these approaches have also presented an equivalent calculus besides the algebra
introduced above (like [9] and [12]). Moreover, [23] presents a query language to
define the expected workload for the Data Warehouse. We have not included it in
table 1 since it can not be smoothly compared to algebraic operators one per one.
Anyway, analyzing it, we can deduce many of our reference algebraic operators
are also supported by their model like Selection, Projection, Roll-up, Union
and even a partial Drill-across as they allow to overlap fact schemes.

4 Multidimensional Algebra Vs. Relational Algebra

In our study, we also need to place the relational algebra in our framework
since, nowadays, ROLAP tools are the most widely spread approach to model
multidimensionality and therefore, multidimensional queries are being translated
to SQL and (eventually) to the relational algebra.

This section aims to justify the necessity of a semantic layer (the multidi-
mensional algebra) on the top of a RDBMS (i.e. the relational algebra). Despite
we believe ROLAP tools are a good choice to implement multidimensionality,
we present, by means of a conceptual comparative between the multidimensional
and the relational algebra operators, why the relational algebra (and therefore
SQL) does not directly fit properly to multidimensionality. Furthermore, we em-
phasize in those restrictions and considerations needed to be made over the
relational algebra with regard to multidimensionality.

In this comparative we consider the relational algebra presented in [24]. Thus,
we consider “Selection” (σ), “Projection” (π), “Union” (∪), “Difference” (−) and
“Natural Join” (./) as the relational algebra operators. We talk about “Natural
Join”, or simply “Join”, instead of the “Cartesian Product” (the one presented in
[24] and where “Join” can be derived from) since a “Cartesian Product” without
restrictions is meaningless in the multidimensional model, as discussed in [18].

8

Fig. 1. Schema of a multidimensional Cube

For the sake of comprehension, since we focus on a conceptual comparison,
and to avoid messing results with considerations about the Data Warehouse im-
plementation, we can consider, without loss of generality, that each multidimen-
sional Cube is implemented as a single relation (i.e. a denormalized relational
table). So that, considering the Cube depicted in figure 1 we would get the
following relation: {City, Day, Product, Daily Stock, Country, Month, Year}.
Being the underlined fields the multidimensional Base and therefore, the rela-
tion “primary key”. Along this section, we will refer to this kind of denormalized
relation as the multidimensional table.

Table 2 summarizes the mapping between both set of algebraic operators.
Notice we are considering the “group by” and “aggregation” as relational op-
erators, and both will be justified consequently below. Since multidimensional
tables contain (1) identifier fields (i.e. identifier Descriptors) identifying data
-for instance: City, Day and Product in the above example-; (2) numerical fields
-Daily Stock- representing multidimensional data (i.e. Measures) and (3) de-
scriptive fields -Country, Month and Year- (i.e. non-identifier Descriptors), we
use the following notation in the table: XMeasures if the multidimensional oper-
ator is equivalent to the relational one but it can be only applied over relation
fields representing Measures, XDescs if the multidimensional operator must be
applied over Descriptors fields and finally, XDescsid

if it can be only applied
over identifier Descriptors fields. Consequently, a X without restrictions means
both operators are equivalent, without additional restrictions. If the translation
of a multidimensional operator combines more than one relational operator, the
subscript + is added. Next, we clearly define the relational algebra proper subset
mappable to the multidimensional algebra:

– The multidimensional Selection operator is equivalent to a restricted rela-
tional “Selection”. It can only be applied over Descriptors and then, it is
equivalent to restrict the relational “Selection” just over Level data. Accord-

Reference Operator “Selection” “Projection” “Join” “Union”/“Diff.” “Group by” “Aggregation”
Selection XDescs
Projection XMeasures
Roll-up XDescsid+ XMeasures+

Drill-across XDescsid+ XDescsid+
Add Dim. XDescsid

changeBase Remove Dim. XDescsid
Alt. Base XDescsid+ XDescsid+

Union/Difference X

Table 2. Comparative table between the relational and the multidimensional algebras.

9

ing to our notation, we express the multidimensional Selection in terms of
the relational algebra as σDescriptors.

– Similarly, the multidimensional Projection operator is equivalent to the
relational one restricted to Measures; that is, specific Cell data. In terms
of the relational algebra we could express it as πMeasures.

– OLAP tools emphasize on flexible data grouping and efficient aggregation
evaluation over groups and it is the multidimensional Roll-up operator the
one aimed to provide us with powerful grouping and aggregation of data.
In order to support it, we need to extend the relational algebra to provide
grouping and aggregation mechanisms. This topic have already been studied
and previous works like [25], [7] and [26] have already presented extensions
of the relational algebra to what is also called the grouping algebra. All of
them introduce two new operators; one to group data and apply a simple
addition, counting or maximization of a collection of domain values and
the other one to compute the aggregation of a given attribute over a given
nested relation. Following the [26] grouping algebra, we will refer to them
as the “group by” and the “aggregation” operators. In terms of this grouping
algebra, a Roll-up operator consists of a proper “group by” operation along
with an “aggregation” of data. Keep in mind this operation must perform a
proper aggregation of data if we want it to be consistent.

– A consistent Drill-across typically consists on a “Join” between two multi-
dimensional tables sharing the same multidimensional space. Notice that to
“Join” both tables it must be performed over their common Level identifiers
that must univocally identify each cell in the multidimensional space (the
Cube Base). Moreover, once “joined”, we must “project” out the columns
in the multidimensional table drill-acrossed to, except for its Measures.
Formally, Let A and B be the multidimensional tables implementing, re-
spectively, the origin and the destination Cells involved. In the relational
algebra it can be expressed as:

πDescriptorsA,MeasuresA,MeasuresB(A ./ B)

– As stated in section 2, changeBase allows us to rearrange our current mul-
tidimensional space either by changing to an alternative Base (adding /
removing a Dimension or replacing Dimensions) or reordering the space
(i.e. “pivoting” as presented in [3]).
When changing to an alternative Base we must assure it does not affect the
functional dependency of data with regard to the Cube Base. Hence:
• To add a Dimension it must be done through its All Level or fixing

just one value at any other Level by means of a Selection, to not lose
cells (i.e. representing the whole Dimension as a unique instance as
discussed in 2). Therefore, in the relational algebra adding aDimension
is achieved through a “cartesian product” between the multidimensional
table and the Dimension table (that would contain a unique instance).
Specifically, being C the initial multidimensional table and D the relation
implementing the added Dimension, it can be expressed as:

10

C × D, where |D| = 1
• To remove a Dimension it is just the opposite, and we need to get rid

of the proper Level identifier projecting it out in the multidimensional
table.

• To change the set of Dimensions identifying each cell, that is, choos-
ing an alternative Base to display the data, we must perform a “join”
between both Bases and project out the replaced Levels Descriptors
in the multidimensional table. In this case, the “join” must be performed
through the identifier Descriptors of Levels replaced and Levels in-
troduced. Formally, let A be the multidimensional table, B the table
showing the correspondence between both Bases and d1, ..., dn the iden-
tifier Descriptors of those Dimensions introduced. In the relational
algebra, it is equivalent to:

πDescriptorsB(d1,...,dn),MeasuresA(A ./ B)

• Finally, pivoting just asks to reorder the Levels identifiers using the
SQL “order by” operator, not mappable to the relational algebra. For
that reason, it is not included in table 2.

– The multidimensional Union (Difference) unites (differences) two Cubes
defined over the same multidimensional space. In terms of the relational al-
gebra, it is equivalent to “Union” (“Difference”) two multidimensional tables.

5 Discussion

By means of a comparative of the multidimensional algebras introduced in the
literature, section 3 has been able to identify a multidimensional backbone shared
by all the algebras. Firstly, Selection, Roll-up and Drill-down operators are
considered in every algebra. It is quite reasonable since Roll-up is the main op-
erator of multidimensionality and Selection is a basic one, allowing us to select
a subset of multidimensional points of interest out of the whole n-dimensional
space. Projection, Drill-across and Set Operations are included in most
of the algebras. In fact, along the time, just two of the first algebras presented
did not include Projection and Drill-across. About Set Operations, it de-
pends on the transformations that the model allows us to perform over data
and indeed, it is a personal decision to make. However, we do believe that to
unite, intersect or difference two Cubes is a kind of navigation desirable. Fi-
nally, changeBase is also partially considered in most of the algebras. Specif-
ically, they agree on the necessity of modifying the n-multidimensional space
adding / removing Dimensions, and they include it as a first class citizen op-
erator. Moreover, our framework provides additional alternatives to rearrange
the multidimensional space (i.e. to change the multidimensional space Base and
“pivoting”). In general, we can always rearrange the multidimensional space in
any way, if we preserve the functional dependencies of the cells with regard to
the Levels conforming the Cube Base; that is, if the replaced Dimension(s)
and the new one(s) are related through a one-to-one relationship.

11

Finally, we would like to underline the need to work in terms of a multidimen-
sional algebra. As shown in section 4, the multidimensional data manipulation
should be performed by a restricted subset of the relational algebraic opera-
tors (used by ROLAP tools). Otherwise, the results of the operations performed
either would not conform a Cube (since the whole relational algebra is not
closed with regard to the multidimensional model) or would introduce aggre-
gation problems ([18]). In other words, the multidimensional algebra represents
the relational algebra proper subset applicable to multidimensionality.

Summing up, all the algebras surveyed are subsumed by our framework; that
is also strictly subsumed by the relational algebra. Thus, we have been able to
(1) identify an implicit agreement about how multidimensional data should be
handled and to (2) show that this common set of multidimensional operators
can be expressed as a subset of the relational algebra.

6 Conclusions

The comparative of algebras presented in this paper has revealed many implicit
agreements about how multidimensional data should be handled. We strongly
believe that the multidimensional backbone identified in our study could be used
to develop design methodologies oriented to improve querying, better and accu-
rate indexing techniques and to facilitate query optimization. That is, provide
us with all the benefits of a reference framework. Moreover, we have shown that
this common set of multidimensional operators can be expressed as a proper
subset of the relational algebra; essential to give support to ROLAP tools.

References

1. Abelló, A., Samos, J., Saltor, F.: A Framework for the Classification and Descrip-
tion of Multidimensional Data Models. In: Proc. of 12th Int. Workshop on Database
and Expert Systems Applications (DEXA 2001), Springer (2001) 668–677

2. Vassiliadis, P., Sellis, T.: A Survey of Logical Models for OLAP Databases. SIG-
MOD Record 28(4) (ACM, 1999) 64–69

3. Franconi, E., Baader, F., Sattler, U., Vassiliadis, P.: Multidimensional Data Models
and Aggregation. In: Fundamentals of Data Warehousing. Springer (2000) M.
Jarke, M. Lenzerini, Y. Vassilious and P. Vassiliadis editors.

4. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in Data Warehouse
Modeling and Design: Dead or Alive? In: Proc. of 9th Int. Workshop on Data
Warehousing and OLAP (DOLAP 2006). (2006) 3–10

5. Abelló, A., Samos, J., Saltor, F.: YAM2 (Yet Another Multidimensional Model):
An extension of UML. Information Systems 31(6) (2006) 541–567

6. Hacid, M.S., Sattler, U.: An Object-Centered Multi-dimensional Data Model with
Hierarchically Structured Dimensions. In: Proc. of IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX 1997), IEEE (1997)

7. Li, C., Wang, X.: A Data Model for Supporting On-Line Analytical Processing.
In: Proc. of 5th Int. Conf. on Information and Knowledge Management (CIKM
1996), ACM (1996) 81–88

12

8. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In:
Proc. of the 13th Int. Conf. on Data Engineering (ICDE’97), IEEE (1997) 232–243

9. Gyssens, M., Lakshmanan, L.: A Foundation for Multi-dimensional Databases.
In: Proc. of 23rd Int. Conf. on Very Large Data Bases (VLDB 1997), Morgan
Kaufmann (1997) 106–115

10. Thomas, H., Datta, A.: A Conceptual Model and Algebra for On-Line Analytical
Processing in Data Warehouses. In: Proc. of the 7th Workshop on Information
Technologies and Systems (WITS 1997). (1997) 91–100

11. Lehner, W.: Modelling Large Scale OLAP Scenarios. In: Proc. of 6th Int. Conf. on
Extending Database Technology (EDBT 1998). Volume 1377 of LNCS., Springer
(1998) 153–167

12. Cabibbo, L., Torlone, R.: From a Procedural to a Visual Query Language for
OLAP. In: Proc. of the 10th Int. Conf. on Scientific and Statistical Database
Management (SSDBM 1998), IEEE (1998) 74–83

13. Hacid, M.S., Sattler, U.: Modeling Multidimensional Database: A formal object-
centered approach. In: Proc. of the 6th European Conference on Information
Systems (ECIS 1998). (1998)

14. Pedersen, T.: Aspects of Data Modeling and Query Processing for Complex Mul-
tidimensional Data. PhD thesis, Faculty of Engineering and Science (2000)

15. Vassiliadis, P.: Data Warehouse Modeling and Quality Issues. PhD thesis, Dept.
of Electrical and Computer Engineering (Nat. Tech. University of Athens) (2000)

16. Franconi, E., Kamble, A.: The GMD Data Model and Algebra for Multidimensional
Information. In: Proc. of the 16th Int. Conf. on Advanced Information Systems
Engineering (CAiSE 2004). Volume 3084 of LNCS., Springer (2004) 446–462

17. Yin, X., Pedersen, T.: Evaluating XML-extended OLAP queries based on a phys-
ical algebra. In: Proc. of 7th Int. Workshop on Data Warehousing and OLAP
(DOLAP 2004), ACM (2004)

18. Romero, O., Abelló, A.: Improving Automatic SQL Translation for ROLAP Tools.
Proc. of 9th Jornadas en Ingeniería del Software y Bases de Datos (JISBD 2005)
284(5) (2005) 123–130

19. Thomas, H., Datta, A.: A Conceptual Model and Algebra for On-Line Analytical
Procesing in Decision Suport Databases. Information Systems 12(1) (2001) 83–102

20. Cabibbo, L., Torlone, R.: Querying Multidimensional Databases. In: Proc. of the
6th International Workshop on Database Programming Languages (DBPL 1997).
Volume 1369 of LCNS., Springer (1997) 319–335

21. Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. In:
Proc. of 6th Int. Conf. on Extending Database Technology (EDBT 1998). Volume
1377 of LNCS., Springer (1998) 183–197

22. Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube operations.
In: Proc. of the 10th Statistical and Scientific Database Management (SSDBM
1998), IEEE (1998) 53–62

23. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. Int. Journal of Cooperative Information Systems
(IJCIS) 7(2-3) (1998) 215–247

24. Codd, E.F.: Relational Completeness of Data Base Sublanguages. Database Sys-
tems (1972) 65–98

25. Klug, A.: Equivalence of Relational Algebra and Relational Calculus Query Lan-
guages Having Aggregate Functions. Journal of the Association for Computing
Machinery. 29(3) (1982) 699–717

26. Larsen, K.: On Grouping in Relational Algebra. Int. Journal of Foundations of
Computer Science. 10(3) (1999) 301–311

